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Summary.

Almost nothing can be deduced about a general 3-D surface given oniy its
occluding contours in an image, yet contour information is easily and effectively used by us
to infer the shape of a surface. Therefore, implicit in the perceptual analysis of occluding
contour must lie various assumptions about the viewed surfaces, The assumptions that seem
most natural are (a) that the distinction between convex and concave segments reflects real
properties of the viewed surface; and (b) that contiguous portions of contour arise from
contiguous parts of the viewed surface — ie, there are no invisible obscuring edges. It is
proved that, for smooth surfaces, these assumptions are essentially equivalent to assuming
that the viewed surface is a generalized cone. Methods are defined for finding the axis of
such a cone, and for segmenting a surface constructed of several cones into its components,
whose axes can then be found separately. These methods, together with the algorithms for
implementing them devised by Vatan & Marr (1877), provide one link between an
uninterpreted figure extracted from an image, and the 3-D representalion theory of Marr &
Mishihara (1977).
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Introduection

When we look at the silhouettes in Picasso's work "Rites of Spring” (figure I), we
perceive them in terms of very particular 3-D shapes, some familiar, some less so. This is
quite remarkable, because the silhouettes could in theory have been generated by an infinite
variety of shapes which, from other viewpeints, have no discernable similarities to the
shapes we perceive, Omne can perhaps attribute part of the phenomenon to a familiarity
with the depicted shapes; but not all of it, because one can use the medium of a silhouette
to convey a new shape, and because even with considerable effort it is difficult to imagine
the mare bizarre three-dimensional surfaces that could have given rise to the same
silhouettes.

This phenomenon is of quite general importance for the analysis of an image.
The boundary of a silhouette is simply one type of cccluding comtour (see eg. Waltz 1975),
and such contours are an artist's principal means of conveying information about shape.
The paradox is that they apparently tell us more about shape than they should. For
example, neighbouring points on such a contour could in general arise from widely
separated points on the original surface, but our perceptual interpretation usually ignores
this possibility.

This means that implicit in the way we interpret an occluding contour, there must
lie some @ priori assumptions that allow us to infer a shape from an outline. If a surface
violates these assumptions, our analysis will be wrong, in the sense that the shape we assign
to the contours will differ from the shape that actually caused them. An everyday example
of this phenomenan is the shadowgraph, where the appropriate arrangement of one’s hands
can, to the surprise and delight of a child, produce the shadow of an apparently quite
different shape, like a duck or a rabbit.

What assumptions is it reasonable 1o suppose that we make? [ shall argue for
these two; (a) that nearby points on a contour correspond to nearby points on the viewed
surface; and (b} that the distinction between convexities and concavities im a contour
reflects real properties of the surface, not an artifact of perspective. -

Some surfaces seen from some viewpoints will satisfy these conditions, and some
will not. Ohur first task is to understand what it is abour a surface that makes it satisly these
assumptions, and the main result of the first part of the paper achieves this. Theorem 1
shows that, if the assumptions (a) and (b) hold for all distant vantage points such that the
line of sight lies paralle] to some fixed plane, then the viewed surface must be a generalized
cone. (A generalized cone is the surface swept out by moving a cross-section of fixed shape
but smoothly varying size, along an axis, as illusrated in figure 5)

This result is strong and surprising. It means that if one has a method for
interpreting contours that relies on assumptions (a) and (b), then the method implicitly
assumes that the viewed shape is a generalized cone. One can think of such a method as
first throwing a generalized cone blanket round the viewed shape, and then describing the
shape of the blanket. This in turn means that the representation of 3-D shape that is
subsequently used can, without further loss of information, be based on generalized cones
{like that of Marr & Nishihara 1877}
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l. "Rites of spring” by Picasso. We immediately interpret the silhouettes in terms of
particular 3-D surfaces, despite the paucity of information in the image. In order to do this,
we mus be bringing additional assumptions and constraints to bear on the analysis of these
contours' shapes. This article enquires about the nature of this @ priori information.



The result is of practical importance, because it can be used as a basis fer methods
that interpret occluding contours. This is the point of the later sections of the article, where
we shall assume that the viewed object is a generalized cone, and ask how to discover its
specifications (its axis and cross-section) using only the contours that are visible in its image.
The second section deals with the image of a single generalized cone, and the third with
ob jects that are composed of several cones joined together in various ways. These methods
will be successful provided that no axis appears severely foreshortened in the image. Vatan
(1976) and Vatan & Marr (1577) exhibit algorithms based on the theory, and the results of
applying them to a number of natural images.

The main body of this article attempts to set out the motives and results of this
research in plain English. I hope that it will be accessible to the general reader. The
appendix contains precise statements of the restrictions and theorems, and gives their proofs.
Most of the arguments there are geometrical, and a specialized mathematical background is
not necessary to understand them. '

N atation

As far as possible, 1 shall adhere to the following conventions. Surfaces, curves
and lines in three-dimensional space will be denoted by upper-case Greek letters (I, T'h
curves and lines in an image from viewpoint V will be denoted by suffixed upper-case
Roman letters (Sp, Cp); and upper-case Roman letters without a suffix (P, Q) denote
points, either in 3-space or in the image. Lower-case letters obey the usual conventions, so
that f, g, + and p are functions, &, §, ¢ and { are angles and x, ¥, r are coordinates.

1: The basic hypotheses and their implications

Owur discussion will centre on the four structures that appear in figure 2. These are
(1) some 3-D surface E; (2) its image or silhouette S;.- as seen from a viewpoint F; (3} the
bounding contour Cy of Sp; and {4) the set of points on the surface I, that project onto
the contour Cpr. We shall call this last set the confour generator of Cp, and we shall denote it
by I'y.

We express the assumptions, to which T referred in the introduction, as restrictions
on portions of the surface I or its image.

Restriction RI: The surface T i3 smooth,

We make this restriction only because we need to be able to distinguish convex pieces of
contour from concave ones, and it is easiest to do this if the surfaces and contours in
question can be differentiated twice. (In fact, we could have allowed the contours in the
image to be composed of straight line segments, since the notions of convex and concave
have a well-defined meaning in such cases; but little is gained by doing this).

Restriction R2: Each poinf on the contour generator 'y projects (o a different point on
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2. The three-dimensional surface I, viewed from a point ¥, forms the silhouette 5y in the
image vic the imaging process «. The boundary of Sy, cbtained by the boundary operator 3
15 denoted by Cp and we call it the contour of Z. The set of points on I that « maps onto
Cy we call the contour generator of Cy, and it is denoted by T'y. The map from £ o T
induced by d is denoted by §.



the confour C‘;.r.

This means that each line of sight from ¥ to the edge of T -- that is, from ¥ to T'pr -

touches T at only one point, not at two points (as shown in figure 20) or along a line
segment. The condition that each line of sight touches I at one, rather than at two or a
finite number of points, s equivalent to saying that I is convex, as seen from this viewpoint
{see figure 20). This is not as strong a condition a3 it appears at first sight, because in
practise it will not usually be imposed for all viewpoints (eg. theorem 1), and there are ways
of regaining the generality that it excludes (theorem 5). Forbidding the line of sight from
touching T along a line segment (as can happen for example il one views a cube from a
direction parallel with one of its faces) is only a technical restriction; one can escape it

without changing the situation in an imporant way by deforming the viewed surface very
slightly.

Restriction R3: Nearby peints on the contour Cyr arise from nearby poinis on the confour
generater Ty, '

This condition is a powerful one, and is best explained by figure 3. Suppose that the
contour ab of figure 2 really arose from two hills, but the dotted portion of & happened to be
invisible. Then the contour generator of ab would be discontinuous at P, where it leaps
from one hill to the next. This is the situation that RF forbids, and it is essentially
equivalent to assuming that the image contains no invisible obscuring edges. Together, R2
and R¥ imply that the contour generator I'jy is a continuous curve across I — le that it
does not jump erraticaily from place to place on I. RJ is a strong condition, but without it
one can say almost nothing about I and I know of no way to proceed without it.
Fortunately it is cbeyed by most real-world images

Remark

In fact, R2 and R7 are not quite independent, since if one assumes that the
surface T is bounded, R7 is 2 consequence of R2. To se= this, notice that at peints like F in
figure 3 where R3 is violated, the viewing ray to P grazes both hills, and so causes a
violatien of R2. Nevertheless, the two restrictions have sufficiently different meanings to
make it worth stating them separately.

