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Abstract:

We present a rule-based system for computer-aided circuit analysis. The set of rules,
called EL. is written in a rule language called ARS. Rules are implemented by ARS as pattern-
directed invocation demons monitoring an associative data base. Deductions are performed in an
. antecedent manner, giving EL's analysis a catch-as-carch-can flavor suggestive of the behavior of
expert circuit analyzers. We call this style of circuit analysis propagation of constraints. The
systemn threads deduced facts with justifications which mention the antecedent facts and the rule
used. These justifications may be examined by the user to gain insight into the operation of the
set of rules as they apply to a problem. The same justifications are used by the system to
determine the currently active data-base context for reasoning in hypothetical situations. They are
also used by the system in the analysis failures to reduce the search space. This leads to ef fective
control of combinatorial search which we call dependency-directed backtracking.
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Introductinn

A ma jor problem confronting builders of autl:rlru:ci: problem-solving systems 15 that af
the combinatorial explosion of search-spaces. One way to attack this problem s to build systems
that effectively use the results of failures to reduce the search space - that learn from their
exploration of blind thE]fs.E""’ “fv3 Another way is to represent the problems and their solutions in
such a way that combinatorial searches are self Ihmltlng.“’""'

A second ma jor problem is the dilficulty of debugging programs containing large
amounts of knowledge. The complexity of the interactions between the "chunks” of knowledge
rmakes it difficult to ascertain what is to blame when a bug manifests Itself Someeily Ope approach
to this problem is to build systems which remember and explain their uamnlng.['""“‘" Such
programs are more convincing when right, and easier to debug when wrong.

We have designed and Implem-mtedmp a problem-solving language called ARS"FS in
which problem-solving rules are represented as demons with multiple patterns of
invocationPtern-directed imesslon oo nivaring an associative data base ™ P [y oarfarms all
deductions in an antecedent manner, threading the deduced facts with justifications which mention
the antecedent facts used and the rule of inference applied. These justifications may be examined
by the user to gain insight into the operation of the systern of rules as they apply to a problem,
The same justifications are employed by the system to determine the currently active data-base
context for reasoning in hypothetical situations 5ot Justifications are also used in the analysis of
blind alleys to extract information which will limit future search,

We have used ARS to implement a set of rules for electronic circuit analysis. This set of
J'I.IIH a version of ELF encodes familiar approximations to physical laws such as Kirchoff's laws
and Ohm's law as well as models for more complex devices such as transistors. Facts, which may
be given or deduced, represent data such as the circuit topology, device parameters, and voltages
and currents. The antecedent reasoning of ARS gives analysis by EL a "catch-as-catch-can” flavor
suggestive of the behavior of a circuit expert. The jostifications prepared by ARS allow an EL
user to examine the basis of its conclusions, This is vseful in understanding the operation of the
circuit as well as in debugging the EL rules. For example, a device parameter not mentioned in
the derivation of a voltage value has no part in determining that value, If a wser changes some
part of the circuit specification {a device parameter oF an imposed voltage or current), only those
facts depending on the changed fact need be "Torgotten” and re-deduced, so small changes in the
circuit may need only a small amount of new analysis. Finally, the search-limiting combinatorial
methods supplied by ARS lead to efficient analysis of circuits with piccewise-linear models,

The application of a rule in ARS implements a one-step deduction. A few examples of
one-step deductions, resulting from the application of some EL rules in the domain of resistive
netwaork analysis, are

I: If the volage on one terminal of a voltage source is given, one can assign the voltage on the
other terminal.

2: If the voltage on both terminals of a resistor are given, and the resistance is known, then the
current through it can be assigned.

2 If the current through a resistor, and the voltage on one of its terminals, is known, along



with the resistance of the resistor, then the voltage on the other terminal can be assigned,
4+ If all but ene of the currents into a node are given, the remaining current can be assigned.

The style of analysis performed by EL, which we call the method of propagation of
constraints,”"eeesstion requires the introduction and manipulation of some symbolic quantities.
Though the system has routines for symbolic algebra Mol meeeulion ypey can handle only linear
relationships. Nonlinear devices such as transistors are represented by piecewise-linear models that |
cannot be used symbolically, they can be applied only after one has guessed"®™** 4 particular
operating region for each nonlinear device in the circuit. Trial and ervor can find the right
regions but this method of assumed states is potentially combinatorially explosive, ARS supplies
dependency-directed backtracking, a scheme which limits the search as follows: The system notes a
contradiction when it artempils to solve an impossible algebraic relationship, or when discovers that
a transistor's operating point is not within the possible range for its assumed region. The
antecedents of the contradictory facts are scanned to find which nonlinear device state guesses
{(more generally, the backtrackable choicepoints) are relevant, ARS never tries that combination of
guesses again. A short list of relevant choicepoints eliminates from consideration a large number
of combinations of answers to all the other (irrelevant) choices. This is how the justifications (or
dependency records) are used to extract and retain more information from each contradiction than
a chronological backtracking system ®* ™™™ & chronological backtracking system would often
have to try many more combinations, each time wasting much labor rediscovering the original
contradiction.

How it works:

' In EL all circuit-specific knowledge is represented as assertions in a relational data base,
General knowledge about circuits is represented by laws, which are demons sub ject to pattern-
 directed invocation. Some laws represent Rm‘-'ﬁ'lFﬂgE as equalities. For example, there is one demon
for Ohm's law for resistors, one demon that knows that the current going into one terminal of a
resistor must come out of the other, one demon that knows that the currents on the wires coming
into a node must sum to zero, etc. Other laws, called Monitors handle knowledge in the form of
inequalities: For example, 1-MONITOR-DIOOE knows that a diode can have a forward current if
and only if it is ON, and can never have a backward current.

When an assertion (Tor example, (= (YOLTAGE (C 0111 3.4), which says that the
voltage on QI's collector has the value 3.4 volis) is added to the data base, several demons will in
general match it and be triggered. {In this example, they will include DC-KVL, which makes sure
that all other elements’ terminals connected to Qs collector are also known to have that volta EF,
and YCE-MONITOR-BJT, which checks that Q) is correctly biased for its assumed operating region ).
The names of the triggered laws are put on a queue, together with arguments such as the place in
the circuit that the law is to operate. Eventually they will be taken of f the queuwe and processed,
perhaps making new deductions and starting the cycle over again

When a law Is Tinally processed, it can do two useful things: make a new assertion (or
several), or detect a contradiction. A new assertion is entered in the data base and has its
antecedents recorded; they are the asserting demon itself, and all the assertions which invoked it or
were used by it. This complete memory of how every datum was deduced becomes useful when a



contradiction is to be handled. A contradiction indicates that some previously made arbitrary
choice (eg. an assumption of the linear operating region of some nonlinear component) was
incorrect. ARS scans backward along the chains of deduction from the scene of the contradiction,
to find those choices which contributed to the contradiction, and records them all in a NOGODD
assertion to make sure that the same combination is never tried again. (NOGODD {(M00E 011
CUTOFF) [ (HODE O5) OM)) is a NDGOOD assertion that says that it cannot be simultaneously true
that transistor QI is eut of f and diode D3 is conducting. Such a NOGODD might be deduced if 1
and D5 were connected in series. Next, one of the conspiring choices is arbitrarily called the
“culprit” (“scape-goat” might be a better term) and re-chosen dif ferently. This is not mere
undirected trial and error search as ocours when chronglogical backtracking with a sequential
control structure is used, since it is guaranteed not to waste time trying alternative answers to an
irrelevant question. The NOGOOD assertion |5 a further innovation that saves even more
computation by reducing the size of the search space, since it contains nol el the choices in effect,
but only those that were specifically wsed in deducing the contradiction. Frequently some of the
circuir's transistors will not be mentioned at all. Then, the KOGODD applies regardless of the states
assumed for thote irrelevant transistors. 17 there are ten transistors in the circuit not mentioned in
the NOGOOD, then since every transistor has three states (in the EL model) the single NOGODD has
ruled out 10-59049 different states of the whole circuit



Analysis by Propagation of Constraints

Consider a simple voltage divider:

Suppose that the voltage at the midpeint is known to be 3 volts, relative to the indicated ground.
Since there is known to be no DC current through the capacitor, it is possible to determine the
strength of the voltage source, Forward reasoning is doing it this way: First, use Ohm's law to
compute the current through RE lrom ite resistance and the difference of the voltages on its
terminals, MNext, the current through ]i'.l can be seen, via KCL, to be the same as that through RZ'
Finally, that current, together with R|'s resistance and the voltage at the midpoint, can be fed to
Ohm's law 1o produce the voltage at the top. This is an example of what we call "Torward
reasoning” or {as applied to circuits) "propagation of constraints”.

However, not all circuit problems can be solved so simply, Consider a ladder network:

Such a network might be solved with three node equations or by series-parallel reduction, More in
the spirit of forward reasoning is "Guillemin's Trick”™;

We assume a node voltage, e, at the end of the ladder. This implies a current, e/5, going
down Rg by Ohm’s Law. KCL then tells us that this current must come out of Re But we know
the voltage on the right of Ry and the current through it, so we deduce that the voltage on its left
is 2e. We use this voltage 1o deduce the current through Ry and then KCL to give us the current
through Rs. We continue this process until we get all node voltages defined in terms of e



But now we know 8e = |0, therefore, e = 54 volt. We have solved the network with | equation in |

unknown,
Alaz, Guillemin's trick fails in the following circuit:
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At first glance, this is a 3 node equation network with no possible series-parallel reductions. We
want to generalize Guillemin's trick to solve this netwerk (with fewer than 3 equations),

We [irst assume a node potential, ey, at the top of Re. Thus, we deduce that the current
through Ry is e)/4. At this point we can make no further one-step deductions. Rather than give
up, let's poke it again. We assume a pode potential, tq. at the top of R, We can now conclude
that the current through Ry is es/l and the current through Rg (measured to the right) 13 I:EE-E'E:FJ'?
We can now use KCL to deduce that the current through Ry (to the right) is {(Je-2e,)/4 and that
the current through F‘:'! i% I:?eg-ei}.l'ﬂ:



At this point we can deduce that the voltage on the lefltmes: terminal of R is epel3/4)0ey-
2eo) or (Ilej-Gegl/d. We can also deduce that the voltage on the leftmost terminal of R .is
eo+Bi(3eq-e))/2)elleq-4). Since these terminals are connected together we have two expressions for
the same node voltage. Setting them equal and simplifying, we get ej=2es. The result of this
simplification is
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Continuing, we deduce that the current through B must be Seq/l0-e5/2. By KCL, the
current through Ry must be Ze;. Ohm's law now gives as the voliage at the left of Ry as leq. But

this voltage is set by the voltage source, so [50o="0. We conclude that eq=2:
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We have solved the network with enly iwo unknowns, As we approach a full graph
network, this method degrades smoothly 1o be the node method, but usually it uses far fewer
unknowns,

What have we been doing?

A fundamental concept here is that of a one-step deduction. In the case of a resistive
network with voltage and current sources there are only a few kinds of one-step deductions
possible:

I: If the voltage on one terminal of a voltage source is given, one can assign the voltage
on the other terminal

2. If the voltage on both terminals of a resistor are given, then the current through it
can be assigned.

5 IF the current through a resistor (s given, and the voltage on one terminal is given,
then the voltage on the other terminal can be assigned.

4: If all but one of the currents into a node are given, the remaining current can be
assigned,

Another basic concept here is that of a coincidence. A coincidence occurs when a one-
step deduction is made which assigns a value to a network variable which already has a value.
We have seen several coincidences. In the ladder network example a one-step deduction of type 5
assigns the node voltage Be to a node which is already at 1) velts. In the second example, the node
at the top of RE was assigned two dif ferent node voltages by two one-step deductions of type 2,
and the voltage J‘S'E? even though it alveady was known to be 30 volis. In each of these cases the
coincidence resulted in the formulation of an equation berween the competing assignments. At the
tme of a coincidence, the resulting equation should be solved, il possible, Tor one of its unknowns
in terms of the others. The circuit is then redrawn with that unknown eliminated.



Thus, the basic propagation analysss algorithm is rather simple:

Algorithm: Propagation of Constraints
Choose a datum node and assign it a potential of O
loop:  IF there is a one-step deduction availanle
Choose a deduction and make it.
ADVICE:
[T TF the fast action was the assignment of
a mode potential, look for a type I, 2. or 3
deduction involving that node
[Z1 TF the last action assigned a current,
look for a type 3 or 4 deduction involving
that branch.
IF the deduction caused a coincidence THEN
IF the equation impled by the coincidence is a
tautology
lgnore the coincidence (and be
reassured by the Fact that it checks').
contradiction
ERROR: You did something wrong.
otherwise
Solve for one unknown in terms
of the others (or for a number, if
there are no others!). Eliminate
that unknown throughout the circuit.
Go to loop.
IF there is a node without a node potiential
Choose such a node and assign it a new node potential variable,

Go to loop.
RETURMN

All of the unknowns introduced by the alzorithm are sure to have had their values determined by
the time the algorithm returns.

MNow, what about choosing where to place unknowns? We want to get as much action as
we can out of each one. Cine measure of the simultaneity of the situation is given by a count of
the number of unknown nodes connected 10 a given one B9 Eor ey ample, consider our ladder
again. All nodes except the ground and the top of the voltage source are unknown. In the
following circuit each unknown node has been annotated with the number of unknowns it is
connected o



We can see that the middle node has two unknown neighbors while the others have only one. I
we place a node potential on the middle node, we can only deduce one current while if we place it
at either one of the | neighbor nodes we will get the whole answer. The rule is to place the node
potential at a node of minimum unknown neighbors. This also has bearing on where to place the
datum. In general, we want a node which 1z maximally connected to unknowns, $o as to constrain

them quickly.



Faets and Laws

Analysis by propagation of constraints is a form of antecedent reasoning in which a
given, closed set of questions {in this case, the voliages and currents at all points in the network) is
to be answered, ARS provides a general framework for the implementation of antecedent
reasoning systems; we developed it to support the particular set of rules for electrical analysis
which we call EL. Like any programming language, ARS is best explained by showing how it can
be uted to implement an example. We will now display sample parts of EL. and how they
implerment parts of the analysis method already described.

To EL a circuit it made up of devices and nodes. A device is any of the components one
would normally think of as present in the circuir, such as resistors, capacitors, transistors, and
voltage sources. Each device has two or more terminals by which it 15 connected to the rest of the
clrewit. Burt two device terminals are never connected directly. Instead, they are both connected to a
common node (that is the sole purpose of nodes).

ARS requires that all knowlege to be manipulated be represented as assertions, and their
manipulators to be expressed as demons. EL therefore deals with facts that name the devices and
nodes in the circuit, and state which terminals connect to which nodes. A node or device is named
by an [5=A assertion, such as (15-A RL RESISTOR) or 115-A WS4 NOOEY. The 15-A assertions
serve several purposes. They control the matches of restricted variables and they enable EL to
find all the nodes in the circuit, which is necessary for deciding where to put a symbolic unknown
when one is needed.

Muost devices have parameters; for example, a resistor has a resistance and a transistor
has a polarity. These parameter's values are recorded, if known, by facts like
(= {RESISTANCE R1} 1BB@.81, which says that R)'s resistance is 1000 Ohms. They do not have
to be specified, and EL can be "back-driven” to deduce them if enough voltages and currents are
known. An example of this use of EL to aid the choice of device parameters is given in the
appendix.

The connections of the circuit are described by assertions like (CONNECT NS4 (81 RL1D,
each naming a single node and a single device terminal. These assertions need never be entered
by an EL user, however, because we supply a special input format for conveniently defining
devices and wiring them up into circuits (see Appendix).

Each type of device has conventional names for its terminals. For example, a resistor’s
terminals are known as #1 and #2: a transistor's are called E, B and C. The conventional
terminal names have to be used because they are the ones that the laws for the device know about,
It would be easy to wire a resistor up by its #3 and &4 terminals, but the EL law embodying Ohm's
Law would not know about them.

The knowledge EL accumulates during the analysis of a circuit involves mostly the
values of the voltage at or the current through particular device terminals. They are represented
by assertions such as (= (VOLTAGE (1 R1)) 18.81. The values of symbolic unknowns, when
learned, are stored in the form (YALUE X15 15.&1,

Perhaps the simplest circuit rules are those, such as Ohm's law, which can be represented
by algebraic equations. In ARS such a law can be written very simply:



(LAK DC-0OHM ASAP (IR RESISTOR) ¥1 V2 [ RES)
11
(1= IVOLTAGE 181 I7R)} !»V1) (= (VOLTAGE (#2 1PR)) 1s¥2)
(= (CURRENT (#1 17R)1 Is[) (= [RESISTANCE !7R) !sRES))
(EQUATION " (8- V1 V21 "{8= RAES [) R1)

This is the EL law that implements Ohm's law. Like all EL laws, it has an arbitrary
name, a set of slots or antecedent patterns to control its invocation, and a body which in this case
consists of an algebraic equation. The name, chosen by us for mnemonic significance, is DC-OHM,
ASAP indicates its invocation priority, which is normal, as it is for all laws that are simply equations
between circuit parameters. OC-0HT declares the Jocal variables VI, V2, | and RES to hold the
two terminal voltages, the current, and the resistance value of the resistor. In addition, the type-
restricted local variable B is used for the resistor about which the deduction will be made. The
long list beginning with (- (VOLTAGE ... contains the demen’s trigger slots, Their purpese is
dual: to provide patterns to direct the invocation or triggering of the demon, and to gather the
information needed in applying Ohm's law once the demon is invoked.

The ARS antecedent reasoning mechanism will signal DC-0H1 whenever a fact is asserred
that matches any of DC-0HY's trigger slots. DC-OHM itself then avtomatically checks all of its trigger
slots to see which ones are instantiated and which ones are not. That information is passed to the
function EQUATION, whose job is to deduce whatever it can from the equation it is given. If one
of the terms in the equation {[. V1, V2, and RES, in this case) is unknown, EQUATION can
deduce it from the others. If all the terms are known, EQUATION checks that they actually satisfy
the equation, and if any of them is an algebraic expression involving symbolic variables, EQUAT [ ON
can solve for one of them. Whenever EQUATION asserts a conclusion, it automatically records the
instantiations of the trigger slots as the antecedents of the conclusion

Motice the {) before the list of trigger slots in OC-0HM. That is the list of mandatory
slots, of which in this case there are none. Mandatory slots are just like trigger slots except that
the law is not processed unbess all of them are instantiated. OC-0HA's slots are not mandatary, since
i any single one is missing OC-0H1 can accomplish something by deducing a value for it
Mandatory slots are useful when a law is contingent on some fact. For example, dif ferent laws
apply 1o conducting transistors and cut-off transistors. EL represents the knowlege that a transistor
15 cur of f with an assertion such as

{DETERMINED (NDDE QL) CUTOFF)

When a transistor is cut of f, no current flows into any of its terminals. One law, DC-BUT-CUTOEF -
IC. enforces the absence of collector current:

(LAW DC-BJT-CUTOFF=-IC ASAP (IO BJTH IC)
( (DETERMINED (MODE |20 CUTOFF))
[ (= [CUREENT (C '700) 1=ICh)
{EQUATION "IC 8.2 )



This law has a mandatory slot requiring that the transistor in question be cut of f. If that is
known, the law will be applied and will deduce that the collector current is zero. If that is not
known, the law will never be applied, Mote that the slot that detects a known value of the collector
current is nof a mandatory slot, and its only function is to make sure that such a known value will
be noticed by the law and checked for consistency.



