Massachusetts Inslitute of Technology
Artificial Intelligence Laboratory

Cambridge, Massachuselis

AL Mema 368

May 1976 revised August 1978

A System For Understanding Mathematical FORTRAN Programs
oy

Richard C. Waters

ABSTRACT

Thiz paper proposes a system which, when imalemented, will be able o understand
mathematical FORTRAN programs such as thoze in ihe [BM Scientific Subrouline
Package. The system fakes, as inpul, a program and annotztion of the program. In
erger 1o understand the program, the system develops a "plan” for it, The “plan”
specifies the purpose of each feature of the program, and how these features
codperale in order fo create the behavior exhibiled by the program. The sysiem
can use its understanding of the program to answer guestions about it including
guestions aboul the ramifications of a proposed medification, [t is also able to aid
in debugging the program by defecling errors in if, and by locating the features of
the program which are responsible for an error. The system should be of
significant assistance 10 & person who s wriling a program,
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L A PROGRAM UNDERSTANDING SYSTEM

This research project is concerned with designing and implementing & program understanding
system. This seclion briefly describes what the proposed syslem doegs, how i} does i, and why il is
worlh doing. Sections 1 and 111 specify, in greater detail, what the system does and how it does it.

This paper speaks of the program understanding sysiom in the present tense, However, it should be
noted thal the system hes not been implemented vl

[.1 BRIEFLY, WHAT THE SYSTEM DOES

The system understands mathematical FORTRAN programs. [f does not altempt fo understand
the mathemalics embodied in a program, but only the programming. A mathermatical program can be
considered as the implementation of a thesrem, The system does not try te understamd the theoram.
It just believes it. What it does do, is ta understand how the program implemants the theorem.

Mathematical FORTRAN programs were chosen as ihe domain because they are a
slraightforward type of program. They are real programs thal use only a small subse! of possible
programming techniques. In particular, they use only simple data lypes (numbers, arrays, functions),
simple conltrol structure (no recursion, ro asynchrony), static variables and no [J0. Furthermore, in
the IBM S5F subroutine library, there are a large number of reasonably structured real programs to
serve as experimenial data for the system. Thess programs are a good test of a program
understanding system, because they were not specifically written 1o be understood by such a system,
The system demonstrates its understanding of a program through its ability to perform several tashs
which require understanding,

[.1.1 ANSWERING QUESTIONS ABOUT A PROGRAM

The system is able o answer gquestions about a program it understands, such as:
@ What is thes par! of the program?
b} Whal does thic part do?
£) Wiy 15 this part here?
d) What iz the funclion of this part?
&) How does this part do what it does?
f) What part achieves this goal?
In other wards, il is able te explain a program, to impar! ils undersianding of it to another.

1.1.2 DETECTING INCOMSISTENCES IN THE PROGRAM AMD [TS DESCRIPTION

The system does not attempl lo prove the correctness of a program. However, it is able to
detect simple inconsistences in its understanding of a program. [ can detect a variety of problems
where it can be simply shown that a segment o a program can nol possibly achieve the resulls
requested of it. The syslem’s deduclive apparatus consists largely of paitern matching, and trial by
example. This allows il te prove many assertions false, but few correct,

[.L.3 AIDING IN THE DETECTION AND UNDERSTAMDING OF BUGS

The system can apply its understanding of & program to md in tha task of debugging il. When
running the program in a careful mode, the systom constantly checks whelher a contradiction has
arisen between its understanding of the program, and wha! is actually happening. The moment a
cantradiction appears, the system reports it. This causes bugs o be found closer to their point of
origin than in an orginary programming system, For example, the sysiem might say "matrix & iz pot in
hermetion normal form” rather than “zerodivide" forty subroutine calls later.

Further, once given a point of departurs, the system can trace back even closer to the origin of
the problem. For instance, after discovering that matrix A was not in hermetion normal form, the
system might say “the subrouline F is mat living up 1o its extrinsic description, which claims that ils
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outpul is always in hermelion mormal farm® or “tha theorem implied by the use of subroutine F that
any malrix with properiies PL, P2, and P3 is in hermetion normal form, must be false.”

[m short, the system assiste a user in backiracking a bug 1o its source, and by watching the
execulion closely, reduces the amount of backlrack ng which needs to be done.

1.4 INVESTIGATING THE RAMIFICATIONS OF A MCDIFICATION

When a segmant of code is allered, to fix a bug or add a feature, the sysiem can assess some
of the ramifications of the change. This is particularly useful when the changed segment served other
purpeses in addition 10 the one under consideration. The system can ask ilself whether the funclions
the old segment served are slill being taken care of, whether the new gaals interfere with other goals
of the program, and whether the change does in fact achieve the results intended of it

L2 BRIEFLY, HOW THE SYSTEM WORKS

The system locks at a program as being comoozed of logically separate segments of code which
are combined together by connective tissue. Further, each segment is composed of subsegments, et
The connective tissue is of two types, data flow connective tissue {variables, funclion parameters,
assignments), and flow of control connective tissue (branches, subroutine calls, sequential code
placement). The dala flow connective lissue tranemits data belween segments, and the contral flow
connective tissue executes the segments in the proper order,

[.2.1 THE STRUCTURES WHICH DESCRISE A PROGRAM

The program as a whole is described through he interaction of two types of descriptions:
Sehavioral descriplions and plans, A behavioral cescription specities what 2 segment of code does
without indicating how it is done. It lists the inputs, oulputs, prerequisites, and oulput sssertions of a
segment. Behavioral descriptions describe a segment from two major points of view, An intrinsic
behavioral description fells whal a segment does in isolation. Al the stalements it makes about a
segment are lrue for every use of lhe segment. An exlrinsic behavioral descriplion lells what a8 use
of a segment does in the context of its use. One segment can be used for many logically unrelated
fasks im he same program,

A plan indicates how severzl segeents {and their extrinzic behavioral descriplions} combine to
torm a larger segment {and il intrinsic behavioral description). Plans are guite variable, but,
ocbservalion indicates that they fall into a small number of fypes {around tenl. This makes il possible
to deal with the plans even theugh each type is treated separately. It alse means that a great deal of
infarmation can be inferred about a segment purely irom the 1ype of the plan for the segment, since
out of the vast array of possible plan types only a small number are used. This in turn makes bath
recognizing and undersianding a segment easier,

The grand plan, which completely describes the operation of a program, simply consists of
behavioral descriptions and plans lor every segment down to some level where the segments are
taken as fundamental and as having n0 subsegments and hence no plans.

1.2.2 HOW THE SYSTEM USES THE DESCRIPTIVE STRUCTURES

Questions about a sezment are answered through reference to the dezeriplive structures. For
example, "What does this do? is answered by reference to the behavioral description. "How does it
do i1?" is answered by reference to the plan. "What funclion does it serve™ is answered by
reference ta the extrinsic behavioral description ard the plans in which it i eantainad,

Detection of inconsistences is performed while the descriplions are being constructed. As the
system builds up its understanding of a program, it canlinually checks lor inconsisiences im what it
knows. Whenever it discovers or is toid something about the program, it attempts to verify it If it
discovers a confradiction, il reports it, If it verifies it, fine. Mast of the time however, it comes te na
conclusion, since the deductive mechanism is weak In that case, it assumes that the fact is true, but
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is prepared to discover al a later time that the fact is cantradiciod

More complex tasks are periormed by means of the syslem asking itcel! questions., For
instance, when a bug is delefected the system asis questions such as, "Where did this come from®
"Who wanted it that way™; and "Whe wanls it ta be another way?" The answers to these guestions
lead 16 an understanding of the Bug.

1.2.3 HOW THE DESCRIPTIVE STRUCTURES ARE BUILT P

The system develops its ungerstanding of a program based on the code itself, and on what the
user tells it about the program via comments. Lagking at the code, the system can separate oul most
of the control and data flow connective tissue. Also, with a knowlecge of what the primitive units are,
the system can go a long way toward analyzing the lower level segments.

The user must provide comments descrizing the averall behavieral description of the program,
and the basic segmentation of the ceda. Most comments are in the farm of either a parfial
specification of a behavioral description, or the delineation of a segmen! combined with an indication
of the plan type applicanle fo if,

It should be noted that if is very difficult for the system fo defermine the segmentalion by
itsell, because of the vast number of possibla saoments it myst consider, and because there are
several trassformations commonly applied to segmemls which improve program performance at the
expense of clarity, For example, code is shared or similar subsegments are factored oul of logically
unrelated segments. Once the system has a handle on the segmentation of the program if can use its
knowledge of the sterastyped plan segment lypes to analyze the program further.

The amount of annolation which the UEET iz required to make iz a critical parameter, [f too
much annatalien is neaded the system will be too cumberzome for practical use. This nat
withstanding, the currrent goal of this ressarch is te achieve understanding withou! excessive COnCErn
tar how many comments are nesded.

1.3 WHY THE SYSTEM 15 VALUABLE

The size and complexity of programs are rapidly increasing. This makas programs Rarder fo
work with and harder to understard, This type of system would be very useful for acquainting or
reacquainting a person with a program, and lor keeping track of whal is going on when a persan
WOrksS GN & program,

The system would be particularly useful in a situation where a Eroup of people are working on
a program. The system could keep each parson abreast of what the alhers are deing. In addifion, it
could help coordinale what the people wers Gaing 2y walching that the segments pedple were wriling
would interface properly, and that {he goals would mesh together,

In its full form, the system would be an a'd in Sebugging. Bugs seem to be of two fypes:
errors in the algorithm, amnd errors in the implerentation of the algerithem. The system would be
helpful in locating and understanding implementation bugs in particular, Many bugs are simply due ta
torgetting miner datails which, though trivial, are essential. The system weuld also be able to greatly
reduce the chance of a pregrammer producing a mew bug while fixing an old one. This is usually due
to forgetting that a particular segment of code has more than ane function in the program.

In the future, the system ough! lo be able to move closer te 3 program wverification system. A
true understanding of a program should lead to a proof of correctness. The undarstanding serves as
a plan fer the proof,

In a similar fashion, the system leads toward sutamatic programming. A complete understanding
of a program should enable the system to write the program, fallowing the plans in its understanding.
The enly question is how can the understanging be developed withau! reference to the code,

L4 RELATIONSHIP TO OTHER WORK

This section describes the relationship befween the system propozed in this paper and other
work, from twe points of view, First, it compare: the basic melhodology of this system with other
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approaches to the same overall goal. Second, it compares this system with other systems wsing a
similar methodelegy, While making these comparizens, it tries 'o trace the development of the key
ideas embaodied in this system.

1.4.1 OTHER APPROACHES TO THE SAME GhAL

Consider a user {programmer) who wishes to perform a certain computation. To do this, he
wriles a program which will cause a digital computar 16 perform the computation. This reduces his
work to the wark reguired te write the pregram. The basic goal of the research proposed in this
paper is to reduce programming effort az much as sossible.

Wriling 2 program consists of two intertwined tasks, designing &l of the details required to
cause a compuler to perform a computation, and showing at least informally, that this computation is
the one the user had in mind. Designing the details (producing the program) is whal is usually
referred fo as wriling the program, However, it is clear that a programmer is continually guided by
an informal feeling for why what he has writtan, ard what he will write, is correct,

L4.1.1 GENERAL PURPOSE HIGH LEVEL LANGUAGES

The first step in reducing programming effort was achieved by moving from machine cods,
through assembler language, te general purpose high level languzges. The development of these
mare powerful languazes stemmed from two key ideas: modules and abstiractions,

A pre-written module can be as simple as a multiplication routine or as complex as a data base
management sysiem. A module can be used as a subrouline or expended inline a5 a macro. 1t can be
parlially pre-evalualed or transformed afler instantiation 10 increase efficiency. In any cese, modules
reduce the effert required fo write a program ecause they can be used without having to be
rewrilten. They reduce the effert required to verify a program because they can be used as lemmas
in the verification without having to be reverified.

Abstractions are used to ewpress cerfain key relationships in a program in ways which are
more convenient for the programmer, For instarce, assemblar languages introduced, amang aiher
things, the idea of using symbols as variables 1o indicate data flow. Compiled languazes infreduced,
among other things, the idea of using synlactic nesting to indicale data flow. They alse introduced the
idea that all of the primitives of & language could be modules, freeing the language from any
resemblance to, or dependence om, any particular computer archilecture,

Global operatigns {performed by an assembler, compiler, or inlerpreter) translate these
abstractions inlo machine understandable form. This frees the programmer from specifying details,
such as actual memory addresses, which, though thay musl eventually be determained in order for the
computation to be performed, are not of any direct interest 1o the user,

The abstractions facilifate veriticalion because they cerrespond more directly 1o the properties
needed for werificalion. For example, verification may reguire tha! data flow occur from a use of
madule A to a use of module B The synlactic nesting of the use of module & in the argument lict of
the wse of argument B succinctly expresses this requirement. Any added mechanism of memary
addresses, slacks, parameter passing, or variables would just get in the way.

General purpose high level languages (such as FORTRAN, PL/L, and ALGOL) have introduced a
large number of fealures of general usetulness. They have infroduced abstractions such as
subroutines and data types, and modules such as access functions for complex data types (like strimgs,
arrays, and structures). These languages have areatly simplified 1he programming process while
maintaining general applicability by incorporating knowledge of programming fechnigues. Howewer,
they have not gone far enough; programming is still difficult.

1.8.1.2 SPECIAL PURPOSE SYSTEMS

A number of systems have been developed which are more powerful than general purpose
langueges due o the fact that they incorporate algorithmic information specific 1o particular problem
domains. The simplesl of these sysiems are subroutineg packages (such as the |BM SSP [IBM



Richard C. Walers 5 l. A PROGRAM UNDERSTANDING SYSTEM

GH2@-3285-4)) which extend the power of a general purpose language through the addition of domain
specific modules.

To produce systems with groater power, desigrers have incorporated domain specific
knowlecEe in ways other than modules. For exemple, consider the language BOL [Hammer, Howe,
Kruskal & Wiadawsky 1975] which can be usad fo write busiress dala processing programs, B0L
constraing programs fo have one particular top level siructure, This allows the system fo
automatically generale the cede needed fo implement this structure. Further, all the modules and
absiractions used in BOL are specifically designed to fit into this particular tep level structure in
order to make the user's design and verification tasks easier. All this makes wriling a program easier
as long as the particular top level structure is appropriate.

Thiz trend can confinue with syslems confaning more and more informalion about smaller and
smaller domaing, unlil the frend culminates in customizers. A customizer can anly produce a few
programs, but it knows all of the delails of each of {hese programs. The only problem the user faces
is discovering whether the computalion he desires can be implementad by one of the programs the
customizer can produce. If it canm, the user specifies the program he wanls by filling ocut a
questionnaire. Verification is simple because the questionnaire is directly posed in the lerms the user
is interested in,

The problem with these syslems is that they are too specitic. & programmer can enly use such
a syslem if there happens 1o be one which applies lo his problem domain. If he changes domains, he
will have 1o learn an enlirely new system. Further, the more powerful one of thess gystems i, the
more limited its applicability,

[.4.1.3 USING GOOD PROGRAMMING STYLE

The particular style which a programmer uses has a great sffect an the ease with which he can
write a program. Langusges have been developed which encourags good programming style (for
example structured programming), and make some types of bad slyle impocaible. For pxample, the
language CLU [Liskov 1974] is designed fo make unstructured data access impossible. In CLU, a dala
item can only be accessed through the access funclions defined for its dala tvpe. Therefore, it is
Impossible to use any ad hoc data manipulations which could eamplicate the verification process. This
approach exiends the idea of enhancing the power of a genaral purpose language by including
programming knowledge in the systam.

L4.1.4 AUTOMATIC PROGRAKMMING

With any of the general purpose languages discussed above, programmer {aces the fask of
specifying whal modules are to be used, and how they are 10 be interconnected. Autamatic
programming altempls to automate this process. In automatic programming, the user's pragram is a
specification of what s lo be done, not how it is to be done. Systems have been designed using
specificalion through examples of behavior (such as 1/0 pairs [Summers 1975 Shaw, Swartout, &
Green 1978; Hardy 1975] and traces [Bauer 1975]), exact specificalions in a predicale calcolus like
language [Manna & Waldinger 1975], or English language descriptions [Ruth 1978]

It is not frue thal automatic programming would eliminate all the effart of programming.
Developing a precise descriplion of a desired computation is difficult, whether or not the description
is algerithmic. However, assumedly, a programmer has always had to develop some descriptive
specification for a program he wishes to wrile, at least in his head. Therefore, writing and verifying a
program, which is itself a specification, should be easier, as long as the lype of descriptive mechamism
used by the automatic programming system is sufficiently similar to the one used internally by the
user,

It should be noted that automatic programming systems do not eliminate the need for domain
specific elgorithmic knowledge. Rather they altempt to provide a unitorm method of access te lhis
knowledge. Domain specific knowledge must be realized in the programs produced by an automatic
programming system. Therefere, if the user is not going to specify il it must be either known by the
system beforehand, or reinvented by the system in response 10 a problem.
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Untarfunately, it has not yel been possible to codify large areas of knowledge, though small
areas have been codilied (for example, Green and Darstow discuss the codificalion of knowledge zbout
sorting programs [Green & Barsiow 1975]). Further, the problem selving capability required to
understand specifications ang write & large variety of programs based on a manageabdly small steck of
knowledge is also beyond the state of the arl. As a result, nene of the automatic programming
systems proposed has been made lo work well enaugh to be of any praclical use. Those which have
been implemented at all, only work in a very small ar simgle domain such as simple list manipulation,

The approaches described above have bees directed loward developing an inlerpreter for a
language (whether algerithmic or based on specifications) which is so powerful that a complex
program can be Irivially written and verified in the language. This is certainly a laudable goal,
Nowever, it does nol seem likely that it will be achieved in the near fulure.

LA.1.5 AUTOMATIC VERIFICATION

Attempls have been made to develop a system which will al least he able fa verify that a
program is correcl, This would be particularly useful since true verification has been neglecied by
programmers in the past,

In order to make automatic verification posssible, the behavior of the prirmilive elements of
programming languages had 10 be rigorously awiomatized. Further, proof rules had te be developed
50 that the axioms about the primitive elements could be combined inte a proof of claims aboul a
program as a whole. This work was started by Floyd [Flayd 1967] and continued by Hoare [Hoare
196%; Hoare 15711

In erder to prove somelhing about a prograr (such as the corraciness of ils specifications], the
key step is deciding what sublhesrems fo attack. This is analogous te picking subtasks in the process
of writing a program, and unfortunately does not appear fo be &fy gasier. In additien, current
theorem provers are notl able to prove thearems of ary great difficulty.

Straightforward selection of subthesrems is only possible in siraight line programs. If there is
looping involved (via gotos, looping constructs, or recursion), then heuristics must be used in order o
develop subtheorems which descrice the action of the loops {for example [Wegbreit 1973]). Systems,
such as that of Boyer and Moore [Bover & Moore 1975; Moore 1974), which attempt to prove
theorems about a program by looking just at the program, are only able lo wark with simple
prOgrams,

Systems, such as thal of Waldinger and Lavitt [Waldinger & Levitt 1974], where the user
specifies loop assertions, still bog down on relatively simple programs due to the weakness of current
thearem provers, and the problem of codifying and using enough domain specific knowledge.

L4.1.6 PROGRAMMING ASSISTANT SYSTEMS

There are several main ideas behind assistant systems. One is a recognition of the fact that, in
the absence of automalic programming, programs are nat written in ane pass. They are written bit by
bit, and then moditied and added to many times as errors are found and corrected, and the original
specitication for the program changes. This idea leads 1o a desire for systems which eembine editors,
compilers, interpreters, and debugging aids inlo one interacting unit. This combination would facilitate
cycling belween modes and the deteciion of errars,

A second idea iz to have the assistant syslem keep track of a myriad of details, and halp the
pregrammer avoid pitfalls. This is a natural exlension of the idea of degigning a language =0 as 1o
encourage good programming style. An assistinl syslem would utilize knowledge of programming in
general, and of the particular language which the programmer was ueing in order to cateh many small
errors which might otherwize lead fo big problems. Wha! makes this gualitalively differgnt frem the
many checks dome by current compilers is thal the bockkeeping would evist acrass the antire process
af developing a program, not just within a single compilation of a single subunit,

By themselves, these two ideas are not very exciting. They should be wsefull butl not
spectacular extensions of current programming sysiems, In order to reeally assist a programmer, a
system must enter info the programming process, either In design or verification, The main fenent af
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the programming assistant approach is that this is possisle, even though the pregrammer will have to
perform the two key tasks which are currenlly oeyond the capabilifies of autamatic systems. As
described above, these twe lasks {which may be closely related) are non-irivial problem salving and
the encoding and utilization of large amounis of knowledze,

Basic descriptions of Programming assistan! systems were put forward by Fleyd [Floyd 1971]

and by Winograd [Winograd 1973, however they did not suggest how such a system could be
realized.