Using points of inflexion

The restrictions RI-R7 are very general, and guarantee only the integrity of Cp
and 'y, not their interpretability. Le: us therefore suppose that a contour Cpe, like that
shown in figure 4, was obtained under conditions that satisfy these restrictions, and enquire
what properties of Cyr we can rely upon. Clearly, no metrical properties of Cpr can be used,
because Cp arises from viewing a surface I at an unknown orientation - ie. through at
best a linear operator, and such operators do not preserve distances. The values of Cp's
maxima and minima, and their separation, remain uninformative until substantially more is
known about T and the perspective from which it is being viewed. But the qualitative
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naotions of maxima and minima on a planar curve are preserved by a linear operator — that
is, the distinetion between convex and concave is invariant. This fact is captured by Lemma
| of the appendix.

Let us therefore suppose that we have been presented with a contour segment like
that shown in figure 4. Restriction R guarantees that ad jacent peints on the contour arise
from ad jacent points on the surface I, but no metrical features are yet reliable. The only
straightforward feature that remains is the distinction between a convex contour segment
and a concave one, which rests in turn on the notion of an inflexion point. For a general
surface T and contour generator ['p, even points of inflexion in Cp will often be
meaning less, and to atiribute significance to them is to make an additional assumption about
Z. 5o we next ask, how exactly should we formulate the assumption that peints of inflexion
are significant?

The restrictions RI-K£3 aliow us to think of I'i,r, the contour generator of Cy on I,
as a smooth piece of wire bent in J-space. For inflexion points on Cp to be significant
however, lemma | (see the appendix) tells us that we need two things; (I} the transformation
due to the imaging process that produces Cp must be linear, and {2) the curve on which that
transform acts must lie in a plane. Because the general perspective transformation is not
linear, condition (I} tells us that our whole theory applies only to distant viewing points,
because only in these conditions is the imaging process a linear projection. Condition (2)
informs us that the convex-concave distinction can be meaningiul in Cp eonly if the bent

wire that is T'js lies in a plane. This gives us our fourth condition.
Restriction R4:The contour generator [y of Cp is plenar.

This condition is a strong one, and sharply delimits the class of admissible surfaces Z. There
seems however to be no way of avoiding it if one wishes to use the distinction between
convex and concave contour segments.

Implications of the four restrictions

A generalized cone, illustrated in figure 5, is defined to be the surface swept out by
moving a simple smooth cross-section zlong some axis, at the same time magnifying or
contracting it in a smoothly varying way. This cross-section is defined by the function
pir, 8) = 0, and when the cross=section is convex, we shall use cylindrical coordinates r =
p{#). The magnification of the cross-section at each point is specified by the function A{z),
where z is the distance measured along the cone's axis. The axis itselfl will be labelled A.
Notice that in general the z axis need not be perpendicular to the plane z = 0 of the cross-
section. These conventions are illustrated by figure 5.

We may demand that the restrictions R2 - R4 hold for all views, or for a subclass
of the possible views of I. If we demand that they hold for only one {distant) viewpoint,
this imposes no interesting restrictions on the nature of Z. Theorem | studies the two
dimensional case, when the restrictions are assumed to hold for all distant viewpoints whose
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5. The definition of a generalized cone. In this article, a generalized cone is the surface
generated by moving a smooth cross-section p along a straight axis A. The cross-section may
vary smoothly in size (as prescribed by the axial scaling function A{z)), but its shape remains
constant. The eccentricity of the cone is the angle b between its axis and a plane containing
a cross-section.



lines of sight lie parallel to some fixed plane, and it is the most interesting result of the
section. Finally, theorem 2 studies the consequences of assuming that the restrictions hold
for all distant viewpoinis.

T he basic theorems

Earlier, we defined Sy to be the image of T as seen from the vantage point ¥
(figure 2). This is equivalent to saying that 5y is the perspective projection of I from the
point ¥. In theorem I, we shall make two simplifying assumptions about the projection 5y
first that the projection is orthogonal, which is approximated when the vantage point ¥ is
very distant from I compared to its size, and second, that the viewing directions are
confined to a plane II round £ and which intersects Z. We deal in some sense only with
"side” views of I, and are forbidding “end-on” views. Such projections are completely
specified by the direction of the vantage peint from I in the confining plane II, and we
denote this by the angle ¢. We shall use the notation 54 Cg and 1"1# in place of Sp, Cp
and T’y to indicate that the above restrictions are in effect. The proofs of theorems 1 and 2
are set out in the appendix. I give here their statements in plain English.

Theorem [. T is 2 generalized cone with convex cross-section if and only if
Rl is satisfied, and R2 - R4 are satisfied for all erthogonal projections ¢
associated with some plane II, in the sense defined above. This plane lies
parallel to the cross-section of the cone.

Theorem 2. T satisfies RI and R2 - R4 for oll distant vantage points V' if
and only if T is a quadratic surface,

Remarks aboul theorems | and 2

It is theorem | that allows the crucial step for the overall argument. It says that if,
for distant viewpoints whose viewing directions lie parallel to some plane, a surface's shape
can successfully be inferred using only the convexities and concavities of its bounding
contours im an image, then that surface is a generalized cone with convex cross-section, or is
composed of them. Hence if one assumes that one can discover a surface's shape from such
infermation, then this is equivalent to assuming that the viewed surface is a generalized
cone. The assumption of theorem [, about erthogomal projections paraliel to the plane of
the eross-section, is tolerable because as we shall see the methods to which the theory gives
rise usually degrade only slowly as one moves nearer, increasing the effects of perspective, or
out of the plane of the cross-section. Furthermore there does appear to be something special
about the perception of views that look down the z-axis of the figure (see the remarks made
by Marr & Nishihara (1977) about Warrington & Taylor's {1973) "unconventional views"),

Theorem 2 is interesting, because it shows how very strong our restrictions are,
One can gain a feel for how the planar condition R4 fails for higher-order surfaces by
studying the behaviour of x2™ + $27 & 727 0 | (see figure 6). This surface is a sphere for n
= I, and tends to a cube as n grows large. The contour generator Ty, which is a circle for n



= I (figure Ba), becomes the outline marked with thick lines in figure 6b for high values of
n. This contour-generator is clearly not planar; as n increases, the lower third of the contour
generator is pulled towards the viewer, and the upper third 15 pushed away.

These results provide a further argument for using something based on
generalized cylinders (Binford 1971) for the internal representation of shape (see Marr &
Nishihara 1977), an argument based not on wtility, as most other justifications are, but on the
assumptions implicit in the decoding of an image. It is indeed extremely fortunate that
many important three-dimensional structures can be closely approximated by a few
generalized cones, although it is not accidental that objects whose shape was achieved by
growth like limbs and stalagmites, can be 5o approximated.

2: Interpreting the image of a single generalized cone

Theorem | essentially tells us that, when trying to infer the shape of a surface
from its bounding contours in an image we cannot avoid assuming that the surface is a
generalized cone. We are now faced with an obvious question. If we assume that our data
consists of contours in the image of a generalized cone, how may we interpret them? To
specily a generalized cone, we have to specify its axis A, cross-section p(#), and axial scaling
function &(z); how can we discover them from an image?

The answer to this question commences with theorem 3, which shows how the
occluding contours in an image may be used to Find the “image” of the cone's axis for those
distant viewpoints that lie in the privileged viewing plane referred to in theorem 1. In
general, of course, our viewpoint will not lie in this plane, and so we have to examine the
stability of this result as the viewpoint moves out of the plane. This is achieved by thearem
4, which introduces a new concept called the skeleton of a generalized cone. The skeleton is
not a difficule idea, however, since it is very like the sez of lines a cartoonist draws o convey
the shape of a curved object. The idea of a skeleton allows us to extend the theory to
generalized cones whose cross-section is not convex. Requiring the restriction R2 to held for
all ¢-projections essentially forbids this class of cones, and 1 said earlier that one can
circumvent this restriction in practise. Theorem 5§ shows how. Finally, there is a short
discussion about cases in which the cone is viewed from a nearby rather than from a distant
point, and cases in which the axis of the cone is not a straight line.

