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Computational Geometry of Linear Threshold Functions

Harold Abelson

1. Introduction

This paper is a contribution to "computational gpeometry”

in the spirit of the book Perceptrons by M. Minsky and

5. Papert [1]. Th&t'is, we seek insights into the amount of
computation "inherently needed” to recognize various geometric
figures. In doing so, we raise issues about the use of
parallel computation, analogus devices, and other pattern
recognition techniques. Thils section briefly reviews the
setting given in [1] for such a study and provides an intro-
duction to the remainder of the paper.

By a retina, R , we mean & collection of points, and

by a fipure on Lhe retina some subset X C B . The gize of

the retina, |R| 1is the number of points in R . In studying
pattern recognition we usually imagine R fto be a finlte

set whose points are regarded as the sguares in some two-
dimeneional plane grid and "arhitrary geomctric fjgures" a.8

approximated by some collection of scuares. (Figure 1-1.)



Figure 1

Geomaetric figures on a grid

A predicate on R is a function ¢ defined for

ie)

figures X on R which can assume only the values O and

1. Examples of geometric predlca
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|_."{ conbeing more thnan 47 points .
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(Here, as in [1] we use the notation
[some condition]

to mean the value which is 1 if the condition iz true and O
if the condition is false.)

In computational geometry we are interested in synthe-
sizing "complex" predicates out of "simpler" ones. One
measure of the simplicity of a predicate is its order. A
predicate ¢ 1is sald to be of prder k 1f g makes
its decision by examining at most k points of R, i.e.,

if there exists s set 5 of k points such that

w(X) = (X n 8) for all X c R ,
o
If % = [9:95...] 1is & collection of predicates,
then a perceptron based on & 1is another predicate ¢ which

iz of the form

ex) = [ Tagmyse] .
i

wheatre Blafly e, i A are real numbers,
£

n’
In other words, s perceptron 1z the result of a linear
throchold decision applied to a welghted sum of other predi-
catea.  The a; are tihe walpnts and 8 4is the thrashold,
The order of the perceptron ¢ 1Is the maximum order of



any of the predlecates In the collection & . HNotice that =
perceptron of order 1 is precisely what is usuazlly called =

linear threshold function on R .

In [1] Minsky and Papert conslder guestions such as
"What order perceptrons are necessary in order to compute

various geomstric predlcates?” They show, for example, that

r X 1= locally cnnvex1 can be computed with a

perceptron of order 3

and [¥ is & (discrste approximation to a) eircle] can

be computed with order 4.

More interesting are the results which 1llustrate
fundamentel limitations of perceptrons. One gsn ask if s

predicate is of finite order, i.e., 1f it can bs computed by

a perceptron of some fixed order, regardless of the elze of
the retina. (See §1.6 of [1] for a formal definition.)

Minsky and Papert show that such prediecsates as

[ X is connected |

f-H has at least 3 cnmpanent§1

are not of finite order. Indeed, a maln theorem of [1] states

that the only tepologically invariant predicates which ean



-5 -

be computed in finite order are those which are functions of
the Euler characteristic (see [1] §5.9).

Another kind of simple machine, the Gamba Perceptron,

is deseribed in [1] as a kind of "perceptron" in which each
of the "simple predicates" py 1s itself a linear threshold
function:

w®) = [T v x> 6]
xJEH

w(x) = I_Zai rz by % (%) > a;| > ;I ,
1 xJER

Here KJ{K} dencteg the order 1 predicate

x(x) = [xgex] .

Viewed as a perceptron, the Gamba machine ¥ has order
equal to the size of the retina |R| , since each $; looks
at the entire retina. Hence the order restriction techniques
of [1] do not give mueh information about the capabllities of
this kind of devige.

From another point of view, however, the Gamba machine
is nowhere nearly as complex as the gensral order - | R|
perceptron. Hather, it is a simple "two-layer" device, in
which each layer is made up of linesar thresheald elements.

Fore generally, ore could consider "multilayer mochines", in

which cach layer makes linear threshold decisions based on



results of previous layers.
This paper deals with propertles of these "multileyer”
machines. The computational deviees we will be concerned

with are called Linear Threshold Machines. A llnear threshold

machine is a general purpose computer together with a number

of linear threshold elements @s.--sid, - The general purpose
computer is allowed to perform any computetion whatsoever, with
one restrietion - computations cannot be based upon "direct
observation” of the retina itself, but rather upon the outputs
of the threshold funetions @qsses®Pp -« (Figure 2) The
rank of the linear threshold machine is defined to be the number

of linear threshold functions @qsee.sPp -«

i &
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Figure 2

Linear threshold machine of rank r



This class of machines includes the Gamba perceptron,
the multilayer machines, and in fact any kind of pattern
recognition device that can be constructed ocut of linear
threshold elements so long as the arrangement of interconnections
does not inelude any loops. {PermiLting loops would allow one
to bulld a universal computer out of linear threshold elements. )
We begin, in Section 2, with a2 formal definition of
linear threshold machines. Then in Section 3 we show that

the perity predicate

¥ (X) = [;he number of squares in X dis ndE]

par
is not of finite rank. This allows us, in Section 4, to epply
technigues of [1] to deduce that, as is the case with finite
order perceptrons, the only teopoleogieally invariant predicates
which could be of Tinite rank are funetiens of the Buler
characteristic.

