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1. Satisfying simul taneous constrainta: problem and applications

He are given a sat of variacles Hl..“.lﬁn and constraints on subsets
;:f thees wvariables limiting the values they can take on. These constraints
taken together constitute a global cometraint which specifies which sats of
values ay,...,8, for El.....]':n can simul tanecusly satisfy all the given
conatraints. In other words, the constraints define an m-ary relation.
Our problem is to synthesize this relation, ||- to determina those sets of
values Which aimul taneousiy satiafy the ast of conatraints.

The saimultaneous satisfaction of several constraints--call them
properties, ralationships, predicates, features or attributes-=is a very
general problem, with more applications than | can fully survey here. The
essential technigue we apply, I1terated reduction of possibilities through
constraint propagation, has analogues in many areas of computer science and
mathematica.  Many of these applications and analogues are described In
[15), [11) amd [24). Applications range from data base retrieval (find all
#, Yy and z such that = ie a part and y is a part, and z is 8 supplier, =
must be installed before y, and Z supplies both » and y) (see also [12]) to
scene analysia (segment  the scene into reglons such that sky regions are
blue, grass regions are green, and car regions are shiny, sky regions are
‘abowve graass regions and cars are not totally surrounded oy either grass or
giyl. OFf particular note is the work of J.R. Uliman, who has used
conatraint propagation methods inm a variety of contexts, ranging from
pattern recognition [13] to graph isomorphism [21]. The probiem also

admits of a graphical representation, where its resemblance to networks of



interacting processss conjures up a long history of other werk, including
recentlyt [8], [18] and [E].
Im scene analysis, in particular, thers has been 8 recent groundsuel |

of applications, e.g. (11, [1B], [31, [13]. Several of the latest examples

can ba found in [3].

Often ue are only given, or choose to ues, "local” constrainte, i.e.
constraints on small subsets of the variables, from which we must
synthesize the global conetraint. For fundamental results on the
complementary problem, analysis of a global constraint inte local ones, see

[14].

L]

2. Previoua regults: partial coneistency

Constraints represented in network form may be propagated through
{potentially)l parallel algorithms which cut down the solution search space
by ruling out inconsistent combinations of valuas,.

The obvious brute force approach of testing every possible combination
of valuas faces an eqgually obvious combinatorial explosion. Backtrack
ungrch technigues cut down the search space but often exhibit costly
"thrashing™ behavior [17V] [2]. PRackworth [11] has interpreted previous
work by Fikes [7], Waltz [23] and Montanari [15) as cutting dowun the search
space and avoiding classes of thrashing behavior by eliminating
combinations of values uwhich could mot appear together in any aet

satiafying the global constraint.



A netuwork rupr-uuun'tatiun of a set of constraints is employed
(restricted to umary and binary constraints, predicates on one or tuo
variables)l. Each variable is represented by a node, and each binary
predicate by a link or arc betuesn tuo nodes. ILoops on 3 node may be
viewed as binary or unary predicates.) For ewanple, the problem of
coloring a8 two node complete graph with one color can be represented as in

Figure 2.1.

C ired gr‘uanfl red greenl ::)

Figura 2.1

In the figurae, Ired qruunll and Ired grnnl'z ara the initial domaine of
values for '.'[1 and :"[2 respectively, the predicate at each node is “colored
red" and the binary predicate betueen the nodes la "is not the same color
as".

Hackuorth distinguishes three levels of inconsistency for a constraint
netuwork, which represent combinations of values which cannot participate in
any solution to the global conmstraint., The firet and most obvious is node
inconeistency., Here the potential domaln of values for “1 and Hz is given
a8 red and green, but the unary predicated specify red. He can immediately

eliminate green from both nodes, as in Figure Z,2.