L4.1.7 PROGRAM UNDERSTANDING

In order te cooperate with 3 RErogrammer who is doing the really complex design and
verification, a system muyst understand what tha programmer has done and is doing. How this
understanding is to be achisved is the central interest of this paper. The key idea is that along with
each program there s a plan. The plas lirks the specification, the program, the verification, and the
design of the program. It tells {he purpose of each elemeant of the pregram, This basic idea
eriginated with Sussman [Sussman 1373a] and Goldstein [Goldstain 15974]

From the point of view of this paper, developing a plan is the primary activity of programming.
If the plan is known, the specilications, the program, the verification, and the design can be derived,
If & system could develop 2 plan just from the specilications, i could do autamatic proegramming. If a
system could develop a pian just from the specifications and the program, then il could do automatic
werificalion,

This paper proposes a system which can develop a plan based on a program, partial
specifications for it, and comments on it. This system is an initial step towards a Programming
assistant system which would understand a plan as it was evolved by a programmer, and assisf in
verification and writing of the program.

The research proposed by this Paper is mainly directed towards the ausstion of how a system
can find out the plan for a program, 11 also investigates how plans can be Fepresented and ulilized
by a programming assistant syitem,

1.4.2 SIMILAR APPROACHES

This section discusses a number of syslems involved with Rrogramming assistance, program
understanding, and plans, |8 contrasts these svstems with 1he syslem proposed in this paper.
Censider the disgram below, If represents some of the features of the syslem proposed in this
paper. Dther systems will be compared with this systam particularly with regard te how they develop
an understanding and how they use an understanding.
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Fig 1: Diagram of data flow in a program understanding system

The cystem described in this Paper takes & program fogelher with annotation on it as input,
Using general knowledze about programming and problam slvirg (which is embadied in the plan
types), and knowledge about the specific programming langugs (FORTRAN), it develops a plan for the
program. This system dees not attempt to encods muek knowledze about the specific probiem domain,
because it is too complex, being tha full range of applied mathematics. It uses the understanding it
develops of a program in arder to answer quastions about the pragram, incleding guestions abaw! the
ramifications of a modification, [n aadition, it can defect bugs in 2 program largely through an attemp!
ta proave the Rrogram incorrech,

1.4.2.1 SUSSMAN

Sussman’s HACKER [Sussman 19738 Sussman 1974] is an automatic programming system which
writes parameteriess Brograms in the simple domain of the biocks worle, Il comsfructs programs
Eiven predicate calculus like specifications of the output state, and nput state. 1t acquires greater
skill in programming by learning fram the process of writing each program it produces. HACKER
writes programs by firct Proposing a simple-minded program and then debugging it. It alternately
modifies the program and searches for BUBS in it until the program works correctly,

Each time a program is writlen, a plan for it is constructed, When a program is madified, its
plan is modified to raflect |he changes. Tha plan for g program represénts what the purpose of each
feature of the prograr %, and information about how the features interact, The pian iz of central
importance in detecting bugs and proposing sclutions for them, HACKER does not have to attack the
problem of recognizing the plan for a program because the parfs of HACKER which write programs
produce the plans at the same lime.

L4.2.2 GOLDSTEIN

Goldsteins MYCROFT [Goldstein 1974; Goldstein 1976] operates on programs in the simple
domain of leap free turile line drawing programs. These programs are output intensive programs

similar to the command sequences sent to a plotter. Almost every component of a program can be
identified with a visible segment of the resultant drawing.
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MYCROFT accepls as inpul a program which may have bugs, and a partial description aof the
intended output. It then proceeds te construcl a plan for the program. The user can optionally
include cammentary on the program indicating features of the plan.

Due te the specific nature of the domain, the task af finding the plan consists largely of
deciding which parts of the actual oufpul correspond to which parls of the desired culput. MYCEOFT
altempis to find a plan which minimizes the number of errors delected. How gasy this is to do
depends on haw well the natural segrantation of the program corresponds 1o the descriplion of the
intended output. This segmentation is a vary imgartant form of commentary supplied by the user.

MYCROFT uges the plan o propose fives for the bugs if detects. [t then proceeds o construct
a correcled program. It is most successful when a bug is caused by an incorrect value (such as a line
segment being 100 longl. It has mere difficulty when a bug is caused by incorrect logical structure af
the program (such as pieces of the intended output completely left outh [t seems reasonable that
programming assistant systems in general will follow this pattern, This is because designing the basic
legical structure of a program seems fo be a more difficult fask than picking the correct values to use.

[.8.2.3 RUTH

Ruth [Ruth 1974] developed a language which can be used 1o express the set of all algorithms
for a given lask. This allows him 1o encode the domain specific algarithmic information for a particular
problem area, His system takes as input a program and the description of a set of algarithms. It then
determines whether or not the pregram implements one of the algorithms. 1f a mateh is found, the
corresponding algorithm is reported. 1If a malch is no! found, the system iries to find a near miss
algorithm and reports differences from this as bugs. His system has successfully operated on real
programs wrilien by studenls learning programming,

His system performs a complex pattersn matchirg lask. 1t operates directly on the programs,
which are wrilten in a simple algebraic LISP like language having a conditional construct and a lgaping
construct. Comments on the program are nol usec, except for the implicit comment that the program
is intended to implemant one of the specified algorithms, His svstem does a lot of work in order o
deal with transformations which can be applied 1o programs. [t does this in order to detect when two
programs are essenlially the same even though they appear, at first glance, 1o be very different.
Transformations are alse of considerable importance in the domain of FORTRAN programs,. His sysiem
incorporales knowledge about common bugs so that near misses can be delected easier.

Ruth goes nol deal with plans as such. He idenlifies understanding with determining which
algorithm corresponds 10 the given program. The algorithmic representation he wses caplures some
of the nolions of a plan. However, it is more like a typical implementation of the algorithm, and does
nat contain teleclogical infermation abaut purposes.

L2824 BROWN

Brown's syslem WATSON [Brown 1975; Brown forthcoming; also: Sussman 1973b; Brown
1974; Sussman & Brown 1974), localizes failures in electronic circuils. As input, it takes a pisce of
electronic equipment {which it cperales on by giving commands 1o a persom who makes tests and
adjustments), its circuit diagram, a plan for the circuil, and a description of the problem it is exhibiting.
The plan and circuit are assumed te be bug free. The failure is tharelore assumed to be due to a
damaged cemponent, or improper adjustment {note the similarity with the bugs which were easiest for
Galdstein's MYCROFT o handlel

WATSON uses a variety of lechnigues triggered by features of the plan in order to localize the
failure. The plans are construcied by hand and input to the system. As a result, WATSON does not
attack the problem of developing an understanding of a circuil. However, his sysiem shows the
importance, and power, of knowing plans in the domain of electronic circuils.
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L4.25 GERMART

Gerhart's work [Gerhart 1975] is nat invelvad with an automatic system. Rather, il introduces
1ocls which can be used by a person wha is wriling a program, in order to make verification easier.
She views programs as being built up out of simple pieces with known properties which are combined
in ways which correspond to simple proof rues. This is in line with the Basic work of Flovd and
Hoare. At an inlermediate level oelwesn the basic elemanls and & program as a whole, she introduces
“program schemata” which are the distillales of basic algorithms. She also introduces transtormations
which can be applied to a section of code without altering its behavior, These two things can be wsed
as lemmas when trying to prove a program correct. They serve as an inlermediate skeleton for
understanding and justifying a program.

Gerhart does not address the issue of récaznizing a program in terms of these schemals and
transformations, or any way o autamatically manipulale them. Har waork is mentioned here because of
the similarity between her program schemata and the plan types discussed in this paper. Further, the
cellection of schemata and transiormalions which apply lo & program has many features in commen
with a plan for the program, even though there is no explicil teleslagical information.

L4.2.6 HEWITT and SMITH

Hewitt and Smith's programming apprentice [Smith, Waters & Lieberman 1973; Smith & Hewitl
19748; Hewitt & Smith LI75] is a programming assistan! system aesigned to work in the domain of
Hewitt’s ACTORS formalism. The major goal of their system is proving the correctness of programs,

In conirast o many other aporoaches, majer emphasis is placed on comments. The central
comment is the “contract® Confracls correspond to whal are called behavioral descriptions in Lhis
Paper and specify the inpuljoutpul behavior of a subrgutine. The ACTOSS farmalism ENCOUrages
heavy subroulinizalion. Since each subroutine has a contract asseciated with if, this leads to a
reasonable large amoun! of commentation,

In order to prove correctress, "meta-gvaluztion™ twhich is similar to symbolic evaluation), and
"ACTOR induction” are used. Each subroutine is proved to satisfy its contract whith is used as a
lemma when proving the carrectaess of other subroutines.

Their sysiem does not gevelop any descripbve structure in addition fo the code and comments
supplied by the user. The information corresponding 1o & plan is fragmented, and most af it is only
present implicitly. Their system uses a form of comment called a "plan” however, it is different fram
the plans used in this paper. It is used to capture demain specific informalion and o guide 1he
theorem prover which works with the mela-svaluator,

The sysfem does nol desl with automalic ganaralion of descriptive structures. Any plan-like
structures which it uses are snferod oy the programmer. However, the sysfem does embody several
ideas which are an important part af the research proposed in this paper. Im particular it uses the
idea of behavioral descriptions ("contracts”™), Theis work is being extendsd by Yonesawa [Yonezawa
1376]. However, meta-evaluation is still largely at the hand simulation slage,

L4.2.7 GREEN and BARSTOW

Researchers at Stanford Universily have been doing considerable work on what they call
"program understanding” [Green e, al. 1574) Hawever, from the point of view of this paper, their
work would be described as directad towards aulcmatic programming. Green and Barstow propose &
program wriling svstem which knows aboyt simple sort pragrams [Green & Barstow 1878

The user of ther system would only parficipale by making high leval design decisiens. The
system would have sxfonsive knowledge of how to actually write sorling programs. Their paper
concentrales om the informal reasoning which the system would follow, and on what knowledze the
syslem would have to have, It does nat discuss, in any defail, how the system could be implementad.
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[.4.2.8 RICH and SHROBE

Rich and Shrobe's Programming apprentice [Rich & Shrobe 19748; Rich & Shrobe 1976] is
designed to work in the domain of LISP programs. It comes closer fo the kind of programming
assistant system discussed in this pager Hhan any other sysiem currently propozsed. They touch on
the full range of benhavior of a Pregramming assislant system, but concentrale on understanding data
types, understanding programs theough plans, and verification.

They recegnize a hierarchy of plans of increased defail & the fundamental description of a
program. They envision a scenario in which the plans are developed through a dialog with the user
8% a program is being writien, Howewer, they alzo mvestigate the question of developing the plan for
8 program written outside the system, They use plans primarily to guide verification which procesds
In & similar manner to Hewitl's mela=evalualion

They have worked extensively with the example of the access functions to a hash table. They
use knowledge about the data types, and algorithms in this domain in order to build the plan and aid
in the wverification, They have implemenied some parts of their syslem, and are continuing
implementation afforts at the currgnl fime.

The work presented in this paper has benefitted greatly from the ideas in Rich and Shrobe’s
waork. This paper could be looked af as focussing on one feature of a programming assistant system,
very similar to theirs, but working in a different domain,

1.4.2.9 1BM

A group of people at 184 bncluding A L Brown, G Haidarn, 4, Malrotra, M, Mikelsons, B B,
Sheridan, and 1. Wiadawski] are working on @ system able to exglain the programs produced by a
customizer [Malnotra & Sheridan 1978; Mikelsons & Wiadawski 19761 The customizer produces
programs writlen in the language BOL [Hammer, Howe, Kruskal & Wiadawskj 1975] The system is
desigred 1o be able to respond in English to queslions posed in English about the programs produced
by a customizer,

Their system has a semantic netwaork which contains a model of the relevant business domain,
A program is understood by linking it up wilh the semantic network, The mast commen type of link
indicates the meaning of a dala ilem. For example, that the dalum carried By a certain variable is a
“price on an invoice.” The sysiem does nat fry fo create thesa links by itself. They are ¢reated by
the user mestly through the use of mRemanic variazle names,

From the point of view of this paper, lheir system is interesting because it attacks the problem
of understanding a program. However, if does nal wse plans as such. The speeial nature of SO0
allows programs wrillen in it to be directly uzed ta answer many lypes of guestions without
reference fo a separate plan structure.
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1. THE TASKS THE SYSTEM CAN FERFCIRM

This system cam do three things. First, it can develop an understanding of a mathematical
FORTRAN program by looking at the program and its annatation, Second, the syslem can demonsirate
its understanding by answering questions aboul ihe program. Third, it can use ils understanding to
aid in the debugging and madification of the Brogram,

In this section, undr.-ri.'.andung is indirectly defingd through the azsumplion thal the apstem must
understand & program in order to pertorm the second and third tasks. Section 111 describes how ihe
syslem acquires and reprasenis an understanding of a program.

Sechion IL] cefines the second task oy specifying in detail the types of questions the system
can answer aboul a program it understands. The remaining subseclions describe some ways that the
system can ulilize its understanding of a proaram.

The discussions below are eoncratized torough reference to a specific example program (See
the figure below). A simpler program is subjected to exhauslive analysis in section T11.4,

Fig. 2: The subroutine RK! from the JEM S5P. Al of the examples in section
Il are tamen fram this program,
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IL1 ANSWERING QUESTIONS ABOUT A PROGRAM

This section describes, mainly through examples, several classes of questions which caver mast
of the questions cne might ask about a program, The syslem is designed to be able to answer all
these types of questions,

The examples of what a user might ask litalics) about the program FKL, and of what the system
might respond are given in English prose. This is rol intended to indicate that the system will be able
ta converse in English. That is a separate grablom. The system will communicate in same, as yel
unspecifiod, LISFese dialect, English is used in this proposal far clarilty of exposition,

Anather point which should be raised, is tha! the questions and answers offen refer to
segments of code {denoted by the line numbers af all the lines contained in the segment), [t js
reasonable to ask what constitutes a meaningiul segment. The answer o this question is a funclion af
the way the system understands programs, It is given, in detail, in section Il {particularly [10.1.1 and
LIL4A). Basically, a reasonable segment is a section of the program thal can be looked at as being a
Program in its awn right. [ has inputs and outputs, Further, contrel enters at ore point, and leaves
far one paint,

In the examples, anly reasonable segments are mentioned. If a user asked aboul an
unreasonable segment, the system would tell him that the segment was nol reasonable and try to give
him & belter idea of the segmentalion so that he could ask a baiter question,

1.1.1 REQUESTS FOR DESCRIPTION, "WHAT"

The most basic kind of question which can be asked is, "What is this®™ The guestion does nob
ask how the thing weorks or whal its place ic in the gramd scheme. The question just asks for a
descriplion of its behavier. Corsider soms axamples,

L} What 15 Tine 30 of the program REI?
It is an assignment slatament forming part of a dala flow path to communicate 8
to the outside of RK] via the variable 1ER,
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2 What is Tine 32i7

[t is an ARITHMETIC IF statament forming part of the control flow connective
tissue,

Ay What is "XF=XN* in line 607
1t is a use of the primitive function minus which computes a=b-¢,

Questions such as the above are nol very inleresting. This is because it it obvious to us whal
such small pieces of the code do. It should be moted, however, that it is impostant that the answers
1o these guestions are slso obvious 1o the system. Even if mo user ever asks such guestions, the
syslem will ask itsell such guestions when it is trying to answer more difficult questions,

"Whal™ questions become more interesting when they are asked about farger sections of the
code or from a non-local point ol view,

&) What does this segment [lines: J04-110) do?
It performs one step ot integration.

5 In more defail, please,

Starfing with XN, YN, HNEW, and FUN it computes XX=XN+HNEW and YY¥=F(XX)
given Thal FUREEFOI=dF fdeiX), and YN=FixN}

Mote that, in this answer, the aystem wsed the variable names in the program as names for the
data items it was talking about, Internaily is doss not name them that way. 1t realizes that the
variables are only part of the data flow connective lissue, and are not satistaclory as names for the
data items because one variable olten carries logizally unrelaled data items in different parts of the
program. This rolwithstanding, it is probably belter io use the variable names when talking to the
user than ad ho¢ new names for the dala items.

B) What does this segment (Tines: 60-64) do?
[t computes ANSX=XF amd ANSY=F{ANSK) starling with XN, YN, and FUN given
that FUNCXFIX))=dF fdx(X), and YN=F{XN.

i From the point of view of that segment (Tines: 60-64) what
does “XF=XN* in Tine 60 do?
It compules HMNEW zuch that XN+HNEW=XF,

“What" guestions are answered through relerence te the intrinsic and extrinsic behavioral
descriptions of segmenis (behavioral descriptions are discussed fully in section I[1.2.1). The
difference between intrinsic and exlrinsic behavioral descriptions is illustrated by the difference
between the answers to quesiions 3 and 7.

When asked about large segments, the answers to "what™ questions are not ocbvious. The
answers to questions like 4-7 could aid & user in undersianding the program R¥1, Still, the answers
1o These queslions do nof explain the program, they only describe if,

[[.1.2 REQUESTS FOR EXPLANATION, "HOW"

"How" questions ask for an explenation of the internal workings of a piece of a program. For
example, "How does this work?" A relaled sel of questions asks how a piece of a program interacts
with larger pieces containing . For example, "When is this eseculed™ and “Where do it inputs
come from™ These queslions are really just asking for an explanation of an aspect of the workings of
the containing segmeni. Consider soma examples.
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B} How does Tine 30 work?

Agsignment iz a primitive operation which copies a value (here B) o a variable
ihere [ER) IF forms a link in a data flgw path.

Q) khen 15 Tine 30 executed?
It s executed once every time RK] is execuled, Howewer, logically it should
only be executed when X|2XF v HI#l. The line was faclared fo its current
posilion from that segment (lines: 32-33) and lhat segmant (lines;

J6-3742-101) When X[<XF & M]=3 the effects of line 38 are overridden by
line 38,

Mote that the system volunteered infermalion about the facloring of line 38, [ did this because
it understands that the simple statemen® "Line 38 is ewecuted once each time BKL is™ is misleading,

18) How does Tine 3] work?
It uses the FORTRAN contral flow corstrucl ARITHMETIC IF to converl Lhe
segment "XF=XI” into a predicate delermining whelher X[<XF ar not.

L) How does this segment [lines: Gp-64) work?
The basic segment (lines: 68-52) iz a compasition of line E8 (which determines
HINEW so that XF=XN+HNEW) and that segment (lines: 184-118) {(which performs
a step of integration yielding XX=XN+HNEW=XF and YY=F(XX)). Lires (61,62,111)
are control flow connective fissue implementing the link to that segment {lines:

184-118). Lires (63,64) are data flow connective fissue passing the results
aléng,

12k When is this segment [lines: G=-G4) used?
When that loop (lines: 44-53, 67-71) terminates with EML=NF, this segment
Uines: BE-84) is used to compute the rasulls of the program Rl

These guestions are answered through reference to plans (see section [10.2.2). The answers
describe how segments interact to form larger segments. The next two sections describe questions
which get at specific aspects of this interaction,

[[.1.3 REQUESTS FOR PURPQSE, "WHY™

A question of this type asks for the purpose of a construct. It asks why it is in the program,

13)What is the purpose of IER in line 307
The purpose of this use of the variable [ER is to form part of a dala flow path
carrying the value @ to the oulside of RKL.

158} What 1s the purpose of this data [low path (the one
implemented by Tine 30)7 In the situations where X[2XF v Hl=8, this path
tarries ong of the outputs (@) of tha program, as required by lines (17, 18, 2@,
2L It is incidental {nat part of its purpese), that it alsa starts to carry @ when
KI=XF A Hi=@, The value is everridden in this casa.

L5} Why is Tine 31 in the program?
This predicate determines whether XI<XF ar nat. This is done s& that the

computalions requested of the program RX] can be divided inlo two classes, one
where X[<XF and cne whare X12¥F.
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LBl Why 1s this segment (1ines: G0-64) 1n the program?
The purpose of this sagment is fo compute ANSK and ANSY, two of the resylts

of the program RK1, in the situation where that loop {lines: 24-53, 67-71)
terminales with XNi>XF.