The overall purpose of the section is 1o give a set of methods for interpreting the
image of a single generalized cone. The methods derived here will not suceeed for all views:
they will fail when the image of the cone’s axis is substantially foreshortened. It is part of
the overall theory that such views have to be handled differently (Marr & Nishihara 1977).

Finding the axit from o favourable view
Provided that the viewed surface is a generalized cone, and that the viewing point
satisfies the conditions of theorem 1, the axis of the cone may easily be determined by the
rough symmetry formed around it
Theorem ¥ (Axial Symmetry). Let T be a generalized cone with convex cross-



n=1 n= 1000
a. b.

6. The surface x2M + 421 & 2% o J for n = | (figure 6a) and n = 1000 (figure 6b). The
contour generator is shown in thick lines. It is planar (a circle) in Ga, but not for = > L
Figure 6b shows how the contour generator is pulled out of a plane for high values of n.
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section p(@), and let the cross-section scaling function A(z) contain at least
one concavity. Then for all viewing directions ¢
{i) the silhouette of I, Cy, decomposes into n > 2 contour segments by
splitting it at points of inflexion;
(ii) the image of the axis A of T essablishes an axial symmetry berween at
least (n - 2) contour segments, including all concave ones. Corresponding
segments are either both convex or both concave;
(iii) the ratios of the distances of corresponding segments either side of the
axis of symmetry are all the same.
Corollary: The image of the axis of I is uniquely determined if there exists only one such
axial symmetry.

This theorem is best explained by leoking at figure 7. Here, we see that the
contour divides at inflexion points into three segments, labelled Cj to C 3. The two concave
segments Cy and Cy are roughly symmetric about the image of the cone’s axis A, although
their distances away from the axis may not be eqgual. The third clause of the theorem states
that, if C; is half as far from A as C 3, then the same will be true of all other segments that
correspond under the symmetry. We shall call the type of symmetry established by theorem
5 a gqualiretive symmetry. lis important features are {a) that it holds between convex or
concave segmenis of a contour, and (b) that it includes a scaling factor.

Although there is a point-wise symmetry between the contour on the two sides of
the axis, uniess the viewed surface is a right generalized cone and the contours are
faithfully diagnosed in the image, such symmetries are expensive to detect. A qualitative
symmetry, on the other hand, does not have to be found on a point-by-point basis. This is
important because it makes finding the symmetry, and hence its axis, a practical
tomputational propasition. By dividing the conteur into convex and concave segments and
noticing that the symmetry preserves this distinction, we have greatly reduced the number of
items that have to be examined and made the computational load aceeptable.

There is one other point of importance about this result and it comes from the
corollary, which says that if only one symmetry exists among the contours, the axis of T is
determined uniquely. This means that the analysis of contour is self -checking. and one does
not have to appeal to the "familiarity” of the deduced shape to know that one has a valid
interpretation of the image. This is of course essential if one is to be able to analyze novel
shapes. The reader will observe that all of the theorems, that are directed at the analysis of
contour, have uniqueness corollaries like that of theorem 3. It is on these that the algorithms
themselves will rest most directly,

Viewing directions not coplanar with o cone's cross-section
We next ask what happens to the generalized cones of theorem 8 if the viewpaint
remains distant, but if the viewing direction moves out of its constraining plane IT? As long
as the image Sy approximates an orthogonal projection parallel to the plane of the
generalized cones cross-section, variations in the silhouette of I are due to changes in the
scaling function A(z) along the cone’s axis A, as illustrated by figure 8a. On the other hand,
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8. While the viewing direction remains distant and coplanar with a generalized cone’s cross-
section, variations in the contours in the Image are caused solely by variations in &, the
scaling function (figure 8a). When the viewing direction is distant and lies parallel to the

 axis of the cone, the contour in the image is caused solely by p, the cone's cross-section
(figure 8b). In between, the contour Is approximately caused by a mixture of the two (figure
8c). The bounding contour shown thickened in 8c violates restrictions R3 and R4, but it
can be decomposed Into components that do satlsfy them (Figure &d), to which the machinery
of the theory can then be applied.



when the viewpoint is moved so drastically that the viewing direction lies parallel to A, the
silhouette of ¥ is due entirely to p(8), its cross-section function (figure 8b), and is in fact due
te the cross-section of T at the point where &{z) achieves its maximum value.

At both of these extremes the contour generator 'y of I is planar, but for other
viewing directions it need not be. This is obviously true for a dumbell shape, or for an ice-
cream cone, but theorem 2 assures is that it is more insidiously true even for a surface as
simple as an egg, where the contour generator it a circle for the end-view, a near oval for a
side view, and slides from one to the other in between (see figure I0b below). Another
example 15 the surface shown in figure B, the contour generator from this view is clearly
not planar.

How are we te handle such views? For convex objects like an egg, where the only
occluding contours arise from its silhouette, there is very little more one can do to infer its
shape when seen from one of the intermediate views, unless one knows something about the
orientation of the egg relative to the viewer. For ob jects that are not convex, like the double
spike of figure 8, one can separate the contours that arise in the image into two classes;
those approximately due to the "sides” of the figure (the two spikes separated in figure 8d),
and those approximately due to a cross-section, like the central ellipse in figure 8d.

This division gives us our main tool for analyzing non-standard views, and it is
best explained with the help of figure 8. Suppose that a generalized cone T is being viewed
from a distant point ¥ and the line of sight is not parallel to the plane of the cone’s cross-
section. The contour generator for viewpoin: V' is approximated by two components. One
is easy to define; it is the places on T where the size of the cross-section is stationary - that
is, where Az} achieves a maximum or minimum. For an egg, it is the fattest cross-section,
and other examples are shown shaded in figure 10. We call these curves radial extremities,
and denote them by T = notice there is no suffix, since T does not depend on the vantage
point. The other idea we have to make as precise as possible is what we mean by the “sides”
of I from a viewpoint such as ¥, and for this we make the construction illustrated in figure
9. We drop a perpendicular from ¥ to I/, which does lie in the standard viewing plane.
Then the contour generator for viewpoint ¥ is approximately the projection of the contour
generator ['p/ for !, which is simply I.i'-" for some angle ¢. For example, in the case of an
egg of length ! and diameter d, the skeleton (shown in figure 10b) has length Lsin{y) and
width &, when viewed in a plane containing the egg's major axis at an angle x 1o it. For
angles where Lsin(x) » d, this is a reasonable approximation, and when Lsin(y) < d, we
have an “unconventional” view.

The reason why the skeleton is a useful construct for recognition is that one can
detect its presence in an image by the many relationships that exist among its parts. In fact,
we can use these relatienships to set up constraints on a set of occluding contours such that
if those constraints are all satisfied by a unique interpretation of the contours in the image,
we can be reasonably certain that we have found a skeleton, and hence can interpret the
contours as arising from a generalized cone I whose axis is then determined. The relations
themselves consist of qualitative symmetries and parallelism, and are preserved by an
orthogonal projection. Hence provided that the contours as seen from vantage point ¥ in

figure 9 are approximately the projection of the contours as seen from M/, the relations will



section are approximated by two components. One component consists of local maximum

viewpeint whose viewing directi

viewpaint ¥.



10, Examples of skeletons of surfaces, as defined in the text and in figures 8 and 9 The
cross-sections responsible for the radial extremicies of the surfaces are shown shaded. The
skeleton ceases 1o be a reasonable approximation to the contours that occur in the image
whenever the viewing angle is such as to make the projection of the length of the cone less
than the orthogonal projection of its width. For such views, the methods of this article will
fail.



still hold in the image formed from V.

Theorem 4 (Skeleton T heorem). Let Tyl uT be the skeleton of T associated
with some vantage peint ¥'. Then provided that Cy can be thought of as

being formed by the orthogonal projection of T/ along the direction to

the vantage point ¥,

(i) Cp is qualitatively symmetric about the image of the axis A of I, in the

sense aof theorem 3

(ii) the image of T consists of one or more connected components, through

which A passes, and between any two of which there exists a mapping that

is (I - 1), continuous and onto, that preserves the gradient of the image of T

at each point.
Corollary: If I obeys the prerequisites of theorem 4, and if the image of its skeleton
decomposes in a unique way into two components that satisfy conditions (i) and (i) of the
theorem, then these components are the images of I'y and of T. The axis of symmetry of

the image of T'y is the image of the axis of I.