( Ired dréédl Ired dgréédl, _J

Figuras 2.2



The next level of Inconsistency ia arc inconsistency. the arc from X1
to o i inconsistent because for a value in ¥y» namely “red”, there does
not exist any value dy in Hz such that red and a, together satisfy the
rafation "red is not the same color as 35", To remedy this inconsistency
He remova red from Hl' and similarly, from HE. This cuts down our search
space all right: wunfortunately, in this case It reflects the fact that the
problem is Impossible. There ls no global solution, i.s. the network |s
what [ call "uneatisfiable”.

It is entirely poseible for a network to have no arc inconsistencies,
and still be unsatisfiable. Consider the problem of coloring a complete

three node graph with two colors, represented in Figure 2.3.

Ired greenis

lred greenl Ired greenl
Figure 2,3

Assume the set of possible values for sach variable ie lred greenl and the
binary predicate betusen each pair again specifies "ie not the same color
as".

This netuork Is arc consistent, e.g. glven a value "red" for Kiv we
can choose “grean® for Kot red is not the same color as green. Yet
obvioualy thera is no way of choosing single values 8y, 33, ag, for ¥y, Ko,
and X5, such that all three binary constraints are satisfied
simul taneousaly. If we choose red, for K1y for example, we are forced to

choose green for Mo to satisfy the constraint betueen Xy and Hz. This



forces a choice of red for HE, which forces a choice of green for H11.
already picked to be red.

Nevertheless, it may be hafpful to remove arc inconsiatencies from a
netuork. Thie involves comparing nodes With their neighbors as we did
gbove. Each node must be so compared; however, comparisons can cause
changes (deletionsl in the network and so the compariscns must be 1tFratud
until a stable network is reached. These iteratione can propagate
constraints some distance through the network. The comparisons at each
node can theoretically be performed in parallel and this paraliel pass
Iterated.

Thus removing arc inconaiatencies involves several distinct ideas:
local constraints are globally propagated through iteration of parallel
iocal operations, [t remaine to be ssen which aspects of thie process are
most mignificant to ite application. The parallel possibilities may prove
tc be particularly irportant; houwever, at the moment serial
implementations are used in practice.

Haltz "filtering" algorithm for scene labelling [23] is the paradigm
example of an arc coneistency algorithm. Waltz wishes to attach labels to
the lines in a line drawing indicating their eemantic interpretations as
convex, concave or occluding three-dimensional edges. The |ine drading
itaelf functions as the constraint network. VYertices function as network
nodes, An individual vertex value conaists of a label f:‘rr‘. sach of the
lines incident to the wvertex; the aset of possible valuaas is initially
constrained according to realizable three dimensional interpretations for

the various types of vertices. The lines are the arcs of the netwuork and



each represants the relation "the labellings of the adjacent vertices must
agree along this line®,

Waltz filtering algorithm (expecially when further constrained by
specifying initial labels for edges on the background) generally results in
an amazing combinatorial reduction: thousands of possiblilities are often
reduced to a state where all nodes have a single value remaining, thus
totally selving the problem of obtaining the global solution. Of course
the algorithm does mot aluays terminate with a unigue value at each node.
Gererally, in this case, most nodes will still have a unigue value, while a
few nodes will have a small set of values remaining. MNormally this final
state indicates that several ambiguous interpretations are possible;
alternative asets of values that simul taneously satiefy all conetraints can
be gquickly found with tres search. ’

It 1s perhaps not as well appreciated that this final state may aleso
be reached for a figure which In fact adnits no conaistent labelling. This
is to be suspected, however, given that the filtering algorithm only
Elchi!'vﬂalal‘f.: consistency. Given the basic Huffman label set (18] (4] imat
Haltz' expanded label set]l and applying the filtering algorithm (uithout

first constraining the outside |ines to be occlusionel, the |ine drading in

Figure 2.4 is left labelled as shoun.



Figure 2.4

However, thers is no consistent choice of labels for the vertices of the
inner triangle. In other worde the filtering al'gnnrlthl.alu-nu Hill not
determine if a line drauwing is what Huffman calls an "impessible figure®.