In Section 5, we begin to consider the problems of
"infinite" or "arbitrarily large"” retinas. We introduce the

notion of uniform linear thresnold machine, a linesr thresheld

machine of fixed rank which can make computations which are
"independent"” of the silze of the retina. Section & gives some
examples of predlcates whlch can be computed, somewhat
gurprisingly, oy uniform linear thresnold machines of rank 2.
Sectlion 7 deals with the Saturation Theorem, our main

technigque for obtainlng restrictions on the possible computstions
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of uniform linear threshold machines. Section & applies thils
to show that, as opposed to the finite order perceptrons, which
can compute the Euwler characteriztiec, the uniform linear
threshold machine cannot compute any non-trivial topological
invariants. Section 9 gives further applications of the
saturation technigue and demonstrates the inability of these
machines to recognize figures in context. BSectlion 10 returns
to give a more careful version of the Saturation Theorem and
shows, for example, that if a linear threshold mechine with
bounded coefficients'ls to escape the saturation phenomenon,
its rank must grow with the slze of the retina, albeit wvery

slowly (as loglog |R| }.

2. Linear Threshold Machines

Definition 2.1 A linear threshold function o on a retina

B is a partlcular kind of predicate computed as follows:
For some real-valued funetion o on B and & resal number

B we have
ox) = [ 3 ux) >8] .
XKEX

Here u i called the measure snd 8 the thresheld asscoclated

to g .
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Now we combine these functions into machines. First

of all, a Boolean r -tuple is defined to be an r - tuple

each of whose elements is O or 1.

A rank r declsion funetion 4 is a function defined

on Boolean r - tuples and which can assume the values 0 or 1.

Finally,

Definition 2.2 A linear threshold machine of rank r

ie a predicate consisting of
(i) An r - tuple of linear threshold functions

= {ml‘mg""*mf} and
(i1} A rank v decision function & such that

MK} = aep (XL ea(X)s g (X)),

This is the class of machines with which we will be
concernaed in this paper. The following observations are
clearly tru=s.

1. If the retina has |R| pocints, then any predicate

on R can be computed by a linear threshold machine of rank

1,...,H? are linear threshold machines of

rank r1,...,rh rospactively, then any Boaolean function of
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the M can be computed oy a linear threshaold meachine of rank

i
Frob .. b
The definition (2.1) of linear threshold function is
glightly out of line with that wused by Minsky and Papeéert.
When computing o{X) we only take the summation over the

points of X rather than over the entlre retina R . Two

alternative definitions we might have used are

Definition 2.3 "Order 1 Perceptron"

p(X) = r}, a, p(x,X) > a—}

xeR

where p(x,X) is & predicate depending only

on whether or not x € X .

Alternatively,

Definition 2.4 "(-1,1) threshold function"”

p(X) = E: a,n(x,X) > H
xXeR

where pl(x,X) =1 if = € X and -1 if

x £ X .,

It is ezausy to see that pll three of the definltions sro coul-

valent so long as we are desling with o Tlxed finite retioe
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R . 1f, however, we consider infinite retinas or seguences

of retinas, the different forms (2.1}, (2.3), (2.4) make a

difference. For example, the predlcate

r;rea A @ % area ﬁ]

is easily expressed as & (-1,1) threshold function

[ ptex) > of

x?R
but & type (2.1) threshold funetion for this same predicate
must invelve constants which grow large as the size of the
retina becomes large. We have chosen to work with the form
{2.1) slnce we wish to make computations which depend only on
the figure X itself, and not explicitly on the retina R .

Finally, there 1s one more assumption we will make

about the threshold functions - that of finite sensitivity,

that the values of the measure cannot be arbitrarily small in

absolute value:

2.5 Hypothesis of finite sensitivity: With each threshold

function there is assoclated & sensitivity e such that, for

any x € B elther u(x) = 0 or |u(x) > ¢

This hypothesis will certainly be zatisfled for any

linear threshold function buili. out of actual physical
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components, for example, out of optical filters and photo

detectors.

3. Parity

We will be ceoncerned, as in [1], with predicates that
can be computed by linear thresghold machines which are
"independent of the fetina". Our first attempt at formalizing

this concept is the notion of "finite rank".

Definition 3.1 A predicate ¢ 1is of finlte rank r if for

any size retina R there is a linear threshold machine of

rank r which computes ¢ on R

In this section we exhibit a predicate which is not

of finite rank. This is the "parity predicate"

*parix] = r ¥ econtains an odd number of points of R-1 .

We ghall show that, for a linear threshold machine to be able
to recognize parity, its rank must grow at least logarithmically

with the size of the retina. More precisely

3.2 Parity Theorem. Suppese M 1s a llnear threshold machine

of rank r which computes parity on a retina K . Then
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|R] < re™t

EBefore proceeding with the proof, we first introduce

eoms notation., Let M = Ad

L C T ST
o (0) =[5 ux)> 8]
HEX
For any X © R let
5,0X) = ) uy(x)
KEX

and let ui{R} = (ﬁi[lel 61 .

Finally, let #(X) ©be the Boolean r-tuple
$X) = (o (X)seense (X))
and let E(X] be the Boolean r-tuple
Ef_-'nl{..:l = [Ul{:{}iﬂg{x]jr--jgrix]} »

How recall the usual Boolean notion of "implication”,

Lt
ra

-y O—=+1,1=1, 0=0 sareall valid, but 1 =0 is

not valld, This extends to n partisl order on Boolean T-ituples:
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3.3 Definition. If a and b are Boolean ¥ - tuples, then

we say that a < b if ai-ﬂ-bi for 1= 1,...,r .