This theorem makes explicit the many relations between the elements of a
skeleton'’s image, and its practical importance is illustrated by f igure 1. The theorem states
that the image of the "sides” obeys quite well the symmezry relation of theorem 3, and one
<an see from the figure that this is true of the sides of the bucket in the image. The axis of
symmetry of the sides is the axis of the bucket. The theorem also says that the images of a
cone’s radial extremities are all parallel to one another, and embrace the cone's axis. In
figure 1l there is a clear parallel relationship berween the image of the bucket's top, the
corrugations in its side, and the visible part of its base.

As in the case of theorem 3, the diagnostic power of this result lies in the corollary.
It does not guarantee that a given set of occluding contours can be interpreted, but if a
unique interpretation exists that satisfies these conditions, then it will be correct. In a real
image, many parts of a cone's skeleton will be obscured, but this hampers the finding of
relationships like parallelism and qualiative symmetry only slightly. One can devise a
cooperative algorithm (Marr & Foggio 1976) that can operate on the description of a contour
vo find relationships of this kind between its pieces (Vatan & Marr 1977),

Generalized cones whose eross-section s not convex

We are now ready to extend the theory to the case where the cone’s cross-section

contains concavities. The important difference between this and the case where the cross-

section is convex is that occluding contours can now also arise from local maxima and

minima in the cross-section p. For example, in the image of a fluted pillar, there are many

lines running parallel to the axis of the pillar, corresponding to the local maxima or minima
in the pillar's cross-section.

This gives us the extra tool we need to extend the analysis of theorem 4.

Contours that are due to convexities and concavities in the cross-section g behave like the

fluting on a pillar, so we call them the cone's Jluting and denote them by the letter §. The

LY



ll. Methods based on the corollary to theorem 4 suffice to solve this image of a bucket. An
axial symmetry is established by its sides about the bucket's axis (shown thickened), and a
parallel relationship holds between components of its radial extremity. Here, these are the
bucket's top and bottom, and the corrugations in its side.



fluting on a cone with wariable cross-section behaves rather like the silhouette of theorem 3.
Convexities and concavities in the Tluting on one side of the cone’s axis are in qualitative
symmetry with the fluting on the other side (as seen by the viewer). This means that
contours in the fluting obey a set of qualitative symmetry and rough parallel relations
amang themselves, similar but orthogonal to those obeyed by the radial extremities. T hese
relationships can be used to interpret the contours in an image, in a way analogous to
theorem 4. The extension of theorem 4 to the case of a cone with fluting is theorem 5.

Theorem 5. Let Ty u'T u & be the skeleton and fluting of I associated with

sarme distant vantage point ¥. Then

(i) Cpr and T obey theorem 4.

(it} The image of each portion {{Az)p(#;), 8, z), for fixed § and varying

z] of the fluting is either a straight line, or it divides into convex and

concave segments that are in (I - [) correspondence with the convexities and

concavities in that part of the image of [}y which lies on the same side of

its axis of symmetry.
Corollary: If T is a generalized cone, and if the contours in its image decompose in a unique
way into three parts that satisfy the conditions of theorem 5, then those parts are (i) the
image of T'jr, whose axis of symmetry is the image of the axis of I; (1) the image of T, the

radial extremities of I; and (iii) the image of &, the cone's fluting.

Onee again this result enables us to set up a system of constraints on the contour
present in an image such that, if the constraints are satisfied by a particular labelling of the
contour, that labelling enables us to discover the axis A of I, and other information about
its cross-section p and axial scaling function & The algorithms that implement this method
need only recognise the properties of parallelism and gualitative symmetry between a small
number of elements. This result reaches slightly beyond the scope of this article since it
deals with contour that is not necessarily occluding. It also extends naturally to the case
where p contains creases (points of discontinuity in gradient), which i3 helpful because
creases oftén give rise to edges and highlights in an image.

M earby viewing points and curped axes

The methods discussed in this article are ill-suited to images that arise from
neéarby viewing points, and are of little use for cones with curved axes unless their cross-
sections are simple. These points are best made by figure 13, which shows a serpent weaving
towards and away from a nearby viewer (figure 13a), who sees an image that resembles
figure 13b. The points of inflexion in figure 136 are caused by perspective, and to recognise
this one needs other cues, like texture gradients and stereopsis.

If one sees the contour that appears in figure I3, one can and does infer the shape
of a snake. Cases such as figures 13c & 4, where the scaling function & is roughly constang,
are easy to deal with; 3o are other cases where the qualitative symmetry of theorem 2 is
reversed (i.e. convex segments match concave segments, not convex ones), but in general the
sitwation can be complex. [ have been unable to derive any substantial results from
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12. When the cross-section of £ is not convex, we need to add the images of its maxima and
minima in order to arrive at a complete model of its visible contours. The lines traced out
by these maxima and minima are called the surface’s fluting, and they are added to the
skeleton as defined in figures 9 and 10 to produce what is called the surface’s complete
skeleton. This figure depicts a surface with fluting.



(a) (b

(c)
(d

~\
I

13. The methods of this article are based on the distinction between convex and concave
contour segments. They are therefore unsuitable for images of nearby objects. For
example, if a viewer is close to a snake (as in 13a), the image he sees will be something lize
13b. The convexities and concavities in this are mostly due to the perspective
transformation, and they do not reflect properties of the viewed surface. The figures in 13¢
and d are generalized cones with curved axes. It is not known how to deal with these except
in simple cases like those depicted here.



circumsiances in which the surface I and its viewing point are unconstrained.

3: Burfaces composed of two or more generalized cones

We have hitherto been concerned with the appearance of a single generalized
cone. Real-life objects are often approximarely composed of several different cones, joined
together in various ways (see Marr & Nishihara 1977 figure 8), and we therefore have to
study ways of decomposing a multiple cone into its components - for example, a human
body into arms, legs, torso and head. The way in which two cones join has a profound but
usually local effect on the contours produced by the resulting surface, and it can upset the
qualitative symmetry and paralielism on which our earlier results depended by interfering
with the inflexion points on which primary contour description is based, Therefare, the
algorithms for interpreting occluding contours in an image must incorporate a sensitivity to
situations that can arise as a result of joins.

In this section, we study the common types of cone-cone junction, classify the
appearances to which they @an give riss, and indicate how algorithms for their detection
may be constructed. In order to de this, we once again have to place some restriction on the
way in which a join is configured. The one that I choose is:

Restriction 5:The axes of two foined generalized cones are coplanar,

which enables one to relate the silhouete of the junction between two cones to the angle
between their axes and their axial scaling functions. If the two axes are not coplamar, the
surfaces at the junction are rather unconstrained. In practise, RS is not a severe restriction.
Provided that the two axes approach one another closely relative to the width of their
respective cones, the coplanar condition will be satisfied clozely enough.

A: Side-to-end foins between two generalized cones

The most useful commen feature of the join between two cones is that it gives rise
to one or two deep concavities in the surface's silhouette, This feature is unfortunately not a
necessary concomitant of a cone-cone junction, and although it plays a large part in our
algorithms for detecting such a junction (Vatan 1978), its role in the underlying theory is
surprisingly slight.

It is convenient to divide the types of join that can eceur into two classes, those in
which the end of one cone i3 attached to the side of the other, and those in which the two
cones are attached at their ends. The two types of join are illustrated in figure 4, and a
formal statement of the distinction betwesn them is given in the appendix. These two cases
are not quite exhaustive, but the intermediate cases introduce no new points of interest.