Hontanari [15] has develeped 2 more powerful notion of inconsistency
which Mackworth calls path inconsistency, A network is path Inconsistent
if there are two nodes X; and HE guch that a satisfies Hl* b satisfias HE.
a and b together satisfy the binery constraint betwesn them, yet there ls
some other path through the network from Xy to Ko, such that there is no
set of values, one for each node along the path, which includes a and b,
and can simultaneously satiefy all constraints along the path. For
example, the netuerk in Figure 2.3 is path inconsistent: red satisfies X,
green HE' red I8 not the same color as green; hodever, there is no valuse
for Mo which will satisfy the constraints betueen ¥y and Ky, and betueen Ko
and Nq, while Ky is red, Ky is green.

Montanari gives an algorithm that essentially removes path



inconsistencies from a network. Howsver, path consistency dose not
necesearily insure satisfiability either, as powerful as it sounds.
Consider the problem of coloring the complete four node graph with thres

colora (Figuras 2,5).

ir

h]z

ir g h'l Ir g bl3
Figure 2.5

Each node contains red, green and blue, and each arc again represents the
ralation "is not the same color as". In particular, path consistency does
not fully determine the set of values satiefying the global censtraint,
which in this inconsistent case is the enpty set.

In summary, arc and path consistency algorithme may reduce the search
- space, but do not in general fully synthesize the global constraint. UWhen
there are multiple solutions, additional search Will be reguired to specify
the several acceptable combinations of values. Even a unique solution may
require further search fo d-lt.lrlllln-:. and the consistency algorithms may

aven fail to reaveal that no salutionas at all exist.



3. An extended theory

As the coloring problem suggests, the general problem of synthesizing
the global constraint is NP-complete [5], and thus unlikely to have an
afficient (polynomial time) solution, On the other hand the experimental
results of Haltz, and the theoretical studies of Hontanari, suggest that in
specific applications it may be possible to greatly facilitate the search
for solutions. 1 will present am algorithm for synthesizing the n-ary
conatraint defined by a set of constraints on subsets of n variables. It
may be of substantial benefit in applications where pruning of arc and path
inconsietencies still leaves many possibilities to be searched.

There are tuo key observations that nntﬁvat&d the algoritha. .

l. Mede, arc and path consistency in 2 constraint network *'H:"‘ n
variables can be generalized to a concept of k-consistency for any ksEn,
where n-conaistency constitutes a natural motion of global consistency.

Z. The given constraints can be represented by nodes, as opposed to
links, in @ constraint network; wue can add nodes representing k-ary
constraints to a constraint network for all ksn (whather or not a
corresponding k-ary constraint is givenl; and we can then propagate these
constraints in this a]ugnuntud- net to obtain higher levele of consistency.

By successively adding higher level nodes to the network and.
propagating constraints in the augmented net, we can achieve k-ary
conesistency for all k. We do not need to restrict the given conatraints to
binary relations. Ruling out lower order inconsistencies in stages

progresaively relns in the combinatorial explosien. The final result is a



globally consistent network, where the n-ary node specifies explicitiy the
n-ary conatraint we seek to synthesize. No further search is required.
The rest of this paper will present the algorithm, along with & sufficient

theoretical base to justify ite cperation.

4. A preliminary exanple of the synthasis algorithm

I will give a8 crude exampie of the synthesis algorithm In operation,
by way of motivation for the formal description which follows. The
presentation in this section is intentionally sketchy.

Suppose we are given the following constraints on variables Xy, Mo,
Kgt The unary constraint C; specifies that X; must be either a or b, i.e.
El-la bl. Similarly Co=le f} and Cq=lc d gl. The binary constraint on *y
and ¥y specifies that either X; is b and ¥y is e, or ¥ 18 b and Xy (e f:
Cyo=fbe btl, Likenwise Ciq=lbc bd bgl and Coqg=led fgl.