Note the similarity between the answer ta this question and the answer to question 12, The

purpose of a segment and the plan for the containing segment are heavily inlertwined. Asking “when"
is often equivalent fo asking "ty

L7V What is the purpose of 1ine J7?

Due ta the fact that several tests have been combined inta this ane consiruct, it
serves three distinct purposes. First, it determines whether Hl=B ar npf, This is
uted 1o divide the compulstions requested of the program BK| into two classes.
second and third, in that segment dines: 36, 37, 42), this line {37) implemenls
two predicates. Cne checks whelher HI<E and the olher checks whether HI=8.
These are used fo divide the problems laced by that segment (lines: 36, 37, 821,
which computes the abselule value of HL, it bwa classes.

Here it is seen that one pisce of cods may have several distine! purposes.

L8 Why 1s Tine 60 in tha program?
It is composed with that segment {lines: 184-118), Its output HNEW is

compuled so that whens MNEW iz ingut 1o that segment (lines: |84-118) that
segment will produce an outpul XX=%F,

These guestions are answered through reference to purpose links in plans (see section IIL2.2)

IL1.4 REQUESTS FOR JUSTIFICATION, "WHY™

These questions ask for the reason why semething is true. Gftan something is frue because it
2 some segment’s purpose to maka it true. Inm this case, & juslification question is just a purpose
questicn from a different point of view. However, only the main goals of a segmant are recorded as

purposes. A feature of a sepmant may be used lo justify semething even thowgh the feature is not
consicered as salisfying a purpose.

18} Why 15 the prerequisite of T'ine &0 that XF be a Floating
hurnbar satisfied?
Il is satisfied because the same reguirément is a prerequisite of the immediately
conlaining segment {lings: o8-64) and its satisfaction carries aver,

28) Why 15 this prerequisite fof Tinas: 60-89) satisFied?
Its satisfaction is guarantesd by & chain of prerequisifes reaching back to the
prereguisites of RK1. The value of XF is carried unchanged from an argument to
the program RKI which is reguired 1o be 2 flaaling number,

Seeing thal the user is interested in a full justification for the prerequisite, the system traces
back as far as possible in order to glve a definitive answer, There is no better juslification fhan the
abowve. If RK] is called with the argument XF which is not a floating number, it will not work

2l) Consider the wse {7ines: 61, B2} of that segment (71ines:
104=110) in this segment (1ines: 60-64). Why 15 the
prerequisite that HNEW be a Figating number satisFied?

It is salisfied because an output assertion of ling 6@, the source ol HNEW, states
that HNEW iz a floaling number.
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22) What justifies the autput assertion of this segment [ Tines:
G0-54) that ANSY=F{ANSK )2
Data flow {iines: 63-64) makes ANEX=XX and ANSYsYY. [t iz an autput
assertion of that segment (lings: 184-112), the source of XX and YY, that
YY=F{¥X) Therefora, ANSY=F{ANSX),

23) What justifies tha oulput assertion of this segment (Tines:
G0-64) that ANSK=xE?
Data flow (lire: 63} makes ANSKsXX It is an assertion of that segment {lines:
184-118), the source of AX, that XE=XM+HNEW. 1t is an asserlion of line 68, the
source of HNEW, that XN+HNEW=XE Thoerefare, ANSX=XF,

Mote that this is aboul as difficuls a proet as this system can make. [ tries to prove things
correct Dy paltern malching, and false by testing them on examples. If a more complex prool is
required, when the systam s develsping its underctanding of a program, the system just belisves the
implicit claim of the program writer that the preof is possible, Far example:

24) What is the Justification of the output assertion of this
segment (Tines: 104-110) that YY¥=Ff XX )7
The prerequisites of this segmart (lines: 184-118) guarantee that
FUNIY,FiX Y=g fdxiX), and YN=F{XN). The program writer claimed that it Was a
true theorem that if these prerequisites were mel then evaluating the equation
implemented in lines (184-1 18} would Wil YY=F{0 )

Mate that il is actually not a true thecrem. The equations only approximate {he integral over
the inlerval from XN to XN«HNEW if HNEW 15 sufficiently emall. Even this is nol easy te prove, When
trying to undarstand the program RE1 it is helpful to assume that the aguations actually calculate the
integral, theugh this would be impessible to prove since it is in fact falge, The approach laken here
avoics getting invelved in the mathematical complerilies of approximation,

These questions are answered through referance 1o reason links in plans (see section I11.2.2)

It iz felt that the ability 1o answer the types ol guestions illustrated in the last four sections
would show that the system can understang a program. The next sections indicate some tasks the
system ceuld perfarm bayvond explaining a program.

1.2 AIDING THE DEBUGGING PROCESS

Any difference between the operation el a program, and the operation intendad by the
Programmer is & bug. This system is designed fo aid a programmer in detecting and eliminating any
differences,

In arder 1o detect differances between tha aperation of a program, and the asperation intended
oy the programmer, the system must understand both of them, Section [IL4 describas haw this is
done,

To determine the oparation of the program, the system starts with direct analysis of the code
based on ifs knowledge of the primitive constructs To determine the operation intended by the
programmer, the system starts with dirsct analysis of the programmer’s annotation of the pregram,
and with assumplions about what modes of oparalion can possibly be intended tfor instance, that in
the 58P, no programmer sver intends to divide by zeral

Both of these approaches bog down shorl of complate undarstanding. The annotation, though
fairly easy to understand, is always incomplete. The cade, though always complataly specifying 1he
operation of the program, is tae complex to he undersiood without guidance. Full undersianding is
develeped by assuming that the two descriptions do describe the same operation. Each it used as a
guide to fill in the gaps in the othar.

The result of this process is a single enlity, the grand plan, It specifies what the system thinks
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the aperation intended by the programmer is, and axactly how the program implements this operation,

The sysiem cannaot represent bath the operation of the program and the intended operation af
the program with cne description if it thinks there are any differences belween them. Any
differences it ever finds are reported as bugs.

11.2.1 FINDING BUGS STATICALLY

The sysiem uses the programmer's anndlalion as a guide for developing a descriplion of the
operation ol a program. Afler ths is accomplished, the annotation, and general knowledge aboul what
modes of operalion are reasonable, are checked against the aperation of the program. The sysiem
tries 1o justify thal the intentions of the prégrammar sre realized in the program,

Looking at a particuler ¢laim, the syslem may prove that it is valid. In that case, fine. On many
occasions, the system will not be able to come to eny conclusion about the validity of a claim. In that
case, the syclem just believes the claim is true, whie remembering that it is unsubstaniiated.

Alternately, the system may be able to prove that the claim is invalid. In that case, the system
reports this as a bug. These bugs, which are found via pre-execulion analysis of the program, are
the subject of this section,

Thare are several general claims whith can be sssumed 1o be intentione of the programmer {at
least wilh regard to simple mathematical FORTRAN programs). These claims can be wsed 1o uncover
many bugs.

One claim is that the extrinsic prerequisites of every segment must be satisfied. This s to say
that no programmer will deliberalely use a sezment with inputs cutside its sialed domain of
applicability. Testing this clam at the beginning of evary use of every segment leads to lhe detection
of bugs such as incompatible subroutine arguments, using the wrong variable name, leaving oul special
case checks, gl

Another general claim is thal the satisfaction of the extrinsic prareguisites for the use of a
segment must imply the satisfaction of the infrinsic prerequisites of the segment. In a similar vein,
the intrinsic asserlions of a segment must imply the extrinsic assartions of that segment. That is 1o
say, the segmen! must be capable of what it has been ssked to g, Thesze claims uncaver bugs based
on a misundersianding of the inkerent ahilities of a segment,

In addition, there are other more specific claims. Claims such as loops must terminale;
uninitialized variables cannol be read or returned, el Many of fhese can be handled by properly
stating the prerequisites of the primitive constructs.

The really interesting bug detection involuas comparing what the programmer said should
happen with what does happen. Consider 1he example program, RKL. Imasmuch as it is a published
program thal people have been using for years, it has ro bugs in it which can lead lo catastrophic
failure of the program. Howewver, it does not operate in the manrer that the comments ctlearly indicate
that il should.

For example, an sxamination of the program readily shows that the comment in lines (2B-21)
does not correspond with the operation of the program. The comment clearly states that K[zXF -
ANSY=Y[ and that HI=2 -+ ANSY=0.8, The way the program cperates is that X]I2XF = ANSM=Y] and that
ANSY=2.8 only if HI=8 & XI<XF. It can be sean that This is a bug in the comment, not in the program.
The mode of eperation indicated by the comment is impossible since X[zXF and Hi=8 are not mutually
exclusive condilions. It is alse clear that this is a minor bug, as long as some ather programmer does
rol take the comment seriously and write anoiher pragram which depends on the fact that Hi=B -
AMSY =08,

A more serious bug is involved with the search scheme embodied in lines (81-98). This
segment uses repeated interpolations to seek out XNEW such that FIXNEW)I=YF. It is basically just a
slightly improved version of a halving search {in which line 84 would be HNEW=(XN1-XN)/2). The wey
ta the method is thal the interval (XNXND) glways contains a root of FIX)1-YF and that the size of tha
interval decreases at each slep. The simple halving search is guaranteed to improve the accuracy of
the result by a factor of 1824 in 18 iterations.

The search starts with YF in the interval (YN,YNL) (note the comment line 28). A new valus of ¥
15 calculated (YNEW) and then the test in line 98 s used to determine whelher YF ie in the interval
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(YMYMNEW! or the interval (YNEW,YNL]. This inlention is indicaled by the commanls in lines (88,91,95)
The problem is that the particular predicate chocen to make 1he delermination will work correctly
only when YN<YNL If YN=YN1, it consistently makes the wreng choice. As a resull the search will
only waork in the intended fashion when YN<YN1, This, however, 15 nal azsured.

The farm of the test in line 67, which performs 2 similar function, indicates that the programmer
did mot inlend to limit REL 1o 'l.'.l'l:ll".l'ii-I'IE on monalonically ihi:-"f.-a.smg funclions n:unl:r-_ Tharelore it 15
probably the test in lime 98 which is in efror, and chould be charzad,

With this bug, the interval (XNXNL) is no longer guaranteed fo decrease in size, or 10 even
centain a rool of FIX)=YF, This would l2ad to cans derable trouble if it were not for the fact that the
saarch segment 15 robust. First, line 84 can extrapolate as well es interpolate, Second, the segment
implemented by lines (184-118) will work fine with HREW<@, Third, the segment implemented by lines
(98-97) tends to create an interval (YNYNL) cortaning a roat of FiX)-YF where ¥N<YN1. As a result
of this, efter thrashing in the first couple of iteratians, the search begins to work more or less
correctly. This is prebably why this bug was never feund, Only rare pathological functions can cause
calasirophic failure of the saareh,

This iz an example of a definite bug that can be defected by comparing the operation of the
program with the intentions of the pregrammer, bul which is almost impossible 1o detect by looking at
the perfermance of the program RX1 on test data.

The program RK] has several othar bugs similar (o the Two ciled above.

I1.2.2 FINDING BUGS DYNAMICALLY

The system reports a bug statically when it s able to dispreve a general claim, or a ¢laim made
by the programmer, abou! the program, However, lhe system does nal have an elaborate deduction
mechanism. [t uses mainly paltern malching and frial by example. As 2 rasult, it is oiten reduced o
accepling a claim an faith

The proposed system has the added ability to execute a program in a careful mode where it
continually checks all the claims it was not able 1o prove valid. This is essentially just letting a user
of the program indirectly cuggest what data items srould be used in order to check the claims by
means of trial by example.

It a discrepaney is discovered, the system proceeds basically the same way as if the bug had
been found siatically through a fortwitous chaoice of trial by example. The orly difference 15 that the
partial computation can be used to help understand the bug.

Suppose thal the two bugs desiribed in the last secticn were not found statically. The first
bug would be detected dynamically the first fime 31 was called with Hl=8 and X]<xF. Similarly, the
second bug would be feund the first time that the cearch wes initiated with YHLSYM

I1.2.3 UNDERSTANDING BUGS

The last twe sections lalked about detecling the existence of a problem. Once a problem is
detected it must be fraced back Yo its source 2o thal if can be corrected.

Mast computing environmenis do a certain amount of dynamic bug detection, For instance, they
continually check claims such #%: non-existent memory will not be referenced, and division by zero
will not be attempted. 1f, for example, an illegal memory reference occurs, the computing environment
reports this as a preblem. The programmer then begins the inveolved process of finding the source of
the bug. This system starls oul more than hall way done with this process because the problems it
finds are at a much higher logical level,

A useful system should be able 1o converse with & user aboul a bug, just as it can about a
program. In gddition, it should be able to present the issues imvolved =o that the user can maks
decisions aboul whal should be chanzed,

The system determines what the relevant issues are by asking itself questions. It aske whether
there was any justification for the claim which has just turned out to be false. [f s, this justification
is obviously spurious. The syslem lries 1o see whether any par! of it has an obvious weakness,
Depending on the type of error, the system determines what the other segments invelved are. For
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instance, whal is the source of the variant input or who will receive The varian! oufput.
LConsider the first bug in AK] discussed above. Suppose that the system discovers slalically

that when XIz¥F and Hi=8, ANSY=Y] though the camment in line 21 claims that ANSY should equal 8.8,
The systerm might report this as follows:

There is a descrepancy belweer the value of ANSY returned by the
program, and the comment on ine 21, When X[2XF and Hi=B8, ANSY=Y] which is nof
neccessarily equal to 0.8 even though Hi=0.

The above identifies the error, but it is net erough. The system should present a more
complele description of what is going on as follows:

The top level structure of the program RKL is a COND XOR (see section
L322

“[IF XI=XF THENM .. ELSE [IF HI=3 THEN .. ELSE.. ]I"
This implies thal (Hl=A A X[<XF) = ANGY=Q Q.

On the other hand, the comments on lines (28,21) indicate that the top level
structure of the program was intended Yo be either an AND (see section 1[1.3.1.1)
“[IF XIzXF THEMN .. ] AND[IF HI=3 THEN .. JAND .. *

Or a CASE XOR (see section [11.3.2.1),

“select the one applicable case and perform the corresponding computalion
CASE] X[z¥F THEM _. CASEZ Hi=@ THEN .. CASED XI<HF A HI#E THEN . "
With either siructure Hi=B should always imply thal ANSY=ER,

This describes the true nalure of the descrepancy between the program and its annotation,
The system shauld go on to velunteer added relevant information such as:

K1z¥F and HI=B are not mulually exclusive situations.
As & resyll, a CASE XOR is nof reasonable as the lop level plan for RK],
Further, when both conditions hold, it is not possible for ANSY to equal 8.2 as
required by line 21 and to also equal Y1 8z reguired by line 28 when YI#E8.8, no
matter how the program is implementad, '

This last statement points directly at the cause of the problem. The system has noticed that
the comments on lines (28,21) are actually contradictory, The most reasonable way to fix this bug is
10 change the comments since they are unrreasonable.

The system should give a similar in depth analysis of the second bug in RK1. Suppose that the
system found this bug dynamically, it might say samething such as:

The cemmant on line 91 indicates that it is a prerequisite of the segment
implemented by lines (92,53) that YF be between YNEW and YNI. In the current
situation this iz not the case even though sxeculion of the segment implemenied by
limes (92,93 is about to begin,

It should be noted that the test on line S8 tested only that YNEW<YF. The
programmer implied thal it could be proven that YF is belween YNEW and Y1
whenaver YF was between YN and YNI and YNEW<YF. This is obviously not the
tase.

The system first describes the conflict which has arisen. Then it identifies the theorem which
had besn used to justify that XF whould indeed be between YHEW and Y1,

it should be nefed that the system probably would not be able to develop such a pithy
justification from the program as it stangs. The system would start with a justification based on all of
the prerequisites of the sezment {lines: 81-98), all of the assertions of the segment {lines: B4-88),
and the assertions of ling SE. This contains a lot of irrelevant information. 1n erder te distil this down
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to a concise justification, the system would probably reed assitance from the user, For instance, The
system might ask, "Why does the Tact thal YNEWSYF from line 98 imply thal ¥F is between YNEW and
YN, as required by line 317" The user might answer “Bacause ¥F is between YN and ¥NL.*

Another piece of information the system could give the user would be a counter example. The
system could wse the values that the variables currentiy have from the pertial computation to guide it
in the selection of a counter example to the above thearem which would illusirate the problem.

For example, it Yi=8, ¥F=3, ¥Nil=l, and YNEW=Z then clearly ¥F=3 iz between
YH=4 and YMl=L and YNIW=2 is less than YF=3, however, ¥F=3 is nol belween
YHNEW=2 and YNI=1,

The user could ask for more information if he desiced, in order 1o decide whether the test on line 98
should be changed, or a prereguisite reguiring thal YoeYNL should be added 10 the search.

[L.3 UNDERSTANDING MOOIFICATIONS

There are two main aspects of madilication: delation and incertion. \When something is deleted,
the system mus! ask itself what depended on lhe existence of the deleted section, what logse ends
heve been left dangling. If there are no loose erds, then the section must not have been used for
anylhing.

When a seclion is inserled the system must ask itself two questions, "What contribution is this
section going lo make™ and "What prablems is it going to cause?™ The system can gel hinls about
the amswer to the first question by knewing that a section is replacing another, or supposedly fixing a
bug.

There are many patenlial problers that a modification may cause. Conirel or data flow paths
may be disrupted. Needed asserlions may be deleled or contradicted. This could cause juslificalions
to become imvalid. [ can be zeen that a lot of werk is reguired in order fo assess the ramifications of
a modification, However, it should also be noted that a lot of this same type of work is required when
the system analyzes the program in the first place.

Consider some examples of how the system might respond to a suggested modification.

28) What would happen 1F Vine 30 were deleted?
[n the situalions where X12XF or HI#E, the argument fo AK] corresponding to
the variable 1ER would be relurned unmodified. This contradicts the commenls
on lines {17,0878.21) which slales {hat [ER should be B

26) What would happen 1f 1ine 31 were changed to
“IF [XF=XI) 11,12,12%7
The new program would be different in thal this segment {lines: 32-33) would
only be execuled when XI=XF and the rest of the program would be executed
when X[=XF az well g5 when X1<XF,
When X]=XF and HI=8, then 1ER would equal | and ANSY would equal BB
whereas, JER=8 and ANSY=Y] in 1he unmoditied program
When Xi=XF and HI¢8, it seams ((hough 1 (the system) cannct prove it) that it iz
slill the case thal ANSX=X] and ANSY=Y] az required by the comment on line 28,

27 ) What 15 yowr Justification For the last statement?
Assuming X[=XF and HI#8, then far all of the examples ] (the system) have tried,
that loap (lines: 44-53, 67-71) lerminates on the first ileralion wilth
ENI{=X[+HNEW>XF. This causes this segmant (lines: 8B-84) to be execuled.
Again for all of the values [ {the system} have chosen, HNEW=B and therelore
ANS XX =XN+B=N[=XF anel ANSY=YY=F (XX }aF(X]}=Y].

[ iz entirely possible thatl the system would actually be able 1o prove the asserfion. I is
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interesting, however, that the very simple deductive methods, trial by ewample and substitution of
equals, lead 16 a such lucid evplanation of what is happening,

New censider madifications which might be proposed as fixes for the two bugs in R%1 discussed
above.

28) What would happen 1 1ine 21 were changed to
"C OTHERWISE IF HI=FERO THEN TER=1, ANSX=XI, AND ANSY=0.0"P
This would eliminate the buz by removing the conflic! between the old line 21
and the top level structure of the program,

MNote, comments as well as code may be modifiad.

29) What 1f the test in 1ine 90 were changed to
“IF (YF=YNEW) 120,150, 130%7
[ (the system) assume you intend fo claim that il is true that when XF is
between YN and YNI and YF<YNEW then ¥F is etween YNEW and YN
This is true for the examples which brought up the bug. Howewver, it also has
counter-examples for instance, whar Yhi=1, YF=2, YNEW=3 and YM]1=43,

30) What if the test line 90 is changed to
“IF ((YNEW-YF Je{YF=YNI)] 130,150, 120"
As far as 1 {the system) can tell, this fives the bug without disruplting any of the
other uses of ling 52,
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[II. HOW THE SYSTEM WORKS

This paper is a proposal. As a resylt, this seclion claims 10 be neither complete nor complelely
accurate. It only tries fo show that it should be possible to achieve the behavier described in the
rest of this paper. With this in mind, consider the following descriplion of hew the sysiem might
Work,

The system constructs a logical structure, the grand plan, for a program, This struclure shows
hew the problem of achieving the goal of the enlire program is reduced, through the program, o
subproblems which can be achieved by primitive programs available in Ihe programming environment.