Our first step in proving Theorem 3.2 is to show that

any linear thresnhold machine ecan be put in "normal form":

3.4 Definition. A linesr thresheold machine M = p$3 is said

to be normal 1f each component linear thresheld function

evaluates to zero on the empty set, i.e.

#E) = (0,0,...,0) .

This is equivalent to saying that each of the thresholds

Ei iz positive,

3.5 MNormalizetion Lemma. If M 4is a linear threshold machine

of rank r then there is a normal linear threshold machine,

also of rank r , which computes the same predicate asz M .

Proof: Suppose, by reordering, that mi{ﬂ} =1 for 1=1,...,k
and mi{ﬁ} =0 for kK =kKk+tl,...,r . We will produce a new
linear threshold machine by modifyilng the first k threshold

functions. Namely, if

oy (X) = F_L g (x> "]1]

wEX
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iz a linear thresheld function, define a new threshold function

mi by

- S

ey (X) ri-;. (-n;(x)) > 'Ei—l

xEX

so that Ei{I} = 1 4if and only if mi{I] =0 . 8o now let

M" be the linear threshold mechine

1 - — —
H = E'. {1 - *1; 1 - l*lz_g- LI ] 1. - ﬁkr ¢k+l; * e om oy '*'r]'

The key observation in the proof of theorem 3.2 is the

fellowing “"regularity condition" for linear threshold machines:

Lemma 3.5, Suppose M = 4% is a normal linear threshold
machine on H . Suppose X and Y are disjoint subsets of

B with &(X) < E(Y) . Then
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BX) < X UY¥) < E¥) .

Proof: We'll verify that o (X) = @ (X U Y} = o,(¥) for
each 1 .

Suppose Ui{Y} = 0, so that Si{Y} < O . Then, by
hypothesis, mi{xl migt also be O, so that 5,(X) < e,
Therefore, since X and Y are disjolint, we have

s, (X uY)=5,(X)+8,(¥) <a that is, e (XU Y)=0.

1 E
Hence mi{x WY} =0 whenever gi{Y] w 0, l.e.
#Xur)<u(y).

Now suppose that mifx wY) =0, i.e.,

S.(%) +5,(¥) < 8 . (3.5)
Then

case 1 If Ei{Y] < 0 we have ui[Y} = 0 , by normality.

So the hypotheesis implies that ¢i[x] must be 0.

pase 2 If Si{Y] > 0 then equation 3.5 implies that

5,(X) £ 9; » f.e., o (X)=0.

S50, in either case, mi{x} = O whenever miTx uY) =0,
that 1s, (X} < #(X v ¥) .
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The next lemma applies these "regularity" consideratlcons
to the parity predicate. First, if v 1s any Booclean

r - tuple define ones(v) to be the number of ones in v .

Lemna 3.7. Suppose M 1s a normal linear threshold machine

which computes parity on a retlna R , and suppose that

HysKopeeap¥, ~ are distinet pointe of R with
E(xy] £ E(x < eve & Elx ) .

Then ones(Z(x )} 2 n .

Proof: Define subsets vi af B to be

fines ¥ Ls normal we have ¥V _) £ T(x,) £ T{x,) w0
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Lemma 3.6 applies to give
#lv,) < #(xpuv,) < EI(x)
that is, #v,) < cphrl} < E{:-:l}l .

This inequality, aleong with the hypothesis, now implies that

#(5,) £ E(x,) so once again we can apply Lemma 3.6 to obtain
vyl < #(x, uvy) < E(x;)
Or, Hvlj = *EHE} < E{HEJ
Continuing in this manner, we get
W nr
BV g eV g ... n) & E(x )
But V, and V, , have opposite parity so #(V, ) # 5{“1_1} .
Therefore the vector ﬁ[vi] contains at least one more "ona”

than the vector i'vi_lj and so E(X_ ) > &¥_] must contain

at least m ones.

-

Corsllary 3.8, Suppose ¥ is a linear threshold machine

which computes parity on & retina R . Suppose that all the
measure funciions Hy in the threshold functions for M take

on only vosltlve values. Thean
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rank M > |R| .

Froof: The hypothesis implies that x(X) = (1,1,...,1) for

every subset of R . Therefore we have
Bx ) o= E(x,) = ... o= z{x|R!}
and so Lemma 3.7 implies that
unEBEE{xlﬁi}} > |Rl .

But mneaiz{xlﬁ1}} < number of elements in E[xile = rank M .

The same kind of reasoning as in Corollary 3.8 provides

the proof of the Parity Theorem:

Froof of Theorem 3.2:

Suppose M computes parity and has rank r . Let
Bi{r] = Z anes{v)
v

where the sum is taken over gpll distinct Boolecan r-tuples

v . Then we claim that |R] , the size of the retina, must
be less than or equal to ®(r} . For, consider the r-tuples
n{x;) as xg  runs througn the elemeris of R . If |[R| » B(r)

than there must be some  P-tuple v end polnts xl;.+.,1R with



E{xl} = E{:':E] m e, = E{xi‘:] = W

and k > ones(v) . But this is impossible by Lemma 3.7.
Thus |R| < B(r) .