He wish to determine odhat choices for Hl. Rz. :'[:3' if any, can
pimyl taneously satisfy all these constraints. We begin building the
constraint network with three nodes representing the unmary constraints on

the three variables, as shown in Figure 4.1.

e ”E

la bl fc d glg

Figura 4.1



Mext we add nodes representing the binary constraints, and |link them to the

unary constraints as shown in Figure 4.2 le.g. [be "”12 represents E:I.E"

IH fIE

2N
ibe I:Iﬂu fed fuiﬂ
& ~

la bl y—1Ibc bd bglyg—Ic d gl
Figure &.2

After we add and |ink node EIE Ha |ook at noda I:l. and find that
glesent a does mot occur in any wmembar of ElE‘ He delete a from El‘

Similarly, we delete c from EE after adding ':23‘ The constraint netuork nod

appears as in Figure 4.3.

e fi
P 2

ibe bflqs led fgloq
™

~
18 bly——Ibc bd bglyq—1¢ d giq

Figure 4.3

Now from [?3 ue look at I:}.E and find that there ie an slement bc in ':13

which requires c as a value for HE. while c is no longer in EE‘ Ha remove

be from Cyq. as in Figure &.4.



; [ flz
[ H;f [ fgl
be b 12 ed fg 23
T,

Figure &.& »

S0 far we have merely achieved a -aort of "arc consistency” [though we
indicate the restriction of the pair bc, as wall as the elemente a and cl.

Next, we add a node for the ternary conetraint. No order three
constraint was given originally, so we could assume Initially the
"non=-conetraint™, all possible triples. However, we will take advantage of
the restrictions available from the binary and wunary predicates to
construct & more limited set of posaibilities, C; and Cog together allow
only the following sat of triplea: f(bed bfgl. We use this as the termary-

node and link it to the binary nodee as ahown in Figure 4.5,

le frzh
._h___x
(b} f”f lbd byl 5 " d glg
Figure 4.5

He look at the new node from ite neighbors and vwice wverea, as we did
garlier, to Insure consistency of the sort we obtained earlier betueen
neighboring nodes. Cyq is conaistent with the new node: bd is part of

bed, bg part of bfg. Similarly EIE and EEE ares coneistent with the ternary



node. 1f necessary, we could propagate deletions around until lecal
consistency ie achieved on this augmented netuork. Houever, In this case,
the network is already stable; no further changes are reguired.

The ternary node represents the synthesis of the given constraints.
There are tuo ways to aimultanecusly satisfy the given constraints: ¥y =b,

Hz-l. H.a-d ar Hl'-l;l, Hz-f, :l'alg,

5. Basic definitions: constraint expressions, constraint networks and

satiefiability

Thia section presents several definitions needed to state the problem
and its solution preciseluy.

He are given a set of variables Hyssesa My which may take on values

n
from a set of universes i.ll..u.l.ln raspectively. We will assuma the l.li to
be discrete, finite domains. Let [=i1 2 ... nl. Hany of our definitions
will be made for any subset JEl. We denote by K; the indexed set of

variablas {HjIJ{J. A value a, in U will be called an jnstantiation of

Ki+» An instantiation of a set of variables Xy, denoted by aj, ‘is an
indexed set of values [‘j}j:J'

A constraint on X, denoted C;, ie @ set of instantiations of LET
The "Indexed sat® notation implies that there is a function, a, from J
onto the instantiation aj, which serves to indicate which member of ay
instantiates which variable: the value of a at j, denoted aj. is the

instantiation.of Hj. He could aleo represent ay a@s an ordered set or



m-tuple, uwhere m is the number of elements in the set J f(called the
cardinality of J and denoted |J|): aJ-tajl....,aJ-I, al'l in u-ii' M
for i<k, §,k=l,....,m. Thus C; may be thought of as an m-ary relation. |
have found it useful, houever, to use set notation rather than refer to
cross products or predicates in the presentation which follows. Given ay,
"aJtaJ' will denote the instantiation of X; contained in aj,

A constraint expression of order n is a conjunction of constraints

C= A Cj» one constraint for each subeet J of | (except the empty subeset].
Jez!

