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1. Introduction

Many problem solving tasks, such as computer programming, .Il.}" be
characterized as the design of artifacts. This paper provides an overview of the
authors' recent research on SPADE (Structured Planning end Debugging), a theory
of this design process. Our purpose here is to provide a cohersnt overall
framework. Each topic introduced is covered in greater detail slsewhera
[Goldstein & Miller 1976a,b; Miller & Goldstein 1976b,c,d].

Figure 1 illustrates our perspective on the construction of information
processing theorles of cognition. We view this enterprise as involving
normative, synthetic, and analytic aspects. We see it as represanting a new
paradigm, based upon a marriage of methods and goals from several traditional
disciplines, incloding artificial intelligence, psychology, pedagogy, and
computer science.

1.1. Objectives and Methodology: Our own research project may ba viewed

as an instantiation of this general paradigm, with sub-projects addressing all
three aspects (figure 2)., As shown by the central circle in the diagram, we seek
to construct a computational theory of the design process. We wish to test the
utility and validity of this theory, SPADE, in a variety of contexts. This leads
to specific goals and methods, represented by the three outlying circles in the
diagram, which span the synthetic, analytic, and normative aspects and
applications of the theory.

1. The synthetic (AI) goal is te explore computational theoriss of problem
solving and learning. The method is to construct pregrams that embody
these theories. This concern is reflected im our work on PATN
[Goldstein & Miller 1976b], a problem solving program which will plan and
debug simple blocks world and graphics programs. The support for an Al
theory is determined primarily by the competence and afficiency of the
associated computer program in performing a prescribed set of tasks.
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2. The analytic (psychological) goal is to account for the knowledge states
and learning strategies of individuals. Our method is to analyvze
protocols of subjects interacting with precisely controlled computar
environments as they solve some problem [Miller & Goldstein 1976b]. We
seek to model the subject's current knowledge, not only about the
particular domain, but also about planning and debugging strategies.
PAZATN [Miller & Goldstein 1976d], a system to amalyze alemantary
programming protocols and reveal the use of various plans and debugging
techniques, incorporates this concern. A theory of design embedded in an
automatic protocol analyzer is supported to the extent to which it can
describe and predict the subject's responses: both the final solution
and observable details of the design process by which that solution is

found.

3. The normative (educational) gral is to prescribe design methodology for
both students (such as beginning programmers) and expert human problem
solvers (such as professional programmers). This is partly a pedagogical
concern: we wish to experiment with the SPADE theory as the basis for a
curriculum about problem solving. At the same time, it shares the
structured programming movement's concern to improve the quality and
reliability of software. The former concern is explored through the
design for SHERLOCK [Goldstein & Miller 1976a], an hypothetical computer
tutor which embodies our vision of flexible, sensitive uses of computers
te teach problem solving and enhance education. The latter concern is
explored via the SPADE editor [Miller & Goldstein 1976c], a grammar-based
environmani to asslist beginning programmers in acquiring, amnd
professional programmers in adhering to, & top-down, structured design
discipline. These systems, like PATN and PAZATN, though potentially
valuable as applications programs, are mainly intended as experimental
tools for testing the SPADE theory. The experimental methodology is tao
systematically vary the operation of the learning or programming
anvironment. The claims of the theory ara supported to the extent to

which the system as a whole (as well as its various components) aid(s)
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the user in solving harder problems more quickly.
Combining these methods and goals into a single research program has
powarful synergistic effects. We have realized this in our particular projeacts

through the development of a unifying linguistic theory of design.

1.2. A Linguistic Analogy: In developing a formalism for representing

preblem solving technigques, we have been guided by a novel perspective: an
analegy to computatienal linguistics. We have found this analogy to be fruitful
for several reasons.

1. Computational linguistics, though intended to illuminate the nature of
language per se, has produced a set of concepts and algorithms for
characterizing and explaining complex computatiomal processes which are
both perspicuous and rich in power. Problem solving, as a complex
process, benefits from the application of these tools.

2. Computational linguistics decomposes computations inte syntactic,
semantic, and pragmatic components. This decomposition clarifies the
explanation of complex processes, when viewed in the following manner:
syntax formalizes the range of possible decisions; semantics the problem

description, and pragmatics the relationship between the two.