The grand plan is a tree. Each node is a plan explaining how a goal is decamposed into
subgoals, the plans for which are the daughters of the node. The leaves arg goals achievable by
primifive programs.

Each part of the program is linked with tha piscels) of the grand plan, which it implements,
Each part is explained by this link, Questions about a part of the program are referred to the
corresponding part of the grand plan in order b9 be answered.

HI.1 DECOMPOSITION OF A PROGRAM

A program is decomposed inta sections following The structure of its grand plan.

IIL.1.1 SEGMENTS

The geal associated with a node, or leaf, of the grand plan is referred to as a “segment of the
main goal.” The sel of parts of the program which are associated with this node, and its decendants,
is referred to as a "segment of the program,” the program segment which implements the goal
segment. In this paper the term "segment” is used to refer o both the goal segment and the
corresponding program segment.

In general, a program will have a basic free-like struclure closely paraliel o the structure of its
gramd plan. However, many transtormations are commonly applied lo 2 program in order to increase
ite efficiency {see seclion 1I1LL3) These tranctormalions obscure the basic parallel. As a resulf, a
program segrment need nol be a simple continuous piece of the program. It may be spread here and
there through the code. In addition, one piece of code may be conlained in several logically
Aon-gverlapping segments,

The code for a given sezmen!, with the rezf ol the program deleted, forms a new program
which implements the corresponding goal. Further, it is a property of the way this system chooses
segments that each segmenl has enly one eniry and only one exit path, In ether words, no
information is encoded in the flow of control into or out of a sagment. Each segment of a program is
described by a behavioral description (see seclion 1112.1L

IL.1.1.1 A SMALL EXAMPLE

This section presenis an example of the relationship between a program and its grand plan.
Section I11.4.8 discusses tha grand plan for & more comples program.
Consider a segment of code which computes the reots of a quadratic pelynomial which is

assumed 1o have real roofs. [1 lakes as input ihe coeflicients A, B, and C and outpuls the roots R1
and R2,

U = SIRT (B =darbial] }
Rl = (=B:0} s (2=h}
A2 = [(-B-0}/ (2=}
Fig 3: A program which finds the roots of & quadratic polynomial,

The following is a possibla grand plan for this program. Each node has a name of the form Gn
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The node specifies the goal which it achieves, and a plan for how lo achieve it

Gl: "caleulate the roots® to do this achieve G2 and G3
52: "caleulate first root”™ compese the goals G4 and G5
Gd: "calculate the square roo! term” D=SQRT{Be+2-424:0)
G5: “gat the first roct™ Rl=(-B+D)/(Z+A)
(3: "ealeulate second root™ compase lhe goals G6 and G7
G6: "calculate the square roof ferm” D=SORT(See2 ~dafal)
G7: "gel the second rool”™ R1={-B-0}/(2+4)

Fig 4: A grand plan for finding the rects of a quadralic polynamial

The final figure in this seclion shows Row the program is segmenied, and how these segments
correspond to goals in the grand plan.

progran segnants code
F1 P2 P3 P4 FE 0 = SORT (Bece?Z-dwtwl)
Fl P2 PS5 Rl = [=B&D) S {Zub]
Fl F3 PT RZ = [-B-D)/(Z=h)

Fig S: This shows the correspondence belween the progrem and the grand
plan. The program segment Pi achieves the goal Gi. The program segment name
appears before gach line conlainad in it

Mote that due to factoring (see section [11.1.3.3), segment P3 is not continuous, and the first line
implemants both P4 and P6, which are logically nor-overlapping segments.

H1.1.2 CONNECTIVE TISSUE

Consider a program segment P corresponding to a goal G. The segment P contains subsegments
Pi which achieve the subgeals Gi of G. The segmanl P also contains code which is not contained in
any subsegment. This excess code is conmective tissue. [t is the cement which binds subsegments
together to form a larger segment achieving a morc complex goal.

The goal of a segment is achieved by execuling a se! of subsegments. However, the
subsegmenls are not just executed in a vacuum. They must have intormation conveyed to them, from
them, and between them. [n addition, they must be executed in the correct sequence.

I11.1.2.1 DATA FLOW CONNECTIVE TISSLUE

Uata flow connective tissue carries dala items belween segments. Il carries data from the
output of one segment o the intput of ancther segment, from the output of a subsegment te the
output of the centaining segmant, and from the input of a segment ta the input of & subsegment.

The most commen dalz flow comstruels which form these pathways are subroutine arguments,
returned values, free and bound variables, and assignment. Thesze consiructs can be chained together
so that a datum can follow & path consisting of many sections from its source o ils deslinalion.

IIL1.2.2 CONTROL FLOW COMMECTIVE TISSUE

Static control flow connectives, such as GOTO, CALL, RETUAN, and physical sequential placement
of statements, fix a palttern of execulion. In addifion, dynamic contral flow conmectives, such as DO
and various [Fs, perform computations by varying the patiern of execution. Im this system, the key
actions of dynamic control flow are caplured in the nation of a predicale, which is used sxplicitly in
several plan lypes,

A predicale is a hybrid construct formed by wrapping a segment in dynamic cantrol flow
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constructs. A predicate has no explici! outpuls, nowever it causes contrel te exil via one of two
paths. On one path it makes the output asserlion P and on the other ~P. The output is in effect
encaded in the flow af cantral,

Predicates are only used in certain plan types, where the way they contribute to the overall
goal is made explicit. This makes it easier to understasd the function of predicales.

II[.1.3 PROGRAM TRANSFORMATIONS

Orne of the greatest problems in recognizing the basic structure of a program is that, for a
variety of reasons, pieces of the code are shuffled arsund when the basic plan is implemented. The
primary maolivation for this s economy, Pieces are moved so that they need net be redundantly
executed. Pieces are also often moved so that they need not be redundantly written, even if this
increases exscution lime,

The transformed program performs the same essential calculation, Howewver, it usually has
incidental differences, complexities, and redundancies which may lead fo bugs when it is modified, or
incorporated in a larger program.

This system attempls to detect transformalions as it develops the grand plan for a program. It
continually tries to get at the underlying logical structure of a program.

IIL1.3.1 REARRAMGEMENT

Consider the primilive pieces of code which form & program, They form indivisible unifs
implementing the logical segmenls which are leaves of the grand plan. Connective tissue links these
pieces together info a program. The control flow connective tissue forms a directad graph, each node
of which is executed only in a certain set of situations.

A given piece of code can usually be pul in any of several posilions in the flow of contral. In
fact, the placement is constraingd in only two ways. First the data links provide a partial erdaring for
the fundamental pieces of code. A pece of code must be situated so that it follows (in the erder af
execulion} any piece of code which provides data for it, and precedes (in the order of execution) any
piece of code which uses dala output frem it. Secondly, the grand plan specifies what subset af
situations each piece of code should be executed in. A piece of code is eonstrained 1o positions in the
control flow which cause execufion only in the correct situations. That is fo say, & piece of code
which should only be executed some of the limes that the program as a whole is executed (for
example one of the allernatives of am IF), must be pu! in 2 zection of the topological confrol flow
structure which is executed at just those bimes,

Clearly the grand plan only locsely resiricls the position of the pieces of code. One reasonable
way lo decide on the exact sequence is to require that pieces of code which implement the same
logical segment be together, This makes the relalionship between the grand plan and the Program
clear, but it 15 somelimas wasielyl,

It should be menlioned that programmers offen desire even more flexibility in placement than
that which is described abeve. There is no way 1o get around the data fiow constraints except for
ehanging the algerithm, and hence the grand plan. However, the control constraints can be loosened.
It is possible 1o position a plece of code so thal it is executed too often, as long as its resulls can be
ignered in the extra cases. For inslance, they can be ignored if, in the extra cases, another section of
code overrides tham,

[t should be noted thal stretching the grounds fer rearrangement in this way is dangerous. It
can lead fo bugs because it creales extraneous situstions which are peripheral to the main goal.
Things come into being whose sole funclion is to fix things up after something has been maved.
These things can easily gel mislaid or misunderstood, causing bugs.

ILL1.3.2 SUBSTITUTION

A section of code can always be subsiitued for another section of code as long as it does
exactly the same thing in the given siluation. This is not terribly wseful. However, a section of code
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can alse be substituted if it does mare than is reguired as long as the extrs work can be ignored. It
can be ignored by either throwing it away, or by averriding it at a later time. This type of
substitution is useful in wlilizing pre-existing sections of code. Tt is also uselul in prometing
factorization (see belowl

Just as in rearrangement, stratching the silualion can lead to laler troubles. For instance, the
requirements for igroring the extra work can sasily get lest in the shuffle because they are
peripheral 1o the main task, Also some other program may eventually ceme o depend on one of the
exiranecus features. This can lead to future prablems, since the original program does not guarantee
the extraneous features. They may go away at any lime.

There i a special case of substitution which deserves nate. Often the grand plan will call for a
general routine, however, the situation makes it clear that the aclions of the routine will be limited to
a subsel of s normal actions, In this situalion, a mare restricted rowtine can be substitulted.
sometimes the rouline can be eliminated entirely because ils inputs are so heavily constrained that
only cne of the culpuls is possible.

111.1.3.3 FACTORING IN SPACE

Here, two or more identical sections of code are replaced by one instance of the section of
code. This saves redundancy in writing the program Consider wo sections of code which have the
same specificalions, and which are in parallel positions in the flow of control. Tha! is o say, in a
given siluation either one, but not both, of the sections is executed. The two seclions can be
replaced by one section (identical to them) in a position that is executed in just the union of the
situations that the original two were executed in. In addition, of course, this mew position must be
such that the data flow resiriclions are met.

Al AZ

Fig. B: Two idenlical pieces of cods st AL and AZ cam be factsred farward
to position B, or backward to position C, as long az the mrew posilien is consislent
with data flow constraints,

Both ef the methods of strefehing distussed above can be used here to promote factoring,
First, substitution can be used to make dizsimilar pieces of code idenfical. Second, a segment can be
factored to a point that is executed too often as lang as the results can be ignored in the additional
situalions. Finally, facloring can be generalized to factoring out of n parallel posilions, rather than
just twe,

It should be noted that factoring is a process which causes one piece of code to perform two
ar mare functions which are logically unrelated. A factored piece of code performs all of the actions
which were performed by its antecedents as a group. Since the aniecedents were in parallel
positions; their aclions were associated with logically distinet situations.

IIL13.4 FACTORING [N TIME

Here a section of code can be moved out of a position, where it is executed many times, to one
where it is executed only once, as long as the resull of its execution is the same each time it is
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execuled. The archetypical case of this is moving something out of a loop. Howewver, it shauld he
roted that this type of factoring can also be used when the repatilive serial execution of identical
pieces of code, with the same input, is explicit,

1B LB
1Al

+ Al
1Az
ic +C
W

Fig 7: Pleces of code with identical resulls (such as those al Al and A2) can
be temporaly factored forward o 8 or backward o C as long as data flow
Constraints are mat.

This process is obviously subject to the same resirictions a5 spatial factoring. The movements
must not violate data flow consiraints, and the new position must be executed every time any of the
old positions were executed, In addition, as above, things can be siretched and gereralized to n
pieces of coda,

It should be noted that this type of factoring usually only accurs farward, In the figure, if the
resulls of Al and AZ are nof used until after peint C, then Al is clearly redundant.

HL13.5 MOVING COMPUTATION BETWEEN THE CODZ AND THE FLOW OF CONTROL

There are many things which can either be computed by functions, or directly implemented in
the flow of comfrel, A straightiorward exampla of this is a logical connective such as AND or O8. For
example, a test for w<8 v v<B could be implemented using one ‘ogical expression, or by using fwo
separale tesls branching te the same place. This system should be able to recognize that these two
implementations perfarm essenlially {he same computation

Looking at it analher way, position in the flow of control can be used te encode infarmation (far
exampla the outcome of the first tag anovel A programmer can choose le encode his infarmalion in
a varmble or returned value insfead, This usually leads fo a simplification of the flow of coentrol.
Another good example of this is in ihe use of loops (see section 1[1.3.4),

If something is to be implemented in the flow of central, there is usually considerable flexibility
in the way it can be dome. Loops can be implemenied with DOs or IFs, Subroutine calls can be
implermented with CALLs or computed GOTOs.

Im agdilion, FORTRAN has a triple branching IF. This can eften be wied bo implement two
cascaded binary choices. This is pa rticularly confusing whan the two cholces are logically usrelated.

H1.1.3.6 MOVING COMPUTATION BETWEEN THE CO0Z AND THE DATA FLOW

The basic use of a data flow path is to transmit & datum from one place to another. When this
is being done, the datum is nat modified by its journey. kowever, data flow paths can be constructed
$0 that they perform a computation. When this is the case, the datum which exits from the path may
nol be the same as the one which entered the path,

For example, various devices, such as calling a subroutine with arguments of nonmatching types,
€an be used to bring different sets of access funclions inte play at the two ends of a path. [t
difterent access functions are usad o siore and retrieve a datum, it may be transformed by the daia
path. This system treats this as if explicit transformations had been used. This has the effect of
tactoring the computation back out of the data flow,
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Data flow paths can also be wsed as a syntactic methed for specifying that certain conversions
should be performec. For instance the statement "5=0" (where § is single precision and D is double
precisiant will cause the FORTRAN compiler 1o insest a conversion from double to single precisicn.
This system just treats this as if the conversion was explicitly slaled in the first place.

FORTRAN has the powerful constructs "EQUIVALENCE" and "COMMON" which cause two or mare
wariables to refer 1o the same saction of memary. They can be used to cause different sels of access
functions to be used on the same datum, and for sther useful things, Howewer, they can also bring
about opague and complex side effects. Initially, this system will not try to deal with the difficulties
associated with EQUIVALENCE and COMMOMN. [t will assume that every variable is distinct, i.e. that the
value held by a variable can never be modified by an operation on a variable with a difierent name.

Another issue s brought up by arrays, wheh are the only non-atomic data ilem available in
FORTRAN. One way to look al an array reference "A{I}) is that it is a funclion which takes two
argumenis, the array and the index, and returns a reference fo the element of The array. Another
way to laok al it s as a name for the salected item, and hence a data flow path for that item alane.
The second approach has the advantage that, when retrieving and storing a value in an array element,
it eaptures the noltion that the other elements of the array are unaffected. In the firs! view, the
array indexing is part of the computation. In the sacond view, it is part of the data flow.

As a concrele example of the difference between the two views comsider the segment "A{l)=2."
In the compulational view, this segment takes fwo inputs, & and 1, and produces an outpul matrix
which is idenlical to A in all elements except the I'th which is set ta 2. In the data flow view, the
segment has no inputs. As an oulpul, it has only the single element A(l) which happens to be parl of
an arrey, and s sel 1o 2.

The secomd approach makes it easier to undersiand what is going on, bul il can only be used
when the value of 1, and hence the identity of Ail}, can be determined at the time of the analysis. In
particular this means that | canno! cepand on thz value of any datum coming from outside of the
program being analyzed. When analyzing the segmen? above, the system would start with the
computational view, and then switch to the data flow view if it discovared that if krew The value af I,
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IIL.2 THE STRUCTURES USED TO DESCRIBE A SEGMINT

As was sald above, the grand plan for a program shows how the goal of the program is
decomposed, step by step, to goals achievable by primitive programs, Further, each node of the
grand plan is a plan explairing how a goal is decomposed into subgoals, It is now time to look at the
precise structure of & plan. To that end, the next section delails the structure of behavioral

descriptions. They describe the inpulfoutput behavior of segments, and form an integral part of
plans,

[IL2.1 BEHAVIORAL DESCRIPTIONS

A behavioral description consists of five parls: a set of input items, a set of output items, a set
of prerequisites, a set of aszertions, and a mapping. The prerequisites are logical conditions involving
the input objects. They must be met if the segmen! is 1o behave correctly. The assertions are logical
statements which are true ater compietion of the segment, In terms of the input and oulput items,
the assertions say what the segment does when the prerequisites are met. Note particularly, that the
definition of a behavioral description speaks of input and output items, nob variables. An item is &
piece of information (a number or an array or a funclion} which is passed between sesments. A
variable is just the mos! common data flow construet. The mapping specifies when an output item is
identical to an input item,

Seguent
YM1l = FIXNL)
ENL = ¥M1+0¥

Behavioral description of the segmant

inputs: = fnc

prereguisites: floating Aaumbers (x, inc)

ouipuls: newy, rewy, olne

asserlions: floating numbers (news, neawy)
REwW Y = +ife
new iy =Flx)
finc=ing

mapping: {oincsing)

Fig. & An example of a behavioral description for a twa line segmeni. The
lawer case names (o example ¥, inc, news) are rames for ilems. Any similarity
between these names, and the variable names in the example segment is just for
the convenience ol the reader. The system encodes no information in the names.

It a behavioral description accurately descrives a segment, then if the inputs are supplied and
the prerequisiles satisfied, the culputs will appear, and the assertions will be true. In order to justify
the claim thal a given behavioral descriplion is accuraie, the system must look at the internal
structure of the segment. The mapping is of assislance since anything which is true of an item under
one mame, i$ true under another name. The syslem knows, in advance, behavioral descriplions of all
of the basic programs available in FORTRAN,

[1L.2.1.1 POINTS OF VIEW

To be useful, a behavioral description must be accurale. However, exactly what is put into a
oehavioral description is a funclion of the purpose to which the behavioral deseription will be put.
One segment can be described from many poinis of view, and several segmentis can be described from
a camman paint of view,

There are two key types of poinis of view: “inlrinsic” and "sutrinsic.” An intrinsic behavioral
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descriplion describes a segment from an internal paint of view. Il references nothing exlernal to the
segment. Everything it says about the segment is trus by virlue of the segment's internal workings
and is independent of where, how, and why the sepment is used,

An extrinsic behavieral description describes a segment from an external point of view. It
references nothing internal to the segment. It describes the segment in terms of the environment of
s usze. An extrinsic behavigral descristion is anly used in conjunction with other extrinsic behaviaral
descriplions sharing the same point of view.

1IL2.1.2 RELATING BEHAVIORAL DESCRIPTIONS

Given two behavioral descriptions for a given segment, it may by desirable te show how they
carrespond, This is done be specilying an additional mapping which shows how the items mentionad
in the two descriptions correspond.

The next figure shows an extrinsic behavigral deseriplion for the segment in the example
above. A correspondence mapping is included, as part of its mapping component, which relates il o
the intrinsic behavioral description of the segment in the previous figure.

Segrent
KM = XNL
YN o= ¥hL
YNl = FIKNL]
EN1 = 140K

Extrinsic deseription of the segment

inputs: x, v, deliax

prerequisites: floaling numbers (x, v, deltax)
B.Bzx
BA<daliax

outputs: newte, nesty, alds, aldy

assertions: floating numbers {nexts, nexty, oldx, oldy)
rgsby=u+daltax
by =Fix)
cldw=x
ey =y
et >aldy

mapping: (e, deltaxeing, nextusnews, nextysnewy; oldve, eldyey]

Fig. 9: This is an pxample of an extrinsic behavioral description of a use of
the segment whose intrinsic behavioral desription is given in the last figure. Dafta
flow connective fissue has been added to creale more outpuls. Similarly
prerequisites have bean added, vielding more complex assertions abaul nextx. The
mapping component consists of two parts separated by a semicolan. The first parl
shows how names used in the extrinsic description map to names used in the
infrinsic descriplion, The secomd shows how names in the extrinsic descriplion
directly map together. Anything which ic said of a name iz brue lar any name it 9
mapped [0 and wice versa. Any identity belwean exirinsic and intrinsic names is
accigental and carries ne information. The mapping carries the infarmalion.

The correspondence mapping enables the syslem to use the fact thal the intrinsic behavioral
descriplion is accurate 1o help show that the exirinsie behavioral deseription is accurate. The
extrinsic behavioral descriplion is sccurate if the intringic behavioral description is accurale and the
following four requirements are met.