Normally we wWill not be explicitly given constraints for all Jglg
howeaver, we can assume they exiet, with no loss of generality, as the "non
constraint® for X; can aluays be specified, the set of all combinations of
elements from the domaine of the variables in :I{J.

He say that an instantiation a; satisfies a constraint Cjy if ageCy.
The instantiation aj satisfies a constraint Cy, HelJ, if the set
I.anJIj{H' which we call aj restrictad to H, ise a member aof I:H' An
instantiation aj, where |J|=k, k-satisfies a conetraint expression of
order nzk if ay eatisfies the constrainte EH for all HeJ. If am
instantiation a n-satisfies the constraint ewpression of order n, we say
that a; satisfies the axpression. A constraint expression C is
k-satisfianle if for all cardinality k subsets J of I, there exists an a;
such that aj k-satisfies C. If C of order n 18 n-satisfiable it is said to
be patisfiable.

A conjunction of constraints, a comatraint expression, defines another
conatraint: tha set of all instantiations a; which satisfy the conatraint

expression. Our central problem is to synthesize the order n constraint on



II defined by the constraint ewpreasion, i.e. to determine explicitiy the
set of instantiations a; which sinultaneously satisfy all the given
constraints. An instantiation ay which satiafies C is called a solution of
tha constraint sxpression.

A constraint network of order k in n variables, ksn, is a set of

constraints called nodes, Nj;, for each JCl, |Jisk, where a link is said to
axist batueen Nj and Ny if HoJ and |H|=|J]|-1. Linked nodes are called
neighbors. A constraint network of order m in n variables will be called a
full constraint network. A node Ny is said to correspond to a given
conetraint {:'J i f NJ-[:J, i.e. each instantiation of one is A member of the
othar. A full constraint network in n variables corresponds to a
conetraint axpression of ordar n if esach node NJ in the network
correspondes to the constraint EJ in the expression. The nrﬁlr of a node
Nj, or a constraint C;, is the cardinality of J.
For example, the netuwork in Figure 5.1 corresponds te the constraint

expression C= M EJ . Hherer I=I1 ZJ, ﬂl-!r al, Cz-[r al « Elz'iri arl.
Je2!

(I avoid set notation in the subscripts for aimplicity.)

ir qfl irg grPlE ir H}E

Figure 5.1

This is obviously a representation of tha problem of coloring a two node
graph with tus colors.
As nodes are constraints ue are able to restate all the above

dafimitions invalving satiefiability in terms of nodes and nmetworks, rather



than constraints and constraint expressions. In particular we can speak of
an instantiation a; satisfying a ncde My for HoJ. We alse will want to
talk about ay satisfying Ny for H2J. He will say that a; satisfies HH‘
H2J, if thare axieta am By in HH auch that 'aanH}jtJ'aJ‘ i.e, thera is an

instantiation which satisfies N whose restriction to J ie ay.

B. Constraint propagation

He can now define the basic constraint propagation mechanism. Te
locally propagate the constraint M; to a neighboring constraint Ny, remove
from Ny all ay uhich do not satisfy N;. Gleobal propagation ie defined
recursively. Te glebally propagate a constraint N; through a neighboring
constraint NHI firat localiy propagats HJ to Myt then, if anything was
removed from MH by the local propagation, globally propagate Ny through all
its neighbors except Nj. To propagate a constraint Nj. globally propagate
HJ through all its neighbors. The propagation procedurs s aimilar to an
arc congistency algorithm. Hackuorth discusses afficient serial algorithms
for arc consistency (11]. Of course, 3 parallel implementation is
possible.

A conatraint network is said to be relased if we can propagate every
congtraint HJ in the netuork Without causing any change (deletions from
nodes) in the net. The relaxation of a constraint network is the netuork
obtained by propagating all nodes of the netuork. (The propagation

obviously termimates im & relased netuork,)



7. Suyntheals algorithe

He are now ready to state the syntheeis algorithm. The claim, to be
proven in sectiom 1B, is that this algerithm, given a conatraint
expression, produces a constraint network whose order n node corresponds to

the order n constraint defined by the conatraint exprassion.