The Method of Assumed States

The propagation methed can be extended 1o any devices with laws that are invertible: f
one terminal voltage or current is in fact fixed when others are given, then an algebraic expression
for it in terms of those others may be needed in the course of propagation. Moreover, the
expression must be “tractable”, in the sense that the thuman or mechanical) algebraic manipulation
systern may need to substitute in it, simplify i, or even solve it for unknowns appearing in it, in
order to carry out the solution. For example, handling a diode is too complicated, since it would
create the need to solve exponential equations. But even an "ideal diode” - a piecewise-linear
approximation to a real diode - is too complicared to be handled symbolically as fluently as is
necessary. It would introduce conditionals and “max”™ and “min" funciions into the expressions, and
they are not invertitle '

Bur if the algebraic manipulation technology can’t handle the device's laws as a whaole,
stronger methods of reasoming can break them down. Electrical engineering has a method known
as the “method of assumed states”, which is applicable 1o piecewise-linear devices such as ideal
diodes. It involves making an assumption about which linear region the device is operating in (for
a dicde, whether it is "on” or "olf"). This makes the conditionals simplify away, leaving tractable
algebraic expressions to which propagation of constraints applies. Afterwards, it is necessary to
check that the assumed states are consistent with the voltages and currents that have been
determined.

For an example of such reasoning, consider the diode and resistor in series: Assuming

' m+

the dicde to be nonconducting, we would deduce that there is zero current flowing, and that the
voltage at the midpoint equals e Since e is posilive, that contradicts the conditions necessary for
the diode to be off, as we assumed. On the other hand, if we assume that the diode is conducting,
we deduce that the voliage at the midpoint is zero, and can then determine the amount of current.
The current is flowing downward through the resistor and diode, which i3 consistent with the
assumption that the diode is conducting.

When this method is mechanized, it 15 necessary to cycle through all of the possible states
(linear regmns] of the device, testing each one for consistency with the voltages and currents that
follow from it. When there are several complicated devices, it is necessary to consider all
combinations of all different states for each device. This causes an exponential explosion of the
number of states of the system that must be investigated.



For example, this circuit
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has three transistors. 1 the transistor model admits three states, active, cutoff and saturated, then
there are, at first glance, 3:3:3 or 27 dif ferent triples of states that must be considered, of which
only one (all three transistors active) is self-consistent, But actually, the states of the transistors are
completely independent; the stages are coupled only for AC signals and have no effect om each
other's bias conditions. Knowing this, we can find the correct state for each transistor separately,
giving only 3+3+2 or 9 assumprions to be tested. Such situations are very frequent, and their ]
detection is an effective way of reducing the work entalled by the combinatorial search for the
correct states,

—
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Making Choices

Using the method of assumed states requires the ability to make choices, and to handle
contradictions by making new choices. These abilities are built inta ARS, but the conditions for
the detection of a contradiction are a matter of expert electrical knowlege, contained in EL laws.
An equation law detects a contradiction if it sees that the equation is not satisfied by the known
values of the quantities in it

However, the method of assumed states carries another sort of knowlege, of the
boundaries of the different operating regions of piecewise-linear devices. EL has special laws
known as monitor laws which check that a device 18 in fact in an environment consistent with the
state assumed for it The conditions tested by monitor laws are often inequalities, which are nol as
conducive to symbolic manipulation as equations. ARS’s symbolic algebra routines are helphess
with them, so menitor laws can't do their job unless numerical values are known for all the
parameters entering inio the inequality

When the operating region of a nonlinear device is known, that knowledge is representecd
by a DETERMINED assertion, such as (DETERMINED (MODE Q1) CUTOFF). The general form is
DETERMINED, followed by the “question”, followed by the "answer”. Such knowledge might have
been deduced (such as when we first learn that a transistor’s emitier current is zern, and then
deduce that it must be cut of [}, or it might be the result of an arbitrary choice. In the latter case,
the choice itself is represented by a similar CHOICE assertion: (CHOICE MODE @1) CUTORFD,
from which we pretend that the OETEAMINED assertion was "deduced”. The reason for having the
two different assertions is that all the transistor laws that depend on the transistor’s state can look
for the DETERMINED, and thus work no matter how the known state was arrived at, while the
backtracking mechanism can look for the CHOICE, and avoid trying to choose other answers for a
question whose answer is not in doubt

In Fact, for the sake of efficiency, we have lumped together the state conditions not by
state but by the circuit variable they test. Here is the monitor that checks transistors’ collector
eurrents For consistency with whatever state 15 assl med.

(MONI TOR-LAK 1C-HONI TOR-BJT HIPRI-ASAP (10 BJTI (IC WUMBER) (BE-ORDF NUMBERD)
{{= (CURRENT (C !700) !»1C} {« [(BE-DROF 170) 1>-BE-OROFY )
i
(COND ( (AFFROX IC 8.2]
(DBSERVE " (DETERMINED (MODE 01 CUTOFF) AMTECEDENTS!)
i« (&% IC BE-OROP) @.8) SCONTRADICTION DEHON ANTECEDENTS 01
(T (ASSERT-MOGOOD "(MODE ,0) ‘CUTOFF ANTECEDENTS NIL11D)

It s called a MONITOR-LAW instead of just a LAL so that it will insist on having numerical values
for the local variables declared to need them, 10 {the collector current) and BE -TAOF {whose sign
indicates the polarity of the transistorl. A 1ero collector current is consistent with enly one state,
CUTOEF. The function DSSERVE reports a contradiction to ARS if the transistor is in any other
state. In addition, as a timesaving measure, if the transistor's state has not at the moment been
chasen, OBSERVE chooses CUTOFF since it is the only consistent choice. [T 1C and BE-DAOP have



- Opposite signs, the collector current is flowing backwards through the transistor, which is
impossible in any state; in that case, a contradiction is reported to ARS for processing. Othelwise,
there is a physically possible, nonzero collector current, which is consistent with any state rxce bt
CUTOFF. The function ASSEAT-NOGOOD reports that to ARS, causing a contradiction if an
assumption of CUTOFF is currently in force. 1 not, a NOGOOD assertion is created (see

Contradictions, below) so that future search through the space of state-combinations will be
limited, '



Dependencies and Confexts

The method of assumed states requires that ARS be able to reason from hypothetical
assumptions. In addition, intelligent processing of contradictions invalves distinguishing the guilty
assumptions from the innocent ones. ARS's dependency records play a central role in both
activities,

ARS keeps complete records of every deduction that it makes. The premizes of the
deduction can be found From the conclusion, and the conclusion from the premises. These records
are used by ARS for several purposes: explaining the derivation of a fact to the user, finding the
choices relevant to a contradiction, and delineating those facts which are currently believed 1o be
true, A fact is believed (in) if it has well-founded support from atomic assumptions which are
currently believed. An assumption, such as an arbitrary choice of a device operating region, may
become disbelieved, perhaps because of a contradiction involving it. A fact which does not have
well-founded support from believed assumptions is said to be put. If a choice (and its
censequences) which has been cuted returns to Favor, we use the dependency information to save

the effort of reinventing implications from scralch. This process is called unouting. At any time,
those facts actually believed are said to be in, while those under a cloud are put, Dependency
information remains forever, even as the facts involved rise or fall in favor,

Here {8 a picture of the contents of an ARS fact data base, containing several atomic
facts {device-state choelces, or circwil construction specifications) and sundry consequences of them,
showing a particular context selected. Al Bl aml CI are atomic data that are currently in. Suppose
Al and AZ are device-state assumptions, and in fact are alternative assumptions about the same
device, so when Al is in, A2 must be awr,




If Al were to be retracted, the fact garbage collector would be invoked, leaving the data base as
Tollows:




In addition, deduction would have the chance to add more facts:

[t may happen that a fact can be deduced in more than one way, I one is certain of
one's premises, extra proofs of a known fact can be discarded. ‘When the premises can be arbitrary
choices that might be taken back, extra proofs are impertant, because they might remain valid
when the premises of the original proof are not. Although a program might be guaranteed to find
the second p-t'l:u:lf again if the First were invalidated, that would waste time. T herefore, ARS keeps
separate records of each way that it finds to deduce a fact. When two facts imply each other (with
appropriate ather premises) it may happen that ARS records a deduction of the first from the
second and also a deduction of the second from the first. At First we were shocked by this, but it s
inescapable, because with one set of choices in effect it may be necessary to deduce the first via the
second, while with ather choices the second may be accessible onfy via the first. However, such
loops in the dependency chains creates a problem for processes such as contradiction processing
which must trace out the reasons for a fact [t is soluble, however, because if any fact that is in
has {as we would hope!) a valid reason for being believed, it must be the apex of a non-looping
subgraph reaching down o atomic assumptions such as the wiring of the circuit and device-sate
choices. For every one of the facts thar is currently in, ARS singles out one of the ways it was
dediced as its support, and those marked deductions are chosen to form a subgraph that contains
no loops, Backward tracing of the dependency records then Follows only the supports, and
therefore always terminates, The selection of the supports is a by-product of the process used to
determine which Facts are still to be believed when an atomic assumption is taken back, which
operates by scanning forward from the atomic assumptions currently believed and marking all

their consequences as a garbage collector would. The facts that are marked become in, and the
garbage facts are oud.



Because facts and dependency information are never tatally forgotten even when they
are disbelieved, a short cut is possible when a once believed but later invalidated fact is validated
once more. In a process known as unouting all the old consequences of the vindicated fact are re-
examined, and if their ether antecedents are all currently believed they too are marked in. If not
for unouting, those consequences would be rededuced eventually anyway by the laws that originally
deduced them, but unsuting is much Taster.

Taken together, the two processes of outing and uncuting can be viewed as context-
switching between contexis each associated with some subset of the set of possible assumptions.
Since there are 0 many contexts (o visit, the facs are not marked with the names of the contexts
they are in; instead, context switching must identifly and mark the facts that are in the context
being entered. These contexts form a tangled hierarchy instead of the usual tree. Entering a
subcontext is believing an additional assumption, which is done by unoufing together with normal
deduction. Moving to a higher context is disbelieving some assumption; this is done, by means of
the fact garbage-collector, when contradictions happen. Mote that, as in Conniver, a “subcontext”
generally containg more assertions, and a “supercontext” contains fewer.

In fact, one could imagine the entire set of contexts as existing imitially, but with no
knowledge in any of them save the initial assumptions; then reasoning happens, adding maore
knowledge which is autormatically placed in the context{s} determined by the premises of each
deduction. Contexts in which contradictions are believed are the ones ruled out as accepiable
solutions to the problem. The athers are fernle ground for extension of knowledge. This point of
view raises one above the petty details of when one should backtrack (try working a different
context), and alsa raises the possibility of swirching contexts simply because they appear unfruitful.
and not necessarily contradictory (but this has not been implemented). Also, since backtracking is
just a change of the point of attack, it loses no information.

A fact does not itself belong to any context, although it may be known in a particular
context, or in several contexts for independent reasons. The dependency records also do not belong
specifically to the context that was in effect when the deduction was made. Because of that, they
are always ready to pull the consequences into a new context if the antecedents are deduced in it
Although a fact deduced is certainly in the currently selected context, it may also automatically, by
virtue of its dependency links, be in some supercontext of it (and also many sibling contexts), if its
proof did not make essential uze of all of the atomic facts that define the currently selected context
In other words, a fact when deduced is not simply “installed” in the currently selected context, the
way it would be in Conniver; it goes aufomaiicaly into the highest supercontexts that s
derivation will work in, and is merely "inherited” by the selected context.

This context mechanism might be applied to the understanding of processes that develop
over time by associating a unique atomic datum with each significant local event occurring in the
process. There would then be, for each stage of the process, a context in which the state of the
system at that stage was known. However, the understanding of the process would not be tied to
any global “time coordinate”, and would not require any spurious time-ordering between events that
were not causally related. Any “spacelibe hypersurface” slicing through the process would have a
corresponding context; time would be a decentralized object that could be advanced locally in one
region of the process while being “left at the same instant” in other regions.



Contradictions

When EL uses the method of assurmed states to analyze circuits containing nonlinear
devices, incorrect assumptions are detected by means of a contradiction, which i3 the specific event
in which the chosen assumptions are seen be inconsistent, A contradiction is detected by a
particular law - most often by monitor laws that exist for just that purpose. Contradictions are
remembered both by contradiction assertions which are placed in the dependency-structure at the
point of contradiction, and by NDGOO0D assertions which record essentially the same information in a
form easily used by the routines which choose alternate state-assumptions. A contradiction
assertion does not expliciily contain any information; its significance lies entirely in its list of
antecedents. A NOGOOD assertion explicitly lists the state assumptions that conspired to produce the
contradiction. A typical contradiction might depend on dozens of atomic facts, including tome
device-state choices such as (CHOICE (MDDE 03) BETA-INFIMITE) and (CHOICE (MODE DZ2)
OFF), as well as many circuit construction details such as IRESISTANCE Rl 1208.8) and
(CONNECT NS4 (B 01)). The contradiction assertion would have all of them as antecedents
{indirectly); the NDGOOD assertion might be {NOCODO {(MDOE 03) BETA-INFINITE) ((HODE D2)
OFF11, and its antecedents would include the RESISTANCE and CONMECT assertions but not the
CHOICES.

When we view sets of assumptions as determining contexts, a contradiction is a fact
deduced in a specific context, which shows that context (and all of its subcontexis) to be of no
Further interest. But if the fact of the existence of the contradiction is to be available for use
{such as in controlling a search), that fact must reside in a different context. HOGDDD assertions fill
that role. The simplest way to remember the contradiction's existence would be to assert a fact
containing a list of all of the atomic assumptions of the contradicted context, found by walking
back through the dependency tree from the contradictory facts (or, just as good, from the
contradiction assertion). In the exam ple we are wsing, the RESISTANCE, the CONKECT, and both
CHOICEs would be listed in the NOGOOD, which would have no antecedents. Since such a NOGOOD
would be true regardless of the truth of any of the premises it listed, it would exist in the highest
context of all, which is the one that depends upon no atomic Tacts. However, (not {A and B)} can
also be stated as {A implies (not BY). Any subset of the basis of the contradiction can be de-
emphasized by being made antecedents of the NIGIDO rather than part of its list, In our original
example, the RESISTANCE and CONNECT assertions were de-emphasized. De-emphasis makes the
information totally unavailable in some contexts ithose that do not include the -rle-rsmplmuzr?d
antecedents), but by the same token reduces the number of NOGOODs that are in at any maoament, and
also reduces the size of each NOGOOD's list. That is valuable, since whenever ARS needs to chooee 3
state for a device it must examine ail NOS000: that are in, to eliminate choices already known to be
incorrect; each NUGOOD must be processed to see whether it lists the choice under consideration, and
whether the other atomic facts it lists are currently alse in. De-emphasizing some of the atomic
facts causes the normal context mechanism to help with this filtering of the NOGODD assertions,

Of course, de-emphasis can have drawbacks. The maost extreme possible de-emphasis
wouild leave only one assertion in the NDGOOD's list, while all the others became antecedents of the
NOGOOD.  This would make the NOGOOD almast useless for pointing out contexts which were no
worth visiting. Imagine that Al, Bl and Cl are atomic facts thar lead to contradiction, and thar




Al is listed as no good, with Bl and CI as conditions. If later Al and BI were in, and Cl were
under consideration for belief, that NOGOOD assertion would be ouf, and there would be no
understanding that Ci led to a context already tried and discarded. The NOGOOD would not b
performing its intended function. This would not be a disaster, since bringing Cl in would bring
back the original contradiction assertion also by unouting, but much fime might be wasted. This
“thrashing” is most painful with such excessive de-emphasis, but any de-emphasis has the ability to
cause thrashing if its implicit assumptions about the relative stability of the atomic facts prove to
be wrong.

A practical system must find a COmM@pramise befween thrashmg. and EXamining too many
too-big NOCODOs whenever a choice is made ‘We do not know of any domain-independent solution
to the problem. What is clear is that it is good to de-emphasize facts that are unlikely to change.
In the domain of electronic analysis, we emphasize device-state choices, and de-emphasize circuit
wiring and intrinsic device parameters such as the resistance values of resistors, since during the
analysis of a specific circuit the latter usually do not change. In circuit design there might be
occaslons when some circuit veoliages that represent the design criteria would be Jeast likely to
change, device-state assumptions would be guessed at next (along with approximate circuit wiring),
and placement and values of resistors and capacitors would be chosen last. Then, HOGOOD
assertions might emphasize the detailed wiring decisions and de-emphasize the large-scale ones. A
second level of NOGOOD assertions might speak of averall circuit plans, de-emphasizing only the
design criteria. Thus, the level of a contradicted context in the tangled hierarchy would guide the
choice of a context for the NRIGOOD,



Compound Devices, and Identified Terminals

Engineers often think of a subcircuit a5 a “black box”™. A truly black box -- one whose
insides are hidden, such as an op-amp - s intellectually (and computationally} just an element.
Mare interesting i3 a "grey box” which may be ambivalently thought of as a black box or as a
configuration of components. Grey boxes are often used to summarize some aspect of the
behavior of a configuration as a whaole. [t is economical te store the most important features of
the behavior of common configurations as grey-box laws so that they do not have to be computed
from scraich each time the configuration is used. Sometimes, in Fact, there are laws about the
behavior of a configuration which are crucial to analysis of circuits containing it, but which are
very difficult to derive from the behaviors of its components.

For example, some commaon configurations of transistors cannot be understood in terms
of EL’s simple-minded model of transistors. Such an application is the emitter-coupled-pair (ECP):

f

The problem here is that one must use the exponential diede model of the transistors to derive the
fact that (in a correctly biased ECP} the incremental difference in collector currents is proportional
to the dif ference in incremental base voltages (and Turthermore, that constant of proportionality is
almost independent of the rransistor characteristics) "™ " We could try to solve this problem by
attemnpting to inciude the exponential diode model of the transistor and the algebraic expertize
required o use it. Motice, however, that this important, but dif ficult to derive fact about the
currents in an ECP is in asell a simple linear faw for the ECP. Grey-box laws allow us "package”
this fact about the configuration so that it can be uted in analysis, without increasing the



complexity of cur basic transistor model. In this way we can use the much simpler {but less
accurate) models in most cases and have a way 1o impose the constraints on the configurations that
depend on the more accurate models.