3. Computational linguistics has undergone an evolution of procedural
formalisms, beginning with finite state automata, later employing
recursive transition networks (context free grammars), next moving on to
augmented transition metworks, and culminating in the current set of
theories involving frames, etc. Following this evelutionary sequence in
language theories illuminates their complexity. Each phase captured some
properties of language, but was incomplete and required generalizatiom to
more powerful and elaborate formalisms. Moreover, the interrelationships
among many of these formalisms have been thoroughly delineated.
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From this evolutionary perspective, one nead not necessarily view a given
stage of theorizing as wrong. Sometimes an sarlier theory is wrong, but inm other
cases the earlier approach can be valuabla as an abstraction in its own right,
which 1illuminates some dimension of the phenomena, even though it is inadequate
a5 a complete theory. We are following a sequence parallel to that exhibited by
computational linguwistics in our own study of problem zolving.

In this evolutionary development of SPADE, our theory of the design
process, two sub-tasks have beaen addressed. First, we have analvzed certain
intricacies of planning and debugging, such as are encounterad in the design of
programs which must take inte account interactions im achieving dependent
subgoals. The second sub-task has been to seek a representational framework in
which to elucidate these subtleties, and in which to structure a wide variety of
planning techniques. Our approach has been to begin with simple but clear
formalisms, studying their virtues und limitations. Our plan is to continue to
investigate a series of progressively more powerful and elaborate
representations; after reaching a solid understanding as to where the extra powar
is needed, and why,

To date, we have explored context free planning grammars, and their
Aeneralization to ATN's; we have transferred tha insight gained from studying
planning te the development of a modal of debugging:; we have examined the
mataphor of protocol analysis as parsing, and studied the use of a chart parser
as a means to discovering these analyses.

2. A Linguistic Theory of Planning

The center circle of figure 2 provides the setting for the discussion in
this section and the next. Then, having introduced some basic notions of the
SPADE theory of design, we will be in a position to move to the peripheral
aspacts (the outer circles) in sections four, five and six.
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2.1. A Taxonomy of Planning Concepts: The basis for SPADE 1s a taxonomy
of frequently observed planning concepts (figure 3). We arrived at this taxonomy

partly by introspection, partly by examining problem solving protocols [Miller &
Goldstein 1976b]. and partly by studying the literature on problem solving
[Polya 1957, 1962, 1965, 1967, 196B; Newell & Simon 1972; Sussman 1975:
Sacerdoti 1975]. We regard the taxonomy as neither complete nor unique. Part of
the research program is the classification of additional techniques and the

evaluation of alternative organizational schemes.

There are three major classes of plans in the taxonomy: identification,
decomposition, and reformulation. Identification means recognizing a problem as
previpusly solved. Decomposition refers to strategles for dividing a problem
into simpler sub-problems. Reformulation plans alter the problem description,
seeking a representation which is more amenable to identification or
decomposition. The figure suggests how these classes of plans are further
subdivided im the SPADE theory.

2.2, A Grammar of Plans: Planning, according to the theory, is a process

in which the problem solver selects the appropriate plan type, and then carries
out the subgoals defined by that plan applied to the current problem. From this
viewpoint, the planning taxonomy represents a declsion tree of alternative plans.

The decision process can be modeled by & context free grammar (figure 4).

Consider the top level rule of this grammar:
Pl: SOLVE =3 PLAN + [DEEUG].
The nonterminal symbol SOLVE is analogous to the nonterminal SENTENCE in a
grammar for language. In our notation, Pl means that planning is first used to
generate a plan, with subsequent debugging then being required to complete the
solution. Since the plan may be entirely correct, DEBUG is 1inm brackets,
indicating that it is an optional constituent.