ALGORT THM:

Given Cw M Cj. We define the algorithm inductively:
Je2!

STEF 1: Construct a constraint netucrk with nodes N; corresponding to
constraints Cy; in the given constraint expression, for all Jcl of
cardinal ity one.

STEF k+lt For all JCI ef cardinal ity k+ls

Add the node I'-I'J to the network corresponding fto the given constraint
Cj» Link Ny to all Ny such that H is a c?rdinalitu k subset of J.

Local ly propagate to H,_T from each of its neighbors. Propagate Nj.

For a constraint expression of order n, the algorithe is run for n
stepa. The result is & full constraint netuork, whera ﬂi corresponds to C.
The next section will present several examples of the algorithm in
operation. First a few general obeervationa. The network produced by this
algorithm is the relaxation of the network corresponding to C. He could

have obtalped 1t aimply by bullding the corresponding order n network and



propagating each node. By proceeding in stages we take advantage of the
elimination of possibilities that may occur at each stage to mitigate
combinaterial esplosion. UWe take this principle further and propagate each
node aa |t is added, before adding another. A good heuristic would be to
add earlier those nodes which exert a heavy constraint, e.g. where Cy is
small. The propagation of these constraints may elinjnate elements from
nodes used in constructing later constraints, [f C; is the non-constraint
we can construct Nj initialiy from some Ny and Ny _y, where H is a
cardinality k subset of J, preferably the one for which IHJJHIHJ_Hl Ie &
minimum. [Add to each member of Ny =ach member of Nyye!

Other refinements are clearly possible. Provision should be mada for
early termination, e.g. as soon as one node becomes empty. Propagation can
be simplified, ®.g. by noting non-constraints, or uging complements of
nodes. Additional links could permit direct propagation betwesn a node NJ
and the nodes for all subeets of J,

It is generally redundant to reguire all nen-constraint nodes;
basically we only need one "path" up to the n-ary node for avery "real”
constraint. Consider a constraint expression on four variables whera only
the binary constraints are really aspecified (the others are
non-constraintsl. Only the binary constraints can really have any effect
on the global selution. Three ternary nodes are sufficient for the netuork
constructed by the algorithm. If the fourth ternary node rules out any
element of the order four node, it is only reflecting a binary constraint,
which is reflected in one of the other ternary nodes. On the other hand we

may be interested in the effects on non-constraints of the propagation



process. In general the pruning process of the algorithm progressively
makes explicit at Ny restrictions on instantiations of Ry that are not
originally given by Cj, but rather implied by the other constraints. In
tha fimal network produced by the algorithm eavery member of every NJ is
part of some solution af the constraint expression. (In Dlrtiﬁuﬁ;r- Ha

have derived the "minimal” netuwork, Hontanari's "central problem" [151.)

8. Further axamples: graph coloring, scene |abelling, graph isomorphiam

Aa the synthesis problem s such a general one, tha synthesis
algorithm has many potential applications. Graph problems, of course, lend
themselves particularly to a constraint network formulation. [ present in
this section three applications which will serve to illustrate the
algorithm, and are of some independent interest as well.

As ue would expect from the discussion in section 2, the graph
coloring problem can easily be represented as a constraint network. Given
a graph G, and 3 set of colors, we construct a constraint network from G as
follows: Each node of G is replaced by the unary constraint representing
the set of colors. If there is an adge betueen nodes in G, we replace it
by @ binary constraint linked to the nodes which represents “is not the
same color as". [f there is no |link betusen nodes in G, we add the
non-constraint betweesn the nodes.