Another problem i that there is not st one ECP circuit. For example, here is another
variety of ECP:

If we had to specify a distinct set of grey-box laws to cover each instance of ECP we would be
fighting a losing barttle. We must express the laws to capture the essence of ECP and not any
particular circuit,

The notion of a grey box is implemenced by the EL macro-device feature. An EL user
may specify that a particular subcircuit is to be viewed as a grey box. EL has the ability to
identify a portion of a circuit with a macro-device on a terminal-by-terminal basis. The subcircu
and the macro-device are regarded as akternate descriptions of what is connected to their commeon
environment. The terminals of the macro-device are each identif ied with a terminal of one of the
devices in the subcircuit. The device is allowed to have unidentified connections, and so is the
subcircuit - in fact, to speak of the subcircuit is slightly misleading, since it suggests that there must
be a boundary surface that divides the circuit into "inside” and "outside”, and no such is required
When two terminals are identified, EL assumes that they must have the same voltage and the same
current, This is not the same as connecting terminals at a node’

The macro-device is then just a method of attaching extra laws which supply additional
constraints among the voltages and currents on the identified terminals and thus help determine
the circuit unknowns. Since whatever is learned about a terminal of the macro-device is
automatically propagated to the identified terminal of the subcircuit, the two sets of laws can
stirmulate each other. If they disagree on their conclusions, a contradiction occurs.

When a macro-device, such as ECP, models some aspect of a configuration of devices
with nonlinear properties, the special laws of the macro-device may be contingent on the operating
regions of its components. It is also often true that the whole configuration has fewer consistent
states than one would calculate from the those of the parts taken independently, Furthermore, as



in the case of the ECP, there may not be any assignment of regions (using the simple transistor
model} to the components which 15 consistent with the known behavior of the cenfiguration,

This set of problems (s resolved by allowing a macro-cevice to have a set of operating
regions of its own, on which its own laws are contingent. Furthermore, the macro-device must be
able to control the assignment of operating regions to its components. Thus, for example, an ECP
may be either "active” or "pinned” (Pinned means that one transistor is either saturated or cutoff
whereas active means that both rransistors still bave room to maneuver.). If the ECP iz pinned,
the normal laws of transistors apply, except that we know that both transistors cannot both be
active, If the ECP 15 active, then both transistens in it are assigned the special region "ecp-active”,
suspending the normal laws For transistors and providing a set of laws for this special situation
In the ECP case, the active state is further broken down into two subcases - it is either "balanced”
or “unbalanced”. The ECP is assumed 1o be balanced, but then if the rest of the circuit
unbalances it, the balancing constraint is dropped. These rules are embedded as special laws Tor
the ECP.

Although EL can identify a specified part of a circuit with a device of a specified type,
it does nat have the ability to associate a macro-device type with a generic equivalent circuit. Such
an ability would make possible the two operations of recognition of the occurrence of such macro
devices as emitter-coupled-pairs or complementary pairs, without "hints™ from the user, and
expansion of a macro-device into an identified equivalent circuit. The latter aperation mig ht
facilitate the use of an EL-like subprogram by a circuit-design program (either entirely automatic,
or merely assisting a human). In addition, it might be applied to devices such as transistors, which
are not “really” macro-devices, but which an equivalent circuit might at times allow EL to model
maore accurately.

However, such operations are more complicated than they seem. An eguivalent circuit
recognizer that would accept only a specific exact pattern of circuitry would be of very little use.
This is because the "circult” of such an application as the ECP s so unconstrained; there can be
many different arrangement of components in between the two transistors, that will have slight
useful effects on the behavior of the circuit without making it useless to viewythe configiration as
an ECP. Thus, the recognizer must be able to be lexible in s criteria. The expansion operation
is even mare problematical, for while the recognizer can accept many circuit confligurations, the
expander must choose one appropriately, or give the user the ability to specify changes in almost
all the details of its expansion. But making the user specifly too many details would deprive the
expansion operation of its usefulness,



The Queue-based Control Structure

The gross-scale control siructure used in ARS is evenl-triggered, as in a production
system or a Markev algorithm, rather than sequential as in a classical programming language
Sequential control structure is confined 1o the inside of a law or demon; demons cannot transler
control to other demans, but enly return to the scheduler, which has queues of demons to run and
arguments to feed them. Demons can affect the future actions of the program only by adding 1o
the queues, but even that is not done directly. Instead, demons asserl, and the process of assertion
enqueues demons whose trigger-patterns maich the newly asserted Tact. This produces a degree of
isolation for each individual deman, autematically making most device-law demons very modular
It also obviates a great deal of decision-making that would otherwise have to go into the sequential
algorithms for handling many loeal circuit configurations, Circuit analysis must deal with marny
different types of building blocks, strung together in any order. Without the queue, the averall
structure of the deduction process would be that of a loop containing a single many-way dispatch
that decided what type of deduction was appropriate to perform next.

There are actually several queues for demon-invocations, with dif ferent priorities. Each
deman specifies which queue it should goon. There are three queues used for DC analysis. Most
demons, including equation-laws, are intended primarily for deducing new facts. They go on the
middle priority or normal queus. Monitor demons, which exist mainly for Tinding contradictions,
go on the high priority queue. That is because if there is no contradiction then all the demons will
be executed eventually anyway, so their erder makes no difference; (f there is a contradiction,
then the faster it is found, the less time it wastes. The low priovity queue is used for choosing
device-state assumptions, because it is best to explore all the consequences of one assumption before
making more assumptions, in case there is a contradiction. Moreover, the possible states for a
device can sometimgs be narrowed down by knowledge about the device's environment. Given the
Cpportunity to try deduction or to assume a device's state, it is better to make the deduction first,
since they must both be done eventually, and the deduction has a chance of reducing the amount
of work involved in finding the correct device-state if the deduction is done first,

There are three more queues for AC analysis, with lower priocity than the DC queves.
That is because the EL laws make it is very unlikely for a contradiction to invelve any of the AC
analysis; if the DC analysis finds none, there probably is none. Again, it pays to averd doing any
AC analysis for states that are going to be ruled out anyway.

Unfortunately, the queues of ARS area very sensitive data structure. IT any demon that
in fact ought to be run is missing from the queve, nothing will ever detect that fact, or put it back
on the queue, since that could be done only by the assertion of the fact that can trigger the demon,
and said fact is already asserted. Such problems are not hard to avoid when only straightforward
propagation is invelved. The real difficulties come with contradictions, They are of two kinds:
those accompanying the Torgetting or suting of lacts, and those that pertain to the very demons
which detect the contradictions,

When a demon in ARS detects a contradiction, it drops what it was doing and makes a
contradiction-assertion instead, causing the contradiction to be processed immediately. In some
cases, that is guaranteed to cause the pufing of at least one of the facts on which the demon's
operation depended. Such cases are non-probleratical, if (as is usually the case) the demon will be



incapable of doing any useful work until a similar fact is later asserted, and such an assertion will
enqueus the demon in the normal manner. However, not all demons have that useful property. A
case in point is that of the monitor demon 1E-A0N] TOR-BJT,. which examines the emitter currents
of all transistors. [f the emitter current is zero, and the transistor is currently assumed to be active,
the moniter detects a contradiction, I there is no assumption in force at the moment about the
transistor’s state, the demon asserts that the transistor is cut of f, Thus, if the demon is run because
the emitter current has pust been asserted to be zero, and a contradiction is detected, the demon
really ought to be run again so it can make “cut off~ the new state. To make that happen, the
demon explicitly requewes itself.

Most laws are simply equations relating circuit parameters (Ohm's law is an example)
The normal case in which such a law can do useful work is when all but one of the parameters it
connects are known, In that case the unknown one is determined from the others. If more than
two are not known, the demon s helpless. Because of that, no special action 1s necessary if one of
the known parameter values is oufed. But it can also happen that all of the parameters are known,
but at least one of them is an algebraic expression containing a symbaolic unknown. The equation
of the law can then be used 1o solve for the value of the unknown, This is fine and dandy until
one of the circuit parameters’ values is owfed because of backtracking. After that, though there is
not enough information any more to solve for the symbolic unknown, it is still possible to compune
the missing parameter from the others. For this. the demon must be run again, That |5 brought
about using the mechanism of {orget-functions. Any assertion can have a forget-function, which
will be called whenever the assertion is forgoiten or merely puted. In this example, a special
assertion called the CHECKED assertion is placed in the dependency-chain between the assertion of
the value of the symbolic unknown and the facts used as the demon's antecedents. [ts only use s 1o
hold on to a forge:-function that will requeue the equation-demon if the CHECKED assertion ever
vanishes (because one of the circuit parameters in the equation was forgotten). In fact, the
CHECKED assertion is necessary €ven if there i3 no symbolic unknown in the circuit parameters’
values, since it is still the case that if one parameter is forgoften it can be rededuced from the
others, Mote that in this case the equation of the demon has given no new information about the
circuit, showing that the equation was algebraically dependent on the other squations describing
the circuit. Such an event happens at least once per circuit, sinee at each node KCL, Kircholf's
current law, states that the sum of the incoming currents is zera, and that set of equations 15 not
independent: KCL on any one node follows from KCL on all the other nodes.

Some monitor demons have the ability to predetermine the state of a device, eliminating
the need for searching. For example, of 1-MONITOR-IIT00E sees a nonzero current in & diode, it can
assert that the dipde is in the 0N state, When a device-state choice is suted, all the monitors that
might be able to predetermine the s:ate choice should be given a chance to do so. This is also
implemented by a Torget-function.

Monitor demons often check the signs of currents, or otherwise test inequalities. While
equations are quite happy with algebraic expressions, inequalities are stymied by them {unless one
uses a more sophisticated algebraic manipulation package than ours). For example, if a transistors
emitter current is assigned a value which involves a symbolic unknown, 1E-NONI TOR-8JT will be

run, but will be unable to perform its function. Presumably that unknown's value will eventuaily
be learned, and it is essential that 1E-RONT TOR-BJT be run again then, or else a contradiction



might go unnoticed and a false analysis be accepted. That is brought about by means of the
HANGING assertion, which records the name of a demon {and s arguments) and the name of a
symbolic unknown whose value the deman is waiting for. TE-MONITOR-BUT itsell makes a
HANGING assertion when it sees such an obstacle. Whenever the value of a symbalic unknown is
determined, a check is made for HANGING assertions fisting it, and the demons they mention are
requened.

The above examples are not the only cases in which demons need to be requetted; some
are quite obscure. The examples described should suffice to show why the queue is A constant
source of bugs. Because of that, we have given thought to possible mechanisms that might have
the same modularizing abality as the queue, without its fragility. One which was actually
implemented at one time was to keep the queue information in the data base of facts. The
dispatcher which now removes entries from the quene and processes them, in that implementation
used to scan the data base for possible places to run demons and run one. The only new
information that had to be stored was the list of demon-invocations already performed - in the
form of a HAS-RUN assertion for each successful demon-invocation - so that the dequever could
avoid running demeons redundanily. This eliminated all danger of accidentally losing an entry
from the queue, since the whole queus was of fectively recomputed each time it was wsed. It also
made CHECKED assertions unnecessary, since the eufing of a HAS-RUMN astertion would
automatically sub ject the demon to being rerun. Unfortunately, in our implementation, this
mechanism proved to be unacceptably show Betweless



The Data Base of Facts and Demons

ARS stores all problem-specific knowledge in the form of [acts or assertions in an
indexed data base. An example of a fact is (= [VOLTAGE (E OL1} 1.3), which EL takes to
mean that Ql's emitter voltage is 13 volts. (ALTERNATIVES (HDOE DIODE} (DN OFF1Y says that
the device-state of a diode, known in EL as its MODE, has two possible values, called ON and OFF.
The First sample fact is typical of many of the facts EL generates as it runs, The second is
actually part of EL, and represents knowledge appropriate to choosing diodes’ states.

Besides its staternent {(which is what "« [¥OLTAGE (E UL}] 1.3F" is), a fact aleo has a
unique factname, which iz a LISP atom. The factname's LISP property list is used to record the
fact's auxiliary information, such as its dependency records, whether it is currently believed, its
forget-function (see below) == everything other than just "what the fact says™. In addition, the fact
Is referred to whenever possible by its factname (in dependency records, for example). It is
tempting, when using a relational data base, to break all knowledge into small pieces and make
each piece a separate assertion. That can lead to great Inefficiency, as we discovered when using
early versions of ARS. Since then, we have rewritten ARS 1o use the indexed data base mainly as
a way of placing property lists on arbitrary LISP lists as if they were atoms. One might suggest
that a simple hash table might serve, but that is in fact how the data base is implemented
anyway Frer

EL records the names of the devices in a circuit with 1S-A assertions, such as {15-A Rl
RESISTOR) or (1S5-A NS& NODE). An EL demon driven by those assertions controls an ARS
mechanism For typed variables in the trigger shots of laws. Whenever an 15-A is asserted, a LISP
property is placed on the device's name that identifies it as a certain type of device. The pattern
matching mechanism that triggers demons then insists that a typed pattern variable (such as R, in
the demon DC-0HM) match only the name of a device of the appropriate type.

Diemons in ARS are programs sub ject to pattern-directed invocation. Each EL demon
generally implements a single item of knowledge about electronics {though a few embody more
general problem-solving knowledge). Here, Tor example, is the demon that embodies the fact that
all of the current into one of a resistor's terminals comes out the other one. This law is needed
because the fact data base is not constructed so as to retrieve (CURRENT (#1 R1)) and (CURRENT
(42 R1}} from the same place automatically.

(LAY DC-2T-A ASAP [(R RESISTOR) 11 120
()
({= [CURRENT (&1 7RI} '=[1} (= (CURREMNT (&2 !?RM)] 1=1211)
(EQUATION * (& 11 [2) 8.8 RN

Its name, chosen by us for mnemonic significance, is OC-2T-A. ASAF indicates its invocation
priority. OC-27-R uses the local variables 11 and |2 to hold the twoterminal currents. The long
list beginning with (= [CURRENT ... contains the demon's trigger slots. Their purpose is dual: to
provide patterns to direct the invocation or triggering of the demon, and to gather the information
needed in applying the law once the demon is invoked.



When the function LA, a LISP macro, is called to create the demon DC-2T-R, it stores
information about the trigger slots in the demon data base, which has the form of a stylized
decision tree which, applied to a fact, quickly finds those demons which have at least one trigger
slot that matches the fact. Each of those demans has one of the facts it needs to be able to do
useful work; it might or might not have all it needs. ARS enqueues them all for invocation, and
the demons themselves must decide whether they can do anything. For that, they use the trigger
slots again, applying them all as patterns to the fact data base. Thus, if (= (CURRENT (#1 R11)
18.8) is asserted, DC-2T-R will be triggered, and the value maiched by the part variable A will be
remembered as an argument (the declaration of A as (R RESISTOR) will prevent triggering unless
what R matches is actually the name of a resistor).

When the demon is invoked it will apply all of its trigger patterns to the data base, using
its argument as the value of R during the match - that is how we make sure that we find voltages,
current and resistance for a single resistor instead of for four different resistors! Variables
appearing in the pattern with the ™>" operator have no effect on the triggering of the demon, but
at the matching stage they are assigned whatever value they happen to match, if the pattern
matches anything at all. Thus, if in addition to the triggering assertion about the voltage at (41
R1), the two facts (= [VOLTAGE (42 RZ))} B.8) and {= [RESISTANCE R1) 188@.8) were in the
data base, DC-0HM's matching phase would set V1 to 108, V2 to 0.0, and RES to 10000, | would
remain NIL if there were no assertion about the value of (CURRENT (#1 R111.

In addition to setting bocal variables, the matching process places a list of the factnames
of the facts matched in the variable ANTECEDENTS, along with the demon's demonname. 1T the
demon asserts any new fact, it will normally supply that list as the antecedents of the fact. This is
. how the dependency records obtain the information of what other facts were used in deducing the
new ane.

) After the rnati:htn:g phaze, the body I:rf the demon is executed. In this case the body is

j'llEt a call to the function EQUATION, which does all the work of extracting any pl:rsslhle new
information from the specified equation and the parameter values obtained by the match phase. |t
also knows how to report a contradiction if the parameters have values that can't fit the equation,
and that there is nothing to be done if too few of the parameters are known yet.

How it works:

ARS has three different storage representations for the three main types of entities it
knows: facts, demons, and dependencies. Dependencies are stored as simple LISP lists. Each fact's
factname has a CONSEQUEMCES property which is a list of the factnames of all the facts deduced
from it, and an ANTECEDENT-LISTS property which is a list of lists, one list for each way the Tact
has been deduced, containing the factnames of the facts used in the deduction.

A demon is more complicated. In addition to the LISP function which implements its
body it must enter its trigger slots in a data base that allows that slots that match a given fact to be
found easily. ARS compiles the trigger slots into a decision-treeP =rmnton w5 wbieh it builds
incrementally. The tree specifies locations in the fact being matched against (such as, “the CAR of
the CAR of the CDR"), and then various things to compare it against, each leading to some
demons or to Further decisions

The Fact data base is the most complex of the three It iz a bare-bones version of the



Conniver data base. It indexes each Fact by each of the atoms in it, together with its position.
Thus, the fact (= (VOLTAGE (8 01)) 18.8) would be indexed under "= in the CAR",
“VOLTAGE in the CAADR", “B in the CAADADR”, "QI in the CADADADR", and "I10.0 in the
CADDR”". This method of indexing makes it easy to Jook for all the facts that match a pattern
which has some paositions unspecified. In ARS’s notatien, '>F00 is a pattern which matches
anything, and sets FOO to what was matched. f« (VOLTAGE B !>00) 1>¥] ought to match any
assertion about the voltage on the base of something. ARS can find all the facts that it matches by
looking in the fact data base index under "= in the CAR", "VOLTAGE in the CAADR", and "B
In the CAADADR", and intersecting those lists of facts.

Actually, the index-pairs of atom and location are hashed into a fixed length table, 5o a
bucket may contain things that are irrelevant to the index-pair being fetched. For that reason, an
actual matching test must be made on each fact that the indexer returns.