From the point of view of diagnesing these joins, the important difference
between them is that there are often two concavities associated with a side-end join, (one on
each side of Ag as shown in figure l4a), but there need not be for end-to-end joins {figure
i4b). We analyze the possible configurations case by case.
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I4. The two main types of joins considered in this article. 14a shows a side-to-end join, and

l4b shows an end-to-end join. In the case of a side-to-end join between two convex cones
(like 14a), theorem B guarantees the presence of a minimal concave angle in the bounding
contour, due to the join itself. Provided that the cones are long relative to their width, the

total concavity will be near 1807,



Al= Bath comer are conyey

An important clue for joins between cones is the existence of deep concavities in
the bounding contour. Figure Ma illustrates this. Provided that the end of one cone joins
the side of the other well berween its ends, one cannot help forming substantial concavities
in the outline. The precise result that establishes this for convex cones is theorem B, but the
details may be confined to the appendix without loss, It basically states that the toral
concavity created by a join like that shown in figure 14a is nearly 1£0% and this gives us a
method for detecting such joins. Since angles of J§0Y are preserved by linear
transformations, the effect of allering the viewing angle is entirely due to changes in the
angles ¢ that are caused by foreshortening ) or lg of figure 23. This means that the join
will remain detectable until the projection of one cone’s length becomes comparable with the
projection of its width {when the view becomes “unconventional™, or until the junction is
obscured.
A2: Cones nol everynhere convex

If the generalized cones I) and Zg are not convex - for example, if their axial
scaling functions contain concave segments — the concavities that "eught” to arise at their
Junction can be concealed, appearing as part of the concavities due to their axial scaling
functions. The simplest case of this is shown in figure 15, where there is no identifiable
concavity due to the join. Therefore, although concavities provide our algorithms with
useful first places to look for joins, we need somewhat more solid results on which to base
the underlying theory of join detection.

The approach we take for diagnesing jeins is similar to that of theorems 3 o 6.
We establish a set of constraints that are satisfied by the different types of join, and argue
that. if the contours in an image decompose into segments that satisfy these constraints, then
they may be interpreted as two joined generalized cones. If there is only one decomposition
of the contours that satisfies these constraints, then the interpretation is also unique. The
relations involved are usually quite simple. We shall assume that RS holds throughout this
section.

Suppose that an end of EE‘ joins the side of I}, and that the resulting surface is

viewed along the direction perpendicular to the planes of the axes. If the angle w (figure
14) between their axes is small, or if the line of sight lies too near the plane of the axes, only
one "side” of each cone may be muhh {figure 18). In such cases, there are no symmetry
relations in the image, and the cones' axes cannot be found,

Provided that both sides of the cones remain visible (figure 17), convex and
concave segments that lie distal to the join are uninfluenced by it and will obey the
symmetry theorem 3. In this way, the distal segments of the cones determine their axes,
which can then be extended back to the join (shown dotted in figure I7).

This diagnostic technique relies on the existence of segments distal to the junction,
s0 we now deal with the case in which there are none. I we assume that the join takes
place entirely within one segment of I, there are six possible situations and they appear in

the top and bottom rows of figure 18. Four arise when E; and Iy consist of just one segment
zach, and it may be either convex or concave, the other two arise because Io can straddle a
segment boundary in Iy (column 3 of figure 18) It is convenient to subdivide the cases



I5. Joins between cones can easily be hidden. Here, concavities that “ought” 1o arise as a
result of the juncrion are hidden in concavities that are caused by the axial scaling function.

This is why straightforward methads for finding joins between cones fail in the zeneral
case.



I5. If two cones join at so oblique an angle that the structure of one is intermixed with the
structure of the other, it may be impossible to recover their axes from the image. This
figure shows an example in which the cones of 16a and I6b are joined to form 15¢. Methods
based on the theory given here would produce the decomposition shown in 16d rather than

that of 16, because there is no detectable symmetry about the axes depicted in 18<.




I7. If two joined cones are bath long, which means that they both contain more than one
segrment distal o the join, their axes can be recovered by methods based on theorem 2 that
take no account of the join. The axis fragments thus obtained, shown solid, can then be
extended (o their intersection point along the dowed lines, and the join iself can be analyzed
after this.




where Io is concave into those cases in which the value of Ay passes through a minimum
and then increases as one moves distally from 2 (bottom row), and those in which the
minimum value of Ay is achieved at the distal end of Aj (middle row). In Figure 18, this
minimum value is rero, which produces a cusp-like Zo Motice that case [8a exhibits the
situation described by theorem B, which guarantees the presence of the concave segments
Jeining Iy and I, for reasonable values of / and w;,

We are now ready for the main result about side-to-end joins. Figure 18 explains
what is happening. In each of the cases shown there, segmentation points P and O can be
found that decompose the contour so as to satisfy a number of relationships. Theorem 7
defines the segmentation points precisely by making these relationships explicit.

Theorem 7 (Side-to-end joins). Let Cyy be a connected contour bounding the
image of two generalized cones Ij and Tp connected by a side-to-end join.
We assume that the image is formed from a distant viewpoint chosen such
that the viewing direction lies perpendicular to the plane containing the two
cones’ axes Ajand Ao Assume that Cp is broken into segments at points of
inflexion. Then there exist two points P and ( each of which is either a
point of inflexion or lies within a concave contour segment such that
{1} The line P lies within the figure bounded by Cy
(il) PQ divides Cp into two parts C; and C, between the contour segments
or fragments in each of which there exists a qualitative symmetry whose
two axes are the images of Aj and Ao
liti) P and Q minimise the length of contour fragment left unmatched by
these symmetries
{iv) contour fragments in C; left unmatched by the symmetry round Ay
would be macched by contours whese proximal parts, and possibly all of
which, lie in the interior of C5 u PQ; and vice versa,
{v) the image of Mg intersects PQ between P and
Corellary: If the points P and Q are unigue, these constraints determine a unique
decomposition of Gy from which images of the two axes A; may be recovered,

In practise, it does not matter if P and  are not unigue provided that all pessible choices
give the same axes.

B:Twe generalized comes joined end-to-end

If Ij or Io contains more than one convex or concave segment, that cone’s axis
may be found for segments distal to the join, just as they were found in figure 17 for side-
toend joins. Hence we nesd consider only the case where El and :2 have just one sepment
Once again, the main result depends on characterizing the segmentation points P and Q,
and figure 19 gives examples of segmentation points for end-to-end Joins between the
various types of single segment cone. Theorem 8 defines these points precisely; it is very
similar to theorem 7.



I5. If the joined cones are short, the method of figure 17 cannot be used. This figure
illustrates the types of side-torend join that can cecur. In the first column, the lefr-hand
cone is convex; in the centre column it is concave, and in the third column, it is convex on
cne side of the join, and concave on the other. The other cone is convex in the top row,
and concave in the other two. Segmentation depends upon finding the points P and Q,
which are defined in the text by theorem 7 and illustrated here for each case



Theorem & (End-to-end foins). Let Cy be a connected contour bounding the
image of two generalized cones L) and Iy connected by an end-to-end join.
We assume that the image is formed from a distant viewpoint chosen such
that the viewing direction lies perpendicular to the plane containing the
axes of the (wo cones A) and Ap. Assume that Cp is broken into segments
at points of inflexion. Then there exist two points P and @ in Cp such
that:

(i) Either may be a point of inflexton, one (but only one) may lie within a
concave segment, and one (but only one) may lie within a convex segment,
(i) The line PQ lies within the figure bounded by Cy

(iii) PQ divides Cpy into two parts C; and C, between the contour SEEImenLs
or fragments in each of which there exists a qualitative symmetry whose
two axes are the images of A) and Ay

{iv} P and Q minimise the length of contour fragment left unmatched by
these symmetries

(v) contour fragments in C; left unmatched by the symmetry round Ay
would be matched by a contour whose proximal parts at least lie in the
interior of Co u PQ; and vice versa.

(vi) the images of Aj and Ag intersect PQ) between P and Q

Corellary: If the points P and Q are unique, these constraints determine a unigque
decompasition of Cy from which images of the two axes A may be recovered.

Extension to cases where some contour segments are straight lines

The assumptions RI - R4 that were made about Z; and Io, excluded cases where
these surfaces contained straight lines. Such cases are frequent in real life, however, and
some examples are shown in figures 1% and f. 19 is a limit of 19d, and in some sense also of
19a; 19f is a limit of all of the cases. 197 may be solved in the standard way; Q is the only
concave point in the contour, and it matches either the point P, or it induces two “nearest”™
points Py and Py that separate the two arms of the figure from the rectangle QF|PFg. Both
segmentations are permissible.