First, each item in the intrinsic inputs must be mapped to by an element of the extrinsic inputs.
Second, each element of the extrinsic outputs must be mapped to by an element of the intrinsic
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oulputs or directly from a moembar of 1he extrinsis nputs. Having an exirinsic oulpul come direcily
from an extrinsic input is a common melhed of extending the intringic abilities of a seament, Third,
the extrinsic prerequisites must imply the intrinsic praraquisites. [f not, the segment is being
incorrectly used. Finally, the extrinsic assertions must be implied by the iniringic asseriions, and the
extrinsic prerequisites. [f not, there is no basis for asserling Them.

s gy lrinzic description
: segmeni
infringic description

@ aam g
EEERCEE B

Kr 2 I
. Ky U lg 2 Hp
Eg ].'u ; . Kp = Ip
:..r.......-.-.-.-: : :":.pl'l.]ﬁ-l}':‘l

Fig. 12: This figure shows a schematic representalion of the relationship
between intrinsic and exirinsic descriptions of a segment, To the right, equatians
summarize the key relalionships among the extrinsic and intrinsic inputs, outputs,
prerequisites, and assertions. Throughou! the rest of this paper, subscripts will be
used 0 refer 1o the inputs, outputs, prerequicites, and assertions of the behavioral
description of a segment. In the figure, "X stands for the extrinsic name of the
segment, and "I" for the intrinsie name, Therafore, "Mg™ stands for the outputs of
the extrinsic behavioral description of the segment.

122 PLANS

The plan for a segment shows how the behavier of the segment is produced through the
combined efforl of a set of subsegments, It consists of four parts,

Firstly, it lists extrinsic descriptions of the subsegments frém a common point of view. These
descrioe the behavier of the subsegments in the context of the outer segment. Secondly, the plan
includes the intrinsic description of the segmen! as a whole, fram the same point of view. This is the
goal to be achieved. Thirdly, there is an indicaton of the plan type of the plan and of how the
subsegments map into the components of that alan type. Fimally there is a description af the
teleclogical structure of the plan. The teleclogical siructure contains the key information which allaws
the syslem 10 know why the program is the way it is.

Fer vach plan type there is & collection of specific methads and information {see section [[1.3),
This knowledge specifies how subsegments interact in accordance with the plan type. 1t shows what
cenlrol and data flow are required. More importantly, it shows how the extringic descriptions of the
subsegments are logically combined in order ta yield the intrinsic description of the segment ac &
whole, It indicates how to go about verifying that the segment as & whole works carrectly, and what
some of the comman bugs are in programs using the plan fype.

Locking at plans from ancther paint of view, a plan is an instantiztion of a plan type. The
extrinsic behavioral descriptions instantiale the subsegmenis. Data item naming conventlions
instantiate the data flow. Subsegment naming conventions specify the contral flaw through reference
e the plan type. Finally the intrinsic behavioral cescription of the suter segment, together with the
description of the teleslogical structure, instantiale the logical structure of the plan type.

The teleological structure is described uzing a net of twoe kinds of links ("purpose,” and
“reason”). Purpose links specify the purpose of a feature of the plan. They are intended lo show
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why lhe major design decisions were made. As a resulf, only the main goal directed features have
purpose links. 1t should be nofed, that a feature that dees nal have an avowed purpose may still be
used as a justification for somethung. [f it is mot used for anything, then it is just incidental (there are
many incidental features in a typical program), In the exampie plan, it is not just incidental that the
function F produces a floating number sutput, howsver, it is not its purpose either. [is purpose is to
compute the function F as required by the intrinsic descriplion of the cuter segment.

Purpose links show outputs designed to become inpuls te other subsezments and/or cutputs of
the outer segmenl. They show asserlions satisiying prerequisites of olher subsegments and/jor being
used to imply asserlions of the ouler segment's behavioral descriplion. They also show more global
ideas, for instance, that a particular subsegmant determines whethar a loop should terminate. In
addition, purpose links show that the inputs and prerscuisites of the intrinsic behavioral description
of the outer segment are designed 1o provide for inputs and prarequisites of subsegments.

The reason links explain why certain things can be claimed. [n particular they indicate why the
assertions of the intrinsic behavioral description of the outer segmenl can be claimed and why the
prerequisiies of the extrinsic behavioral descriplions of the subsegments will be salisfied. They show
the key sef of asserlions from which ancther assertion can be inferrad.

Taken together, the reason links are a trace of a proaf of correctness for the segment, This

system is unable o verify this proof because it must take many reazon links on faith due to the Fact
that it cannot prove that they are valid.
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Segmant
YHNL = F{MNIL}
MWL = XML+O

Plan for the segment which iz of type AND
(10 REA PURIExtrinsic description of part AL of A (F)

1 - - Impuis: »
2 12 - prarequasites: floaling number ()
3 - 13 suipuls: newy
“« - = assartions: flealing number (rewy)
5 - is AEwy="4x)
mapping: (newswarg [, newysreturn_valus;)
Extrinsic description of part AZ of A {+)
B - - inputs: ¥, int
7012 - prereguisites: tloating numbers {x, ine)
& - 13 outputs: newx
a - - asserfions: floating number {newy)
lg - 15 REw = #ing
mapping: (xeargl, incrarg2, newserefurn_value;)
Intrins:c description of part A of A (the whole segment)
it - 1,8 inpuls: ¥, inc
12 - r prerequisites: floaling numbers (x, inc)
13 - - outpuis: news, newy
14 4,9 = assertions: floating numbers (newx, newy)
15 18 = REWE=LHAL
168 § - iy =]

Fig. 11: This iz an example plan for sggmenls similar too the ane deall with
in the lagt two figures, Note thal here 1he names for the ilems do have meaning
because all of the behavisral descriptions have a common point of view. If they
are the same in two different descriplions than they refer to the same item. The
table to the left of the figure indicales the feleclogical links. For example, hine 8
has producing the autpul in line 13 as its purpose, and line 7 ciles line 12 as the
reason il expects to be satisfied, Section 11L3.1.1 summarizes the specific
knowledze for plan fype AND,

It a plan is to be applied lo a particular segment, fo explain its operation, three things mus! be
added to it. First, there must be an indication of what code corresponds to the segments referred fo
in the plan, Secend, there must be a listing of what data flow connective tissue implemenis the dalta
flow required by the plan type. Similarly, there must be a listing of the control tlow connective tissue
which implements the control flow required by the plan,

The resulting structure is referred 1o as an applied plan or explanation, It can be uzed to
answer queslions aboul how a particular segment does what it does, [V should be pnoted that this is a
second level of instantiation. The firs! level made explicit the structure {teleclogical, data Mlow, and
control flow} of the segment. This level makas explicit the way in which the siruclure iz implemenied,
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Segment with segmentation information
A AL YHL = FIKML)
A AZ ENL = XN1+0X

Applied plan for the segment {additional infarmation wnly)
data {low

inta part &1 of A (F)

® from cutside A wia variable XMN1
info parl AZ af A (+]
* trom outside & via variable XM1

ing fram dutside A via variable DX
{0 oufside of &

newy from part Al via assignment, and variable YNI
newx from part A2 via assignmen!, and variable XN]
cantral flow

from culsice A to part &) via initial placement
from part &1 1o part A2 via sequential placemant
from part AZ 1o outside via final placement
Fig. 12: This shows the additional information which must be addad te the
plan in the previous figure in arder to make it an applied plan, or explanation. The

segmentation information is represenied alomgside the example program in the
same was as in Fig, B,

This system uses different meiheds for the understanding and manipulation of each fype of
plan. This allows great flexibility. This is only possible because the number of plan types is small,
The next section describes the essential features of the plan types found in the programs in the [
S5P.
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i3 THE BASIC PLAN TYPES

The following sections detail the structures of the basic plan types. The sections are grouped
into catagories based on the way the plans approach decomposition ef a geal. Each section follows
the same paltern,

Each section starts with a schematic representation of how subsegments are combined in
accordance with the plan. Arrews in the diagram indcale lypical control flow {solid lines) and dala
flow {dashed lines). Conmtrol and cata flow are not part of a plan unless it is applied to a specific
program. Howewver, the way the subsegments interact highly constrains the form the data and contral
flow can take. A "+" is uszed to mark the exil path on which a predicale asserls its assertions. [t
asserts the negation of its asserlions on the otkar palh.

Above and below the diagrams, equations summarize how the exirinsic inputs, oulpuls,
prerequisites, and assertions of the subsegments combine te produce the intrinsic inpuls, oulputs,
prerequisites, and assertions of the outer segmernt. As belore, subscripts are used to refer to the
parts of the description of a segment. Below these are explicit deseriplions of the purpose (subseript
PR} of each subsegment. These descriptions in canjunction with the equations indicate tha teleclogical
struciure of the plan,

Ta the right of the disgram, equations summarize any defimitions needed to understand the
ather equations. At the bottom of the figure, there is an example segment of FORTRAN code
llustrating the plan type. Lastly, there is a section describing the plan type and indicating any points
af special inferest.

I[1.3.1 THE GOAL DECOMPOSITION METHOD =AD"

In this strategy, a goal is divided inlo pieces which can be achieved in isclation. In order to
achieve the goal, each piece is achisved separataly.

[IL3.1.1 THE PLAN TYPE "ARD"

Ap = U, 4,0 Aig
Ap = dnj,g,n Alpl & fag g o Algefalsel

1
i ] 1
i ] I
A I I |
—
[ ] -—hi 5._
0 i_l_'j
i I l
[ i 1
[l ] I
L W W ¥
Ap = Uj.y,n Ag
A= npap.n Aly

Alpp = contributes Aig to Ag and Aig to Ag.

K o= BINIY)
A= AESIZ)

Fig. 13: Schematic for, and example of, the plan type AND
This is the simplest type of plan. N subsegments (with extrinsic names Ai) are additively

cembined to produce the cverall segment {whoss infrinsic name s AL The purpose of each internal
sagment is to achieve ils part of the overall geal. There is no a priori constraint on the order of
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execution of the internal segments, They do not inferact in any way., Mo dala flows between them,
It should be roted that the union of the assertions of the Ai should not be a contradiction. If it is,
then what one subsegment is trying to achieve is incompatable with what arother subsegment is

trying 10 achieve,
I[1.3.2 THE GOAL DECOMPOSITION METHOD "XQR"

In this strategy, a goal iz subgivided inte ceses. In order te achieve the goal, it is determined

what type of situalion exists. Based on the type, an easier goal is achisved which is equivalent in the
parficular situation.

111.3.2.1 THE PLAN TYPE "CASE X0OR™

AI = Ull11ﬂ {P]I U Ait'
Ap = Mial.A 1Pip A APig=fipll A [KEHi11.nPiﬁ}

| I P L
Al Lo L
| | |
P e s - - - _,laj;
! : !
| | ) +| !
3 i
l:l AZ - an
r i [] T 1
TTree """""‘"““j":
&
-

by = ﬂlg B AZn S el o= Ang
ﬂﬂ - ﬂll].ﬂ ‘Piﬂ -+ ﬂ;‘}

Pipg = 1o establish whether Piy is frue.
Alpg = when Piy is true, this provides the Ay and Alg,

IF (I-1) 18,E,18
5 K = SIN(Y)

COTD 28
la IF (I-Z} 28,15,28
15 ¥ = COS(Z)

GOTO 2@
2d  STD@
24

Fig. 14: Sehemalic for, and example of, the plan type CASE XOR

Depending an which of n situations (P} is found, ore of o actions (A will be performed. It
must be true that one and only one of the siluations cccurs at a given time. This being the case,
there is no restriction on the order in which the tasis are made. Nole that whichever test is chosen
to be made last can be omitted (though this does not add to the elarity of the code),

The tests are made with predicates. In the example, the first predicate iz "[-1=8" The If
converls the segment "[-1% which outputs 2 number into a predicate. In a given situation, the
predicates, cascaded logether, selact the correct subsegment to use as the body of the CASE XOR, As
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in the AND the subsegments (Al-An) do not intaract with each other. In fact in any one execution of
a CASE XOR only one of the Ai is execuled.

II1.3.2.2 THE PLAN TYPE “COND ¥0OB"

‘l-; "ui-.l.n [i:'i] u llliI]
Ap = Aial,n PPy = (Fipg A [Pig=Aipll) a v . nFial

P'IA ] ﬂj!iqi—qujh

i
3
ﬁ'

]
L rmmead e b e - ————————

]
=4
I
I
i
1
]
W

.ﬁ,n = Alu = 'ﬁ'EI:I = aa. = _|'.‘||H|D
ﬁ-ﬂ- = '*'illqu [*Plhl, -"\-F'iA:' -+ ;I.i*]

Pipp = to establish whether iy is true.
Aipg = when (Piy A Pigdis true, this provides Ag and big.

IF {¥} 5,5,18
& ERAOR = 1
GOTO 38
18 IF (¥/W) 15,155,298
15 EAROR = 2
GaTo 38
£8 ERRODR = @
38

Fig. 1B: Schemalic for, and example of, the plan type COND XOR

The COND XOR is a variant of the CASE X0R. It is included here because it is extremely
common and because bugs often arise due to a confusion between the twe. In the COND XOR, the
order of execution of the tests is not free, it iz essential,

In a serial computer, the lesls must be made in some order. The COND XOR takes advantage of
this fact to gain two benefits. First the situation in which a subsegment Ai is execuled is iPlig A Pig)
ot just (Pig) (actually this was true with the CASE XOR as well, but since ((XOR, ., .Pia) =
(Pig=P"ig)) it was not useful). This is useful here because the alternative situations needed to
subdivide a goel offen have this kind of form. In additien, the prereguisite of the COND XOR requires
only that the OR (rather than the XOR} of the predicates iy be true. This is, in general, more in line
with the way that pecple think. la jhe example, the three sifustions are X=B, X=8 » ¥/X¥28, and X=0 A
¥/¥>8. Using the COND XOR, rather than an eguivalen! CASE XOR, saves duplication of programming
effart,

The second gain is that the prerequisites of a COMD XOR are often simpler than in an eguivalent
CASE XOR. In the example, because the crder of the tests is fixed, the prerequisite of the second
test (that X#B) does not need to be a prerequisite of the whole COND XOR. Mote that, as in the
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example, the lasl predicate of a COND XOR iz often "true® (neading no code to be implemenied) which
recognizes the situation "olherwize”

One of the most common bugs associated with X0ORs is due 19 the fact thal programmers cften
implement a COND XOR when thay have a CASE XOR in mind. In the example, the programmer mighi
have been thinking thal whesever X<@ then errore=l and whenever ¥/X<B then error=2. [t is easy
not 1o notice that this makes no sense since the alternatives are nol mulually esclusive. What
heppens when beth alternalives are true® The program makes an arbitrary decision seiting error fo
1. This may cause a problem later if some olher pragram assumes that error#2 implies that yix=g.

II1.3.3 THE GOAL DECOMPOSITION METHOD “COnP™

In thie strategy {composition), a goal is acheved one step at a time. A subgoal is chosen so
that afler the subgoal is achieved it is easier to achieve the desired goal.

[I1.3.3.1 THE PLAN TYPE "CONP"

.I!|[ - GI -ul':tx
Ap = Ep .ﬁFp,:

i
i
A | ! :
G |
| Fr = Frx U Fpgp
. i Fpoo= Fpy n Fpp
| | i Gn = Gax ~ Gag
'i F [ Gar = Fpgp
':
g

Aa = Gax a Fy

Gpg = to salisfy Fpy, to provide Fyy, and 10 contribute Gy 1o A,
Fpg = to provide Ay and to contribute Fy to Ay

L = ABS{X)
¥ = LOGIZ}

Fig. 16: Schemalic for, and example of, tha plan fype COMP

The subsegmen! F performs a calculalion based on external data and on the ouputs of the
subsegment G The inpuls and prerequisites of F are divided inte two sels exlernal (Fgx and Fpy) and
internal {Fyy and Fp) The internal requirements are satisfied by the outputs and assertions of G

The verfical splitting of the goal has two main benefits. First, the prerequisites of the whole
segment are often simpler than the prerequisites of F, since some of the later are satisfisd by the
assertions of G. More importantly, the azsertions of the ouler segment compose the assarlions of F
and G. In the example, G makes the assertion I=ABS(X) and F makes the assertion Y=LOGIZ). Often,
substitution is used to eliminate references to the autputs of G in the assertions of A In the example,
Vthis would yield Y=LOGIABS(X]} as the assertion of A

An impartant special case of the plan type COMP octurs when A, equals Fp and Fj does not
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mention the oulpuls of G In this case (referred to as a PREP COMP), the enly function of G is to
satisty prerequisites of F.

This plan type is not commen in numerical programming, However, it does occur in the prozram
RK1. The follawing example from the blocks world illustrates the plan tyvpe,

CLEARTOP (A}
PUTON1A,B)

Fig. 17: An example of the plan type PREP COMP

The goal is to put A on B (3 is assumed te already have a clear top). G which is CLEARTOP{A)
contributes to this goal only by making F which is PUTONAB) applicable,

1L.3.4 Lo0Rs

The previous seclions have described three mothods for transtorming one goal mlo a sel of
easier subgosls 5o |hat achieving the subgoals achisves the goal. The plan types described above are
lirmited in that, even in combination, they can only be used 1o implemeant a goal decormposition method
when the set of subgoals can be bounded in size at the time 1he pragram 15 wriller. Loops can be
used to implement unbounded, but fimite, sels of subgoals which are sufficiently repetitive.

Loops are not a differen! gosl decompasition methed, They are a different implementation
method. [t should be noted thal loops are also often used fo implement bounded sets of subgoals
which have repatitive structure.

There are two ways te approach tha descripfion of the plan type LOO2, One could starl wilh a
method tor describing unbounded but finite sats af subgoals and show how they can be implemented,
Alternately, ane could star! with the pheromenon af a loop and show how i can be harnessed to do
usetul work, Each way hig hlighls interesting aspecls of the problam.

Consider a finite but a prieri unbounded set of subgoals which can be put in one to one
correspondence with an initial subse! of the positive integers 5o thal achieving the subgoals in the
natural order of the corresponding integers achieves the overall goal, Let G[i] represent the subgoal
associated with the integer i (square brackets will be used exclusively to mark items associated with
the i'th iteration of a loop) The sat of subgoals is then {G[1], .. G[i] .. , G[n]), where n is the
unknown number of subpoals.

Suppose that there is a set of computations [B[1) — , BHL ..} such that if G, — , G-I
have already been achieved, then execuling B{i] acheeves Gli]. Further, suppose that there is a set of
predicates {T[B], .. , T[i], ..} such that if {G[1} .. , G{i]} have already been achieved, then execuling
Tli] will determine whether the overall goal has been achieved, ie. whether n=i, Given this, the

following unbounded computation would achieve the overall goal and terminale when it hes been
achigved,

i 1 i L
i 1 i i
; I i i
1 :I L] i
O e RO 8 N R s 4
1 aE
: J+ : : B @ " oW
L _J" i
a1 |__ ...ET"_:,E.EEI %_-.,
; ! :
| i a
v W M

Fig. 1B: Schematic for the plan for an unbourded computation achieving the {G[i]}
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The sequence of compulations cannal be imglemented in 1he way the above figure suggesis. If
each segment was implemented separately the resulting program would be infinite, since n is not
krown in advance.

A loop has the property that it can produce an unbounded sequence of computations from a
finite amount of code,

1 1
1 i
1 ]
i ]
i 1
1 i
L] i
- i
AT :
i
.= i
[ ::ll +* i
[ i
: :
[ - 1
i i ]
i [] ]
FlL ] ]
T Y=
i 1 I
I [ 1
i i |
I i 1
- B :—J :.
- ::__—-—al:
§
[
[
;
i ]
W L

Fig. 19: a loop

The above pian schematic has loops in cantral and data flow, [f it ware running, it could clearly keep
running for an unbounded time, allernzlely executisg B and T. Further, since T is a predicate, it might
even lerminate. There is @ problem however, how would it star!® It appears thal the execution of T
must always precede the execution of B and that the execution of B mus! always precede the
execulion of T,

If the execution of the loop were already at either point X or point ¥, then there would Be mo
prablem. A loop may be initiated by mimicking evary relevan! fealure of the state of 1he world at %
or at ¥ and then proceeding as if the loop had always been running. What features are relevant
depends on the nalure of T and B. Clearly, army dala items which will be uszed as inputs mus! be
crealed, and the prerequisites of T and B must be satistied.