Originally, all three types of data were kept in the fact data base. Facts were kept as lists
(estatement> FACT <factnames), demons as lists (<slot> DEMOMN edemonname>), and
dependencies as lists (<factl: DEPENDS <fact2:). This had the advantage of being easy to do.
but was very inefficient. This was obviously so for dependencies, whose representation we
changed shortly after ARS began to look at them during normal operation. It was not nearly s
obvious that this was a bad way to store the trigger slots of demons. That was discovered only by
timing measurements. The problem was due to the fact that the search eperation for demon shots
is different from the search operation for facts. Facts are searched for with a patrern like [=
(VOLTAGE (B !>01) 15V}, and wherever it has an atom, all the facts it matches must have the
same atom. On the ofher hand, when a fact such as (= (VOLTAGE (B O1}) 18.8) is asserted, the
slots that should trigger might differ from the fact itsell in any position. For example, (= (!20TY
1=TERMINALY 18,80 should be triggered if it exists, as should i= 1=ANYTHING IsVALUED,
(1>RELATION (VOLTAGE (B !'=0)) !>NUMBER), (- (1-0TY (I-ECE !=01) !sVAL UE), or even
just '>FACT if any demon has it as a slot! The fact data base is poorly suited to that retrieval
operation. The implementation of a separate demon data base resulted in a factor of two
improvement in the speed of the entire system.

A lesson to be drawn from the experience with the ARS data base is that it is usually
worthwhile to factor the retrieval problem. We had a data base whose entries could be divided
easily into three classes, such that any retrieval would certainly be looking for entries in only one of
the three. Mow we have three data base systems, one for each class.

We think this corrected mistake is worth mentioning because it isn't a new one --
Conniver made the same mistake! [F-ADDED methods were stored in the Fact data base and looked
. up just as ARS demons formerly were. People have often assumed that the slowness of Conniver
was due to the basic interpreter, but in fact measurements showed that Conniver spent most of its
time searching the data base. Our resulis with ARS suggest that Conniver also might run
considerably faster with ARS's newer demon data base.




Conclusions

Quur research strategy has been the application of artificial intelligence techniques to the
construction of an expert problem solver in a non-trivial domain. We Teel that this strategy has
been very fruitful. We have developed two methods. One is a method of eectrical network
analysis we call analysis by propagation of constraints. The other is the technique of efficient
combinatorial search by dependency-directed backtracking, Analysis by propagation of constraints
would not have been developed in the absence of such artificial intelligence techniques as symbolic
manipulation of algebraic expressions and antecedent reasoning, Dependency-directed
backtracking 15 a new artificial intelligence technique whose development was stimulated by the
needs of this exceptionally deep, yet well-structured domain

Electrical circuits is an especially good domain in which 1o develop artificial intelligence
techniques. Reasoning about circuits is deep encugh to benef it by the application of powerful
techniques, yet the problems are drastically simplified by the fact that the interactions between
parts of a circuit are well-defined and constrained to ocour by explicit connections. Another
advantage is that it is clear whether or nat an answer tendered 15 in fact correct.

An even more important reasen for studying reasoning about electrical circuits is that
such reasoning is typical of the reasoning done by all engineers, including computer programmers
We wish to understand the nature of reasoning about deliberately constructed systems. An
understanding of the epistemology of engineering will enable us to make programs which can
significantly aid the design and debugging of engineered systems, including computer programs.
We expect that such an understanding will entail the developrment of techniques concerned with
many aspects of reasoning, including constraints, causality, and teleology.

Generality and Extensibility

ARS is a language in which it is easy to embed problem solving rules for domains in
which the solution to a problem may be obtained by the symbaolic relaxation of local constraints. It
provides special features for explanation of its conclusions fo its users and it uses this ability to
provide for reasoning hypothetically and for efficient combinatorial searches, We are convinced
that the ARS paradigm is applicable to a wide variety of domains, Jon Doyle <Doyle 1976= has
locked into the possibility of a set of ARS rules to prove theorems of plane geometry (no
constructions) along the lines previously investigated by Nevins <Mevins 1974>. Matt Mason
<Mason 1976> has constructed a set of rules for the analysis of the flow of materials and money in
a hog farm.

EL. the set of rules of electrical circuit analysis, is a very pleasant system to work with.
The explanations it provides to a user can be useful for helping understand the behavior of a
circuit - how particular device parameters affect the behavior of interesting circuit parameters. 1f
a particular answer is surprising it 15 possible 1o find out why EL thinks that that answer is troe,
The user can have more confidence in these answers because he can check the reasoning. The
complex programs of the future will most certainly have to use similar techniques so as to be
responsible for their answers.

EL is very extensible because of the modularity imposed on it by the conventions of
ARS. Tt is easy to add new device types to EL because the rules for the new elements can be



constructed in isolation and usually do not interact with the laws for the existing devices. This is
even true in the case of macro-devices because the macro-device gets control of the selection of
states Tor its parts. Gerald Roylance <Roylance 1975- created rules for enough macro-device types
to allow the analysis of the 71 operational amplifier. In fact, it would be easy to add enough ru les
to create whole new analysis modes. To add sinusoidal steady state analysis, for example, would
require only a set of laws which characterized parts in terms of impedances and a small extension
to the algebraic manipulation package to allow the manipulation of complex quantities.

Problems and Plans for the Future:

There are many modes of reasoning about circuits which we have not captured in EL.
Some of these, such as sinusoidal steady state analysis are really very simple extensions which we
have just not yet gotten around to doing. Others, however are much harder and may represent
more fundamental Pmblems with the ARS paradigm for embedding of knowledge,

For example, it is not obvious how to represent the knowledge required to do time-
domain analysis in ARS. In steady state, de, or incremental analysis, it is possible to summarize the
entire behavior of a network unknown as a simple, algebraically manipulable expression. Time
domain analysis requires explicit time functions, some of which might be algebraically horrendous,
to be manipulated. Gerald Roylance <Roylance 1976> is beginning to investigate what kinds of
qualitative reasoning is required to bypass this algebraic roadblock.

Simple equation demons are an essentially declarative representation for equality
constraints, even though demons are procedures. Inequalities are represented as monitors and
cannot be manipulated easily. This leads to the following problem:

In this circuit, the enly physically consistent states for the diodes to be in is both conducting. 1,
however, we assume both are cutaff, EL will not discover the contradiction because that would
entail the propagation of inequalities. De Kleer <de Kleer 1976> solves this problem by
propagating ranges, but he cannot handle spmbolic expressions at all. We are looking for a way of
handling inequality constraints in a mere declarative manner than by monitor demons.

Anather problem is that although EL can use grey-box laws which embody certain global
abstractions, EL does not make use of the general equivalent circuit ideas in its analysis. Thus, for
example, one can declare a particular circuit to be an amplifier by its identifying its input and
output terminals with those of a special macro-device which specifies that the incremental valiage
on the output is proportional to the incremental voltage an the input (perhaps with an unspecified
gain). EL can then deduce the value of the gain by working out the incremental output voltage



for a given incremental input voltage. The problem is that this value of the gain depends on the
particular incremental input voltage used 1o derive it. Thus it cannot be wsed to compute the
incremental output for any other value of input since for that value of input the gain would be
out. This is basically a problem of the interaction of contexts with logic. We need a mechanism
by which the value of the gain can be made to depend on the reasoning behind the value of the
incremental output voltage Tor the given input voltage rather than their values.

A related problem is what we call "anomalous dependencies” Consider the following
situation:

In this circuit the current through the resistor is independent of the value of the voliage at the
bottom node of the circuit. The justification of the value of the current produced by the EL laws
will, however, include this voltage because it was propagated through the voltage source to produce
a voltage at the top. Ohm's law was then applied to the dif ference of the voltage at the top and
bottom nodes. These extra dependencies can increase the amount of search the program must go
through because they can introduce extra assumptions in the proof of a contradiction. We have
not, however, had this cause much trouble in any circuit we have analyzed.

Maore genfra"f. the ARS paradigm does not elucidate the mechanisms which guide and
focus a problem solver. ARS rule sets are capable of capturing only antecedent reasoning. Thus
all deductions which can be made are made. This is only acceptable in domains which are self -
limiting -- in which there are only a finite number of questions which might be asked and any of
them might be relevent. Indeed, there is no means in ARS of focussing effort on the aspect of a
problem which is being atked about. Consequent reatoning is one approach to model this part of
problem-solving ability. More generally, rules to control the flow of reasoning may need the
antecedents of a fact to be more complex -- one may want a fact to depend on the fact that another
fact is false or even worse, unknown. Jon Doyle is now investigating a generalization of the ARS
dependency scheme in which this is possible.




Appendix: An Annotated Example

This appendix documents a complete run of EL on the following circuit. It demonstrates
how EL may be used not only to analyse a known circuit, but to help specify the component values
to produce desired behavior.

FEI-J ?§—'
T

.L GREVMND)

Qur type-in 15 in lower case to distinguish it from ARS's output. The scenario is complete and un-
cut. Do not hesitate to skim through long runs of ARS output not punctuated by English
commentary; they contain more examples of types of reasoning that were already explained when
they first appeared.

First we input the circuit diagram, specif ying the name PROTZ for the circuit. We declare
the names of the transistors, and specify their polarities and which semiconductor material they are
made of. 0.6 indicates a silicon NPMN transistor. Similarly, we give the names of all the resistors,
and their resistances in ohms, Note that the name of a resistor doesn't Aave to begin with "R7 it is
just the standard electrical engineer’s convention to do so. Capacitors are specified with their
values in farads, Currently the values are ignored, since analysis is done only for zero and infinite
frequency. We then describe the interconnections of the devices. Each argument to CONNECT
describes one node in the circuit by stating which terminals are incident with it. Each type of
device has stancard names for its terminals: for resistors and capacitors, "#1" and “#2% Tor
transistors, "E°, "B and "C" A terminal is a list whose second element is a device, and whaose first



says which terminal of that device, as in (B 1} for QI's base. Certain nodes become “terminals”

of the whole circuit, considered as a macro-device, they are given explicit names, such as GROUND,
which identifies the node which will become the terminal (GROUND PROTZ). PROTZ has four such
terminals: GAOUND, +VCC. INPUT amd OUTPUT.

sz [wire prot

(bjt (gl B.6) (g2 B.6) (g3 @.6}) (g4 B.68) (g5 -B.8))

(resistor (rl 3780808) (r2 10E2E0) (r3 1008980 (r4 LEEE) (rE SEPE)
irE B3B1 [r7 33881 (¢8 22200 (r3 18021 (F1P BE2QQ) irll &78)
(rl2 398088) (r13 BZ0E8))

{capacitor fcel 2.8e-71 lece? 1.8e-B) (col l.Be-4])

[connect levocc (H1 rld (H1 c31 (N1 50 (K] rl2) fc gbl))
(ground (82 r2) (82 r&) (42 ¢7) (HZ cbl) (&2 r13) (42 rB))
[irput (8] ecli)
({82 ccl) (B2 FL) 1AL r2) ik gl})
(&2 r3) dc gl) c g2l (b gdl)
[z gl) (o g2h)
{le g2) (&L ré&))
(42 rB) dc g3) 18l cc2))
(IH2 co2d (N2 el2) (HL pl3) b gbd) (e gS))
{le g3} (#1 rB1)
(HL r7) B2 PR (HL cbll)
tib gl (1 r3) (81 rlEd}

= {le g%} (§1 rL1Ll) (82 18}
loutput (e oSl (42 ¢3) (F2 rl1} (AL rBIRDD
HIL

MNow we supply boundary conditions Tor the circuit. ARS supplies a unique factname for
each asserfion we make, as it indexes the fact in the pattern-directed data base. The factname of
an assertion is used for remembering its attributes or properties, such as how it was deduced, and
what other assertions were deduced from it Mthuugh an assertion could have an arbitrary form,
the assertions meaningful to the EL system fall into a few schemata.

{= (VOLTACE (CROUND PROTZI) 8.8) isan example of the most common schema of assertions in
EL; it states that a particular parameter (YOLTAGE) at a particular terminal (namely,
(GROUND PROTZ)) is known to have a certain value (8. @)

YOLTAGE and CURRENT refer to the D amalysis of the circuit, while TRC-YOLTS and [HC-
ARPS refer to the infinme-frequency analkysis.

The first fact created is fact F226, because numbers | through 225 were used up by EL's
imitial knowledge (facts and demons), and by the assertions made during the wiring of the circuit.

sux (tell "ivoltage (ground protZl) @1
USER: F226 (= (VOLTACE (GROUND PROTZ1) B.8)
NIL



m=x {tall "ivoltage [+vec protZl) 15)

USER: F227 (= [(VOLTAGE (+VCC PROTZ)) 15.80
MWIL

e=3 [(tell *locurrent loutput protZ2l) @.8)
USER: F228 (= (CURRENT (OUTPUT PROT2)) B.@)
MIL

mex (tell "linc-valts (ground prot2l} @)
USER: F223 (= (INC-VOLTS (GROLMD PROTZI) @.8)
MNIL

e=x (tell "linc=volts {svec protZl) Bl
USER: F238 (= {INC=VOLTS (VOO PROTZN) d.81
NIL

w=> (tell " (inc-amps (output prot2)] B)
USER: F231 i= (INC-AMPS {0UTPUT PROTZIY 8.8
MIL

m=> [tell "linc-volts {input prot2)} B.10
USEA: F232 (= (INC-¥OLTS (INPUT PROTZH) B.1)
MIL

Mot all the voltages and currents at the circuit’s terminals have been specified; just .
enough to solve the circuit. The ones we did not give will be computed by EL as the circuit is
solved. It might be surprising that only three DC boundary conditions are enough for a ciroult
which has four terminals, but they are because the capacitor CCI supplies what is effectively a
fourth boundary condition: (= (CURRENT {INFUT PROTZI} B.8).

The wiring of the circuit, and the seiting of boundary conditions, have suggested 1o EL
deductions to try to make. At this point we tell EL to Tollow them out as far as they go. Successful
deductions give EL yet other suggestions. (AUN) will terminate only when EL has no idea how to
deduce anything more.

Each deduction is made by a "law” which understands ane particular facal theorem or
rule-of -thumb about a particular device type. Examples are Ohm's law for resistors, and the law
that the base current of a transistor must be very small. Each deduction records the fact deduced,
its factname, and the name of the law that deduced it. For example, DC-2T-5H0RT is the law that
the current into one end of a wire or "short” must equal the current out of the other end.

mox (rund

DC-CPROP: F233 (= [CURAENT (#] WZ140]1 @.8)
OC-ZT-SHOAT: FZ34 [= (CURSENT (&2 WZ161) @.81
OC-VPROP: F235 (= (VOLTACE (#1 W133N) 15.8)
OC-SHORT: F23E [= (VOLTACE (&2 W1330) 15.80
OC-kKWL: F237 {= (VOLTAGE (C Q410 15.8)
DC-KVL: F238 (= (VOLTAGE (#L R1Z21) 15.80
DC-=KVL: FZ235 (= (VOLTAGE (L RSN 15.8)
DC-KVL: F2&B (= IVOLTAGE (8] R3] 15,80



OC-KWL: F241 (= (YOLTAGE (#1 R1}) 15.8)
OC=Y¥PROP: FZ&Z2 (= (VOLTAGE (&1 U1aEl) @.8)
OC=-SHORT: F263 (= (VOLTAGE (42 U14E)) 8,81
OC=KVL: F2&& (= (VOLTAGE (&2 AEN) @.8)
DC-K¥L: FZa% (= [YOLTAGE (82 R1311 B.8)
DC-KvL: F245 (= (VOLTAGE (#2 CBL)} B.8)
DC-KVL: F247 (= (VOLTAGE (&2 A7) 8.@1
DC-KVL: F248 (= (VOLTAGE (%2 R4)) @.8)
DC-KVL: F243 (= (YOLTAGE (42 AZ}) 2.3}
OC-CAP-11: F258 (= (CURRENT (¥1 CBL1M) .81
OC-CAP-12: F251 (= (CURRENT (N2 CB1}) 8.8
OC-CAP-11: F252 (= (CURRENT (M1 CCZ2)1 @.8)
OC-CaP-12: FZ83 (= {CURREMT (W2 CCZM1 @.ap
OC-CaP-11: FZ5é (= {CURREMT (w1 CCLli} 8.8
DC-CPROF: F255 (= (CURRENT (INPUT PROTZ1) @.8)
OC-CAP=[2: FZ2BE (= [(CUARENT (&2 CCLYT A.@8)

The following NEEDCHOICE assertions drive the mechanism that chooses states for the
transistors in the circult, by triggering the demon that does the choosing. It is just a coincidence
that these assertions happen now, when all the significant deductions have been exhausted, they
might just as well have been the lirst assertions made, since the demaons that they trigger have a
special low priority that guarantees that they will not run until all deductions have been tried.

TRY-BJT: F257 (NEEDCHIICE (MOODE 0O5))
TRY-BJT: F258 (NEEOCHOICE (MDOE Q&) 1}
TRY-BJT: FZ53 (NEEOCHOICE (HODE 0311
TRY-B.JT: FZE@ (NEEDCHDICE (MODE 021)
TRY-BJT: F281 (NEEDCHOICE (HODE Q1))

There are now no more one-step deductions available without assuming states for some
of the transistors in the circuit. For the nonce, a transistor in EL has these states or “modes™
“beta-infinite”, “cutef ", and "saturated”. The system will try choosing one mode and later try
others instead if the First guess leads 1o a contradiction.  After guessing the mode of one transistor,
EL sees what can be deduced about the circuit before guessing the next. That is in the hope that
some of the deductions will limit the possible choices for ather transistors not yet guessed.

NEEDCHDICE: F282 I(CHDICE (HODE Q1) BETA-INFIN]ITE)
WEEDCHOICE: F2B3Z (DETERMINED (MIDE Q1) BETA-INFINITE)
OC-BJT-BETA-IMFINITE: F2g64 {= (CURRENT (B 0O1)) &.0d@8081E-18)
NEEDCHOICE: F265 (CHOICE (RODE 02) BETA-INFINITE)
NEEDCHOICE: F266 (DETERMIMED (MODE GZ) BETA-INFINITE)
OC-BJT-BETA-INFINITE: F2E7 (= ICURREMT (B 0QZ1) B.0B0BER1E-1E)
OC-KCL: F268 (= (CURRENT (E QL)) -5.6@0d801E-16)



Think of UNDERFLOW as a very small number. It is our way of trying to avoid the
problems caused by the nonassociativity of fleating peint addition. It i5 the result obtained when
two large, nearly equal numbers have been subtracted and all precision lost. No contradiction
results from equating UNDERFLOW to zero or to any small enough number, 6.0000001E-16, on the
other hand, 15 a number which, while small compared to all the quantities of interest in the system,
Is nevertheless definitely ne equal to zero. We use it to represent the small but certainly nonzero

current into the base of an active transistor, so that a contradiction will occur if anything requires
that it be exactly zero.