Case 1% is more difficult. The only true inflexion points are @y and Qs, but the
line (y(lo lies outside the figure. If Q) and Qo are used despite this, the segmentation to
which they lead corresponds to thinking of the figure as a rectangle with a piece excised (cf
Hollerbach 1975 p. 85). This would be the preferred description if Q) and Qo lie near P/,
Since 19 may be regarded as the limit of 194, the peint P (a corner jeining two staight lines)
can be regarded as a segmentation point, like the point P in 19d. P then induces the point
& as shown, which segments the figure in the same way as 19d. When designing algorithms
for dealing with cases where some lines are nearly straight, "convex” corners of ten acquire a
dual status that arises from regarding the straight lines as limits of concave rather than
convex contour segments. This means in practise that straight lines are somewhat more
difficult to deal with than curves since, in the initial state of the algorithms for
implementing the methods defined here, straight lines and the corners to which they lead

F
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19. 182 to d exhibits the possible types of end-to-end joins, for cones that contain only one
segment. The segmentation peints P and Q are defined by theorem 8, and illustrated here
for the different cases. They provide the basis fer interpreting the join from an image. 19e
& f exhibit the configurations that arise in limiting cases where some or all of the contours
become straight lines. MNotice that in 18f, the symmetry relations have dezenerated into



may be associated with several possible labellings.

C: Joins between more than two generalized cones

The principal difference between this and case B above is that a given point of
segmentation may have more than one match elsewhere. For example, in the silhouette of
an octopus, the deep concavity between each tentacle matches two others. Also in this case, it
is possible to have end-to-end joins in which beth P and Q lie within concave contour
segments. The only straightforward result about the case of multiple joins holds when all
the joined axes are coplanar, which is a commen but restrictive condition. In this case, the
relevant result is so similar to theorems 7 and 8 that T omit it.

4: Discusszion

The purpose of this article was to elucidate the assumptions that can reasonably be
made when interpreting the occluding contours in an image. The assumptions at which we
arrived were stated as restrictions RI - R4, and it was then proved that these restrictions
have a close relationship to the assumption that the viewed surface is composed of
generalized cones. In the second and third parts of the article, we took this result as an
assumption and studied properties of images of surfaces constructed in this way. We found
that many constrainis hold among portions of the contours in images of such surfaces, and
that rough symmetries are formed around the image of the cones’ axes. The importance of
these relations is that one can use them to design algorithms for finding the generalized
cone-based description of a contour, and for extracting any axes that may be present. By
applying these algorithms repeatedly to the contours found in an image, one can often
derive the 3-D model representation (Marr & Nishihara 1977) of a surface’s shape without
prior knowledge of it. Methods based on the present theory will however fail for views in
which one or mere axes are foreshortened {roughly, whenever the condition Lsin(y) > d of
page 17 is violated).

The theary presented in this article Is a pure competence theory, or a theory at the
topmost of Marr & Poggio's (1975) four levels. It is concerned with ends not means. The
matural division between means and ends is interestingly {llustrated by the methods for
Segmenting a contour into two component generalized cones (theorems 7 & 8), The starting-
paint for our algorithms that actually find the points P and ( as defined by these theorems
is the examination of desp concavities in the contour Cp (see Vatan 1976). This contrasts
strongly with the theory, because the concavities may be small or even absent, especially for

end-to-end joins. Only in certain circumstances does the underlying theory guarantee their
. presence (thearem B),

Acknowledgements: I thank Harold Abelson, Keith Nishihara and Shimon Ullman for
careful readings of early drafts of the manuscript, and for sUggesting improvements to
several results. Karen Prendergast prepared the figures. This report describes research



done at the Artificial Intelligence Laboratory of the Massachusetts Institute of Technology.
Support for the laboratery's artificial intelligence research is provided in part by the
Advanced Research Projects Agency of the Department of Defense under Office of Maval
Research contract NOO0I4-T5-C-0643.

References

Binford, T. Q. 197 Visual perception by computer. Presented to the IEEE Conference on
Systems and Control, Miami, in December 1971

Hollerbach, J. M. 1975 Hierarchical shape description of ob jects by selection and
modification of prototypes. M. . T. 4. I. Lab, TecAnical Report 345,

Marr, D. & Nishihara, H. K. 1977 Representation and recognition of the spatial organization
of three dimensional shapes. (Submitted for publication),

Marr, D. & Poggio, T. 1976 From understanding computation to understanding neural
circuitry. In The wisual field: prychophysics and neurophysiology. Neurosciences Research
Program Bulletin, E. Poeppel #f al, Eds. (in the press).

Varan, P. 1976 Segmentation of figure after separation from ground. M. |. T. Bachelor's
Thesis Report,

Vatan, P. & Marr, D. 1977 Algorithms fer the segmentation of a contour. (In preparation).

Waltz, D. L. 1975 Understanding line drawings of scenes with shadows. In: The prychology
of computer vision, Ed. P. H. Winston, pplo-9l. New York: McGraw-Hill.



Appendix
Suppose that I is an arbitrary three-dimensional surface, and that Sy is its image

from viewpoint ¥ as produced by the projection iy L —-> 3y (figure 2 in the main text).
Sp has a bounding contour Cy say, that corresponds to the silhouette of £, and which we
can think of as having been obtained by acting on Sy with a boundary operator & (see
figure 2).

Definition. Let Ty be the set of points on T whose image lies on Cy.

Then T is called the contour generator of Cy on E.
T hat is, I";.r is the set of points P on X such that o P) lies on Cpr. We can now define the
operator §: §(Z) = T'jr which is induced by 3, and which selects I’y out of Z. This is
illustrated in figure 2, where 3 is defined is such a way that the diagram in figure 2
commutes = Le. yyd = dy. Notice that iy, Cy, Sy and Ty all depend upon the vantage
point F.

A formal statement of the restrictions RI - RS is now given:

Restriction RI: T is everywhere twice differentiable with continuous second derivative.
Restriction R2: The inverse y7 ; Cy == T’y is ome-valued.

Restriction R3:The mapping yy : Ty —> Cp s continuous.

Restriction R4:The contour generator Ty of Cy is planar,

Restriction R5:The axes .qfi'w Jjoined gemeralized cones are coplanar.

Lemma 1. Let f{x, y) = 0 describe a planar curve that is twice differentiable



with continuous second derivative. Let L R —> B2 pe 3 non-singular

linear transform of the plane. Then L preserves points of inflexion in §
Proof: We define g = Lf, the image of £ under L, by gx, y) = AAL"}x, 4)). Since L is linear,
nen-singular, and therefore continuous, it induces a {1-1) correspondence between the
slopes of tangents to £ and tangents to § We can represent the set of possible slopes by the
unit circle 51, and so L induces a map L® ; 5l — 5 which is {I-1)and onto. Hence L® is
monotonic (either increasing or decreasing) — that is, if fig lies between @) and @5, and
18y - 8ol < 2, then L*(Bq) lies between L*8;) and L(B5). Now a point of inflexion X on f
is a stationary point for the slope of the tangents to f Because L® is monotonic, L(X) is
therefore a stationary point for the slope of the tangents to Lf = g Hence L(X) is an

inflexion point on g.

I have used a geometric rather than an analytic argument because it is clear how
the same argument applies to the case where f is piecewise linear. In this situation, the
analog of an inflexion point is a point where the sign of the change in gradient reverses,

and the argument used here still applies,

Definition. Let pir, 8) = 0 be a simple closed planar curve that is twice
continuously differentiable; and let 4 be a twice continuously differentiable
positive real function. Let & be a line at some angle w to the plane of p,
and denote positions along A by the variable z. Let T be the surface A x g

Then I is a generalized cone with axis A, eross-section p, scaling function A,



and eccentricity . If = /2, T will be called a right generalized cone. (See

figure 5 in the main text).

Definition. Let ¥ be a distant vantage peint for the generalirzed cone I
such that (i} the image formed from ¥ is an orthogonal projection, and (ii)
the rays in the projection all lie parallel to the plane of the cross-section of
ZI. Let the direction of these rays in the plane be denoted by the angle .
© When these restrictions are in effect, we shall denote the contour generator

r;.l' ]‘J}' r*-

Theorem I. Let T be a generalized cone with convex cross-section r = pl@)h.