The netion of mimicry is a pewertul one in it2 own right. It is broughl into play whenever twa
data or coniral flow paths join together (o become one. The joining causes the information about the
origin of the paths, which was inherent in their separatenass, 1o be lost. On the other hand, whan
paths diverge, as from a predicale, information can be encoded in the separalenszs of the paths,

The plan types XOR, COMP, and LOOP approach mimicry and path convergence in different ways,
In an XOR (see section [10.3.2) the data and conirol flow paths join together at the bottem. The
output asserlions explicitly mention this fact. In effec! they say that one of these n things happened
and it can be decided which one by determining wkich pradicale was true,

In a COMP (see seclion [11.3.3) there is not actually any joining of paths, Howewver, imagining
that there is potentially a second control flow and data flow path directly to F from the outside
provices a convenienl way of thinking about what is happening. If evarything was sel for the
execulion of F, then the direct path could be taken. G ereates the required conditions, thereby
mimicking the conditions on the direct paths te F. Mate that, in general, F cannot tell whelher control
cames fram G ar directly from the cutsida.

Thiz motion can be extended, Whenaver the relevant stale is indistinguishable in two places
and the same subsequent calculation is desirad, then a GOTO can be done from one place to the olher,
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This causes a joining of data and eantral flow paths, [f the compulations beyond the two points are
not directed loward the same goals, bul jusl hpppen to be tunctionally equivalent, than the jvining s
Just a case of factoring (see section 111133 ang i« liable 1o be confusing pregramming,

When the zoals are the same, the GOTO can e a very useful way to look at a problem. [i could
have been a plan fype on itz own, Hawever, the programs in the S§P tend to foliow the ideas of
structured PrOEramming. Az a resul?, the nofion of GOTOs ard mimicey can be restricted to
stereotyped positions in certain plan Types. This makes il easier 1o deal with GOTOs, just as a similar
restriction makes it pasiar 1o deal with predicalas,

Returning to LOOPs, suppoase tha! the loop above is started af point X and that T and B havea
the following properlies. The first time T i executed, it computes T[@) The second time it is
executed it computes T[1], and 8 on. The first time B is executed, it computes Bl1] The second time
B is executed, it computes B[2], and s on. If this is true, the loop will perfarm exactly the same
computation as the wnbounded program.

Im addition, the loop will take up finite space if T and B do. If this is 1o be fhe case, the {T[]}
and the {B[i]] must be sufficiently repetitive in strucfure so that they can be implemented by finite
programs. It should be moted that T and 5 will mast lixely contain computation whose sole purpose is
10 make it possible far them to delerming which iteration is ihe current one so thal they know what
te compute. In the unbounded arogram, this infarmation is contained in the flow of control. In a locp,
it must be encoded in other WAy,
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HL3.4.1 THE PLAN TYPE "LOOR"

nosuch that (laj,p (o TLId) A =Tinl,)
Ap = Uip,n BLidgg v TlITgy)
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- ] (jup, i (T0Tn A BLiTA)) a BLisll, = Tlisllpy
- K 'ﬂjlg.i[r[j]gnﬂfj]ﬁ” 4B[i+.”p]
i
v ;
Ag = |:|..|;.E.1|.l Blilgl
Ay = h"i'lﬂ,ﬂ a[l.]*] # 1-'\-;.5.1"_11-[”*] A ".F[I'I]H_
lpg = toiniliate the lospirg.
Tlilag = to determing if the camputation should stap ie. if =i,
Blilpp = to perform the steps of the caloulation,
K{A)Y = [MIT
00 1@ [=1,INFINITY Noel
KTy = FOI,KCI-10,¥110) 1B K = M-[iHaX=18) 7 12%51)
FOATHLL ML, 2000) 28,180,728 IF (ABS(¥eX-12)-1.BE-18) 28,28,18
18 CONTINUE 28 ...
28 ...

Fig. 2@: Schamatic for, and ax amples of, the plan type LODP

T and B are as described above. 1 is an additional segment which performs the mimicry in
order to slart the loop at either X ar Y. In the equations in the figure, 1 is referred fo as B8] (this is
done for notational convenience), [ [ mimicks the situation at point ¥, then it in addition mimicks what
is referred to as T[B] MNate thal this can {and offer does) cause trouble since B[1] is always
executed if the LOOP iz started at point ¥. There is no way lo differentiate balwesn the case where
only the goal G[1] should be achieved and the case whareé no subgoals should be achieved.

The equations showing how the subsegments interact in order to create the behavior of a LCOP
are complex. Fortunately, most LOOPs do not take adva nlage of the full complexity. In the figure, two
example segments are given. Tha first, which has mare or less full complexity, is artificial and could
be looked upon as a schema of 3 LOOP, The secend, which finds the square rood of 18, is much
simpler, Further, LOOPs can be broken up in order fo isolate differen! areas af complexify,

Probably the greatest ares of complexity is determining when, if ever, a given LOOP will
terminate. The quantity "n,* which represents the termination point, eppears in avery eguetion and is
central to the understanding of a LOOP. The naxt two sections show how the problem of warking with
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m can be split off from the rest of the LOOP. Once isolated n oflen turns out te be relatively easy to
understand.

There are other areas where simplification can gccur, These areas could be looked at as
features which a given LOOP might or might not have. The expressions for the inpuls and
prerequisites are often simplifies. 8 andjar T may nat have any external inpuls or prereguisites.
Failing this, the sxpressions for A7 andfor Ap may not depend on n (this is the case in the second
exarmple segment).

Very often, the only outputs are from the last step. Similarly, the assertions may orly depend
en the last step. It should be noted thal picking just the right assertions for T and 8 so that the
entire action of the LOOP is summarized at each step is an arl. Putl another way, it will aften be very
hard to prove that a convenient form for the assertions of A fellows from a convenignt form for the
assertions of T and B. When faced by a difficult proof, this sysiem will just ask the user whethar it is
possible. If he says that it is, then the system will trust him However, it will remember that the
asserlion may be shown false al a later tima.

[I1.3.4.2 THE PLAN TYPE "ENUMERATION LOOP®
If everything is removed from a LOOP excepl tor the calculation of n, then the remaining LOOP

is an ENUMERATION LOO®. The process described in the naxt section shows how additional
compuliation can be added inta a2 LOOP.

LI
00 28 I=1,188 18 X = Gi¥]
28 CONTINUE IF (¥} 1@8,2@,1@
a ...

Fig. 21: Examples of the plan type ENUNERATION LOGP

The schematic for this type of LOOP is idantical fo that far the general LOOP except the it does
nat preduce any outpul. It just cycles through a sequence of stales. [n doing this it defines an
ordered sel of situations. The anly difficulty in understanding an ENUMERATION LOOP is determining
when it will terminate, Since an ENUMERATION LOIP thearetically can be as complex as any LOOP, it
may nol be easy to understand. However, in gereral when the parts of a LOOP which do nof
contribute te the calculation of n are siripped away, the ENUMERATION LOOP which remaing is easy lo
understand. Though this type of LOOP seldom appears, as is, in a program, it is very imporfant as a
basis for understanding more complex LOOPs which are buill up on the basic series of states it
enumerates.

If an ENUMERATION LOOP is slightly exlended 5o thal it returns Blnly as its output, then it is
referred (o as & SEARCH LOGS,
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I11.3.4.3 THE PLAN TYPE "AUGMENTED LOOP"

This plan type combines a loop L and an agdilional bedy AB computing {AB[1, .. | AB(L ..) 1o
form a more complex LOOP, [n the figure, ¥.¥ stands far part ¥ of the segment X

n=L.n
Ap = L] u {U._H.n I‘El[i]l_;.;]
A; = Lp e ‘ﬂltnln ‘lEu[i]F.‘:]

; I L
T i
: ; L T=L.T
i ’ i B = an AND of L.B and AB
: - ) [ = an AND of L.[ and ABI[@]
; - + '
IF—-rl-———---l-—-| ::
L.B | 1R L.Blilg o Tlilyg
A (2] : o LBlidg 2 LA+
-I P .. :: LrE[i:ﬂUAE“]n:ﬁlﬁB“illlr
K ¥ Al 1
1 ] ] 1 1
P I
: AB Eo7oc] o fagea, i (Tl s A LB ANY A LoBlislly = Tli+llpg
i T Co-i ! lajap, i ITLjla A LBIjIA0) = L.Bli+llpy
P L ! ! {.ﬁ.j_EI;IT[jEEnL.EI[j];, A ABLjI 800 + ABLi+1]py
oL LEt" !
T )
i!
H..

Ag = Lp U Wiia,n ABLIgI
Ao = Ly onlag,p p ABLIT,H

PR = 10 initizte the lcoping,

lilpg = fo determing if the camputation should stop e if n=i
Blilpg = to periorm the calewstion for LOOP L.

[ilpp = to perform the added steps of calculation,

2 = I-IE
0D 1@ I=1,18 00 18 [-1,18
18 XII) = ¥{ll=Zi1} 18 I = Fw¥

Fig. 22: Sehematic for, and examples of, the plan type AUGMENTED LOgP

Note that this is a three level plan. AB s added 1o LB (a subsegment of the LOOP L) to form &
new body, There is no restriction on the way AB and LB interacl except that no data can flow fram
ABto LBorte T. I May also be moditied by the eddition af AB[E] in order to indialize the actions of
AE,

The most important thing here is that the addition of AB to L does not effect L's termination. If
L was understood, then the new Wop A is sasy to understand. Any segment which can be explained
by this plan can also be explained by the general LOOP plan. Using this plan is more advan!ageous
because it develops a better understanding of the whole segment by looking al the internal structure
of segment B,

There are two major subcases of this plan type. The division is based on whether AB uses
feedback or nal. The examples illustrate the two types: AND AUGMENTATION amd COMP
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AUGMENTATION. In both cases, a computation is performed, taking advaniage of the sequence of
states which is set up by the LOOP L, which is usually an ENUMERATION LOOE {as in the examples).

11.3.4.4 THE PLAN TYPE “INTERLEAVED LoOP"

This plan bype combines bwo LOOPs, K and L, so fhat they are computed in synchrony. The
combination terminates as soon as aither ane lerminales.

n o= MINIK.ALoAD
Ay = Uieg,n KBLIy U K.Tlg v L.BLil g U L.TLiRpyl
K
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Ll | ek for |l Lx 1.
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lpp = toinifiate the looping.

L.Tlilpg = to see if the computation shayid stop duwe to LOOP L
K.Tlilap = fo see if the computation should stop due to LOOP K,
L.Blilpg = to perform the steps of the calculation for LOOP L.
K.-Blilpg = to perform the steps of the calculation for LOGP K.

K= @4

D3 1=1,18

¥ = FiX}

IF (X} 18,28, 18
12 CONTINUE
2e ...

Fig. 23: Schematic for, and example of, the plan type INTERLEAVED LOOP

This i alsa a three level plam KT, LT, KB and LB are execuled in any order in a ring, with
miricey starting the LOOP at any of four peints. The key requirement is that no data flows between
the twa subLOOPs. Their only interaction is that when ane terminales, the other is artificially
stopped. [t should be noled that when one of the sublLOOPs (say K} terminales, then the whole LOOP
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(A) acts in all respects just like that susLOOP (K} with some additional computation from the partial
execution of the other sublOOP (L)L In particular, the outpuls are the sulputs of K with a subset of
the cutpuls of L added on.

Like mimicry, interleaving is a powerful idea in its own right and could be a separate plan type.
Interleaving is essentially a way to simulate parallel processing. Here it has been resiricted to
applying only to LOOPs because il is nat interesling when apglied 1o the ather plan types discussed.

One of the most impartant attrioules of this alan type is that it can be shown to terminale even
it only ene of the two LOOPs K and L can be shown 1o lerminate. As a resull of this, this plan type is
often used to bound the execution of a possibly non-terminating LOOP with a simple ENUMERATION
LCOP {zee the examplel),

The other major use of this plan type is based on considering that it computes either K ar L
Cwhichever completes first), Here first is defined i4 terms of he sequence of slales produced by the
LOOPs. This is done in a siluation where, for instance, the resulls of L are not desired {or perhaps
are nol computable) if K terminates first. The program RKI containg an examole of this.

In conclusion, it should be noted that conirol exits an INTERLEAVED LOOP im two different
places depending on which les! terminates the LCOP. In a grand plan this feature is expressed by
considering that the interleaving process joins two LOOPs, each of which is the initial component of a
complex computation, 1If the INTERLEAVED LOOP terminates due fo test E.T, then exscution conlinues
only in the computation LOOP K is the initial component of,

The splitting of the flow of control on exit from an INTERLEAVED LOOP could have been
eliminated if a2 component were added 1o all LODP: which was exgcuted afler the fest Rad lerminated
the looping. This was not done, because it wae fel* that composing this exil segment on the oulput of
every LOOP would obscure the basic nalure of LOOPS.
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111.5 CETERMINING THE DESCRIPTION OF A PROGRAM

This section gives an indication af how {he system can develop an undersianding of a program
in terms of the descriptive struciures dafined in rection L2, Given an understanding of a program,
Section I1 gives an indication of how tasks are per‘ormed by the system. Basically, the system either
just reports out parts of the descriptive structures, or ashs itself a series of guestions and perfarms
some minor deductions, The descriptive structures wers specificelly designed 1o make the fasks
described in section 1l easy.

Starling from the text of a program, including annatation, an understanding is developed using
several fypes of knowledge. The system has complele knowledge of the basic facts about FORTRARL
This includes knowledge of the specific cantral flow and data flow construcls available, and knowledge
of the basic programs available. The system also has some basic knowledge sbout mathematics.
However, it should be noted that, this syslem does not try 1o understand the mathematical thearems
implemented by a program, but anly how the program implemants the thearems. Finally, the syslem
hias knowledge of what plan types are used in the programs in the TBK 5P

The understanding process is illusirated by a discussion of the program CONVT which is shown
in the nax! figure,
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1 ¢ FURPDSE

2 C LONVERT NUMBERS FROM SINGLE PRECISION TD DOOUBLE PRECISION
3 rC 0OR FROW DOUBLE PRECISION TO SINGLE PRECISION.

& C DESCRIPTION oF PARAMETERS

& C N - NUHBER OF ROMS IN MATRICES S AND 0.

[ C M - NUMBER OF COLUMNS [N MATRICES S AND 0.

7 C MOOE - cope [MDICATING TYPE OF CONVERSION

8 C L - FROM SINGLE PRECISION TO DOUBLE PRECISION

| C 2 - FROM DOUELE PRECISION TO SINGLE FRECISION

g ¢ 5 = IF AODE=1, THIS MATAIX CONTAINS SINGLE PRECISION
11 C NUTBERS AS INPUT, |IF MODE=2, IT CONTAINS SINGLE
12 C FRECISION NUMBERS AS DUTPUT. THE SIZE OF HATRIX 5
13 ¢ I5 N 8Y M,

14 ¢ D - IF MODE=1, THIS BATRIX CONTAINS OOUBLE PRECISION
15 ¢ MUMBERS AS CUTPUT. [E MICE=2, IT CONTAINS DOUBLE
i1 C PRECISION NUMBERS AS [NEUT. THE SIZE OF MATRIX D IS
17 C M 8Y M.

18 ¢ A5 - ONE OIGIT WUMBER FOR STORAGE MDOE oOF FATRIX

13 ¢ & - GEMERAL

by 1l - SYMHETRIC

21 ¢ 2 - D1AGOMAL

22 C REMARES

23 C AATRIN O CANNDT BE IN THE SAME LOCATION AS HATRIX 5.

24 C AATRIX D MUST BE OEFINED BY A DOUBLE PRECISION STATEMENT 1IN
25 C THE CALLING PROGRAR.

R AETHAD

27 C ACCORDIMG TO THE TYRE OF COMVERSION INJICATED 1IN FODE, THIS
28 C SUBRDUTINE COPIES NUMBERS FROM MATRIX S TO HATRIX 0 08 FROM
25 C MATRIX O TO MATRIX S,

28 C

31 SUBROUTINE CONVT (N, P, HO0E, 5,0,M5)

3z DIMENSION 5113,041)

33 DOUBLE PRECISION O

3% C FIND STORAGE MODE OF MATRIX AND NUMBER OF DATA POINTS

35 IF iM5-1} 2, &, B

36 a2 Neiahaty

37 GO 70 B

38 4 MM=A{ (Mellwh) r2

39 GO TO &

4B B MHak

41 ¢ TEST T¥YPE OF CONVERSION

42 & IF [(MODE-1) 1a, M

43 C SINGLE PRECISION TO UCUBLE PRECISION

G 18 DD 15 La1,M01

&5 15 Ol =5iL)

45 GO TO 3@

47 ¢ O0DUBLE PRECISION TO SINGLE PRECISION

&5 <8 00 25 La1,NM

43 25 SiLl=DiL}

a8 C

g1 38 RETURM

52 END

Fig. 2&: The subroutine CONYT
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The first step laken by the system in order to snalyze a program is 1o divide the program into
centrol flow, data flow, basic program fragments, and camments.

1-31 are comments and appear in the preced ng ligure

31 subrouting canvt (n,m.mode, s, d, ms)
3z dimension =011,d{1]

33 double precision d

30 o find storage mode of matrix and number of data points
35 IF ims-11 2, 4, &

36 2 nn=nskn

ar G0 TO 4

a8 F mre {0+l i®n) 2

33 GO TO &

4 & nm=n

4l = test fype of conversion

42 8 IF imode-1) 10, 1G, 20

43 ¢ single precision 1o double precision
G J0 D9 18 1=1.mm

45 15 dil)=sil)

&5 GO TO 3o

&7 ¢ double precision 1o single precision
48 20 00 25 1=1,0m

45 253 allb=dll}

=T

5l 30 RETURMN

52 end

Fig. 2E: This shews the subrouting CONVT printed in four different
styles of type. The styles of Type identify 2ach part of the program as either:
L) FLOW OF CONTROL CONNECTIVE TISSUE
2) data flew connective %issue
3) & basic progran fragment
e acomment,

Modulo certain transformations {see sectiors 111135 and 1L1.3.6), this division can be done
purely syntactically. For convenierce, entire exprassions like "[(N+116M)f2" have been taken as basic
programs in the example. The system will actually enly consider funclions like “+", "=", "FLOAT", array
indexing, elt. 1o be primitive. However, it probably will treat BXRressions in a special way since they
are particularly easy to understand.

I11.4.1 CONTROL FLOW

The control flow of a FORTRAN program can be completely analyzed by looking at the text of
the program, withoul any elaborate ressoning, Programs such as oplimizing compilers currently
perfarm such analyses. The next figure is a control flow diagram for the program COMNVT, This
diagram is a graphic representation of what the system knows about the control flow of the program.
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Fig 26: The control flow in the program CONYT.
SEQ=SEQUENTIAL PLACEMENT, 1P=INITIAL PLACEMENT,
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The diagram is a direcled graph. Each arc connects one node lo one other node. 14 represents
the flow of control between the nodes. Forking of conlrel flow arcs is only reasonable in an
environment where there is asynchronous processing. The label on an arc indicates how it is
implemented. This label is either a ling number or a direct explanation. If it is a line number, the
control flow construct on thal line implements the control flow indicated by the arc. The possible
direct explanations include "SEQUENTIAL PLACENMENT® and “INITIAL PLACEMENT." Both of these reler
to situabions where the arrangement of the statements in the program governs the flow of contral and
there is no explicit flow of control construct to point to.

Modes are labeled with an indication of the activity laking place at the node. A line number
indicates the basic program andfor data flow which takes place in the contral envirgnment associaled
with the node. For example, the actions of line 36 (zomputing Nahd and assigning the resull to NM} are
computed only when &<l If a node is associated with anly a part of & line, then it is labeled with
the exirinsic name of that part of tha line. For example, the label "44.8" on a node indicates that only
the boady, "L=L+1", of the ENUMERATION LOOP, embogied in line a4, is associated with the sode. A
node al which nothing happens is not represented as & bow. It is just a point at which an arg
terminates and another begins.

If more that ane are leavas a node, then thal node must be a predicate. Far example, Ihe nodes
labeled 35, 42, 44.7, and 487 are predicates. Several arcs can enler a node. This has na
extraordinary significance.

The nodes are associated with the lowes! lavel segmentation of the program. In the figure,
nodes have been selected in accardance with a line oriented selection of basic programs, The sysiom
would actually produce a more complex diagram in which no reasaning was reguired during the node
selection process. For clarity, the figure superimposes a higher lavel of segmentation on the syslem's
disgram (see the section on segmeatation below). In arder to avoid making any decisions about

segmentation while analyzing the control flow, the system puts in as many nodes as there are distinct
centrol envirommenis.