DC-KLCL-BJT: F2B3 (= (CURRENT (C Q1)) UMDERFLOWI

NEEDCHDICE: F27@ (CHMOICE (MOOE 03) BETA-INFIMITE)
MEEDCHDICE: F271 (DETEAMINED (MDOE 03) BETA-INFINITE)
UC-BJT-BETA=INFINITE: F272 (= (CURRENT (B N3)} G.BAABRLE-1E)
MEEDCHDICE: F273 (CHOICE (MODE Q4) BETA-INFINITE)
MEEQCHDICE: F274 (DETERMINED (MODE O4) BETA-INFENITE)
OC-BJT-BETA-INFINITE: F275 (= (CURRENT (B &)} G.P928RB1E-1E6)
MEEDCHOICE: FZ76 (CHOICE (MODE 0OS) BETA-INFINITE)
NEEODCHDICE: F2Z77 (DETERAINED (NMODE 05) BETA-INFINITE)
OC-BJT-BETA-INFINITE: F27& (= (CURRENT (B 05)) G.PB2@02A1E-18)

The current state of knouledge is:
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The system has again run out of one-step deductions. Since states have been assumed
for all of the components that need them, the only possible cause 1 that the circuit contains an
essential simultaneity of equations, and a symbolic Unknown i5 NeCEssary Lo proceed Farther. The
system creates a “symbolic unknown” K273, and assigns it as the value of one of the unknown
voltages. This unknown can be propagated around via one-siep deduction just as a numerical
value can be. Eventually, when the "cycle” of simulianeous equations is "closed” by examining the
last equation in it, all of its terma will reduce to expressions involving ¥279, whose value will then
be determined (see assertion F323). From then on, whenever one-al the previously propagated
expressions involving W27 is referenced, ¥273 will be replaced with it value and the new
expression will be simplified. Sometimes it happent that there are two coupled essential
simultaneities; in that case The system will run out of things to do a second time before Figuring
out the value of the unknown. It then creates a second unknown and the two together would crack
the simultaneity.

CENVARS: F28@ (VARIABLE X273 (VOLTAGE (g1 R21D)
GENVARS: F281 (= (VOLTAGE [#1 RE)] MZV3)
DC-KVL: F282 (= (VOLTAGE (RZ RLL)} ¥&73)
DC-KVL: F283 (= (VOLTAGE (82 R3)1 X/l
ODC-KVL: F284 (= (VOLTAGE (E OS)) KZT3)



DC-KVL: F285 (e (YOLTAGE (#2 W214)) X273)
OC-SHORT: F28B [= (VOLTAGE (41 WZl4)) X273
DC-YPROP: F2E87 (= (VOLTAGE (QUTPUT PROTZI) X273)

Mote that algebraic expressions involving the symbolic unknowns can be handied when necessary.

DC-BJT-ACTIVE: F288 (= (VOLTAGE (B O5)) {8+ B.5 K273))
YBE-MONITOR-8JT: FZ83 (HANGING D71 05 X273)

DC-KVL: F298 (= (YOLTAGE (N1 R3)) (&+ B.5 K273}

DC-KVL: FZ3L (= (VOLTAGE (#1 R1@)] (&+ Q.B X273}

OC-OHM: F232 (= (CURAENT (#1 R3)) E.BP2N0ALE-4)

OC-KCL: FZ83 {= (CURHENT (¥1 RLA)) -E.BO2A0ALE-4)

OC-0HM: F23& (= (VOLTAGE (42 RIBN] &+ 4.GE08881 X2731)
OC-KEVL: F285 (= (VOLTAGE (#1 RLIL)) 1&+ 4.CEBEBEL X279))
DC=KVL: FZ36 (= (YOLTAGE (E D4)] (4« 4.GEO0881 X27T31)
DC-BJT=-ACTIVE: F237 (- (VOLTAGE (B Q&1) (8+ 5.23@8281 2731)

When states of components are assumed, it is necessary to check that the consequent
circuit parameters agree with the known general conditions for the components to be in those
states. Such checking is done as soon as the necessary information is available, by demans known
as monitors. One such monitor is VCB-A0N] TOR-BJT, which checks the voltage drop between the
base and collecior of a transistor for consistency. In this case, since the value just learned for the
base voliage of Q4 involves an unknown, the monitor can't tell whether it is legitimate. [t will be
necessary to check again when the unknown's value becomes known. To that end, the monitor
rmakes a HANGING assertion which associates that unknown with the need to apply this monitar, for
this particular transistor. When the value is eventually bearned, the HANGING assertion is noticed,
and the monitor is rested once again with the new information.

VCB-NONITOR-BJT: F292 (HANGING 078 04 X273)
VBE-HONITOR-BJT: F293 (HANGING D71 04 M273)
OC-KVL: F38@ (= (VOLTAGE (C 0511 [(&+ 5.2B@NEAL ¥2731)
OC-E¥L: F3IB1 (= (VOLTAGE (&1 R131) (4+ 5.250088L X273))
OC-KVi: F3A2 (= (VOLTAGE (82 R121) (&« 5.28@888L X273
OC-KVi: F3I82 (= (VOLTAGE (&2 CC21) (&+ 5.28R20al1 ¥279))
WCB-NONI TOR-BAT: F384 (HANGING D7F@ 05 KI73)
OC-08: F385 (= (CURRENT (%1 R12))

(&« Z,43230766E-4 (8% -2.5641HZ56E-5 27311}
OC-27-R: F3BE (= (CURRENT (42 R12))

(&e -2.69738766E-4 (&% 2,.56418256E-5 X27911)
OC-0HM: F387 (= (CURRENT (21 R131})

{8+ B.4330245E-5 (&+ 1.2195122E-5 H2791))
OC-KCL: F38& (= (CUARENT (C OS1) (&+ 1.84B4BSZE-& (&% -3, TAIGL4TE-5 NZ7301)



IC-NONITOR-BJT: F383 (HANGING DBk 0% X2731
NOTE-SATURATED: F31@ (HANGING D72 05 X273}
DC-KCL-BJT: F311 (= (CURRENT (E 051}
(& -1,3424062E-4 (4= 3.T7E3E1&4TE-5 XZ7301)
IE-FIONI TOR-BJT: F312 (HANGING OBS OS X273)
OC-2T7-A: F313 (= {CURRENT (&2 R13)} 18+ -B.433A245E-5 (8 -1.2135122E-5 K2791))
DC-0OHM: F3l4 (= {CURFENT (81 RLLIF] 3.357447E-3)
DC-2T-R: F315 (= (CUMRENT {42 AL11) -3,357647E-31
DC-2T-R: F31E (= (CURRENT (82 R1@1) E.B02A0QLE-4)
DC-KCL: F317 {= (CURRENT (E 041} -8.018557447)
OC-KCL-BJT: F318 (= [CURARENT IC Q&)} B.BlBEST7447)
DC-2T-R: F319 {= [CURARENT (42 R3]} -G.Q00RRB1E-4)
DC-KCL: F328 (= (CURREMT {#1 AE}) (&+ B.0LO7422875 (8% -3.TE3EL4TE-S ¥Z731))
OC-0OHM: F322 (CHECKED CHECK3Z1 D1 R3)1
OC-0HM: F323 (VALUE X273 21.815336)

Here we see that the value of the symbolic unknown X272 has finally been determined,
This blessed event was the result of applying Ohm's law to [our quantities each of which was
already known in terms of X273, From now on, whenever a law makes use of a quantity
previously dependent on 275, the known value of X273 will be substituted for it. When that
happens, the final result is given an explicit dependency link to F323, since it would be invalid if
®273's value ceased to be known. Such explicit dependency links were not necessary when X273
was propagated in symbalic form, since these propagations are valid regardless of the symbol’s
value. In addition, all of the monitor laws that were hanging on the value of X273 are now re-run.



Unfortunately, our friend YCA-HON] TOR-BJT detects an inconsistency: Q4's callector
voltage 1s lower than its base vollage, even though Q4 is supposedly in the active state. When the
contradiction is detected, the proof tree leading to it is searched for the component state choices
which engendered it. Those choices, precisely, have been shown by the contradiction to be
mutually inconsistent; A NOGDOD assertion is constructed to hold that insight and make sure that
the same combination is never tried again. The fewer the number of choices in the NOGOOD, the
more information has been ganed from the contradiction. In this case there are only two cheices
in the NOGOOD, OF all the 3° (24%) different sets of cheices for all 5 transistors, there are 27 which
include those two incompatible ones, all 27 have been ruled out at one blow. This phenomenan
causes a gread reduction in search space size, which makes EL converge in human timespans

Once the system has determined the choices that are contradictory, it picks one of them o
re-choose differently {the "culprat”, actually chosen blindly). In this case, the culprit is F276 (05
active), the system “stops believing it” for the moment (but continues to remember what it would
imply) and tries treating 5 as cut of [ instead.

YCB-MONITOR-BJT: F325 (CONTRADICTION C324 D78 0&)
CONTRADICTION: Q& - F325 VCB-MONITOR-BJT
SUSPECTS:

FZ73 (CHOICE (MODE O&) BETA-INFINITE}



F27s (CHOICE (MODE OB} BETA=INFINITE)

CULPRIT: F276 ummarking: forgstting:

223 facts to check out

183 active facts left

1 contradictions so far

YOE-MONITOR-BJT: F325 (NOGODCD ((MODE (&) BETA-INFINITED
[IMODE 05) BETA-INFINITEDD

WEEDCHOICE: F32¥ (CHOICE (HODE QS) CUTOEF)

MEEDCHOICE: E322 (DETERMINED (MIDE OS) CUTOEF)

OC-BAT-CUTOFF-1B: F323 (= (CLRRENT (B 03)) 8.8}

OC-BJT-CUTOFF-1C: F338 (= (CURRENT I[C 051 @.8)

DC-KCL-BJT: F331 (= (CURAENT (E O51) 8.8)

Despite the new state of one transistor, a symbolic unknown is still necessary. EL prefers
to use one already used when it is possible. As before, an assertion is made that a quantity has
that symbolic unknown as its value. But that assertion is identical to a previouws, no-longer-
believed, assertion, F281, Therefore, instead of making a new assertion, the sysiem once again
begins to believe F281. Thas Macilitates unonting, a mechanism whereby all the old, never forgotten
but ne longer believed, consequences of FZE1 are also restored to positions of trust. Unoufing can
be viewed as a sort of cache Tor deductions: if it were not present, the same laws as applied the
previous time would succeed this time in deducing the same conclusions, but with much more
effort. Alternatively, it can be viewed as a context-switching mechanism which deals in trees of
“logically local” subcontexts.

OC-BJT-BETA-FIMITE: F2BL (= (VOLTAGE (H1 RE}) X273
Unaut: FZBS (= (VOLTAGE (82 H214)) ¥279)
Ungut: FZ88 = {YOLTAGE (81 W2L4)) K279
Unaut: F287 (= [VOLTAGE TOUTPUT PROTIZIF W273)
Unout: FZ8& (= (YOLTAGE (E Q%11 X273)
Unout: FZ283 (= [YOLTAGE (42 RIN] XZ731
Urnout: FZ8Z2 6= [YOLTAGE (82 RLI1}) 2790
OC=0HM: F33Z2 (= (CUARENT (81 REI} (&= 4. 545454GE-6& HZT731)
OC-2T-At F333 (= (CURREMT (&2 A&} (&% -6.5456546E-4 X279}
GENYARS: F335 (VARIABLE X334 (VOLTAGE (41 RA91))
GENVARS: FI38 (= (VDLTAGE (#1 R3M) X33&)
DC-KVL: F3I37 (= (VOLTAGE (8 0S5)) K33s4)
DC-KWL: F338 (= (YOLTAGE (41 RIAI] K33&)
YEE-MOMI TOR-84T: F28% {(HANGING 071 05 X279)
VBE-MONITOR-BJT: F333 (HANGING 071 05 X334)
OC=0HM: F3&4@ (= (CURREMT (&1 H31) (&+ (d% -1.BE-3 ¥2T79) (&% 1.BE-I X334)0)
OC=KCL: F3&] (= [CURREMT (&1 AIB1} [&+ [&= 1.BE-3 K273} (&% -1.BE-=3 X33411)
DC-0HM: F342 [= (VOLTAGE (82 A1@1) [&+ (&% -BE.8 K279 [§% 7.5 M3340))
DC-EWL: F342 (= (VOLTAGE 181 RLL1) (84 (8% -5.8 XZ73) (&% 7.8 MI34)0)



DC-KVL: F344 (e (VOLTAGE 1E 0410 (&+ [8x -B.8 H273) (&= 7.8 X334)))
UC-BJT-ACTIVE: F345 {= (VOLTAGE (B 04)) (&+ B.B (8% -G.2 X273} (&= 7.8 MI3&N))
YCB-MONI TOR-BUT: F34c [HANGING D79 04 X334)
VCB-MONITOR-BJT: F238 (HANGING 078 04 X279)
VEE-MONI TOR-BJT: F347 (HANGING D71 04 X334)
VBE-MONITOR-BJT: F233 (HANGING D71 04 X273}
OC-KVL: F348 (= (VOLTAGE (C 05)) {8+ 8.5 (&% -6.8 H273) (&% 7.8 ¥334)))
OC-KVL: F343 (= (VOLTAGE (#1 RIZ)] (&+ D.6 (&% -6.8 ¥279) (& 7.8 X336))]
OC-KVL: F35@8 (= (VOLTAGE (42 RIZ)) (&+ D.B (8% -6.8 N279) (&= 7.8 K334)))
DC-KVL: F351 (= [VOLTAGE (42 CC21) (&+ 8.6 (6% -5.8 W273) (&% 7.8 X334)))
VYCB-MONITOR-BJT: F3@4 (HANGING D79 05 ¥273)
YCB-MONITOR-BJT: F352 (HANGING D78 05 X334)
OC-0OHM: F353 (= [CURRENT (#1 R121)
- (8+ 3.632377E-6 (&% 1,T4ISBITHE-& H2TI) (8% -2,BE-& K334)))

OC-2T-R: F354 [= (CURRENT (#2 R12)})

{6+ -3.BI2IATTE-4 (fw -], TEZCRATEE-4 M273) (6= 2.BE-4 MIZal))
OC-KCL: F3IS5 (= (CUARENT 1(#]1 R131) _

18+ Z.6373877E-5& (&= [,7435BA74E-6 ¥279) (&= -2.8E-4 X334)))
UC-061: F3S7 (CHECKED CHECK3SE D1 RLZ)
OC-0HM: F358 (VALUE X334 (8« 1.22631915 (&« 9,&T179482 X2731))
OC-2T-A: F359 (= (CURRENT (42 R13}) -1.2396E634E-4)
OC-0HM: F368 (= (CURRENT (#1 R11)} (&+ B.B2B3S51E735 (&= -2.127659GGE-3 H279)))
OC-2T-A: F3BL (= (CURARENT (42 R11}) (&+ -B.B2@3I516795 (&= Z.127BS9SRE-3 X273 1))
UC-KCL: F36Z (= (CURRENT (#2 R3)) (&+ @.8203G16735 (&% -2.GE22B85E-3 X273 )}
OC-2T-R: F36& (CHECKED CHECK3S3 D2 A9)
DC-2T-R: F3ES (VALUE X279 7.9511562)
OC-2T-R: F3BE (= (CURRENT (42 R1@1}) Z.BSES3144E-4)
OC-KCL: F3E7 (= (CURRENT [(E O4)) -3.E187@74E-3)
OC-KCL-BJT: F3BE (= [CURRENT (C 04)) 2.E1E7874E-13)
CENVARS: F378 (VARTABLE X353 (VOLTAGE (41 CBL)))
GENVARS: F371 (= (VOLTAGE (&1 CBL)) ¥363)
DC-KVL: F372 (= (VOLTAGE (#Z RE)} X363}
OC-kKVL: F3I73 (= [VDLTAGE (&1 R7)) X33
OC-0OHM: F374 (= (CURRENT [#1 R7)) (&= 3.P3A3BIE-4 XIRI))
OC-KCL: F375S (= (CUARENT (#2 RS)) (&% -3,030383E-6 ¥3E9))
OC-2T-R: F376 [= (CURRENT (#1 REI) (&= 3.830303E-6 ¥3E3))
OC-KCL: F277 (= (CURRENT {E 031} (&= -3.930303F-4 X353))
TIE-MONITOR=BJT: F37E [HANGING DBS 03 X353
OC-KCL-BJT: F373 (= (CURAENT IC 031} {8+ -G.@ABARALE-16 (&= 3.B303IBIE-& ¥ISIF))
IC-MONITOR-BJT: F388 (HANGING DBB 03 X359)
MOTE-SATURATED: F381 (HAMGING D72 03 X353
DC-KCL: F382 (= (CURRENT (M2 RS1) (&+ G.P00QBALE-16 (8 -3,0303QIE-4 ¥369)))
OC-2T-A: F383 (= ICURRENT (#1 RS)1 (&+ -6.0@080ALE-16 (&+ 3.8393@3E-4 X363)1))