Ti:len Z satisfies Ri everywhere, and for all orthogonal projections paraliel

to the cross-section p, it satisfies the conditions B2 - R4. Conversely, if RJ

Is satisfied by the closed surface X, and if R2 - R4 are satisfied for all

orthogonal projections parallel to some plane II, then T is a generalized

cone with Convex generating cross-section p that lies paraliel to I1.
Progf: Our definition of a generalized cone ensures that it satisfies R1. Since ¥ is generated
by moving p along the axis A (see figure 5), a given radial PG = {p(8), §) sweeps out a
plane that contains A, as p itself is rnmr:ﬁ along A. As p moves, the radial PG maintains its
direction, but shrinks or expands in a manner dictated by the scaling function &z). As G

moves, it traces out a curve on I, which we shall call Ty, and which lies in the plane A.



Furthermore, the tangent to T at G that lies in the plane of p is the tangent GV o p at G,
for all positions of G. Suppose that we represen: the direction of GV in the plane of p by &.
If one views T from a great distance in the direction ¢, the line GV is a line of sight to the
edge of the surface T. Therefore G lies on the contour generator for this view of . But this
Is true for all positions of PG as P moves along A, and so Ty is a contour generator. In
fact it is I‘*. Furthermare, since p is convex, the same will be true for every angle ¢ and
corresponding point G on g, provided that the viewing directions lie paraliel to the plane of
p. Hence T satisfies R2 - R4 for all such orthogonal projections,
The proof of the converse resulkt is longer, and we first need to establish three

lemmas.

Lemma 2. Z n I1' is convex for all planes I/ parallel to the plane IT of the

given viewing directions.
Proof: Suppose that T n T1' were not convex. Then there would exist a line in IT/ that was
tangential to Z n 11/ at two peints Gy and Gg say, as shown in figure 20. But the line ﬁlﬁz
is the ray that produces the edge of the image of I from this viewing angle, and G)Go
therefore projects to a point P say, on Cp. S0 i )[P} would contain both Gy and Gg, and

s0 would not be single-valued. This contradiets R2,

Lemma 3. If two distinet contour generators on T intersect at a point X,
then contour generators for all distant viewing directions in the plane TI

pass through X.

Proof: The tangent plane to ¥ at X, which exists by RI, contains two distinct vectors that lie



20, Lemma ® shows how restriction R2 forces p to be convex.



in a plane parallel to 1. Hence the tangent plane at X must itsell be paraliel to T1.

Lemma 4, Let T'*J' and Ty, be contour generators for two different

viewing directions in [I. Then Iy, ;2nd Ty 5 intersect on I,
Progf. Since T is a closed surface, the I',& for any angle ¢ divides I into two components.
This follows from the fact that if I is the surface defined by the equation flx, 9, z) = 0, the
points on I"¢ are solutions to the equations

Grad(f) . (¥ -(x,9.2)) = 0 (1)

fix, 3 2) = 0 (2)
where V' is a distant vantage point along the rays of the orthogonal projection T'y, and the
two components correspond to points where equation (I} takes values > 0 and < 0 respectively,
Hence 1"*; and I"*z each divide I into two connected components. Let T be any plane
parallel to II that intersects ¥ in more than a point. Znll' isa simple closed convex curve,
which meets I'y, ;In Gy and Gg, and which meets T'g o In Gy and Gy, as illustrated in figure
2L The tangents to T at Gy and Gy are parallel, and so are the tangents at Goand Gy.
Clearly, the line G)Gq divides the simple closed curve I n [1/ into two parts, in one of which
lies G, and in the other of which lies Gy But Go and G4 both lie on 1"*2, whereas G and

Gy both lie on r""f Hence I‘w and I'h must intersect somewhere on X .

Corollary: Pﬂ; and I'Hr intersect twice or more.
We can now r:umple.te the proof of theorem L Let P‘H and rég be two contour
generators for I for different viewing directions lying in II. Since I"“-"I and 1"':,2 are both

planar (by R+), their containing planes intersect in a line A (say). By lemma 4, Ti; and



G,

21, Lemma 4 establishes that contour generators for two different viewing angles must
intersect.



a. b.

22. Diagrams for the proof of theorem 1. T'y and T’y are two planar contour generators

whose planes intersect in the line N5, The *haded region Is parallel to the plane of the
viewing directions. Figure 22b shows a view  this region from abave.



1"*2 intersect in at least two points, and these points must therefore lie along the line A. Let
N be a boundary point of the set of intersection points of T‘*J‘ and I‘*E on A, and lez 5 be
the next closest such point to N. This situation is depicted in figure 22. By lemma 2, all
contour generators pass through N and 3, which we may therefore think of as north and
south poles of Z, and therefore the planes of all countour generators for views of £ from II
must contain N and § and hence the line A. That is, the planes of all contour generators for
distant views from the plane I will intersect in A.

Let TI' be a plane parallel to I lying between N and 5, distant z from N, as
shown in figure 22a. Let 11/ intersect A at H, I‘h at Gy, and P*E at Go. The
configuration in TI' is shown in figure 22b. The crucial step in the proof is to notice that
up te scalar magnification, the geometry of figure 22b is independent of z, the position of
il along the line N5, This follows from the following observations:

{i) The angle between HGy and HGy is independent of z, because it is simply the angle
between the planes of Ty ; and I"*\2 measured parallel to II;

(1) The direction of the tangent to p at Gy is independent of 2, because a5 r increases, Gy
traces out the contour generator 1"*1, which is by definition the locus '_’f tangents to T
parallel to II for a given fixed viewing direction ¢ ;.

We deduce that for each angle § in figure 22b, the tangent to the curve p has a
constant direction for every z That i3, for each z, the cross-sections p of £ in II/ are all
solutions of the same equation

rdfldr = fld) {1}

where f is some function of the viewing angle ¢ and is independent of z Let R(8) be a



solution to (1). Then the cross-section function g of T has the form

pld, z) = Az).R(§) (2)
where A is a positive real function of z Finally, I is twice continuously differentiable, by RL
Hence A is a twice continuously differentiable function of z, and 50 is R of 8. This completes
the proof of theorem I
Corollary I: A= 0 at N and at §,

Corollary 2: The cross-section p can change at the poles where & = 0.

Theorem 2. A necessary and sufficient condition for I to satisfy RJ, and
R2 - R4 for all distant viewing positions, is that T be a quadratic surface.

Proof:1f T is a quadratic surface, it satisfies Rl - R4. This follows from the following three

observations:

{i) A sphere trivially satisjes ﬁ! - R4

(i) Any linear transformation or translation preserves Ri - R4

(iii} Any quadratic surface may be derived from a sphere by a linear transformation and a
translation.

Conversely, suppose that I satisfies Al - R4 for all viewing angles. Since the
conditions of theorem | hold for every viewing angle, T may be thought of as a generalized
cone with generating cross-sections in any direction. Hence, any two parallel planes intersect
T in curves that, if not null, have the same shape. Suppose that I is the surface represented
by the polynomial f{x, ¥, z) = 0. Then a set of such parallel planes is given by the family

z = ax + by + ¢, for varying c. We deduce that the curves



M. gax+byrg)=0

flx, 3, ﬂihfﬂs_]'ﬂ
are identical, up to magnification and a translation. Hence the C; cannet multiply terms of
second or higher order. Therefore, in the original equation, z cannot multiply terms of
second or higher order. Since the condition holds for arbitrary planes, it must also be true
of x and of y, and it must hold identically. Hence f is at most quadratic, and we have

already seen that quadratic surfaces satisfy the conditions of the theorem.