Finally, it remalns only to compute B(r) :

r
the number of r-tuples
B(r) = Eunes{v] = E J:':E g

v with anes(v) =k

v =0
r

Sy ) -
k=0

Y. Topologlcal Conseguences of the Parity Theorem.

This sectlon follows Minsky and Papert ([1] Chapter 5)
very closely in derliving consegquences of the fact that the
parlty predicate is not of finite rank, We deduce that,
as parity is not of finite rank, then neither are such predi-

cates a8

(ﬁ is canneeteé]

rx has two components, one surrounding

the ntheﬂ

and s0 on. We will show thal the only topological predicates
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which could be of finite rank can depend only on the Euler
characteristic of X . (In fact, in Section B, we will show
that even these "Euler predicates" can not be of finite rank
if we impose certain "uniformity conditions” enm our linear
threshold machines. )

Following Minsky and Papert, we show that any scheme
for computing topological invariants (besides Euler
characteristic) on a class of figures [X]} must alsea be able
to compute parity on a class of “"derived figuresz" {i}

Hence, any machine which is "econfused" by parity must necessarily
alsoc be confused by topolegieal invariants.

This notion of "predicates on derived figures" is made

precise by Minsky and Papert in Section 5.4 of [1]:

Suppose F 1is a function which sssociates to any

- A

figure X in R a figure X = F(X) in R . Let 4 be a
predicate on R . Then we can define a predicate & on R
Fy

v(X) = #(F(X)) = a(x) .

In this context, Minsky and Papert formulate

Collapsingz Theorem for Perceptrons ([1], Theorem &.4.1):

*

-

Suppoze the funetion F  1is such that, each paint X of

el

depends on at most one polnt of R, i.e., the points of




. T

fall into four categories:

i for all X

b oa
iy

#§ ¥ for all X

L

or

or there is a point x € R such that

£ X iff x £ X

i

€ X iff x F X

by

o

Then order y < order ; . (That is, ir ; can be computed

by a perceptron of order k , than so can ¢ .)

Analogously, we have

Thearem 4.1 (Collapsing Theorem for Linear Threshold Machines):

Suppose that, as above, each point X of H depends

on at most one point of R . Then
renk ¢ < rank E .

That is, iT ¢ can be computed by a linear threshold machine

of rank v then s9 can ¢ .
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Froof: Suppose = &% 45 a linear threshold machine of
rank r which computes § on R . Let ﬁi s L =1,...,7 be
the linear threshold functions which comprise i . Let

¢, be the predicate on R defined by e, (X) = éi[F{I]}
Recall (2.3) that as long as we are dealing with a fixed
retina (8uch as R eor R ) then "linear threshold functions”
are the same as "order 1 perceptrons". Thus we can apply the
Collapsing Theorem for Perceptrons to deduce that the =N
can be computed as linear thresheld functions en R . HNow

define the linear threshold machine M on R by

M = A#
where A = R
and § = {¢1,+..,¢r} .
Then, for any X < R
M(X) = ab(¥) = 83(F(X)} = M(F(X)) = &(F(X)) = #(x)
so that M is a linear threshold machine of rank r whieh

computes §

Corallary 4.2, The predicate
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qgﬂnneﬂteﬂqx} = r-x ie cnnnectedw

is not of finite rank.

Proof: Since we have

1. iz not of finite rank

iflpe_ritj.r

2. the Collapsing Theorem is true

the proof is identlcal to the one glwven in the context of
finite order perceptrons in Sections 5.5-5.7 of [1]. Basically,

the idea 1is to construct a funetlon

F: (figures in R) —— (figures in f)
such that

1"'5':-4;|,1‘:|_‘I::-,r'l::':] = YoonnecteatF(X))
and the Collapsing Theorem implies that

rank § < rank §

parity connected °

See [1] for details.

The techniques of [1] also allow us tn deduce that the



only topologlcally invarlant praedicates which could be of

finite rank must be functione of the Euler characteristic.

Definition 4.3. A predicate ¢ 4is said to be topologically

invariant if ¢(X) = ¢(Y) whenever X and Y are topolo-
gically equivalent (i.e., X and Y can be "continuously

deformed” into one another).

Carollary 4.4. Let & be a topologically invariant predicate

of finite rank. Suppose X and Y are flgures with the

same Euler characteristic. Then (X)) = ¢(¥Y) .

Proof: The proof exactly follows Theorem 5.9 of [1] which
proves the corresponding result for finite order perceptrons.
The idea is based on a conatruction due to Paterson which
reduces the computation of ¢ modulo Euler characteristic
to the computstion of the parity of certain derived figures.

See [1] for details.

5. Infinite Retinas; Uniform Linear Threshold Machlnes.

In demonstrating that predicates such as parity and
connectadnass are not of finite rank, we considered a fixed,
finite reting and found lower bounds for the rank of any

linsar thresiold machine which computes these prediecates. The
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lower bound becomes large as the size of the retina becomes

large,

hence the predicates are not of finite rank.

But the intuitive concept of "finite rank”™ carries

a somewhat stronger connotation. Namely,
think of a "finite rank"” predicate as one
what computed by & fixed linear threshold
regardless of the size of the retina. We
below in the definition of uniform linear

Definition 5.1. By an "infinite retina"

an increasing union of retinas

1

E™ = RE = H3 .-

A uniform linear threshold function % on R

compatible collection of linear threshold

ot (x) = [V ot s e

XEA

i . i
where u is a measure funectlion on B .

collection” we mean

1) 1f R e Bt then ot
same as uj .

2} all the gi are the same

Thus, 1t makes rood sense,

restricted to

for finite figures X

we would like to
which can be some-
machine which works
Tormalize this notion

threshold machine.

i we will mean

=

is
fTunctions

By "ecompatible

B is the

in



ﬁ s Lo write

200 = [V w9

i
WEX

where wu 1is a well-defined function on the infinite retina

fi .