DC-OHM: F384 (= (VOLTACE (2 RE)) (8+ 15,8 (& -1.B36363T X3E31))
OC-kKVL: F385 (= (VOLTACGE (#1 CCZM] 1&+ 15.@ (&% -1.8553637 X363)1)
OC-K¥L: F386 (= (YOLTAGE (C O3}) {8+ 15.8 (&x -1.6363637 X363)]1)
DC-0HN: F387 (= [VOLTAGE (41 RE)) (& 1.1909@31 X3E3))
ODC-XVL: F388 i= (VOLTAGE f(E O3)) (&= 1,1383831 X3531)
ODC-BJT-ACTIVE: F3ES (= (VOLTAGE (8 0Z)) (6+ B.6 (&% 1.1383831 X3E311)
YCB-MOWNI TOR-84T: F332 (HANGING 078 03 X363) '
VBE-MONITOR-BJT: F3391 (HANGING D71 0= X363)
DC=KV¥L: F332 (= (VOLTAGE (C G20} (&+ B.5 (&= 1.1383831 X363)))
DC-KVL: F293 (= (VOLTAGE C OL)F (&+ B.5 [&= 1.1983831 353K}
DC-KVL: F334 (= (VOLTAGE (#2 R3M] &+ 8.6 (dx 1.1583831 X3IE31)})
DC-0HM: F335 (= (CURRENT (&1 R3] &+ 1.44E-3 (&x -1,130303LE-& K3E311)
DC-2T-A: F396 (= (CURRENT (N2 R31) (&+ -1.46E-3 (&= 1.19@9831E-& ¥36311)
OC-KCL: F337 (= (CUARENT IC 0210 (&+ 1.44E-3 (8% -1.1903831E-4 W36}
IC-MONITOR-BJT: F33E8 (HANGING DBE6 02 X3B3)
NOTE-SATUSATED: F333 (HANGING 072 02 X363)
OC-KCL-BJT: F42@ (= (CURRENT (E O2)) &+ -1.44E-3 (8% 1,13989091E-4 X3GI11)
[E-MONITOR-BJT: F481 (HANGING 0B5 02 X3a3)
DC-¥CL: F&BZ (= (CURAENT [(#1 R&1) (8+ 1.44E-3 (8= -1.19@3@31E-4 H3630)}
OC-0HM: F&B3 1= (VOLTAGE (N1 R&)) 8+ 2,532 (&% -8B, 216363636 W3E311)
DC-KvL: Fap& (= (YOLTAGE (E G201 (&« 2.532 (&= -8,214383536 X353}
DC-BJT-ACTIVE: F&4RS (- (VOLTAGE (B 02)) i+ 3,192 (&= -0,21436363E X3E3)1))
VCE-MOMITOR-BJT: F4@E (HANGING 078 02 X3e3)
YBE-MONI TOR-BJT: F4B7 (HANGING D71 02 K3e3]
DC-KVL: F4B3 (= (VOLTAGE IE OL1) (8+ 3.192 (8% -B.214363636 X3631))
OC-BJT-ACTIVE: F483 (= (VOLTACE (B OL)) {8+ 3.732 (&= -B.216363636 M3G6311]
VCB-MONITOR-BJT: F&l@ (HANGIMG D70 01 W383]
VBE-MONITOR-BJT: F&ll (HANGING O71 O X363}
OC-kVLe F&l2 (= (VOLTAGE (8] R21) [8+ 3.732 (8= -B.214363B36 ¥3E311)
OC-KWVL: F4l3 (= (VOLTAGE (NZ RL)) (8+ 3.7392 (8% -8.214363636 W3B311)
DC-KWLy Fald (= (VOLTAGE (#Z CC1)) {&+ 3,732 (&% -B.214383636 X363)1)
DC-0OHM: F&lS (= (CURRENT (#1 A1}) (&+ 3.823188ZE-5 (&= 5.7336118E-7 ¥3B3) 1)
OC-KCL: F&4lE (= [(CURRENT (#2 W133})
&+ -5.2125663E-3 (&x -1.B4518754E-6 M3B3))]

DC-2T-SHORT: F417 (= (CURRENT (#1 WLZ3)}

(8+ 5.21796E3E-2 (&« 1, B451EVS4E-& N3ET)))
DC-CPROP: F418 (= [CURARENT [+VCC PROTZH

&+ 5,21296E3E-3 (8% 1,B4518754E-4 H36311)

DC-2T-R: F419 (= (CURRENT (42 A1)) (&+ -3.B291B32E-5 (&= -5.7336118E-7 X3E3)))
OC-KCL: F428 (= (CURRENT (#1 R2)) (44 3.B291852E-5 (&= 5.793B113E-7 X3ED)))
OC-0OHM: F&22 (CHECKED CHECES421 DI R2)
DC-0HM: F&23 (VALUE ¥3B3 Z.B813a4l)
DC-2T-R: F&24 (= [CURRENT (#2 RZ))} -3.1914B34E-5)



OC-2T-R: F&Z5 (= (CURRENT (#2 R4)) -1.1P5383E-3)
DC-2T-R: F428 (= {CURRENT (#2 A7)) -B.438982E-4)

DC-KCL: F&27 (= (CURRENT (82 W14G)) 5.7298784E-3)
DC-2T-5HDRT: F&4ZB (= (CURRENT (#1 W1461) -5.72987B4E-3)
OC-CPROP: F423 (= (CURRENT I[GROUND PROT2)} -5,7298784E-3)

MNow all of the DC parameters of the circuit have been determined, At this time, EL
begins to pay atention to the AC parameters. It would be perfectly possible to deal with AC and
DC analysis indiscriminately from the beginning, but is desirable to do as little work that will be
forgotten due to contradictions as is possible, and therefore whatever is likely to produce a
contradiction {such as DC analysis) should receive higher priority than what will not produce one
(such as AC analysis), assuming that both will have to be done in the end.

[NC-VPROP: F438 (= [INC-VOLTS (#1 CCL)) B.1)
INC-CAP: F&3l (= (INC-VOLTS {#2 CC1)) B.1)
INC-KVL: F&3Z (= (INC-VOLTS (B 0O1)) 8.1}
INC-KVL: F433 (= (INC-YOLTS (#1 A2)) 8,1)
INC-KYL: Fa434 (= (INC-VOLTS (#2 RL)) B.1)
INC-BJT-ACTIVE: FA35 (- [INC-VOLTS (E Q1)) B.1)
INC-KVL: F436 (= (INC-VOLTS @B 021 8.1)
INC-BJT-ACTIVE: F437 (= (INC-VOLTS (F 021 8.1)
INC-KYL: F438 (= (INC-VOLTS (#1 R4)) 8.1)
INC-CPROP: F433 (= ([NC-AMPS (#1 W21&)) B.08)
INC-2T-SHORT: F&&8 (= (INC-AMPS (42 WZ141) B.8)
INC-YPROP: Fa441 (= [INC-VOLTS (#1 W1331) 8.9
INC-SHORT: F44Z (= [INC-VOLTS (#2 M133}) 28.@)
INC-KYL: F&43 (= (INC-VOLTS (C 04)1 @.80
IRC-KVL: Fa44 (= (INC-VOLTS (41 R1Z2)) A.8)
INC-KVL: Fa445 [- (INC-VOLTS (¥l RS1) B.3)
IRC-KNL: F44B [« [INC-VOLTS (¥1 R3]} B.@)
INC-KYL: F&447 (= (INC-VOLTS (#1 R1)} 8.0
INC=OkH: F44a (= (INC-AMPS (81 R1)) -2.7@27827E-7)
INC-2T-R: F&&3 i= (INC-AMPS (42 R1)) 2.7827827E-7)
INC-VPROP: F458 (= (IMC-VOLTS [#1 W1SE)) @.9)
IMC-SHORT: F&51 (= ([WC-VOLTS (#2 H1sE)) @.8)
INC-KVL: F&52 (= {INC-VOLTS (#2 RE}) 2.8
INC-KVL: F&53 (= (INC-VOLTS (#2 RI3)) 8.@8)
INC-KVL: F454 (= (INC-VOLTS (%2 CB1}) 8.8
INC-EVL: F45E (= (INC-VOLTS (#2 R7)) 8.3
INC-KVL: F45E (= (INC-VOLTS (42 R&)) @.8)
INC-KVL: F457 (= (INC-VOLTS (#2 R21) 8.9
INC-OHFM: F453 (= [INC-AMPS (#] R2)} 1.BE-G)
INC-2T-R: F&53 (= (INC-AMPS [#2 RZ)) -1.BE-B)



INC-0HM: F4B@ (= ([NC-AMPS (81 R4))} 5.5555555E-51
INC-ECL: F4B1 (= (IMC-AMPS (E 02)}) -5.5555555E-E]
INC=2T=A1 F4BZ (= {(INC-AMPS (%2 A&4)) -5.5555555E-5]
INC-CAP: F4EZ [= (IMC=VOLTS {21 CBL)) B.8)

INC-KV¥L: F4B4 (= (INC-¥YOLTS (82 RE}) 8.3

INC-EVL: F4BS [= (INC-VOLTS (&1 A7) 8.3

INC=0MM: F4B6 (= (INC-AMPS (H1 R71) 8.8)

INC=-2T=-Rt F46T7 (= (INC-AMPS (€2 A7) B.8)
INC-BJT-CUTOFF=IB: F458 (= (INC-AMPS (B 0S5}) @.8)
INC=-BJT=-CUTOFF=IC: F483 (= (INC-AMPS (C 0S51) 8.8}
TNC-KCL-BJT: F&78 (= (INC-AMPS (E 05)) A.8)
INC-BJT-BETA=INFINITE: F471 (= (INC-AMPS (B 04)) @.8)
INC-BJT-BETA-INFINITE: F472 (= {INC-AHPS (B 03)) @.8)
[NC-BJT-BETA-INFIMITE: F473 (= (INC-AMPS (B 0Z21) B.@)
INC-KCL: F&74 (= (INC-AMPS (E Q1)) 8.8)

[NC-KCL-BJT: F475% (= (INC-AMPS (C 02)) 5.555GSESE-G)
INC-BJT-BETA-INFINITE: F&476 (= (INC-AHPS (B 0O1)) B8.@
[NC-KCL: F&77 (= (INC-aMPS (82 CCL1) -1.27027BZT7E-E)
INC-2T=C: F&78 (= (INC-AMPS (#1 CC1)) 1.27@27827E-E]
INC-CPROP: F&73 (= (INC-AMPS (INPUT PROTZI) 1.27827827E-G)
INC-KCL-BJT: F4B8@ (= (INC-A1PS (C QLMY 2.8

INC-KCL: F481 (= (INC-AMPS [#2 R3)) -5,55G5G55E-5)
INC-2T-R: F482 (= [(INC-AMPS (#1 A31) 5.5555558E-5)
INC=0MHH: F483 (= ([NC-VOLTS (&2 A31) -B.55565085]
INC-EVL: E484 (= (INC-VOLTS (B 0301 -@,5555G5565)
INC-EVL: F485 (= (INC-YOLTS IC 0211 -@.55555555)
INC-EVL: F48E (= (INC-YOLTS (C OL)} -B.55555585)
INC-BJT-ACTIVE: F487 (= (INC-VOLTS (E 03)) -B.55555555)
INC-KWL: F4BE (= {(IWC-YOLTS (#1 REH) -B.55G55555)
INC=0HM: F4839 (= (INC-AMPS (#1 RG1} -B.B1B342E-4)
INC-KCL: F498 (= (INC-AHPS (E 03)) B.B1A342E-4)
IMC-KCL-BJT: F&431 (= {INC-AMPS (C 030) -B8.8183&ZE-4]
INC=2T=R: F492 (= (INC-AMPS [#2 RE)} B.318342E-4)
TMC-KCLs F&33 (= (INC-AMPS (#1 CEL)) -2.313342E-4]
INC-2T-C: F434 (= [INC-AMPS [(#2 CB1)) 2. RIA347E-4)
GENVARS: F&4356 (VARIABLE X495 (INC-YOLTS (#1 RE)))
GENVARS: F&437 (= [INC-VOLTS (N1 RE]} X&35)

INC-K¥L: F&4598 (= [INC-VOLTS (#2 RL1D) Ha35)

INC-EWL: F455% (= (INC-VOLTS (W2 R91F R455)

INC=K¥L: FERR@ (= (INC-VOLTS (E 0S)) X&95)

INC-KYL: FS81 (= (INC-YOLTS (W2 W21&1) ¥485)
INC-SHORT: FSBZ (= (INC-YOLTS (#1 W21&)F X435)
INC-VPROP: F5@83 (= (INC-VOLTS (ODUTPUT PROTZ)) K&95)



INC-0HM: F5R& (= (INC-AMPS (#1 R31) (8x &, GAS45LEE-4 X435))
INC-2T-R: FGEBS (= [INC-AMPS (42 RE)] (&= -&,545454GE-4 ¥435))
GENVARAS: FGB7 (VARTABLE XEBE (INC-VOLTS (#1 R3)))
GENVARS: FE@B (= [INC-VOLTS (#1 R9)) KGaE)
INC-KV¥L: FGB3 (= [INC-VOLTS (B O5)) XSB5)
INC-K¥L: FS18 (= (INC-VOLTS (&1 R181) X586}
INC-OHM: FE11 (= (INC-AHPS (#]1 RI)} (&+ (8= -1.BE-3 X495) (&= 1,BE-3 XSOE)))
INC-KCL: F512 (= (INC-AHPS (41 RIB}) {8+ (6x 1.BE-3 X435) (&= -1.BE-3 XGBE)))
INC-OHM: FE13 (= {INC-VOLTS (#2 R1B)) (&+ (&= -B.3 X435) (& 7.8 ¥5881))
INC-KWL: FS14 (= {INC-VOLTS (#1 A11)) (&+ (&% -B.2 X495) (&% 7.8 ¥586)))
INC-KYL: F515 (= (INC-VOLTS (E 04)) 1&+ (&« -E.3 X435) (&= 7.8 XS@E1))
ITNC-BJT-ACTIVE: FGL1E (= (INC-VOLTS (B Q4)) (8+ (8% -5.85 ¥495) (&% 7.8 NGOG)))
INC-KVL: FS17 (= (INC-VOLTS (C OS)1 1&+ (8« -G.5 X435) (&= 7.8 XG@E1))
INC-KVL: FS18 (= (IMC-VOLTS (#1 RL3)) (&+ (&% -B.B3 N4IS) (&x 7.8 W58G)))
INC-K¥L: F519 (= (INC-VOLTS (#2 R12)) (&+ (6 -6.B X495) (&= 7.8 ¥5861))
INC-K¥L: F528 (= (INC-VOLTS (#2 CC2)) &+ (8x -B.8 M495) (&= 7.8 WG@E)))
INC-CAP: FS21 (= (INC-VOLTS (W1 CC21) G+ (8% -6.8 X435) (&= 7.8 KS@G)))
INC-KVL: FBZZ (= (INC-VOLTS IC O3)) 18+ i8x -5.8 X435) (&« 7.8 XGES)))
INC-K¥L: F522 (= (INC-VOLTS (#2 RE)} (8« (&x -B.3 X495) (&« 7.8 XGEGI))
INC-0HM: FS24 (= ([NC-AMPS (#1 RS))

(&+ [&x 1.21428571E-3 X&95) (8« -1,39285715E-3 NEAG)) )
INC=2T=A: F5Z5 (= (INC-AHPS (42 RS))

{8+ 8= -]1.2042BE71E-3 X&35) (8% 1,33285715E-3 KGOE)})
INC-KCL: FE2& (= (INC-AHPS (#1 CC2))

[&+ 5.812342E~4 (8% 1,21428571E-3 X435) (&% -1,.39285715E-3 KS8GH))
INC=2T-C: FEZT (= (INC-AMPS [#2 CC2)}

{6+ -B.818342E-4 (8= =1.21428571E-3 N495) (&+ 1.39285715E-3 X586))}
INC-OHM: F52E (= (INC-AMPS (W1 RLZ}) Q8+ (8% 1.74358374E-& N&95) (8 -2.8E-4 H5AE)))
INC-2T-R: F529 (= (INC-AMPS (82 A12)) (&+ (&e -1,74358374E-4 N435) (&= 2.PE-4 NGCES)))
INC-KCL: F538 (= (INC-AMPS (#1 R131)

{8+ E.B18362E-4 (&% 1, IBECL4T7E-3 M4US) (& -1.59285713E-3 MEOE) 1)
INC-0OHM: F532 (CHECKED CHECKS31 D3 R13)
[NC-OHM: FS533 (VALUE X586 (8+ B.52242011 (&% B.ETI73488 H4351))
INC-2T-R: F534 (= (INC-AMPS (¥2 AL3)) -4.9693612E-5)
INC-KCL: FS35 (= (INC-AMPS (82 W1&EN) {8+ -7.7CCACQLE-4 (&% 4,.S4CAS4EE-& N&95)))
INC-Z2T-5HOAT: FS3E (= (INC-AMPS (#1 W14G)) (8« 7.7CCRCPGE-& (&= -4,545454BE-4 XN455)))
INC-CPROP: FE37 (= (INC-AMPS (GROUND PROTZ)) (&+ 7,7GGECRAE-4 (8% -4.S4545S4EE-6 ¥4350))
IKC-0H: FS32 (= [INC-AMPS (g1 R11)) (&+ B.G6EISSESE-3 (&= -2.12765956E-3 H43511)
INC-2T-R: F533 (= [INC-AMPS (42 RL1}) (&+ -B.GEJ9SBGE-3 (&= 2, 1276535GE-3 H43511)
IKC-KCL: F548 (= [INC-AMPS (82 RS3}) (&+ B,ES99GHEE-3 (&% -2.582205E-3 ®4351))
INC-2T-R: F542 (CHECKED CHECKS41 D& R9)
INC-2T-R: F543 (VALUE X435 3,3315855)
INC-2T-A: FG&4 (= (INC-AMPS (42 R181) B.7BL1785E-5)



[NC-KCL: F545 (= (INC-AMPS (E 0O4)) =-1.54153334E-3)
INC-KCL-BJT: FE4E (= (IRC-AMFS (C Q&)1 1.5&153334E-3)
INC=KCL: F5&7 (= (INC-ARPS (#2 W133)) -7.8473755E-4)
INC-2T-5HORT: FG5&8 (= (INC-AMPS (F1 WL33)) 7.6473ITI5E-4)

INC-CPROP: F543 (= (INC-aMPS (+VCC PROTZI) 7.&73735E-4)
DONE

The analysis is complete! We can now ask for the values of the quantities of interest to us. The
process of asking replaces all symbolic “unknowns” of known value with their values, and performs
arithmetic operations, to make the answer more iransparent. It also lists the factnames facts
accessed in finding the answer

w==> [what " i{voltage (output protZ)l)
7.9511562 (FIEE F287)

T

me> [uhat *linc-volts [output prot2l}]
3.3915055 (FS43 F5R3)

T



Since the input INC-YOLTS was 1, the output of 3.4 indicates a gain of 34 for the circuit,

Suppose that we, the circuit designers, are unsatisfied with the gain, as expressed by
those results, and would like to alter the circuit device parameters to make the gain exactly 40, We
can use EL to do this; first, we would like to find out which device parameters can be used to
vary the gain without changing the output bias level, and vice versa.