Let us consider two examples. First consider the problem of coloring

a complete three node graph with three colors, Figures B.la, B.1k and B.lc



show the constraint network after ateps one, tuo and three of the
algorithm, where the nodes Hl- I".Iz. Ny are all the set Ir g bl, “12" "13 amd

Noq all equal Irg rb gr gb be bgl and Nygg=Irgb rbg brg bgr gro gorl, the

gix possible colorings.

Mz =Mz — Ny

- j

Hl - "13 .......... B H3

g.1c
Figure &.1

We could construct a network of the sort we used in section 2, for this
probles. However the netuwork uwould be path consistent; arc and path
consistency algorithme would mot rule out any elements at the nodes.
Consider now the problem of coloring a complete four node graph with
three colors, which we used in section 2 to illustrate that path

consistency 18 not & sufficient condition for satiefisbility. After the



third step of the algorithm we would have four ternary nodes, each equal to
the ternary node in the previous example.

At the peginning of the fourth step we use Njoq and Ny to construct an
order four noder leaﬁ-lrgbr rgbg rgbb rbgr rbgg rbgb brgr brgg brgh bgere
bgrg bgrb grbr grbg grob gber gbrg gorbl. Local propagation from the other
ternary nodes quickly reduces the order four node to the empty set f(and
this constraint propagates back down to remove all elements from all the
nodes), MNo instantiation of the order four node will simul taneocusly
satisfy the four ternary nodes. Unsatisfiapility is demonstrated.

These exasples are rather perverse cases, of course, though they do
illustrate points with respect to the discussion in section 2. Applications
in the scene labelling domain generally involve more propagation than
occurs in the coloring problem. The syntheaia algorithe does functiom as a
test for impossible figures. It also finds all the interpretations in an
ambiguous figure. You may want to simulate the algorithm on a simple

figure like that in figure 3.2.

Figure B.2

After the Haltz filtering algorithe is run on the Huffman label sat
(uithout additional constraints on the background labellings) there are
three flabels laft at esach order tuwo vertex and two at each order three

vertex.



For & final example, we takes graph isomorphism. Given tuwo graphas G
and H, which us uwish to test for igomorphiem, construct a constraint
natuwork from G as follous. (1f H has more nodes than G the algorithm will
seak isomorphic mappings of G onto subgraphe of H.) Replace each node of G
Hith a unary conatraint node containing all the nodea of H, (If we allow
loops, edges from a node to itself, the unary conetraint om a node in G
with @ loop will be "has @ loop in H", on @ node in G without 8 loop, “has
no loop in H*:. He could aleso incorporate additional unary conetraints swuch
as the order of the vertex [ZZ2].] HReplace each edge betwsen nodes a and b
in & with a binary constraint node, |inked to the unary nodes for a and b.
This bimary node Wwill represent the cometraint “these tuwo (distinct) nodes
shara an edge in H". In other words the binary comstraint will contain a
pair wxy if and only if there s an edge betwusen = and y in H. Betuesn two
nodes which do not share an edge in O we aleo place a binary node, |inked
to them, but representing the constraint "these tuo (distinct) nodee do not
ghare an edge in H".

For examplat given the graphe G and H in Figure 8.3

Figure 8.3

we produce the constraint network in Figure 3.4.
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chtain the network in Figure B.5.
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Now adding the ternary node we obtain Figure 8.6.
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This network is relaxed. The ternary node represents the tuo possible
isomorphisms:  a->1, b-»2, c-»3 and a-»2, b->l, c-»3. (The algorithm also
finds isomorphic subgraphs along the way.)

In the above appllications, the desired global atate is defined in
terms of local conetraints. Often we first face an analysis problem:
cheosing, or learning, a set of local constraints that specify or
approximate the desired global state [28]. (An important concern will be
the choice of a "good" conetraint expression, i.e. ome that can be
synthesized efficientiy.] #As we explore various applications, it will, of
coures, be equally important to develop theoretical methods for analyzing

the performance of the algorithm in a given domain,

9. Consistency and completenses

The synthesis algorithm operates by removing higher and higher level
inconsistencies until a gleobal consistency hae been achieved. In this
section, | define this sequence of consistency states, and aleo define a
concept of completensss which we will want to apply to a netuork.