Remarks abour the proofs of cheorems | and 2

The premises of these theorems, and the way the premises are used in the proofs,
seem generally reasonable with ene possible exception. That is the use of 2 to show that
Z n 1/ is convex in lemma 2. In fact, this is how R2 forces the cross-section of I 1o be
convex, which is a condition that holds all through these results. One might ar.gue that this
Is a somewhat artificial use of R2, which was introduced mainly to exclude surfaces that
contain lines. The analysis given so far concerns only the silhouette of the image of 2
however, and in these circumstances the convexity assumption for p is a reasonable one,
because violations cannot be detected from viewing directions that lie paliil-l:t. to the plane
of p. In practise, one can ippl.f the above analysis to all occluding contours in an image,
provided that one subsequently relates the different cylinder descriptions that emerge for

different parts of the same surface. Figure 8 shows a simple example of this

Theorem 3 (Axial Symmetry). Let T = px A bea generalized cone with



convex cross-section a, viewed distantly from its associated viewing plane

I, and let the cross-section scaling function A(z) contain at least one

concavity. Then

(i) the silhouette of I decomposes into n > 2 contour segments by splitting it

at points of inflexion;

(ii) the image of the axis A of I establishes an axial symmetry between at

least 2 or (n - 2) (whichever is greater) contour segments, including all

concave segments, such that segments that correspond under the symmetry

are either both convex or both concave:

(1) if ¢;p and ¢;p are corresponding segments, and if d(c;) denates the

average perpendicular distance from ¢; to the image of the axis, then

dlcy Ndlejo) is independent of L
Proof: Since T is a generalized cone and p is convex, the contour generators for its image
are the curves (A(z).p(8;), B}, z) and (Hz).p(By), Bo, 2) for fixed B and By and variable z,
as shown in figure 7. Hence as A(z) increases, the distance from contour generator to the
image A of the axis A increases on both sides of A" Hence if A(z) has a concave portion,
it will generate two concave segments ¢; and ¢, in Cg» one either side of A” and symmetrical
about A* (with a.pﬂ.'i.'-"lbll lateral displacement unless T is a right generalized cone). Also,
d(¢))id{cg) depends upon the value of af 81/ p(8o), and not on the particular choice of
contour segment (i.e. of z). |

These remarks hold for all convex and concave segments of A, except possibly for those

at each end of I (see figure 7). In figure 7, there is effectively only one end segment,



namely ¢ but in general there may be 2. Hence the symmetry established by the axis A®
holds for at least {n - 2) of Cg's contour segments, {or 2 of them if n = 3), and it matches
up all contour segments that are concave, since the end segments must be convex. Fimally,
there must be at least three contour segments, since the premises of the theorem require that

there be 2 concave ones, and Cy is a simple closed curve.

Definition. The type of symmetry established by theorem 3, which holds
between convex or concave segments of a contour and which includes a

scaling factor, we shall call a qualifative symmetry.

Definition. The set T of points A{zp)p(8) for all § and each value of z;j that
makes Az} a local maximum or minimum, is called the radial extremity of
Z. Let ¥ be an arbitrary distant vantage point, and let ¥/ be the projection
from ¥ onto a cross-section plane of X, as described in the main text and
illustrated in figure 9. The set I‘,prIll U T is called the skeleton of I for the

vantage point I,

Theorem 4 (Skeleton Theorem). Let Ty v T be the skeleton of T associated
with some distant vantage point ¥, Then provided that Cj is the projection
of Tyl to ¥, |

(i) Cp is qualitatively symmetric abous the image of the axis A of I, in the

sense of theorem 3



(i1) the image of T consists of one or more connected components, through

which A passes, and between any two of which there exists a mapping that

is {1 - 1), continuous and onto, that preserves the gradient of the image of T

at each point.
Proof: I‘p-f correponds to a viewing direction that is coplanar with the cross-section p. Hence
the contours Cpf in the image as seen from ! obey the conditions of theorem 3, and the
image of the axis A induces a qualitative symmetry between its concave and convex
components. Such relations are preserved by an orthogonal projection, and since it is a
condition of the theorem that Cy coincides with the projection of '/, it follows that Cyr is
also qualitatively symmetric about the image of A. Secondly, T trivially consists of one or
more connected components through which A passes, since these components are just cross-
sections at the local maxima and minima of & Finally, if A(z;) and A(zo) are local maxima
or minima of &, the mapping between points on T given by

(M(2)).0(8), 8, 2) —> (Azg).o(8), 8, zp)

is continuous, (1 - 1), onto, and preserves the gradient of T at each point, since the gradient
of both at § is p.dp/df. This correspondence is preserved by an orthogonal projection, and

hence the relations will still hold in the image of T.

Definition. Let I be a generalized cone, and let & be the set of points
(A(z).p(8), 8;, z) for all 2, for each §; that makes p a local maximum or
minimum. Then @ is called the fluting of I. For a viewpoint ¥, let I‘y" u

T be the skeleton of I that occurs in theorem 4 We define the complete



sheleton by adding the fluting to I's skeleton, ie. the complete skeleton of T

from viewpoin: V is the set I‘p'r UT wd,

Theorem 5. Let T/ u T u @ be the complete skeleton of T associated with

some distant vantage point ¥. Then

(i} Cp and the image of T obey theorem 4

(li) The image of each portion {(A(z)p(8;), 8;, z), for fixed §; and varying

z} of the fluting of I is either a straight line, or .i: divides into convex and

concave segments that are in (1 - [} correspondence with the convexities and

concavities in that part of Cp which lies on the same side of its axis of

symmesry.
Proof: Part (i} follows from theorem 4. Part (i) follows because like the two qualitatively
symmetric components of Cpe, each contour in the fluting of I is generated by variations in
A(z). If such a contour lies directly on the line of sight to the axis A of Z, it will appear in
the image as a straight line. Otherwise, its concavities and convexities will follow those of
one compaonent of Cp, although the depth of the concavities or convexities will differ in

general

Definitien. For i = I, 2 let T; be a generalized cone with maximum width
2wj and axis Aj of length {;. Let Ij and Iy be joined, and let w be the
angle between their axes (see figures 14 and 23). Then the join between the

cones will be called side-to-end (the side of I to the end of Eo) provided



that

(i) the two axes intersect between the ends of A

(ily the whole of the joined end AR of Xo lies between the two lines
perpendicular to and passing through the ends of 4,

(iii) one of the points 4 and B of figure |4 does not lie within the convex
hull of I,

The join is called end-te-end if

(i) the two nearest ends of Aj and Ag are within min (w), wy) of one
another, and

(i) the two furthest ends are greater than (wy+ ws) apart

Theorem 6. Let Ty and Iy be two convex generalized cones such that the
lend of To joins the side of I), and the join satisfies restriction R5. Let the
lengths of the cones’ axes A, be [, and let the diameters of their cross-
sections be bounded by 2w (i = ], 2). Then
() the only concavities that can occur in the image are due to the junction
(i) viewed distantly perpendicular to the plane of Aj and A, the toral
concave angle present in the image is near 180° (in the sense made precise
in the proof) provided that the site of the join is not near an end of I,
and that fl and o are much longer than they are wide.
Proof: By lemma 5, all contours derived separately from Z; and Ip are convex. Hence any

concavity in the image of their union must be due to the way they are joined. If Ly and Lo



23, Diagram for the proof of thesrem B. The idea is to abtain lower bounds fer the
concavities in the outline that are due to the join. The toal concavity is (e » q'fj. which is
near I§0°,



have coplanar axes and are viewed perpendicularly to this plane, the resulting configuration
Is as represented in figure 21, The contours shown in thick lines there represent cylinders {;
long and wy thick which, by the conditions of the theorem, bound the cones 2-' {f=] 2} Let
F be one of the two points at which contours due to ) and Zo intersect, and let PQ; and
Py be the mngents to Ij and Ty at P. Let w be the angie between the axes A and Ao of
Zj and Zg, and let ¢ and o be the angles that Py and PRy make with Aj and Ag. Then
. the angle between PQ) and PQq is a = (180° - w - | - ). The corresponding angle at the
other intersection P! between contours of I and IE it gl = (o - ¥ - 1;-*}. as illustrated im
figure 23. Hence the total concavity due to the join is & + &l = (1807 - b - o - g - Pryg).
In order to establish a lower bound for the total concavity, we need to find upper bounds
for the angles ¥ (i = 1to 4, and we can use the convexity of I and EE to do this. Since
the scaling functions of I} and Zp are convex, the maximum possible value of Vo Is do
{shown in figure 23), which is exactly -’dﬂrlmz.llzf-fg - wo.cot{w)), and approximately

:m:"fwg.l'@:r. The maximum possible value of ; is ¢, which is approximately r::r:"{nllfdlj
(see figure 23} and similarly for Wy and oy These approximations hold provided that the
cones are long relative to their widths, and | is not near 0 or J; — ie. the join is not near

either E:I'I'd- of EI‘

Theorems 7 and 8 were stated precisely in the text and their proofs, which are

straightforward, are omitted.