We use the fact that we can ask AR5 how it deduced -any fact that it knows. WHY prints
only the immediate antecedents; EXPLAIN prints the entire proof. We use them on the two Facts,
F543 and FEB3, which went into the ultimate answer ar the gain (note that one i3 an eX pression
involving a symbolic unknown, and the other is the value of that unknown, presumably learned
more recently than the expression itself). WHY first describes the given fact, then describes each of
its immediate antecedents, one per line.

e=s (uhy * §543)

ANTECEDENTS OF F542 (VALUE ¥435 3.3315855)

FS42 (CHECKED CHECKS41 D4 R9)

F532 (VALUE XEBE {8+ B.52242811 (&= B.E7179458 ¥49501)
i

==> {uhy ' 583)

ANTECEDENTS OF F583 (= {(JNC-YOLTS (OUTPUT PROTZ)) X&35)
FEBZ (= [[NC-VOLTS (#1 WZ14)1) X&SE)

F218 (IDENTIFY (OUTPUT PROT2) TERHINALZLE)

F217 (IDENTIFY (#1 W214) TERMINALZ1E)

D44 [NC-VPROP

7

Unfortunately (but not surprisingly), the immediate antecedents of F543 and FE@3 are
still too high in the proof tree to include any of the initially-given device-parameters we are
looking for, s0 we must examine the entire proef. For each fact that appears in the proof,
EXFLATN prints the factname and then the statement of the fact, followed by the factnames of the
fact's antecedents, The antecedents’ factnames may be interpreted by looking for them on other
lines of the printed proof, which is ordered numerically by decreasing factnames. The antecedent
facts will usually be accompanied by the name of the demon which performed the deduction.
GIVEM as an "antecedent” indicates an assertion that was assumed or given by the user, rather than
deduced. USER as well indicates a fact specified interactively by the user with the TELL function,

The only paris of the proof that we are actually interested in are the facts that were
“axioms” specified when the circuit was wired up. They come near the end because their
factmames are all low-numbered.

wex [Explain " §543)

FS43 (VALUE X&35 3.3915@55) (F542 F533)

FS542 (CHECKED CHECKS41 D4 R3) (F54@ FSI1 INC-2T-R)
F548 (= [(INC-AMPS (82 RS1)



F538
F538

F533
F532
Fs38

F523

F528

F527

F5ze

F525

Fola

F523
Fa2l
Fo2B
F519
F518
F5i6
FS15
Fslé
F513
F&l2
FB11

F&l@
Foas

{6+ 8.5693506E-3 (8= -2.582285E-3 W&351)1

(F533 FEB4 F&TR F44@ INC-KCL)

{= (INC-AMPS (42 RI11)) {8+ -B.BESHSOGE-3 (& 2.1276535BE-3 X435)1) (F538 [NC-2T-R}
{= {INC-AMPS (81 RIL)J

{6+ B.BEIISHEE-3 (&= -2, 177ESESGE-3 M&95)))

(F533 F514 F438 F122 INC-OHM)

(VALUE ¥S8E (&+ B.G52242011 (&= B.B71734688 ¥435))1) (F532)

{CHECKED CHECKS31 D3 R13) (F53@ FSI& F453 F126 [NC-0HM)

(= (INC-AMPS {(#1 R13))

[+ §.818342E-4 (8% 1,3BBB44TE-3 Xa35) (4= -1.59285713E-3 HEBG)])
(FE23 F527 F471 F4ES INC-KCL)

{= (INC-AMPS (82 R12])

{6+ (8= -1,743580974E-6 H435) (&= 2.BE-4 XGAGII}

(F5ZE INC-2T-R)

{= {INC-AHPS (41 R1Z1}

{6+ (&= 1,74358374E-4 M&35) (&= -2.BE-4 XEOGI))

(F513 Fasd F124 [NC-0HT)

{= (INC-AHPS {(#2 CC21)

{8+ -B.818347E~-4 (8= -1.214ZE571E-3 X&35) (4= 1.39285715E-3 ¥S6511))

(FS28 INC-2T-C)
[= (INC-AMPS (41 CCZ1)

&+ 8. 8l8362E-6 (8 1,21428571E-3 W435) (4= -1.33285715E-3 XGEEN]1)

[FS25 F431 INC-KCL)

(= ([MC-AMPS [#2 AS))

(e (8% -1.2142B571E-3 H&95) (8« 1.39285715E-3 XSEG) )
(F52& INC-2T-Rl

(= (INC-AMPS (¥1 RS)})

(Es (8% 1,2142BS71E-3 ¥435) (&% -1.39285715E£-3 XS566110)
(FS23 F445 FL18 INC-0HMI

(=
=
=
(=
(=
(=
(=
=
(=
(=
(=

(INC-VOLTS
(INC=-¥OLTS
(INC-VOLTS
(INC-¥OLTS
(INC-YOLTS
(INC=¥OLTS
(INC-¥OLTS
(INC-¥OLTS
(INC-¥OLTS

(#2 RS (&4 (&% -B.8 M&35) (&= 7.8 ®S@E1)) (F521 INWC-KVL)

(#1 CCZ1) 18+ (&= -B.2 X435) (& 7.8 WEEG))) (FR2@ INC-CAF)

(#2 CC21) 18+ (&= -B.B8 W4Z35) (8% 7.8 WEEGI)) (F51E6 INC-KVL)

(#2 A1Z1) 18+ (&= -E.B M435) (6x 7.8 ¥S@E))) (F516 INC-KVL)

(¥l A131) 1&+ (&= -B.8 MAZGH) (8« 7.8 NE@B))} (FEIE INC-KVL)

(B 0£1) (&= 8= -B.8 W&D5) (&= 7.8 MGBEN)1) (F515 F274 INC-BJT-ACTIVE)
(E Q&)1 (&« (8% -B.8 Wa35) (&« 7.8 ¥BEG)1) (F513 [MNC-KYL)

(#1 A1L11) 18+ (&= -B.B H435) (&= 7.E ¥5@51)) (FE13 [MC-KVL)

(M2 R1@)) (&+ (8% -B.5 HG35) (&« 7.8 ¥5061)) (F51Z F51@ F12@8 TNC-0OHM)

(INC-AMPS (1 RLB)) (&+ (8« 1,8E-3 ¥435) (4% -1.BE-3 XGEBG))) (FS511 F4B8 INC-KCL)
(INC-AMPS (#1 R3)) (&+ (8% =1.BE-3 N435) (&% 1.BE-3 XS@E)))

(FSB8 F&33 FL1& [NC-OHT1)

{= {INC-YOLTS (¥l Rla@)) X5@5) (F583 IMNC-KVL)

{= (INC-¥OLTS (#1 RS)) XE@E) (GIVEN F327 F273 F27@ F265 F262)



FSB5 (= [INC-AMPS (1 R2)) (&% &.5454545E-4 ¥435)) (F437 FaSZ F116 INC-OHM
F&S3 (= (INC-VOLTS (&2 R31) K&35) (F437 INC-KVL])

F&38 (= (INC-VOLTS (HZ RI1)) ¥435) (F&37 [NC-XYL)

F&37 = (INC-VOLTS (#1 R2}) X&35) (GIVEW F327 FI73 F278 F2ES FZBZ)
F&491 (= {INC-AMPS (C 03)1) -2,818342E-4) (F438 F&72 INC-KCL-BJT)
F498 (= (INC-AMPS (E 03)) B.818342ZE-4) (F&EI INC-KCL)

F483 (= (INC-AMPS (#] RE)) -B.813342E-4) (F4BB F4b4 F112 INC-OHA}
F488 (= (INC-¥OLTS (#1 RE)) -B.55555555) (F4B7 1NC-KVL)

F457 (= [INC-VOLTS (E 03)) -@,55555555) (FaB& F271 INC-BJT-ACTIVE)
F48& (= (INC-VOLTS (B 0O31) -B.55555555) (F&83 INC-KVL) '
F483 (= (INC-VOLTS (#2 R3)) -B.55555555) [F422 F&4E F1BE INC-0HM)
F4R2 (= (INC-AMPS (#1 R3)) 5.5555555E-5) (F&Bl [NC-2T-R)

F4B1 (= (INC-AMPS (#2 A3)) -5,5G55555E-51 (F4B@ F475 F472 INC-KCL)
F4B0 (= (INC-AMPS IC QL)) @.8) (F&76 F474 INC-KCL-BJT)

F&TE (= (INC-AMPS (B O11) 8.8) (F263 INC-BJT-BETA-INFINITE]

F475 (= (INC-AMPS {C 021) 5.5555555E-51 (F473 F4EL TNC-KCL-BJTI
F&474 (= (INC-AMPS (E QL)) B8.8) (F473 [NC-KCL)

F473 (= (INC-AMPS (B 021) 8.8) (F2BE INC-BJT-BETA-INFINITE)

F472 (= (INC-AMPS (B d3)) B.2) (F271 INC-BJT-BETA-INFINITE}

F471 (= [INC-AMPS (B 04)] B.@} (F274 INC-BJT-BETA-INFINITE}

F478 (= (INC-AHPS (E OS)) 8.2} (F4E3 F4E2 IMC-KCL-BJT)

F453 (= (INC-AMPS (C O5)) B8.0) [F328 INC-BJT-CUTOFF-IC]

F4GE (= [INC-AMPS (B 05)) 2.8) (F328 INC-BJT-CUTOFF-1B]

F4EG (= [INC-VOLTS (#2 RE}) 8.8) (F&E3 INC-KVL)

F&E2 (= [INC-VOLTS (#1 CBL)} 8.8) (F454 [NC-CAP)

F4E1 (= (IMC-AMPS (E Q2)) -5,5555G5GE-5) (F4E@ INC-KCL)

F4BB (= [(INC-AMPS (#1 R&)) 5,.5555555E-5) (FaSe F438 Fl@s [NC-OHM)
F45E (= (INC-VOLTS (&2 R4b) 8.8) (F4b]l INC-KEWL)

F&454 (= (INC-YOLTS (#2 CBL)) @.8) [(F4&S1 INC-KVL]

F453 {= (INC-VOLTS (#2 R131) 8.8) (F451 INC-KVL)

Fa52 (= (INC-VOLTS (#2 RE)} @.@) (F451 TNC-KEVL)

F451 (= (INC-YOLTS (82 WL4B)) B.@) [F45@ [HC-SHORT)

F4SB (= (INC-VOLTS (&1 WL4E}) @.9) [F223 INC-YPROP)

FaaB (= (INC=VOLTS (41 R3I)) B.8) [F&4Z INC-EVL)

F&4&65 (= [[NC-VOLTS (8L RS1) 8.8 [(F&42 [MC-EVL)

Faahd (= [(INMC-VOLTS (41 R12)) @.8) (Fas2 INC-K¥L}

Fas2 (= (INC-VOLTS (82 WLI33)) @8.8) (F&4l INC-SHORTI

Fasl (= [(INC-VOLTS ([#1 L133}) 8.8) (FZ3@ INC-VFHAOF)

FaaB (= [(INC-AMPS (N2 HZ214)) 8.@) (F433 |NC-ZT-5HORTI

Fa38 (= (INC-AMPS (#1 W2141) @.8) (F231 INC-CPROP)

Fai8 (= (INC-VOLTS (&1 R&}) B.1) (F&37 INC-KVLI

F437 (= (INC-VOLTS (E 02)) B.1) (F&36 F266 INC-BJT-ACTIVE)

F&436 (= (INC-YOLTS (B 027} 8.1 (F&35 INC-KVL)



F&35 (= (INC-¥OLTS (E Q1}) B.1) (F432 F253 INC-BJT-ACTIVE}

F&432 (= (INC-VOLTS (B Q111 B.1) {F431 INC-KVL)

F43l (= (INC-¥OLTS (#2 CCLIY B.1) (F438 INC-CAP)

F&38 {= {INC-¥OLTS (&1 CCL1HY} B.L) (F232 JHC=VPROF}

F32& (DETERMIMNED {MODE 0S) CUTOFF) (F327)

F327 (CHOICE (MODE 0OS) CUTOFF) (GIVEN F257 F1 MEEOCHOICE)

F274 (DETERMIMNED (MODE 0O4) BETA-INFINITE) (F273)

F273 (CHOICE {MODE 0&) BETA-INFINITE) (GIVEN F2S8 F1 NEEOCHOICE)
F271 (DETERMIMED (MDDE 03) BETA-INFINITE) (F27@)

F27@ (CHOICE (MODE QO3) BETA-INFINITE) (GIVEN F253 F1 NEEDCHOICE)
F26E (DETERHIMED {MDDE G2 BETA-INFINITE) (F285)

F2B5 (CHOICE (MODE 0Z2) BETA-INFINITE) (GIVEN F26@ F1 NEEDCHOICE)
F28% (DETERNINED (MDOE 01 BETA-INFINITE} (F282)

FZE2 (CHOICE (MODE O1) BETA-INFINITE) (GIVEN F261 F1 MEEDCHOICE)
F261 (NEEDCHOICE (MOOE 4ld} (TAY-BJT)

F26@ (NEEDCHOTCE (MOOE Q2)) (TRY-BJUT)

F253 (NEEDCHOICE (MDOE Q3)) (TRY-BJT)

F258 (NEEDCHOICE (MODE Q%)) (TRY-BJT)

F257 (NEEDCHOICE (MDOE QSH} (TRY-BJT)

F232 (= (INC-VOLTS [INPUT PROT2)} @.1) (USER GIVEM)

F231 (= (IMC-AMPS (DUTFUT PROTZ1) @.8) (USER GIVEM)

F238 (= (INC-VOLTS («VCC PROTZM) B.8) (USER GIVEN)

F229 (= (INC-VOLTS (GROUND PROTZ21) 8.8) (USER GIVEN)

F1ZE (= (RESISTANCE R13) 22023.8) (GIVEN)

F124 (= (RESISTANCE A12)} 33028.8) (GIVEN)

F122 (= (RESISTANCE AL1} &78.8) (GIVEM)

F12@ (= (RESISTANCE A1@) BEBE.8) (GIVEN

F118 (= (RESISTANCE 53) 1882.8) (GIVEMN)

F116 (= (RESISTANCE A&} 2288.8) (GIVEN)

F112 (= (RESISTANCE RS} 538.8) (GIVEN)

F118 (= (RESISTANCE AS) SEE2.8) (GIVEW)

F108 (= (RESISTANCE R4) 1388.8) (GIVEN)

F1BE (= (RESISTANCE 83) 18880.8)1 (GIVEN)

F1 (ALTERNATIVES (MODE BJT) (BETA-INFINITE CUTDFF SATURATED)) (GIVEN)
QED :

We see that the precise resistances of resistors R3, R4, R5, R6, RE, RO, RID, R, RIZ and
R12 had an effect on the derivation of {act F543, Changing the resistance of any of the other
resistors (R1, RZ, RT) will leave FS43 stifl true. This can be understood by examining the path
along which F543 was deduced:
eex fexplain 15831
F583 {= {INC-YOLTS (OUTPUT PROTZ)) X435) (F2@2 INC-YFROF)
FEa2 {= (INCYOLTS (#1 W21&)) K&35) (FSal INC-SHORTH



FS581 (= (INC-VOLTS (#2 W214)) ¥435) (F&37 |NC-EVL)

F437 (= (INC-YOLTS (#1 RE))} X435) (GIVEN F3Z7 FI73 F27@ FZB5 Fikd)
F327 (CHOICE (MODE O5) CUTOFF) (GIVEN F257 F1 MEEDCHOICED

F273 (CHOICE (MODE Q&) BETA-INFINITE) (GIVEN F258 F1 MEEDCHOICE)
F278 (CHOICE (MODE 03) BETA-IMFINITE) [GIVEN F253 F1 NEEDCHOICE)
F2E5 (CHOICE (MODE OZ) BETA-INFINITE) (GIVEM F2E@ F1 MNEEDCHOICE)
F262 (CHOICE (RODE Q1) BETA-INFINITE) (GIVEM F261 F1 NEEOCHOICE)
F261 (MEEOCHDICE (RODE O11) (TRY-BJT)

F2c@ (NEEODCHOICE (RODE Q210 (TRY-BJT)

F253 (NEZOCHOICE (MODE 031) (TRY-BJT)

F258 (MEEOCHOICE (RODE O&1) (TRY-BJT)

F257 (NEEDCHOICE (MOOE 0511 (TRY-BJT)

FL (ALTERNATIVES (RODE BJT) (BETA-INFINITE CUTOFF SATURATED®) (GIVEN)
QED

Since F583 depends on no additional resistance values, the circuit gain itself depends
only on RS, R4, RS RE, RE, RO RIO, RIL RI2, and RIS To change the gain to 40, we could pick
one of them and try different values for it until we found one producing a satisfactory value for
the gain. But there is an easier way! We can give one of the resistors a sariakle value, and let it
be determined in terms of the desired gain. First we tell the system to forget the value it already
knows for one of the relevant resistors (R5); then we give it a new value which is a symbaolic
unknown (RRS).

In addition, we know that if we change the resistance of one of the other resistors, R1, B2
or RT, the cireuit’s gain will not be affected (as bang as we don't change the resistance so much that
the transistors move o different operating regions! But if that happens, we will see it). We can
thus use those resistors to ad just other things about the circuit, after arriving at the desired gain.

==> [change " (resistance rSll
488 facts to check out

352 active facts left

MIL

The value of R5's resistance 15 now Torgotten” (actually, merely disbelieved), and so is
everything that was deduced from'it. The information that is lelt when R5's resistance is gone is:
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m=> {tell "(resistarce 50 "rrGl
USER: F558 (= (RESISTANCE AS) RAS)
MNIL

Now we must propagate the newly created unknown, RRS. This means determining the values of
the circuit voltages and currents ar expressions involoing fhat unhnown.