A node Nj of order k is k-consistent with a constraint expression C
it all members of Nj k-satisfy C. A network of order k or greater is
k-consistent with C if all nodes of order k are k-consistent with C. If a
full constraint network of ocrder n ie n-consistent with. a constraint

expression C of order n we say that it is conaiastent with C.



A node Nj of order k is k-cowplete for C if any instantiation aj
which k-satisfies C is a member of Nj. A netuork N is k-complete for C if
evary node of order k ia k-complete. An n-complete full conastraint network
of order n is said to be completa.

A few comments may be in order to relate the consistency notions
described in this section to the background discussion in section 2. For
netuworks of wnary and binary consftralnts, k-=conaistency implies that if we
pick values of any k-1 variables from the umary nodes, and a kth variable,
there will be a value of the kth variable, at the unary node, such that the
k values together satisfy all predicates involving the k variables (i.e.
they form an instantiation of HJ whera J is the set of kK variables
chosen). This indicates that l-consistency of a constraint netuork implies
node consiatency of the corresponding network of the tupe described in
section 2, Z-consistency implies arc consistency and 3-consistency implies
path consistency. The first tuo are obvious; the latter requires reducing
. path consistency to the three node case, which is done by induction in a
theorem of Hontanari.

Suppose we seek a global eolution by using depth first tree search on
the elemnents remaining in the umary nodes of a k-consistent netuork of
unary and binary constrainte. Backup will only be initiated below the kth
level. [f the network is comsistent, there will be no backup. Even
better, and for arbitrary relased conmstraint networks, we can choose an
order k noda, and use its membars as the alternative paths through the
first k levels of a search tree, only really doing tree search on the

remaining n-k nodes. Of course, If we have achieved full consistency the



members of the order n node are the solutione and no further search |s

raguired.

18. Synthesis theoren

We are now ready to state the theorem which justifies the synthesis

algorithm.

THEOREM: The relaxation of the netuwork corresponding to a constraint

expression C= A C; is consistent and complete with respect to C.
Je2!

The proof will be by induction. Consistency and completeness of order
one are obvious. Our induction hypothesis is that the netuork is
k-consistent and k-complete; uwe wish to prove k+l-consistency and
k+l-completeness.

Consistency: He want to show that all Njo for J any cardinality kel
subset of [, are k+l-consistent. HJ. before relaxation, corresponded to
I'.:J. 80 Included nothing which did not satisfy EJ: relaxation does not add
~any elements to & node. Suppose thers existe an gy in H'J such that a;
does not satisfy EH' for some proper subsat H of J, i.a. aj restricted to
H is not a member of Cy. Pick a set G of cardinality k such that HcGeld.
Because of the local propagation during the relaxatien process, ue knou
that aj satisfies Hﬁ+ Thus @y restricted to G, ac, is a member of HG As
the netuwork is k-consistent a; restricted to H is a member of Cy. But ag

reatricted to H is aj reatricted to Ht contradiction.



Completeness: Consider any ay not in My, for J any cardinality k+l
subset of |. There are two poesibilitiess., |f ay was not in I'-.IJ bafora
relaxation, then a; doms not satisfy EJ. I+ ay uas removad during tha
ralaxation process, than a; does not satiafy HH for some cardinality k
subeset H of J; by the induction hypothesis aj restricted to H does not

k=satiefy C. In either casa, a; does not k+l-satiafy C.

There are several immediate corollaries.

Corol lary 11 Ny corresponds to the order n constraint defined by the
constraint sxpression C.

Corallary 2: T ie satiafiable if and only if NI is not the empty set.

Corollary 3t The constraint rmetwork constructed by the synthesis
algorithm operating on a constraint expression C is k-conmistent with and
k-complete for C after atep k. The netuwork constructed by the algorithm is

consigtent with and complete for C, and HI corresponds to L.
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