Definition 5.2, A uniform linear threshold machine of rank r

on R is 2 predicate M = A% where & = [¢1;¢21.+-,mr} is
an r=tuple of uniférm linear thresheld functions and A

1 a rank 1 decision function.

Intuitively, then, we allow our machines to operate on
larger and larger retinas by hooking up more and more imputs
to the linear threshold functions. The thresholds @ as well
a5 the decision function A& remein unchanged.

Hotice that we make no reguirement that the measure
furnctions p remaln bounded as the retina gets large.

Also we could have defined our "unlform thresheold
functionz" based on one of the other definitions of "linear
threshold function”, 2.3 or 2.4, These would lead to different
classes of machines., However, Definition 5.1 seems more natural
since, Tar a fixed figure on an "arbitrarily large" retins,
the threehold surmations need extend only over the points of
the figurz. This seems to capture the intuitive notion of
"computations which depend only on the figure itself, not on

the entire infinite retina”.



6. Stratification; Predicates of Rank 2.

Mueh of this paper is concerned with proving that
vaerious geomstric predicates are not of finite rank. In this
section, by way of contrast, we show how certain "symmetry"
predicates can be computed by uniform linear threshold
machines of rank 2. These results are reminiscent of the
"stratification phenomenon" discussed in Chapter 7 of [1].
This consists, roughly, in using very large coefficients to
encode geometric information, thus allowing certain predicates
to be computed by simpler machines than might have been thought
necessary. The detalls of this technique for linear threszhold
machines differ from those given in [1] for perceptrons.
However, the results have the same flavor in both cases, and

g0 we retaln the nams "stratification”.

Theorem 6.1 (Rank 2 Stratification).

Lat 51,5 be a sequence of disjoint finite subszets

E.j-l--r
of R . Let #1 be the predicate

¥ (X)) = r;ithﬂr 5, €% or 5, NXa= ﬁ]

then =s? 11 can be computed by a uniform linear threshold

maehine of rank 2.

(Wote: Eacn 2, must itself be a finite set, But there may

i
be infinitely many distinet &, 's.)
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Proof: For esch &, plck a "base point” b, € Sl . Let

n; = (number of elements in §,) - 1 . Define the function

wooas follows:

for x € 5, -1y u(x)=my= 4¢l

I"ll:h]_:l = —'_"]lml
and; inductively,

for x F Ei = 'Di p,[}.'_]l =1+ E ah5[u{3r}:l :dfmi

i-1
H(hij = -nim FE};{EJ

and u{x) = 0 for x not contained in any By

Then define

o) = [V ax) 2o
XEX

[T (a2 0]
weX

o, (X)

We claim that w(¥X) is trus if and only if mlij

and w.(X) are both true, i.e., if and only if

Y oufx) - 0 .

-

'.1.':.-:":
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To see this, note first thst

) mu(x) =0

xEEi

by cholce of u . HNow if §,(X} 1is true we have that either

Xn si =5 or XN 8, =@ . In elther case, then

i i

(il =0 .

-t

xES, NX

=

S0 if w(X) 1s true, we have

Lowx) = 5 ) ux) = o .
XFK 1 x€54NX

Conversely, suppose ?{I} iz false and let I be the largest
value of 1 for which ¢i(1] is false. (Hecall that we are
only concernad with finite figures X , so that I exists,)
Then

T- -
Low@) =) ) omlx) .
¥xeX all 1 xﬁxrﬁﬂi
such that
4 (X} 1s
felse
<
Let Ap = ¢ u(x) and Ag = z u(x) . Then
xFEIr1K e X

%70
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E: uix) = ﬂI + AR . By construction of u , we have

HEX

abs(A;) > m; since at least one point of §; is not in X .
Also, by construction, m; > aha{ﬂﬂj since, if ¢ (X) 1is

false then i < I .

Thus & > |£H| 80 A + A, £ O .

1l

Finally, notice that this construction will provide

uniform linear threshold functlions &i, %E on a retina
Sequence q: BT o J:?::J C ... We need only make sure that the

"higher numbered" sets &, appear in the higher numbered

i
retinas RY , The crucial peint is that we can "enlarge the
retina", add more Ej s+ wWlthout changing the wvalue of wu on
the lower numbered Si .

6.2 Example:s.

The following predicates all have renk 2:
(a) Draw a vertical line L° down the center of the

retina. Dsfine § Dby

¥(X) = [-K is symmetric with respect to LTl .

Here the sets Gi have two elemants consisting of a polint x
along with its reflection in L . Fellowing through the proof of €.1
we see Lhat the wedght m, = 27 - 1 .

i
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(b) More generally, let G be a finite group acting

en R . Then
io(X) = [_I is invariant under G_}

has rank 2. Take the Si to be the orbits of points of R

under the G-action, i.e.,

8; = L_J glx) for some x € R
BEl

(e} Pick a point x, € R . Then

— Too
g(xX) = [_K is a bull's-eye centered about xﬂ_]

has rank 2. Take the Ei to be "concentrie rings" about Ko o=

T HBaturation.

We now turn to some predicates which cannot be computed
by uniform linear threshold machines, These ineclude, for
example, predicates which recognize any topological invariant
and predicates which recognlze figures in context.

The main technique for obtaslning these results is the

Saturation Theorem. This says, roughly, that llnear threashold
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functions will become "overloaded” as the retina becomes large.
Consequently, parts of figures may become "invisible" to a
linear threshold machine. We formalize this in the notion of

"saturation" and "saturation sequence".