==> {run)
DC=0Hr: FS5L (= (VOLTAGE (&2 AS)) i&+ 15.8 (8= -B, 4BE9EFE-4 ARSI
DC=KVL: FS552 (= (YOLTAGE (&1 CC210 [4+ 5.8 (8% -8.6825982E-6 RAS)I)
DC-EWL: FS5532 (= (VOLTAGE IC O31) (&+ 15.@ (8% -B.G4E2922E-4 RARSI]
YCE-MONI TOR-BJT: F354 (HANGING O7@ 03 RAS)
VCB-MOWNI TOR-BJT: F398 (HANGING D7 03 X353)
INC=2T-HA: FE55 {a [INC=AMPS (#2 RAZI) (&4 (8% 1.BE=3 X¥455) (&= =1.9E-3 K5BE)I1]
INC-0OHM: FS5E (= (INC-AMPS (#1 R131) (&+ (&= -8.252B83E-5 X&35) (&% 3.51Z135E-5 XEAG)I))
INC=2T7=A: F557 (= (INC-AMPS (42 AL131) (& (8= B.292BEZE-5 Ka35) (&% -3.5127195E-5 MGBE) I
INC-089: FS58 (= ([MC-aMPS (81 R11M)
(&8s (B -0, AIGEO57445 M&S5) (8% B.01E5ISTL4S HEBGI N



[NC-2T-R: FSE@ (CHECKED CHECKESS D4 A9)
INC-2T-R: FS581 (= (INC-AMPS (£2 AL1B)) {8+ (&= -1.BE-3 ¥495) (&= 1.BE-3 XGBEN))
INC-KCL: FS562 (= ([INC-AHPS (E 041)
(&+ (&= 3. 017953570446 MASS) (fx -B.B17S3G7444E MEORID)
INC-KCL-BJT: FSE3 i= {([MC-aFPS (C D410
(s (8% =B.B17S5574040 HalS) (&= B, ALTL5I5TaG4E XS@ARID]
INC=2T=R: F5E4 (= (INC-AMPS (82 R1L1)
{&+ (f= B,R1E5957445 HEIG) (&« -B.81E5357445 XSAR) )
INC-KCL: F5BE (= [INC-AHPS (W2 WLI4E])
[+ -8,2527BE5E-4 (&% 3,7IBLEEZRE-4 X495) (&= 9.512155E-5 KGAG) bl
INC-2T-S5HORT: FSBE (= (INC-AHPS (#1 W1&4B))
(8= B,2S2VEEEE-4 (8% -3,71618676E-4 X495] (= -9.512195E-5 EGAGIT)
INC=CPROP: FS5&7 (= (IKC-&MPS (GROUND PROTZH]
[+ 3,20278ESE-4 (&% -3, 7IGLIBEZEE-4 H49%) (&% -I.5I7135E-5 HSEG)DD
INC=ECL: FS568& (= ([NC=AMPS (82 CC21}
(8¢ [fx 2.57285204E-4 ¥495) (&« -2,95]7195E-6 XG@5)))
IMC-2T-C: FSEY (= [INC-AHPS (N1 CCZ})
(E+ (8w -2 572E0EB4E-4 M&O5) (&= 2,9512195E-4 WESEGIN)
IMC-KCL: F5TQ (= (IMNC-AMPFS (82 RS}
(6= B, 815342E-6 [8x 2.572858B4E<5 ¥435) (&x =2.5517135E-4 XTHLIDD
IMC-2T-R: FSF1 (= (IMC-AMPS (H1 RGID
(Ge B BIRZaZE-& (8w -2, 57 7EGEQGE-4 N495) (&= 2.9517136E-4 EGAGITY
THC=KCL: FR72 (= (INC-AMPS (42 H133M)
{&+ B.2RS48927E-6 (&% B, BL7E7RGT1I3 XG35) (&x -B.Q17EIQEERS KSEEI))
INC-ZT-5HORT: FB73 (= [INC-AMPS (41 WI33))
[&+ -8, IB0A4830°E-6
(& =@, BLYE7ELFLI HK&TS)
(&x B.01TEUREGEE XSEEH))
[NC=CPROP: FST4 [= [([NC=A1PS (£¥CC PROTZ1D
[+ -8, 2R5&89275 -4 (8= -B,B17E7EETII ¥4595) (8= B, O17EIBELLS MLGAGID]
[NC=0HM: FE7E5 (CHECKED CHECKESYS D03 RS)
INC=-0HM: F577 (¥ALLIE RRS [&/F (&« (8= 5.5 H&95] (&= =-7.5 HGEG))
14+ -8,813342E-6 ‘
(&= -2,C72RCEB4E-& X495)
4= 2.9512195E-6 XES@E111)
YCB=MOM] TOR-BJT: FETE [HAKGIMNG D78 02 ¥LOE]
VCE-MOM] TOR-BJT: FETY [HANGIMG DF@ 02 K43%]
INC=-2T-R: F%E] (CHECKED CHECKSSE® D& HI3)
[WNC=KCL: FE22 (VALLE ®EBE (&= 1.B258327 H&GG)1)
INC-KCL: FS24 (CHECKED CHECKSA3 035 MNZ19
DONE

The value of RRS, and thus of R5's resistance, is known only in terms of another



unknown, X435, because, with one less quantity given than before, there i no longer enough
information 1o determine all the circuit parameters, We can remedy that by specifying the output
signal level as 4.0 volts, which 15 a gain of 40 over the input we have supplied:

ssx (tell "linc-volts loutput prot2)] 4.8)

P'SER: F585 (= (IWC-YOLTS (OUTPUT FADTZ1) &.@)

MIL

max  [Fuml

YCB-MONI TOR-BJT: FEEE (VALUE #4595 4.8)

INC-VPROP: FSA88 (CHECKED CHECESET D&4 TERMINALZIE)
OONE

The appropriate value of REs resistance is now known.

w=x {what "{resistance rSll
BEES.74B2 (FE&2 FGEE FS77 FSEA)
T

max [What " linc-volts (#2 r5l1)
4.8BB538 (FSEZ FSEE FEZ3)

T

m=x (what " iveltage (42 f501)
3.17168545 (FS82 FS8E FS77 FG511
T

mes [what " {voltage (e g3li]
3.33617 (F423 F3828)

T

ssx [uhat "linc=volts la gdll}
-8, 55555555 (F487)

T

But, by changing the value of RS to get the right gain, we have also altered the biasing of the
circuit. We now ad just the bias 1o the desired level by changing A7, which EL has told us sl nor

affect the gain,

==> [change ' (resistance r¥l)
417 facts to check out

351 active facts left

MIL

=u> [what " (resistance r51)
BEES.74BZ (FE22 FRBE FS77 FEER)
T

max [what " {voltage (c gdlli}

T"



m=> (tell *i{voltage (e g3l) 3.5)

USER: FEB83 (= [WOLTAGE IC G310 3.5

ML

maz [Funl

OC-KVL: F59@ (= (VOLTAGE (w1 CCZM) 9.5)

OC-kvL: F531 (= (VOLTAGE (#Z AS1) 3.5]

OC-08H: F592 (= (CURREMT (¥1 RE)) 8. B187E3R3E-G]

OC-2T-R: F533 (= (CURRENT (&2 R51F -B.8lA73363E-4)

OC-KCL: FS34 (= (CURRENT IC 0310 2.B1873363E-4)

DC-KCL-BJT: F595 (= (CURRENT (E 03)) -8.01078963E-4)

DC-KCL: F596 (= [CURBENT (#1 RS)) 8.B1A7ESG3E-4)

DC-DOHM: FE37 (= (VOLTACE (#1 REV} [&+ B.SB4ETITE MIEI))

DC-KvL: FE92 (- (VOLTAGE (E G20) 48+ B.58557374 XIG3T)

OC-BJT-ACTIVE: FE93 (= [VOLTAGE (8 031} (&« 1.1B4E7375 X369))
YOR-M0M I TOR-BJT: F33@ (HANGING 078 Uz X3E3)

VBE-MONI TOR-BJT: F391 (HANGING 071 02 X383}

OC-KVL: FEBA (= (VOLTAGE IC 0210 [&+ 1.1B4ETITE X3I6DV]

OC-KvL: FERL (= (VOLTAGE IC OL1) (&+ L1.LB&ETS7S M3IEIDD

DC=kVL: FEBZ i= (VOLTAGE (#2 R3)) (& 1.1@4ET7ITH K3EDN)

OC-0OHM: FER3Z (= (CURRENT (#1 R31} [&+ 1.3BA53283E-3 (&x -1.BE-G KIETID)
OC-2T-A: FEB& (= (CURRENT (#2 R3)) i+ -1.389G532@83E-3 (&= 1.PE-4 M3E3J1))
OC-KCL: FEOE (= (CURRENT IC 020) i&+ 1.38953283E-3 (8x -1.BE-4 ¥3E3)))
IC-FONITOR-BJAT: F388 (HANGING DeE 2 XK3Gd]

MOTE-SATURATED: F3595 (HANGING D72 02 ¥353]

OC-¥CL-8JT: FEBS (= (CURARENT (E 0211 {8+ -1,3B853203E-3 (&= 1.PE-4 X3E3)])
[E-MONITOR-BJT: F&Bl (HANGING DBS 02 W33k

DC-KCL: FEB7 (= [CURREMT (#1 A4)1 &+ 1.389G3283E-3 (&= -1.BE-4 X3IE3)))
DC-0OHM: FERE (= (VOLTAGE (8L RG4)) (&+ 2.5B11576& (&= -B.18 X3E311)
OC-KVL: FBE3 (= [VOLTAGE (E 021) (&+ 2.GALLETEL (&= -, 18 X3IG3)))
OC-BJT-ACTIVE: FEL® (= [(VOLTAGE (B 02)) (8- 3.10115764 (&= -B.18 X3I631))
VCB-MONITOR=-BJT: F4BE (HANGING D78 Q2 X3B3]

VBE-MOMI TOR-BJT: F4@7 (HANGING 071 02 X3IE3)

OC-kVL: FB11 (= (VOLTAGE (E 011} (&+ 3.1011576& (A= -8.18 X3631)1
OC-BJT-ACTIVE: FELZ (= (VOLTAGE (B Q1)) (&+ 3.7RL1G7E (&« -@.18 ¥3B3))}
VCE-NOMI TOA-BJT: F&ld (HANGING 078 01 X330

VBE-NMOMI TOR-BJT: F4ll (HANGING 071 Q1 X363)

ODC-kKVL: FEL3 (= (VOLTAGE (#1 AZ)) &+ Z.TBLIETE [Bx =B.18 ¥3E31))

DC-KVL: FBL4 (= (VOLTAGE {#2 Al}) &+ 3.7811576 (8« -B.18 X363}

DC-KVL: FBLS (= (VOLTAGE (#2 CCL1) [4+ 3.7011576 (8= -@.18 X3EF)H)
DC-0HM: FELE (= [CURRENT [#1 R1)1 (&+ 3.@G537417E-5 (&= 4, BE4AB4EE-T M3ED)))
OC-KCL: FEL7 {= [CURFENT (#2 W133)) (&+ -5.96382Z8E-3 (&« 3,39513513E-5 X3G31}}
DC-2T-5HORT: FELE (= (CURRENT (#1 W1331) (&+ 5,963877BE-3 (& -3.95]13513E-5 ¥36311)
OC-CPAOP: FELS (= {CURRENT (+VCC PROTZ1) (&+ 5.9838Z28E-3 (&= -3,95]13513E-5 ¥IEII1)



OC-2T-A: FE2@ (= (CURRENT (42 Al)) (&+ -3.PE37412E-C &+ -4,BB48542E-7 X3E31))
ODC-KCL: FE21 (= {CURRENT 1#L R2)) (&+ 3.0537412E-5 (&% &.BEGERGEE-7 ¥353))1)
OC-0HM: FB23 (CHECKED CHECKG2Z DL RAZ)
DC-0HM: FE24 (VALUE X389 2.83143A837)
OC-2T-At F424 (= (CURAENT (42 RZ1) -3, 1%14R594E-5)
OC-2T-A: F425 (= (CURBENT (42 R&)) -1.1RE383E-3)
OC-2T-A: FB2Z5 (= (CURHENT (42 RE)} -2, Q1O7A9G3E-4)
OC-KCL: FEZE [= (CURRENT (&1 AT}) &.918739G3E-4)
OC-0HM: FEZT (= (RESISTANCE A7) 3534.5953)
DC=2T=R: FEZ8 (= (CURRENT (&2 A7)} -£.@1@73963E-4)
DC=KCL: FBZ3 {= [CURRENT (4Z LL4E)1Y B, BEZGS17E-3I
DC-2T-5HORT: FE3B (= (CURRENT [(#1 WI:E)) -5,B820517E-3)
OC-CPROP: FB31 (= (CURRENT (GROUND PROTZ)) -5.GR28G12E-1)
INC-DHM: F&GE (= {INC-AMPS (1 R71) 2.8)
Unout: F633 [= (INC-AMPS (81 CBL)) -&,R1&342E-4)
Unout: F&34 (= (INC-AMPS (#2 CBL)) B.B1E3GZE-4)
Uneuty FLET [= (INC-AMBES (42 A71) @.@
Unout: FSES (= [([HNC-ARPS (B2 UlGE))
(&+ -B.2527ERSE-6 (&= J.7IBISEZEE-4 M435) (4% 3.512195E-5 XG@s5)))
Unsut: FSEE (= [([NC-ARPS (#] U14E))
(&+ B,2527BESE-4 (&% -3.71GI8EZRE-6 M435) (&% -9,.517195E-5 KS@E)1)
Unmsut: FEET (= [[MC-AMPS (GAOUND PROTZ1I
[Ge &, Z5275E5E-4 (b -3.7IGIEEZEE-4 X435) (&x =3.517195E-5 HEEE)))
INC-¥CL: FE33 (CHECKED CHECKE3Z2 D36 W1S1)
OOME

MNow we have determined the value of R7 that we need to get the desired operating point.
The amplifier’s design is now complete. alter asking for the component values we have just
determined, we are ready (o build the circwit and verify our results.

w=x (what "lresiastance #Gl)
BEES. T4B2 (FS58Z FS86 FS7T FLo@l
T

sex [what "(resistance r7)]
3534.5358 (FEZ7)

T

==> [(uhat *{voltage (e q31)}
3.33617BL (Fe24a FLO8)

T

m=mx [uhat " linc-volts e g3}
-B.55555555 (F&4gE7)

T



Motes

Blind alleys

Various other systems have been investigated which try to make effective use of the
results of blind alleys, including:

BUILD <Fahlman 1973, TOPLE «McDermott 1974, HACK ER <Sussman 19731975

Limiters

Cine way to prevent combinatorial explosions is to formulate one's domain so that there
it a finite set of "slots” to be filled. Mevins' geometry theorem prover <Mevins 1974> makes use of
this property of geometry problems without constructions: "Although the program does not use a
diagram directly, It does take advantage of the manageable problem space implicit in the diagram.
An important aspect of human problem solving may be the ability to structure a problem space so
that forward chaining techniques can be used effectively.” The FRAME systems approach of
Minsky <Minsky 1974> and Winograd <Winograd 1974> shares this essential finiteness of the data
structure,

Complexity

One of the ma jor limitations on the development of large expert programs is the
complexity barrier encountered when the program gets so large that it is hard 1o keep the
interactions between its parts under control. Various solutions to this problem have been of fered.
The "structured programming” movement <Di jkstra 1970> proposes to constrain the style of
programmers so that the interactions are clarified and limited. Others <Teitelman 1970
<Winograd 197> propose to build systerns which supply stronger support to programmers in lerms
Jof routine bookkeeping. The extreme form of this idea leads to various “automatic programming”
efforts. These range from "prl:rgrammii'lg apprentices” <Hewitt & Smith 1975>, <Rich & Shrobe
1976 to expert system compilers <AUTOPROG 197> and various automatic synthesis systemns
<Sussman 19731975 <Sussman 1974>. Another approach is to try to constrain the representation of
knowledge in a program o be as simple and modular as possible. This has led to various attempts
to build “rule-based” systems and "advice takers” such as MYCIN <Shortlif fe 1974> <Davis 1976
and EL. NASL «McDermott 1976 is a computer programming language which attempts to
provide features for organizing programs along these lines.

Explainers
In the MYCIN system <Shortliffe 1974> <Davis 197> the ability to generate coherent

explanations of its reasoning plays an important part in the debugging of the rule set and in the
acceptance of its concluslons by its users.

LISP

The ARS program is implemented in MACLISP <Moon 1974=, a version of LISP
<McCarthy 195>, which was created and Is used at the MIT Artificial Intelligence Laboratory amnd
MIT Project MAC. LISP has been the language of many large and interesting programs because
of its elegance, simplicity, and convenience for symbolic manipulation. MACLISP is available on



the MULTICS, TOPS-10, and the Incompatible Timesharing systems.

ARS
Antecedent Reasoning System

Pattern-directed invocation

Pattern-directed invocation <Hewitt 1971 is an artificial intelligence programming
technique whereby a program can be executed without knowing its name, There are two forms of
pattern-directed invecation, In one kind, a routine definition specifies a pattern which "advertises”
the kind of problem the routine is useful for. The routine can then be invoked by a special kind
of call which specifies a pattern describing the problem to be solved. This kind of pattern-directed
invocation may be used to implement consequent reasoning. In the kind we use, a “demon” '
program may be defined with a pattern which specifies that it should be invoked whenever an
event matching that pattern occurs. This kind of demon is uselul for menitoring an indexed data
base. It may be awakened by any change in the data base matching its pattern of invocation.
This kind of pattern-directed invocation may be used to implement antecedent reasoning.

Data Bases

An important feature of most Al languages (eg. Planner <Hewitt 1972», Micro-Planner
<Sussman, Winograd & Charniak 1970s, Conniver <McDermott & Sussman 1972, 1 A4 <Rulif son
1972>) is the indexed data base. It is often important to be able to record a "fact™ in so that it can
be accessed in many ways. For example, we may want to record the information that Bl is a big
red block so that if later a program wants to know what blocks are red or if there are any big red
ob jects, the system can retrieve that information even though the asserting process does not know
~What questions arg going to be asked. The indexed data base is fundamentally a fully inverted file
of. records of variable length. Effidient means of implementing such structures are still a matter of
research interest <McDermott 19755, '

Context

TOPLE <McDermott 1974> was an early attempt to record the interactions among
deductions for the purpose of deciding what is currently believed to be true. McDermott used this
Information to help decide which of several assumptions must be thrown out in order to keep a
consistent data base when a new fact conflicted with existing ones. MYCIN <Shortliffe 1974>
<Davis 1976> use dependency information to produce explanations but do not use it for any control
purposes. The SRI Computer Based Consuliant <Fikes 1975 makes use of dependencies to
determine the logical support of facts in a manner similar to ARS but does not use them to control
search,

EL
A previous version of EL, which was much more primitive than the one we describe
here, was implemented directly in LISP <Sussman & Stallman [975s.



Propagation

Analysis by propagation of constraints is also implemented in INTER <de Kleer 1976
A similar process of relaxation of symbolic constraints has been applied to the labelling of line
drawings of visdal scenes <Huffman 1970>. A beautiful exposition of this technique can be found
in <Waltz 1972>. Some theoretical analysis of this technique appears in <Freuder 18762

Symbolic manipulation

Much mote powerful and extensive symbolic algebraic manipulation systems have been
written than the one we use in EL. The most powerful one we know of is MACSYMA
<MACSYMA 1974>

Advice

In a real design situation, the designer knows the intended operating point region of the
devices in question. The user of EL may, of course, supply any information which EL could
deduce as "Advice” to the system. If a contradiction oceurs due to his advice, he should be very
interested!

Backtracking

Chronological backtrack control was implemented in Micro-Planner <Sussman, Winograd
8 Charniak 1970>. Users of Micro-Planner were plagued by serious problems <Sussman &
McDermatt 1972>. The control of the combinatorial searches performed by Micro-Planner is nearly
impossible due to the large number of anomalous dependencies (in ARS terms) introduced by the
chronological component of the backtrack stack.

Braida
This measure of simultaneity was proposed by Louvis D. Braida.

Derivation
A derlvation of this interesting behavior can be found in <Senturia & Wedlock 1575 pp.
270-276

Queueless
MASL <McDermott 19765 is implerented with a similar queueless scheme lor interpreting
rules, This scheme is very elegant and flexible,

Equality
Lists which are EQUAL in the LISP sense have the same properties, so Interlisp's

<INTERLISP 1974> hath-lnks would rot Fill the bill

Diiscrimination nets

The decision tree method of implementing a pattern data-base For demons it similar to
the scheme used in QA4 <Rulifson 1972,
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