The disjunctive rule, P2, represents the choice -- in our taxonomy --
between the three mutually exclusive categories of plans: identification,
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Figure 4. G3: A Gramsar! of Plans

Pl: GSOLVE =» PLAN + [DEBUG]

PZ: PLAN =» IDENTIFY | DECOMPOSE | REFORNULATE
P3: [IDENTIFY =» PRIMITIVE | DEFINED

P4: DEFINED =» "use code® & "get file"

P5: DECONPOSE =» CONJUNCTION | REPETITION

P6: CONJUNCTION => LINEAR | NOMLIMEAR

P7: LINEAR -» SET | SEQ

PB: SEQ -» [SETUP] + <MAINSTEP + [INTERFACE]" + [CLEANUP]
PO: SET -3 ¢SOLVE>"

Pi0: SETUP =» SOLVE

P11: MAINSTEP - SOLVE

P12: INTERFACE =» SOLVE

P13: CLEANUP =» SOLVE

Pl4: REPETITION =-> ROUND | RECURSION
P15: ROUND =» ITER-PLAN | TAIL-RECUR
P16: ITER-PLAN -2 "repeat step" + SEQ

P17: TAIL-RECUR ~-» "stop step" + SEQ + "recursion step"

lTh- rules of the grammar are written using the following syntax:

© disjunction: "a | b" is read as, "a or b";

ordered comjunction: ™a + b" is read as, "a and b*, where the order is
significant;

unordered comjunction: "a & b" is read as, "a and b", where the order is
insignificant;

optionality: "[a]™ is read as, "a is optional®:
iteration: "¢a> " is read as, "a repeated 1 or more times";
lexical category: a lower case English phrase enclosed in quotation marks

(e.g., "repeat step™) describes a lexical item which 1is not further
expanded in the grammar.

e o= e = —_ —_—
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decomposition, and reformulation.
PZ: PLAN -» IDENTIFY | DECOMPOSE | REFORMULATE
The wvertical bars indicate that a cholce 1s reqguired. Other rules are

interproted similarly.

The SPADE theory 1s not restricted to any particular domain. However, to
provide concrete examples, most of our papers use problems from elementary Logo
graphics programming [Papert 1971la,b; 1973]. Figure 5 illustrates the grammar
rules for primitives in this domain. Figure & shows our favorite example =-- a
typleal goal undertaken by beginners in Logo programming -- a "wishingwell®
picture., Filgure 7 illustrates a solutlon to the wishingwell problem with its

hierarchical annotation according to our planning grammar.

The grammar of plans represents a useful abstraction of the decision
process involved in selecting plans from the taxonomy. We illustrate this polnt
in the next section by amalvzing debugging in terms of the grammar. Later in the
paper we show how the theory may be axtended to include, not only the syntax of

plans, but their semantics and pragmatics as well.

3. A Linguistic Theory of nahugging'

Often problem solvers must decide on a plam in the face of imperfect
knowledge and limited resources. Even carefully reasoned judgments made under
these circumstances may turn out to be mistaken: debugging is then required.
Given a grammatical theory of planning, debugging can be analyzed as the
localization and repair of errors in applying grammar rules during planning. The
linguistic analogy unifies planning and debugging by tracing the origin of bugs
to various types of erroneous planning choices.
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Figure § Grammar Rules for Logo Primitives

LI.  PRIMITIVE - VECTOR | ROTATION | PENSTATE
L2, VECTOR -3 FORWARD| BACE + "number®

L3. ROTATION -3 LEFT|RIGHT + "number®

La. PENSTATE - PENUP | PENDOWN

FIGURE 6 WISHINGWELL PICTURE
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d.1. A Taxonomy of Bugs: Since our planning rules were constructed from
operators for conjunction, disjunction, and optionality, three basic classes of
arrors arise:

1. syntactic bugs, in which the basic grammar is violated, such as when a
required conjunct s missing;

2. semantic bugs, in a semantic constraint arising from the particular
problem is violated, such as when a syntactically optioncl constituent,
needed because of the semantics of the particular preblem, is missing;

3. pragmatic bugs, in which an inappropriate selection from a4 set of
mutually exclusive disjuncts is made .

These bug types are illustrated in Figure 8. Although these classes are
adequate to characterize many examples which arise in elementary programming,
additional categories must be defined to make this taxonomy of bugs complete.