Definition 7.1 Suppose that H 4is a uniform linear threshold

l 8% c,.. and that A and B

are subsets of B with A c B® ;s Bc HI:I s 2 ¢ b . Then we

say that B gsaturates M with respect to A on R® , if

machine on a retina H: R

for any & C E* we have

ﬂ{B e8] = ﬂ{A uwBys .

(See Figure 3)

Intuitively, the idea is that B "overwhelms" the

decisicon elements of ﬁ to such an extent that ﬁ cannot
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Figure 3

A
B saturates M with respect to A on R?

Definition 7.2 Suppose B is a uniform linear threshold

- ] §
machine en RE and that [J:I.i c Hﬂ‘]] is a seguence of subsets

-

of R . (Here lﬂ‘”:i]} represents an expanding collection

of retinas in & .) Then we say that {Ai} is & saturation

seguence 1T there exists an integer N such that

A ”"*3””‘”"%1

ha

saturates #® with respect to A, on pdll) _

ok

The main result about saturetion is now:
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I.3 Saturation Theorem Let M be a uniform linear threshold
machine on R and let [ﬂi = qui]} be any infinite seguence

of disjeoint sets. Then Eﬂi} contalns a subsequence which

is a saturation sequence.

Proof: Let M = a3 and § = [&l,i.+,;r}

500 = [ wytn) > o]

HEX

As 1n §3 let

55(%) = ) uylx)
xeX

Define the number vi{K} by

TJ{x] o= 1 ir Sj[x} > 0

e
o

-1 if S5(x)
and let T(X) be the r-tuple
T(X) = (v () vn (X e v (X))

Since there are only a finite number of possible values for

I(X) , there must be an infinite subsequence of the fA;l for
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which r[ﬂi] takes the same fixed value. We claim that this
is the desired saturation seguence.

To prove this, first renumber the ﬁi's 2o that
1}

A is the subseguence picked out above. Also for

1*7pr st
convenience renumber the the Ri'a g0 that ﬂi c Ri .  Now
let
M = max max abs{sj{l}] .
J=1j+lljr :'I:':I'tl
Let

T = max abs EJ
iy L IR 5

T + M 1

and choose 0 =

where e iz the minimum sensitivity of the linear threshold

functions 51"'*’¢r . (Recall §2.5.)

et A = A and let B = A_ 1J A

1 2 3V
1

5 Dbe any subset of R ., We will show that

i1 A and let

N

&j{ﬂ B BY = &ﬁEE T3
for J = 1,2y+..7r « This will prove the theorem.

Case 1., Suppose we have a ] for which Ed{ﬂ} = 0 . Hence
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EJ{B} and EJ{A U B) are also 0, so
: oy . g
::'J{'H' u B U '—’:I EJ{E] EJEH u :I
and therefore E,SJ.{A UBuUS) = 53[13 us) .

Case 2. Suppose Ej{ﬁ] » 0, Then, by (2.5) we have ijﬂjli €

and so
E:-JI:H]I 2 (N-1)e = T+ M
gl=so; by cholece of M  we have

|$j{3]| < M S0 Ejfﬂuﬁ}lTlﬂj

and EJ{ILUBHJE]1T+:} ed

Henece $j{A By s) - éj{E Us)=1.

Cage 3. Supposs Ej{ﬁ} < 0 . Then, as above, we have

Ej[:".} < -¢ and SJ{E]E—{N—I]E= - T - M
Alse  |a8.(3)] ¢ M, 50 Ejfﬁ 11 5) € =T ¢ BJ
and EJ{H UBUWSE) € =T-z¢¢a8
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Hence EJ{A uBuyS8) = &j[E us) = o
This completes the proof.

To use the Saturation Theorem we proceed as follows:
firgt find a figure X which we would like to make "invisible”

te M , then embed X in a saturation sequence [Ri] so that

b8

2

UXg U oen U Xy =gp sat(X)

saturates M with respect to X . The following propositien

11lustrates the technigque:

Proposition 7.4 Let *aﬂj be the predicate

qadj{ﬂ} = T_K contains at least 2 adjacent points

of RT

Then *adj cannot be computed by a uniform linear threshold

machine.

Froof: Suppose I 4s & uniferm linear thresheld machine,
Let [Ai] be a segusnce of single polnts of R , spaced at
least 3 apart. By Theorem 7.3 [Al] contains & saturation

subsequence El,E Then, as Iindlcated sbove, let

:-_:‘1!-1-

1
B =D0H o H® and let HB. ' B, ... U B

1 a 3 « sat(B) saturate

M
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M with respect to B on :l?:l - HWow let & be the flgure

consisting of a single point of Rl y Bdjacent to B but
not adjacent to any of the other E.'-1 - Then, by saturation,

A(sat{B) v 8) = RA(B U sat{B) u 8)

but '.b_ﬂdj{ﬂat[E] U 8) is false while I;}Iadlj{E- U sat(B) y 8)

is true. (8ee Figure i)

L ]
Figure 4
Saturation sequence for iﬁad]
Remark: This proposition stands in sharp econtrast to the
percepbron case, where ¥ ie easlly computed by 2 perceptron

a

of order 2,
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9. Topological Invarliants.

We have already seen (4.4) that the only topological
invariants which could be computed by a finite rank linear
threshold machine are those which depend only on the Euler
characteristic., MNow we apply the Saturation Theorem to
conclude that not even these "Euler predicates” are computable
in a uniform way, and that consequently uniform linear threshold

machines cannot compute any non-trivial topelogleal invariant.