TILA2 DATA FLOW

The data flow for a FOATRAN program can also be completely analyzed in & straightforword
manner. The next tigure is a diagram, similar to the control flow diagram, representing the system’s
knowledge of the data flow in the proaram CONVT.
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Fig. 27: The data flow in the program CONVT
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Though some data flow constructs {such as assignment} are directonal, many (such as variables
and subrouline arguments) are not, These non-directional constructs merely maintain the same value
al several points. The control flow imposas a diractionality on them, The label on an arc indicates
how the data flow it reprezents is implemented. The label is either a line number of a data flow
construct, a variable name, or a diract explanation. [f it is a variable name, then that variable
implements the data flow. Direct explanations are used to indicate phenomena which cannol be gasily
isolated to one item in the program. The enly ono wsed in the figure is "ARGR" which indicates that
the data flow into or out of the program was achieved threuzh subroutine argument pasition n.

Unlike contral flow arcs, dala flow arcs can fork arbitrarily, For examole, the are implemented
by variable NM connects the assizrment stalements leaving nodes 36, 38, and 4@ with the nodes 44.T,
and 48T, However, a dala flow path can actually only carry one datum at a time. As a result, a datum
which is delivered to the node labeled 447, in a given exacution of the node, aclually originates at
just one of the nodes 36, 38, or 48, Many arcs can enler or leave a node. This just indicates that
several data items are entering or leaving the node.

The data flow nodes are selected by the system in the same way as contral flow rodes are.
Mamely, one for every data flow environmenal. As before, the figure shows a higher level of
segmentalion.

[IL.4.3 BASIC PROGRAM FRAGMENTS

There are only a limited number of basic programs availsbie in FORTRAM. The system has
camplete infrinsic descriplions of each ane as part of ifs spocific knowledge aboul FORTRAN. These
descriptions embady the lowest level of datail understond by the system,

ILA.G ANMNOTATION

The information described in the previous three seclions gives a complele picture af tha
Program, ail the tinest level of defail. The system uses this information fo build up a description of
the program at inlermediate levels of structure up %8 an intrinsic descriotion of the program as a
whole. The use of annctation of the program is essential in this process. Comments and their use will
be discussed in all of the following sactions.

It should be moted that this syslem does not try to da any nalural languaze processing. As a
result, the commenls cannet be used in the exact form they take in the programs in the 557 I has
not been decided what form the comments will take, The next figure offers one suggestion.

A very imporlant guestion is how much annatation will be required in crder for the syslem fo
develop an understanding of a program. [t appears thal though the commenls on the programs in lhe
S5P will have to be recasl in some other form, they contain sufficient information for understanding,
As a result, the amount of annotation needed should not be greater than the amount already present
on the aciual programs.
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C parlial intringic description of CONVT

inputs: m, m, mode, {50, [dii)}, ms

prerequisites: floaticg numbers {({siil})
deuble precision numbers {fdiilt)
integer numbers (n, m, mode, ms)
mabrices ({s{il}, (it}
n=NUMBER_OF _ROWS({s(i)})=NUMBER_OF _ROWS({ (i)
m=NUMBER _OF _COLUMNS({s(i1}=NUMBER_OF _COLUMNS{{dii)})
s =5TORAGE_MODE([s(i} =S TORAGE _MODE!{d(i)))
mode € 11, 2]

CUTpUlS: on, om, omode, [os(il], fedli}l, oms

assertions: floating numbers ({os(i)})
double precision numbers {Jod(idl;
infeger rumbears {on, om, omode, ome)
mairices{{os(i}l, fedi}l}
mode=]1 = {od(i}}=DBLE({(i}]} COMPONENTWISE
mode=2 = {os(i)}=SNGLIfd()}) COMPONENTWISE

Ennnnﬂﬁnﬂhnnnnnnnn

SUBROUTINE COMYT (M,R,MIDE,.S,0,M5]
32 DIMESSION SiL).0101)

33 COUBLE PRECISION O

c

C the next segment is of plan type XOR

C pertial extrinsic behavioral description of the next segmint

C asserlions: QUTPUT=NAMBER_OF _ELEMENTS{{s{i}} I=NUMSER_OF _ELEMENTS(idli}))
C

35 IF (H5-1) 2, 4, B

el 2 M =MN#M

37 GO TO B

It & Wilm [ {N+1 i) 42

29 GO TO &

4 B BM =N

cC

L the next segment is of plan type XOR

c

C

C parlial extrinsic behavioral description of the following segment
C asserlions: {od{i}}=DBELE(ls(i)]} COMPONENTWISE

C

iy 18 00 15 Lal,NA

45 15 OiLl1=5iL)

4B Cd 70 33

C

C partial extrinsic benavioral description of the following segment
c assertions: {osi)=SNGLI{d(i)}) COMPONENTWISE

c

58 28 00 25 Ls=1.8M

45 = S{Li=01L}

sl 38 RETURN

52 END

Fig. 28: The annotation on the program CONVT translated to a form understandable
by the system. [ndentation indicates segmentation,
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All of the information in the above figure comes directly from the comments on the aclual
program. This section will discuss the partial inlringic behavioral description for CONVT which
corresponds to the header comment, lines 1-30, fogether with lires 21-33. 1t is interesting te note
that lines 32 and 33 could be looked al as comnents which have been pul in a form which (he
FORTRAMN compiler can understand and ac! on. The following sections will discuss the internal
comments.

Consider where each part &f the partial intrinsic behavioral description for QOMNYT (see the
figure above) comes from. Tha SUBROUTINE statement, line 31, specifies that there are six inputs and
oulpuls. Narres for them in the behavioral gescrigtion have besn patterned after the variable names
for clarity. The system ilself attaches ro significance 1o ils internal names,

This brings up the very inleresting topic ol mnemonic names. The variable names are a vary
important source of information aboul a program, particularly if there is not much other annotation.
Since N, M, and MS are standard rames for MUMBER _OF _ROWS, NUMBER_OF_COLUMNS, and
STORAGE_MODE respectively, in the programs in the 55, additional commentalion on this fact might
have been omitted if CONVT was not so well decumented.

The name of a variable is usually chosen fo specifiy some aspect of the datum carried by the
variable. This can be used to learn aboul the assertions of the segment producing the datum, amd
about the prerequisites of segments using it. However, there is a problem with this. A variable is
usually used to carry different datums, in different parts of the prosram, while the mREmERie Rame
often applies to only some of these datums. For example, the varizble MM in CONVT is WEFY MAERMGRIC
when it is carrying the result of line 35, but not when it is carrying the result of line 38 or 43,

[m addition to this problem, since the system does Aot understand English, it cannol use the
maemanic value of 4 name directly. As a result, the system will prebably not use any more
intermation from the variacle names than FORTRAN uses, namely, the fact that the first letter of a
variable name signifies whether it is an integer or floating point number.

Returning to the headar comment, the DIMENSION stalemen!, line 32, indicates thal 5 and D are
matrices. This fact is specifically recorded in the parlial behavioral description. [n addition S and D
are reterred to as {sli}] and {d{i})} when talking about the entire eggregate. The prereguisites and
assertions about the data types of the inputs and outpuls come from the names for the variables and
the DOUBLE PRECISION statement, line 33,

The specific information abaut N, M, M3, and MODE is given in lings 5-9 and 18 The infarmation
about what 5 and D are, on cutput, is given, though not too clearly, in lines 18-17 and 27-29. One
source of confusion s that, unline the partial bekavioral description, the comment does not make a
clear distinction between input and oulput data carried By the same variable. As a result, when it
says "5," it is not clear whether it is the ingut or the outpul data which iz being referred fo.

The comments on lines 24-25 are not used because they do not zpoly fo the internal workings
of the program CONVT. The wvery imporlant comment on line 23 is not used bacause Lhis system
makes the simplifying assumption that variables never overlap.

The partial intrinsic behavieral description darived from the header comment is used as a basis
fer the intrinsic behavioral description of the program. In facl, it is almost complete. The only thing
that has to be added is some information about some of the outputs. hamy comments are in the farm
of partial behavioral descriplions, but few are anywhere near as complele as a header commant is,

At this point, the system has a good idea of the highes! and lowest level descriplions of the
operation of the program. [n order fo underztard the program more fully, it muest link thess fwa
cescriptions up by determining the intermediate structure of the pragram,

Basically, it is not too difficult for the system ta analyze one or maybe two levels beyornd what
it knows. An attempt to go farther than that, wou'd lead to & combinatorial explosion of possibilities,
Internal comments in the program being analyzed provide landmarks 50 thal the system never is more
that two levels sway from whal it knows.
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[I1L.45 SEGMENTATION

The first slep in developing an understanding of the internal werkings of a program is to
properly segment it. The basic difficully invelved in determining segmentalion 15 {hal there is a very
large number of ways thal a program can be divided inta segments, Fortunalely, there are several
methods which can be used {0 speed up The search

Firstly there are comments which specily zegmentation. The entire program is marked as a
segment by being physically separated fram the oiher programs in the 55P. Further, it is dalineated
by the SUBROUTINE and END stalements, lines 31 and 52, for the benefit of the FORTRAN compiler,

The position of internal comments lends lo specify internal segmentation though not
unambigueusly. The position of the comments in CONVT indicates that linas 35-48, 44-496, and 4B-49
are segments. [ is harder 1o see tha! line 41 indicaiss a segment fram 32-49, not just far 42, The
comment on line 58 is particularly interesling in that it is clearly intended solely to specify
segmentation. In the last figure, segmentation information is indicated by indentation. This abviously
would not be adequale in a situalion whare there were overlapping segments, Il does suffice here,
howeaver,

Secondly, the segmentation can proteed increamentally (for one or wo levelz) from abave ar
below. This is done in conjurclion with recognizing plan Ivpas expressed in lhe code (zes the next
section). If a plan can be recognized, this automatically gives some of the segmentation. The reason
this process can only proceed profitably from the top and bettem, and not from the middie, is lhat in
order ta recegnize the plan, either the segment, or the subsegments must be determined.

In CONVT proceeding from the bottom can easily detect that the expressions are segments.
Warking from the top, it would not be 1oo hasd te rotice that the whole praaram is a COMP of lines
35-48 and 42-49, and thal these two segments are XORs of {38, 35, 38, and 4B) and (42, 44-45, and
48-43} respectively. In this simple example the incremental approach yields a total analysis because
the program is very shallow,

IL4.6 PLANS

The main reason recognition of the plan type of a segment is possible is that there are only &
few plan types used in the 55°. There are an abundance of features which are very specific in
differentialing between these plan types. For instance, all LOOPs, and only LOOPs, have a loop in
control and data flow, All, and only, LOOPs and XORs have predicales. All, and only, COMPs and
LOOPs have data flow between subsegemnis. [n acdition, the subcalegories of the four majar plan
types also have clear identilying characteristics,

Qf considerable aid fo recoznition is the fact that certain FORTRAN construets are
stereatypically used to implement cortain plan types. For instance, ARITHMETIC IFs often implement
XORs. DOs often implement AUGMENTED LOOPs, a DD being an ENUMERATION LOOP. Expressicns
implement sequences of COMPs.

Finally, commants sometimes give an ingication of the plan lype of a segment. The phrases
“FIND STORAGE MODE" in line 34 and "TEST TYPE OF CONVERSION” in line 41 seem la indicate that
the segments following them are XORs. In general, however, comments are not wary helpful for
discovering the plan type of a segment.

ITL.47 BEHAVIORAL DESCRIPTIONS

The infernal comments are very useful for develaping the behavioral descriptions of the
internal segments. In CONVT, the comment on line 34 indicates that the cutput of the faliowing
segmant is the number of elements in the arrays. The comment on line 43 indicates that the output is
the DBELE of the input. Similarly, the commant on line 47 indicates that the output is the SNGL of the
input,

With some vital guidance from the internal comments, inlermation about behavioral descriptions
for the internal segments comes up fram the intrinsic behaviorsl descriplions of the primitive
programs used, and down from the partial intrinsic behaviaral descriotion for the whale program given
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by the header comment. Each plan type has information about what the intrinsic descriplion of a
segment corresponding 1o that plan type must be if the extrinsic behavioral descriptions of the
subsegments are known, [n the absence of a commen? to the confrary, the exirinsic description of a
segment is assumed fo be the same as the intrinsic description. Information cannot propagate from
the intrinsic behavioral description of a segment 1o lhe exirinsic behavioral descriptions of its
subsegments unless something is known abaul the descriplions of these subsegments., Comments are
erucial in providing enough information about the behavioral description of a subsegment so thal a
more coamplele cescription can be inferred from the description of the segment. This allows the high
level descriplion provided by fhe header comment to be pushed dawn into the program.

Informatien fillers up from the primitive programs until it meets information filtering down fram
the header comment. It is at the places where these two types of information meet, that the system
15 required to perform significan! deductions. These often take the form of proving that an extrinsic
behavioral description, partially specified by 2 comment, follows from an intrinsic behavioral
descriplion, specilied from below,

111.4.8 THE GRAND PLAN FOR CONVT

The previous three sections tried to give an idea of how an understanding of a program is
developed. This section exhibils a complete grand plan for CONVT, and a discussion of how this
specific grand plan can be developed. The nex? figure is a schemalic of the grand plan for CONVT.

~F]1 | 358 L—umrtr'lns'm =T
4135 P|QIR)
|
= P2 35=8 Lp|an type
=G| A EEX] — intrinsic name
= A2 | 38
{C)=COMpP
— F3|35:8 (EX}=CASE XDR
(AAL1=AND ALUGMENTED LOOP
CONVTIC) = - A3 (ELT=ENUMERATION LOOP
~Pl|42=<8
LIECEL 44
L AL|C LAAL] -I:
—F|B{EX) = AR 45
=P2|42=8
rLIE[EL]ﬁS

= A2 | D{ARAL) —E.
A |49

Fig. 29: Schematic of the grand plan for CONVT. This is a sherihand
notation for a diagram of the grand plan similar to tha diagrams far the plas types
in section I103, This figure shows how the plans are imbedded. The diagrams in
section [[1.3 show what the diagram corresponding to each node of the schematic
looks like,

The figure shews how the segments combine to produce the program CONVT. The next figure
shows much of the same information in a different form, [n addition, it clearly shews how the
segments relale (o the physical code.
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1-3d are comments applyirg to the whole prograr.

21 ¥ SUBROUTINE CONVT (N,M,MOCE,S,0,M5)
3z OIMENSION S(1),D141)

33 v OOUSLE PRECISION D

34V (G C FIND STORAGE HODE OF HATRIX AND NUMBER OF OATA PDINTS
s VA (PL,P2,P3} IF iM5-11 2, &, B

& WA (AL} 2 MMahis

3T owva GO TD 3

a8 VA [AZ] & M= (M+] i=h) /2

33 wva GO Td 8

48 VA [AT) B MH=h

41 v iF1 C TEST TYPE OF CONVERSION

42 va (P1,PZ2) & IF (MOJE-11 1@, 1@, 28

43 YBE (AL C SINCLE PRECISION TO DOUBLE PRECISION
44 YBCE 18 00 15 L=1,MR

&5 VBC (AB) 15 O4L1=54L)

4B VB GO TOD 38

&7 VB (A2} C DOUBLE PRECISION TO SINGLE PRECISION
&8  VBDE 28 00 25 L=1,M1

43 VED (A8} 25 SiLi=0iLy

58 v iF} C

Bl v I8 RETLAN

B2 W END

Fig. 38: The program CONVT showing segmentation information. Each line is
precedad by the intrinsic name of every segment containing it {(V=CONVTL In
addition, i parenthesis, are the exlrinsic nameis) of tha segmentis) the line is most
closely associated with (if approgriale).

Both figures stop at the level of expréeszion oriented basic segmants which can easily be built
up from the actual primitive programs, As discussed in the section on segmentation ([1L458) and on
plane {11148}, a multiphcity of factors allows the segmentation and plan types to be inferred. Most
motably, the DO statements in lines 44 and 48 indicale the extents of segments C and D, and that they
are AUGMENTED LOOPs, The ARITHMETIC IF statements in lines 35 and 42 together with the dividing
and then rejoining character of the control flow dizgram indicates the extent of segments A and B and
thatl they are CASE XORs. The agppearance of the contral and data flow dragrams indicates that the
segment CONVT iz a COMP,

Given the segmenfation structure, the system then fleshes oul the grand plan with behavioral
descriptions, The figure at the end of this section shows the complete grand plan for CONVT, The
grand plan is large, However, it is straightforwardly derivabla from the text for CONVT.

All of the data and control flow information is derived from the data and control flow diagrams,
The intrinsic descriptions of the basic units (which are af the end of the figure} are developed from
the specific intrinsic behavioral descriptions af the primitive elements known by the syslem and used
in CONVT. Lower levels of detail have been suppressed for simplicity.

Consider the following scenaric for how the other behavioral descriptions were developed.
Starting from the tep, the basic intrinsic behavioral description Tor COMVT is faken from the header
comment. A few clauses about the outputs have filtered up from below. Diherwise, it is he same as
in the comment fransiation figure. The comments on lines 34, 41, 43, and 47 make it possible 1o
propagete some of the high level intarmation in 1he inlrinzic behavioral deseription for COMNVT into
segment B, and to flesh out the plan for the segrents CONVT and B. They dao this by indicating key
parts of the extrinsic behavioral deseriptions ot &, B, C, and [0,

Working from the botlom, there is ma difficully in developing the complete plan for segrment A,
Similarly there is no difficulty in devaloping the plans fer the AND AUGMENTED LOOPs C and D. A plan
for the ENUMERATION LOOP E is insluded in the figure so that it can be seen how parts of it are used
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to develop the plans for C and D. (refer 1o the section an AUGMENTED LODPS [.a43).

It should be noticed, that the intrinsic description of the ENUMERATION LOGP segment E differs
considerably from the extrinsic Behavioral destriptians of its use in segemenis C and O. This
difference embodies a theorem which iz proBably too difficull for the system to deduce. The fact that
the programmer chose to use a DO statement 16 implement £ causes the system 1o use the indicated
extrinsic behavioral description. The intrinsic gescription of £ is one that would arise if the
programmer had not used a OO but rather had open coded the LOOR. 1t is included to give added
insight inlo the plans for LOOPs.

As discussed in section 111136, the array indexing in lines 45 and 49 has been factered out of
the computation inte the data flow. This can be done because, as the plan for segement E shows, the
value of the variable L is a function of the number of times the loop has been execufed, mot of any
dala value. This system makes thic type of factarization wharever possicle. A in this case, it usually
leads to a significant simplification of the staterant of the plans,

As an example of the process of develoging behavioral descriptions, consider segment 0. The
L on line 45 indicates that lines 48 and 49 form a segment, and that that segment it an AUGMENTED
LOO®R. DO is & primitive constrpel, and so the system immediately praduces an infrinsic behavioral
description for it {see the intrinsic behavioral deserigtion of segment E in the tigure at the end of this
section). Referring to section [I13.4.1, i can be seen that this description conforms fo the peneral
pallern of a description of a LODP, as expressed by the equations in thal section. Segment E iz an
ENUMERATION LOOP since it has no outputs. The asserlions of E are just a combination 6! the
assertions of ils body and test.