Theorem 8.1 Suppese N is a uniform linear threshold machine

such that ﬁ[x = ﬂ{IE} whenever X and X are topologicall'

1/ 1 2
equivalent. Then, in fact, ﬁ[ﬁ] = ﬁ[Y} for any non-empty

sets X and ¥

Praof: Let T denote the anmilus illustrated in Figure 5.

Let ¥ be any non-empty figure. We will show that R(x) =8(T) .

Figure 5

The standard tnnufﬁm T




Step 1: Let e(X] be the Euler characteristic of X . By
applying 4.4 and choosing the retina large enough

mo = 1 . B
we have that M(X) is egual to ene of the "canonical figures

with Euler characteristic e(X)", i.e.

e(X) disjoint squares if e(X) >0
or
a l-e{X]  holed annulus if e(¥X) < 0
(see Figure &). Thus we nzed only show that R({X) = H[T)

for X equal to any of these canonical forms.

el(x)= 0

Figure &

Canonical figures for Euler characteristic



Step 2. In the retina seguence R

T

choose a sequence of disjolnt copies of T . DNow use the

Saturation Theorem 7.3 to find a sequence TI‘TP""’TH 20

that

T. 0 ... U T, = sat[Tl',l

eaturates M with respect to Tl on RT . (S2e Figure 7.)

Wotice, that by (L.4) we have H(X) = M{X u sat[Tl}} since

these sets have the same Euler characteristic.

Figure 7

A saturation sequence of annuli
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Step 3. Case 1: Suppose 2(X) ¢ 0

form for ¥ iz an

80 that the canoniecal

n-noled annulus. Consider the set

X u F}at{'l'l] + By topological invaeriance we cap deform

X U sat{'l‘l} without changing the value of M &2 that the

"end-position hole" of X moves over to becoms Ty (Figure

g9, l.e., X « X u T; where ¥ has

(n-1) holes,

Figure 8

X daforms to iUT|




Thus we hawve

o4
—
kS
Yot
il

M(X U sat(T,}) = M{x U T, U sat(T))

M{X U sat(Ty)) = M(x) .

Froceeding lnductliwvely, we can reduce the number of holes of
X one by one untlil there is only one hole left, 1.e., X
reduces to an annulus,

Case 2: Suppose that e(X) » 0 so that the cenonicel form

Iz n disjoint squeres. Let 8, denote the "end

e

far

mast” sguare and X = X u 8. - Conslder again the set

XU sat[Tll . Once agaln the value of M is unchanged if we

deform thi= set by moving B, Over to be adjecent To the

k

position poccupied on the retina by Tl . [See Figure 9.)

Figure 9

XUT, deforms to XuS,UT;
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Thus

M(X) = M(X u sat(Ty)) = (X U 5. U sat(T })

M u s, U T, U sat(T,))

1

where the last equality uses saturation to add in T But

1

if = iz directly adjacent to T then the szet sn iy T is

n 1 1
iteself topologically en annulus and so has Buler characteristic

zera. Thus

i

M(X v 8, U Tl J Eat{Tl}] = ﬁff} (as long as X # 0 ) .
Proceeding in this way, we can eliminate the squares of X

one by one.

This completes the proof.

O, PFMigures in Context.

We recell the followling definition from .6 of [1].

Definition 9.0 If ¢ 1= a predicate then define a new pre-

i ¢ El r
dicale 1w context by



T

L cﬂntext{x} = |4(Y¥) for some connected

component Y of X

Papert and Minsky show that, for such predicates as

rHI is 2 hollow squaézl cannot be computed by

*1n context

a finite order perceptron. In this section we show that
uniform linear threshecld machines can compute *in context

for only the most ftrivial kKind of predicate ¢ .

Definition 9.2 We say that a predicate ¢ is divisible if

¥ satisfles the following condition: For every connected
get X on which ¢ is tryrue, if we divide X into two
disjoint connected sete X = A U B, then #(A) 1s true or
¢(B) 1s true.

We can see that most "interesting” geometrie predicates
are not divisible, TFor example, if #(X) 4is true and 4
is divisible, then by continual subdividing we ses that 1§
miast b2 true on the set consisting of one slngle square of X .
Consequently, any predicate which is both divisible and translation
invariant must be true on the figure conslisting of a single
sguare. HNot all predicates which are true on single squares
are divisible., Figure 10, for exemple, illustrates that

r_x is a aquur;] is not divisible.
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Figure 10

[Xis 2 square| is not divisible

Theorem 9.3 Suppose M 1s a uniform linear threshold machine

which computes ¢ for some translatlion invariant

in context

predicate ¢ . Then ¢ must be divisible,

Proof: Suppose § 15 not dlvisible., Then there exist
connectad figuree A and B such that X = A 1 B is connected,
g(A) = (B} = 0 and §(X) = 1 , Choose a saturaticn zeguence
[HiE af’ sete which are all congruent to B and translate A

so that A 11 B, 1s congruent to X . (See Figure 11.)
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Figure 11

Saturation sequence for qﬁn context

k1

Then we have -J,-l:ﬁi,l = for 1= 1,...,0 . Letting
B. J ... U B, = 5:;:[5..1] we have

= 24

. [
[CE-R e 11 — [t

i
Tin "“ﬂtvxtk” R e A

i rs , r y f oy y
| - / i ™ -
in contextts Y P1 Y OEARLLE, n contexg'™ Y 'at{*TI} =1 .
1, P - 1 1 17 L ¥
L Fas - L p LA '
¥ ; o T 1 - NN
AL [ B4 ) - LA U2 k| ; .
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The "negation" of is given by

I'F:I.ln. context

1&11{3} = fpp{Y] for all connected components Y of K_]

we leave 1t to the reasder te formulate and prove the

corresponding theorem for *all 3 BLafa,
ﬂ{xj = E;very component of X iz a rectan51;]

cannot be computed by a uniform linear threshold machine.