Because segment E is implemented by a DO, the syslem knows that there is an eguivalent and
ruch more useful way te stale itz assertions. This is used in the extringic description of segment E
when used in segment O {(see the figure al the end of This section). Line 49 can be identified as the
AB {additional body) of the AUGMENTED LOOP. Section 111.3.4.3 shows how an AB is integrated into a
LOGP in arder to form an AUGMENTED LOOP, In this case, the data How diagram shows that the AB
(line 49} is executed before the body of the orginal LODT and takes the output of the previcus
execution of that bedy (lhe quentity named “[i]in the descriplion of E) as an inpul. This guaniity is
carried by the variable L. The assertions of E iramely that k[i]=i+1) show that the value of L depends
anly on the number of fimes the LOOP has cyeled. As a result, the array reterences in ling 49 can be
factored out of the computation inte the data flow. This makes il clear that &8 (line 9%} does not fecd
back to ilself because the [s(i})] are not actually input ta it, This implies that D is an AND AUGMENTED
LOOP,

Referring again to seclion 110.5.4.3, the intrinsic behavioral descriplion of D can easily bhe
inferred. The assertions of D are just a combination af the assertions of AB and segment E. The
assertions of E have aclually been amitted except for the fact that the LOOR is executed from @ fo
limit (since k[i] is not an culput of 0L MNote that the only deduction reguired in this whole process
was pattern matching and that there were not a large number of biind alleys which the system had to
foliow., ’

The teleclogical links (see section 11L2.2) are omitted from the grand plan due to the lack of a
reasonable way to represent them, The key deductions take place when the information prepagaled
up from below first meets information filtered down from above. This happens at the interface
between the intrinsic and extrinsic behavioral descriptions of the segmenls &, C, and 0. In arder to
demonsirate consistency at these points the svstem must use theorems defining the lerms
"MUMBER_OF _ELEMENTS" and "= COMPONENTWISE™
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given:
matrix {{xlii}
n=hUMEER_OF _ROWS k(i)
m=hUMBER _OF _COLUBNE Ialilt)
ms=5TORAGE _WODE %]
ne=MNUMBER_OF _ELEMENT S Ix(ii}
thern:
n=g
m=d
ms € {1, 2, 3}
mi=H = pe=nzm
mi=] = nesiine]hen)/2
ms=2 = Ag=n
ne=§

given:

matrices {{xli)}, fy(iil)

ne=NUMBER_OF _ELEMENTS|{x(i)})=NUMBER_OF _ELEMENTS{{y(i)})
then:

[x{id} = Fiiy(i)}) COMPONENTWISE 3 n; 3 ., wli) = Fiy(il)

Fig. 31: Theorems aboul mairices needed for understanding of CONVT

The tirst theorem shows that segment A does indeed caleulate the MUKMBER_OF _ELEMENTS in
the matrices. The second theerem shows that segments C and D do indeed produce outputs which are
COMPONENTWISE functions of their inputs. These deductions close the gaps between the intrinsic and
extrinsic behavioral descriplions of these thres segments.

It i reasonable to expect thal the syatem maght know these theorems as part of its knowledze
of matrices, which are the only complex data bype in FORTRAN, o not, them the user would either
have to give them 25 parl of the header commen? or the system would ask him if the deductions
required above were valid. 1f he sald they were, then the system would in effect asume these
theorems %o be true, though it would not use them in any ofher context.

If anywhere along 1he line the system disgovared any inconsistency in the program, it would
report a bug as discussed in seclion IL2. The program CONVT does not have any bugs. See section
IL.2 for a discussion of the program RK1 which does have bugs.

Finally, in a tidying up phase, the system prepagates low level information all the way up to the
top, and fills in gaps in the intrinsic behavioral description for the whole program. In order not ta
keep a lot of excess information, it only adds in information to fill in conspicusus gaps. In this case,
several of the oulpuls fo the program (such as on, om, and losii}} when mode=1} are complately
unspecified. Data tlow analysis shows that they are directly mapped from inputs.

ITL4.9 TRANSFORMATIONS

The anly transfermation (see saction 111.1.3) which was applied 1o praduce the program COMNVT,
is factoring computation out of the flow of cortral An arithmetic IF was used to implement several
predicales al once in line 35 and line 42. This is eesy for the system to spot by loaking al the control
flow diagram. The syslem undoes the transformation bafore analyzing tha program further, Ofther
transformations can also be identified by clues indicating that they have been applied.

It should be stressed that fransformatlions are & thoray issue, I is essential that the system be
very conservative aboul applying inverse transformalions to & program If the system experiments
with reversing a large number of transtormations which might have applied at any given paint, i1 will
drown in a sea of alternative programs. 1f a large number of fransformations have been applied fo a
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program, commenls will undoubledly be needed s¢ thal the program can be unscrambled and
understood,

Further, it should be nated, that though a transformation may have been applied to a prozram
while it was being written, the inverse transtarmation may nol have fo be applied in order o
understand the program. Consider the following twe programs which are related to each other by
factoring,

IF {1y 18,18, 28
18 ¥=51M1x)

W=l

GOTO 3A
28 Y=51NIT]

Heajoe
a8

[F 1) 18,18,28
18 Y=SIN (X}

GDTO za@
28 ¥=5IN(Z]
38 W=kxX

Fig. 32: Two programs related by factor ng,

The second program can be understood as an AND of an XOR and "WeReX", rather thal as a
transformed XOR of twa ANDs. Only transformatiors leading ta distorted programs nolb fitting any plan
type need be undone. In the second program, a commant might well be inserted to indicate that there
is a transformation which should be undons, Otherwize, there is no reasen to think thal a
transformation has applied.
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Fig. 33: The grand plan for CONVT

Plan for segment SOMNVT which is a COMP of Gl& ard F|B
extringsic descriplion of GJ&
inpuis: ms, n, m
prereguisites: integar numbers (ms, n, m)
matrices {{s(i)], 1d(idl)
A=NUMBER_OF _ROWS (i} 1=NUMBER_OF _ROWSH{d(i)})
m=NMBER_OF _COLUMNS({s{il})=NUMBER_OF _COLUBNS({d(i) )
ms=3TORAGE_MODE({s(1) }=3TORAGE _MOCE( {di)})
outputs: length
asseriions: infeger number (engthl
length=NUMBER_OF _ZLEMENTS({s{i}})=NUMBER_OF _ELEMENTS({d{i}})
mapping: {ms=type, nen, mem, lengthesize;)
extrinsic description of F|3
imputs: {diil}, isi)}, length, moce
prerequisiles: floating numbers ({sii1})
double precision numrbers ([diil})
matrices (fs(i}], {dli)})
integer numbers (length, mode)
|¢n3|h-NUHEIER_I:IF_,ELEHENTE{-:iI:i:I]-:I'-MMEEH_CIF_ELELENTE{[:Il:nH:I
made € {1,2}
oulputs: {od{i}},loslil]
asserlions: flasting numbers ({osiii})
double precizion nusbers ({odiii])
matrices{fos(i)], Jod(i}})
mode=1 = {od{ii}=0BLE{{s(i}]} COMPOMNENTWISE
A jostid}={sli)} COMPONENTWISE
mide=g = josfil=SNaL{{dil} COMPONENTWISE
~ fodlid]=1dit] COMPONENTWISE
mapping: ({ditk={d{i)}, {sli)}={sli)}, lengthelength, modesmode,
jostili={os(il], {od(it}={odii)})
intrinsic description af COMNVT
inputs: n, m, mode, {sil}, (i) ms
prerequisites: ficating numbers ({511}
double precision numbers ({dis})
infeger numbers (m, m, made, ms}
matrices ([s{il), fdfith)
n=NUMEER_OF _ROWS({s(i)h=NUMBER _OF _ROWS({d{i}])
=NUNMBER_OF _COLUMNS{{s(i) | h=NUMBER_OF _COLUMNS{{d{i}})
ms=5TORAGE_MOCE([s{i}1=5TORAGE _MODE{d{i}}}
made £ {1, 2]
oulpute: on, om, amade, fosli}], lodii}, oms
asserlions: floating numbers {Josliil
double precision nusmbers (Jod(iih
integer Aumbers (on, am, omoda, oms)
matricesiios(i}], jodlii]}
mode=1 - {od(i)}=DBLE({=(i)]} COMPONENTWISE
A {osii)}={sli)} COMPONENTWISE
mode=2 =+ {osii)}=SNSL i} COMPONENTWISE
A fodlidl={d{i}] COMPONENTWISE
Gn=n
Qi
amode=mods
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DMmESmL
dala flow
into Gl&
ms from outside CONVT via argument position 6
ard warrab g WS
n fram outside CONVT via argument position 1
and variag e M
m from Gutside of COMNVT via argument position 2
and variab.e M
inte F|B

length from length of Gl& via variable N
mode trom gutside of CONVT wia argument position 3
argd variabie MODE
18010} from outside of CONVT via argument position 4
and variab'e §
(i} from outside of CONVT via argument pasition 5§
and variable O
to outside of CONVT
on from cutside of CONYT via argument posilion 1,
variable M, ang argument position 1
om from outside of CONVT via argument position 2,
variable M, and argument position 2
omode from outside of COMVT via argumeni position 3,
variable MODE, and argumant position 3
oms from oulside of ZOMVT via argument pesition &,
variable M3, and argument posifion &
{osli}] fram Josli)t ol F|B via variable S
and srgumant position 4
10dii)} trom fod(i}t of FIB via varianle O
and argument position 5
control flow
from outside of COMNVT to GJA via initial placement
from GlA ta F[B via sequenlial placemen!
from Fi3 to cutside of CONVT by segquential placament
andg RETURN line 51
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Plan for segment A which is a CASE X0R of P1[35<3, AL]36, P2|35=8, AZ|38, P3]35<8, and A3
exlrinsic description of P1I35<]
(the IF line 35 predicates the segment 35 taking the « branch when resuli<@)
impute: fype
prerequisites; inlegar number (typel
outpuls: nana
anterhons: iype<l]
mapping: {typesargl, resultereturn_value;)
extrinsic description of AL|36
inpuls: n, m
prerequisites: integer numbers {n, m}
aulputs: size
asserlions: integer number (siza)
SIZE=nEm
mapping: (nearg 1, mearg?, sizesrefurn_value;)
exirinsic descriplion of P2|35=4
(the IF line 35 predicates the segment 35 taking the + branch when result=g)
inputs: type
prereqguisites: inleger number {typal
outputs: mone
assarfions; fypesl
mapping: (Iypesargl, resullsreturn_valus;)
extrinsic description of AZ[38
inputs: n
prerequisiies: inleger numbar (n)
autpuls: size
assertions: integer number (size)
siza=({mne]lenlf2
mapping: (nesarg |, nearg 2, sizesraturn_value;)
extrinsic description of P3|35*8
(the IF line 35 predicates the segment 35 taking the + branth when result »8)
inguls: type
prereguisiles: integer number {typa)
cufpuls: none
azserfions: lype>l
mapping: (iypesarg )
extrinsic deseriplion of 43
inputs: i
prerequisites: infeger number {n)
dutputs: size
assarlions: integer number (size)
sizas=n
mapping: fsizeen)
intrinsic description of &
inpuls: type, n, m
prerequisitas: integer number (fypel
i¥petl = inleger numbers {n, m)
fvpe=l = inleger numbar (a}
fvpe>] = integer number (a)
culputs: size
assartions: integer number (size)
typec] + siza=nzm
type=l = siza=({n+]Jen/2
type=] = size=n
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data flow
inke F1]35<8
Type from outside & wvia variable MS
imko AL |36
n trom oufside & wia variable N
m from cubside A via varable M
inta P2|35=8
type fréam gulside & via variable WS
inte &2 38
n from oulside A via variable N
into P3[35>
Iype from oulside A via variable M3
inta &3
e from cutside & via variable N
1o outside of 4
size from size of ALI36 via variable N
or from size of AZ[38 via variable Nk
or from size of &3 wia variable N
conirel flow
from gutside of A to Pl via initial placement
from Pl 1o Al via IF line 3% and label 2
from Pl fo PZ# wia shared code line 35
fraom P2 ta A2 via IF lire 35 ard label 4
from P2 ta PI via shared code ling 35
from F3 [0 43 via [F lime 35 ard lapel &
from Al to oulside of A via @JTO ine 37 and label B
from AZ to oulside of A via GOTD line 39 and label B
from AZ fo outside of A wia final placement
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Plan far segment B which is a CASE X008 of PlLic2=0, A1|C, P2|32=8, and frbebin]
extrinsic descriplion of PLj82<d
{the IF line 42 predicates the segment 42 taring the +branch when result<B)
inputs: made
prerequisites: infeger number (madea)
maode 4 {121
l:.‘lu‘lputs: ASne
assertions; modes=]
mapging: (modesarg |, resullsraburn_value;}
exlrinsic descriplion of AL
inputs: length, sfi}l
prerequisites: floating numbers ({sli}])
infeger number (length)
lengtn=RUMBER_OF _ZLEMENTS({s(i)})=NUMBER_OF _ELEMENTS{{d{i}})
outputs: {osiil}, {od(i}]
asserbions: floating numbers ({os{i}l)
double precision nunbers ({od{il})
matrices{{osii}y, Tadiil}
{og(id}=DBLE({=(i)}) COMPONENTWISE
A {oslidj={s(i}} COMPONENTWISE
mapping: (lengthelimit, {s{i)i»{sourceli)], {od(i)l=+{destii}}; fos(i)i={=iin
extrinsic description of P2|42»8
ithe IF line 42 predicates the segment 42 taking the + branch when result=@
inputs; mode
prereguisites: integer number {made)
mode ¢ {1,2]
gulpuls: none
ascerlions: modes=2
mapping: {mode=argl, resultsraturn_valus;)
extringsic description af 42|0
imputs: length, (d{i)}
prerequisiles: double precision numbers [{diii]
tnleger number {lengthl}
length=NUMBER_OF _ZLEMENTS!{{{i)]l=NUMBER_OF _ELEMENTS{{s(i)}
outputs: {os(i)}, {odiil}
assertions: floating numbers {los(ilh
double precision nusrkers ({od(i)})
matrices{iositl, fod(i]}
{osiil]=SNGL{jd(i)}) COMPONENTWISE
A jodii={dil COMPONENTWISE
mapping: (lengthslimit, {alili={sourceli)}, {osilj={dest(il}l fod{ifj={dii}})
infrinsic description of 3
inputs: mode, length, {s{i}}, {dii)}
prerequisiles: integer numbers {mode, length)
bength=NUMBER_OF _ELEMENTS({sii)})=NUMBER_OF _ELEMENTS({dii}})
mode € {1,2]
mode=1 = flaating numbers {{s(i)])
mogde=2 = double precision numbers (Jd(iil)
outputs: {osli}}, {odfi)}
assertions: floating numbers {{as(il})
double precision nurbers (Jod(ii})
matricesifos(i)}, lodii]
mode=1 -+ {odii)}=0ELE (=011} COMPOMENTWISE
A qosii) f=lafil) COMPONENTWISE
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mode=g - {osi}j=8N3L{{d{i}]} COMPONENTWISE
A qodiid={dli}] COMPONENTWISE
data flow
inta P]|d2=H
swilch from outside 3 via variable BAODE
inte AlLIC
{=(i)} from outside B via variable §
intg P1]|32>8
switch from oulside 3 via variabel MODE
inta AZ[D
{dli)} from outside B via variable D
1o outsice of B
10s{il} from {os{i}} of Al via variabla 5
or Trom {osli}} of AZ via variabla §
odiil} from fodli}} of Al via variable D
ar from fodii]} of 42 via variable D
Contral flow
from outside of B to P1|3228 via imitial placement
from PLI92<8 to ALJC via If line 42 and label 12
from PLIdZ<E to P2|492»8 via shared code line 42
from P2l42=8 to AZ0 via IF line 42 ard label 28
from Al to ocutside of B via GOTO line 46 and label 38
from AZ 10 outside of B via final placemant
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Plan for segment © which is an AND AUGMENTED LOOP of LIE and AB|4S
extrinsic description of LJE
inputs: limit
prerequisites: integer number (limit)
limit=@
auiputs: none
assertions: integer numbers ([k[i]}
Mg, timith[=tl
mapping: (limilsendyalus, ko)
extringic description of ABIB] ipart of 1)
imputs: none
prerequisiies: none
outputs: nona
assertions: none
mapping: ;)
exlrinsic description of AB[]MS j=1,0
inputs: seurceli)
prareguisites: flaaling number (sourcalil}
cutpuls: desti}
assarlions: double precision number {dest(i))
destinl=0ELE|souresli )
mapping: {(sourceli)sfnum, daskiil=drum)
intrinsic description of C
imputs: limil,{sourcedi)]
prerequisiies: flaaling numbers {{sourcelill)
integer Aumber (limil)
limit=g
cuiputs: {destlill
asserlions: double precision numbers ([dest{il
Miel. |imi tidestin=0BLE(soureelil}
data flow
infa LIE
limit from outside C via variable K
into AR[T45
sourcell) from {{sourzeli}] which comes from oulside of C
Wia variale 5} via variable S(L}
1o outzide of
{desili}} from {the desti) which come from dest{i}
of {AB[i]l45] via variable DIL}) via variable D
contral flow
from outside of Cto I (LI and AB[B]) via initial placement
Iinitiates the LOOP between T and A8
from T to AB wia DD line 44
from AS to LB via DD line 44
from LB ta T via DO line 44
from T io oulside of C via DO line 44
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Plan for segment D which is an AND AUGMENTED LOOF of LIE and AB|49
gxtrinsic description of L|E
inpuls: Hmit
prerequisites: inlegar pumber Jlimit}
limii=3
oulpuls: nofe
asserlions: integer numbers (Jk[i]}
e, Lims tR[1]=ie]
mapping: (himif=endvalys, kel
extrinsic descriplion of AB[3] (part af [)
inputs: nong
prerequisiies: none
oulpuls: none
assertions: none
mapping: i)
gxirinsic description of AB[i][49 i=],m
inputs: seurceli)
prereguisites: double precision rumber (sourceli))
Gulputs: desi{i}
assertions: floating rumber (destii))
destiit=50GLIsourceli))
mapping: (sourcelildaum, deshiii=inum:)
intrinsic description of C
inputs: limit,[sourced)}
prerequisites: dousle precision numbers ({sourceli}]
integar number {lsmit)
limit>@
oulputs: [dest(i)l
asserhions: floaling numbers ([dest(id)}
Alal, 1initdestli=SNGL{saurceli))
data flow
irta L|E
limil from outside B wia variable B4
into AB[j4%
sourceli) from {{sourcelil] which comes fram
oulsice D wia variabla D) via variable DL
to outsice of D
destli} fram (the destlil) which come from destii}
of {AB[i]43} via variable S(L)) via variable §
control flow
from outside of C 1o 1 (L1 and AB[B]) via initial placement
[ imitiates the LOOP between T and AB
from T o AB wvia DO line 48
from A fo LB via 0O line 48
from LB to T wia DO line 48
from T to oufside of D via DD line 42
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Flan for segment E which is an ENUMERATION LOOF of I B,and T

{literally realized in a DO line 94 and in a DO line 43)

1[1.4 DETERMINING THE DESCRIPTION

{mappings, data and control flow are omitted since the 00 statement is self contained)

exirinsic description of B[@] (part of I)
inpuls: Rone
prerequizites: nona
outputs: k[@]
assertions: intager numbar (R[B]
k[B]=1
extrinsic deseriplion of BJi] =l
inpiuta: H.[l.—]_]
prerequisites: integer numbar (k[i-1])
cutputs: k[i]
assertions: integer number (K[i])
k[i]=k[i-1]+1
exirinsic description of T[2] (part af 1)
(thiz predicate is an inherent part &f a DO statement)
inpuls: rona
prereguisites; nong
outpuls: none
gssariions: nane
extrinsic descriplion of T[i] i=1,0
{this predicate is an inherent part of a 0O statement)
inputs: k[1], endvalue
preraquisites: integer numbers (k[i], endvaiua)
oulpuls: none
asserlions: k[ilzendvalua
intrimsic deseriplion of E
inputs: endvalue
prereguisites: inlegar aumber {endvalue)
outputs: rong
assertions: inleger numbers {{k[i]}
k[B]=1
Ajuy, nkl]=a[i-1]¢1
Aot on-1H e ndvalue
kn]rendvalue
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Intrinsic descriptions of the basic segments; 35, 36, 38, 42, 45, and 45
Imtrinsle daseription of 55
inpute: argl
prerequdiies: integer number (argl)

Gulputs: return_value
assertions: inleger number (return_value)
return_valug=arg-i
infrinsic description of 36
inputs: argl, arg?

praremuisiloe iptacsre mopsivera e BF |
FrEfeduiblie, ||":||':h|:.' Mulficw s arg L, arfés

outputs: refurn_value
assertions: integer number (return_valua)
relurn_valuesarg leargd
inkrinsic descriplion of 38
inputs: argl, arg?
prereguisites: integer numbars (argl, arg2)
cutputs: relurn_value
asserfions: integar number {refurn_value)
return_value={{arg 1+1)narg2]f2
intrinsic description of 42
inpuis: aral
prerequisites: infegar number (argl)
autpuls: refurn_wvalus
assorhions: integer rumber (ralurn_valye)
return_value=argl-1
intrinsic description of 45
mmpuls: frum
prereguisites: floaling number (tnum)
aulputs: daum
azserlions: double precision number (drum)
drum=0ELE{{rum)
intrinsic description of 4%
ifpts: dnum
prerequisiles: double precision number (drum)
outpuis: fnum
assertions: Hloaling number (fnum}
Trum=5MNGL{dnum}
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