10. Bounds for Saturation.

We have shown that uniform lineay threshold machlnes
which purport to recognlze even very simple predicates must
eventuslly fail on arbitrarily large retinas. But how large
is arbitrarily large? This sectlon provides a bound, albeit
g rather weak one, in terms of constants associated with the

machlnes.

Definition 1@.1 Let M oo ﬁ% be g wniform linear threshold

machloe of rank = onn 4



-50-

HHE
]

{'-T-Iljl'-'PE.'l 1"-"!"'4:'1.]

500 = [0 w0 o

wEX
Let  8;(X) = ) wlx), let S(X) = max |5, (0)]
xE}:’_ R I
let T = max |gi} , and let g be the minimum sensi-

i=1,...,r
tivity (2.5) of the *$i . How define sequences m(i) and
b(i) by

m(0) = max S5(X)
xeat
B(1) = mL'iﬂ;_T Y
and, inductlvely,
m{n) = max S(X)
xer?(n)
b(atl) = b(n) + T(m(n) + T) .

Finally, let HN(H) = b(37) .

Theorem 10,7 Let M be as shove and let {ﬂt c Hi} bt mny

sequence of disjoint sets, Then there exlst, among thoe flrat
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N(R) terms of the seguence, a set A = some A= R and

a set B = (union of A,] such that B saturates M with

respect to A on gL

In other words, Tor the purposes of applying the

Saturation Theorem, RH{M} is "arbitrarily large".

Proof: If we examine the proof of the Saturation Thecorem (7.3)
we see that we can saturate M if we can find some An c R™

P o
and N more A's Ai(l]’ﬁifﬁﬁ"*"ﬂifﬂ} such that

1) All the A; have the same vector F{ﬂi}

2y N

1 : I where M = max |s(x3] .

om0

Since there are 3% possible values for r[ﬂj} the theorem
will follow at once from the Lemma below, if we choose p = 3k

and f{X) = T(X)

Lemma 10,3 Let £ be s function from subsets of ﬁ to the

set of integers {1,2:....p) . Then from any sequence of

b{p) subsets of R we can extraet sets A R and

ﬁi(ljrﬂi{?}"*“‘*ﬂi{wj ".*l'i't.h

1A =gy gy ) = e = Ay )

M

i

max | S5{X}]
¥ < R



.

Froof: By induction on p .

First, 1if p =1 , then all A's in the seguence
automatieslly have the same value f(A) , so choose A = A, © Rt
and eondition (2) is fulfilled since b{l) > Eiglzi—z .

How we assume that the lemma is true for p and prove
it for p+ 1 . Suppose we have a sequence of b(p+1)
elements, with f taeking wvalues in the set El,?,,.+,p+1]

Break the seguence into two pileces:

the first b(p) elemants

the remaining E%l{m{p} + T} elements .

If f applied to the first plece takes on at most p
distinet walues then the lemma follows by induction.

Otherwlse f takes on gll p+1 possible values among
the first b(p) elements. Now ameng the second group of
elements there is some value which f assumes at least
-ELE%JLE times. But there is also some set A among the
first h{p] glements on which ©  assumes this value. So let

bip)

the desired sequence be A = H followaed by the remaining

.El[.lf_'.l_iz elements selected from the second group.

Example 10.4 Suppose that the measure functlons by used by
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i are bounded, i.e., Eui{x]| < k for = € R . Suppose also

that the size of the retinas R° grows linearly with n ,

|RF| = cn . (This 4is sufficient for all applications of the

Saturation Theorem in Sections 8 and 9.)

O

m{n} = ke bin)

bi{nt+l}

n+1

or b(n+l} - bin) — ke b(n) + T]

and we can estimate the growth of b{n)

differential eguation

and s we Tind

i’
log bin) ~ a"

.
- - ¥
Finally N(HM) = b{(3 ) so we get

Then we can estimate

b(n) + —(n—;l-l[kc v(n) + T]

by considering the
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log log H(M) ~ 1

Corollary 10.5: For a bounded linear threshold machine to

avold being saturated on large retinas, the rank must grow

at least as fast as log log |R| .

11. Conclusion. ,

It is instructive to compare the results of this paper
with those of [1]. Minsky and Papert demonstrated limitations
of perceptrons of small order, providing mathematical justi-
fication for the intuiticn that these computationsl schemes
are somehow too "local” to deal with such "global™ predicates
as connectlvity. Here we have taken a complementary point of
view, lnvestigating the limitatiens of the linear threshold
element itselfl as a decision element.

Like Minsky and Papert we believe that the value of
this work lies in the general phenomena that it 1lluminates
rather than in the precise statements of the theorems, In
our case, we have shown that Minsky and Papert's "stratification
phenomenon” appears in the class of linear threshold machines
as well as 1in perceptrons. We have also indicated the importance
of saturation as a potential pitfall for any machine attempting

ta recognlze patterns using only a emall number of thresheld



elements.

Hopefully, all of these results will someday be
subsumed by a general mathematical theory of pattern recog-
nition, a theory which will elarify the intuitive guess that
any system for "general purpose"” pattern recognition must
have the ability to "focus in on" local features and alsoc the

abllity to combine this local data in flexible "global" ways.
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