3.2, Diagnosis and Repair: An important aspect of our ressarch 1% thae
analysis of techniques for diagnosis and repair of planning bugs. These

techniques can be classified according to which representation of a problem they
Access: the problem specification (or model), the solution (or code), the plan
derivation, or the process state. Techniques for plan diagnosis can be further
categorized according to the t¥pe of planning bug hypothesized: syntactic,
semantic, or pragmatic. (Further details of the debugging theory are prosented
in later sections,)

In the next three sections we examine several experimental applications
programs which we have designed and intend to implement. The presentation is
organized according the aspects of the Investigation represented by tha outer
circles of figure 2. We must emphasize two points: first, that thiz division by
aspects is a cruds Tirst approximation, because of the considerable overlap
implied by a unified approach; second, that while the programs which we have
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FIGURE #8a - SYNTACTICALLY INCORRECT PLAN
A NECESSARY CONJUNCT IS MISSING

T W
10 TRIAMGLE —USE

ID=-PLAN

END
W GET
#77? TRIANGLE UNDEFIHED 777

("GET" MISSING. UNGRAMMATICAL PLAN.
DEBUG BY COMPLETING FPLAN. )

GET TRIANGLE FILE

FIGURE 2b - SEMANTICALLY INCORRECT PLAN
AN OPTIONAL CONJUNCT IS MISSING

FOR EXAMPLE: "WW" MISSING INITIAL SETUP, AND INTERFACE FOR POLE.

TD W
10 WELL —MAINSTEP
20 POLE —MIHSTEP:[ hnda here
SEQ-PLAN U
t I
ik
atarts here
FIGURE fc = PRAGMATICALLY INCORRECT PLAN
AN INCORRECT DISJUNCT HAS BEEN SELECTED
TO SOUARE-INSIDE-TRIANGLE LINEAE PLAN --
10 SQUARE SOUARE AND TRIAWNGLE
20 TRIAMGLE DESIGHNED

END INDEPEMDENTLY .

INTEMDED PICTURE: ACTUAL PICTURE:
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designed potentially have practical applicability, we regard them primarily as
experimental tools, which will serve to test the validity of the underlying SPADE
theory. We turn first to the normative aspects, describing systems designed to
encourage and teach articulate top-down structured design.

4. Normative Aspacts

How can we judge whether a particular grammar of plans captures, at some
level of abstraction, the set of planning decisions which ought to be considerad
in solving problems for a domain? One methodology is to incorporate the context
free grammar into a program editing environment, to augment and direct the
capabilities of a human user. The critical question then becomes determining the
extent to which such a support system aids or hinders the user. This is the

rationale for SPADE, an aditor that incorporates our planning grammar.

4.1. SPADE -- A Grammar Based Editer: SPADE [Miller & Goldstein 1976c]
is an acronym for Structured Plenninmg and Debugging Fditor. We chose this name

to emphasize the link between our research and the structured programming
movement. Dahl, Dijkstra, and Hoare [1972] call for a style of programming which
reflects coherently structured problem solving. But a detailed formalization of
what this style entails is lacking. ©Our efforts inm this direction, therefore,
naturally supplement the work of Dijkstra and others.

Suppose a problem solver is defining a Logoe program for drawing the
wishingwell shown earlier. In SPADE, this is accomplished by applying the
planning grammar in generative mode. For example:

la. What is the name of your top level procedure?
Ib. >WW

Za. Rule for WW 1s: SOLVE -> PLAN + [DEBUG].
Rule for WW-1 is: PLAN -» IDENTIFY | DECOMPOSE | REFORMULATE.
What now?
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2b. »DECOMPOSE.

In this way, SPADE will try to encourage users to articulate their design
decisions in top-down order. At the same time, the iystem should offer the user
the freedom te escape from this strict discipline if an alternative =zolution
order seems preferable. Here the user interrupts the top-down prompting,

suspending one subgoal to pursua anothar:

6a. Do you wish to include the optional constituent CLEANUP?
6b. >LATER

7a. Your pending goals are POLE, ... and WELL. What now?
Tb. »POLE

The implementation of SPADE involves assigning an interpretive procedure

to each grammatical operator, to perform bookkeeping of the user's goals.

As a simple example of the axperimental wtility of SPADE, the
relationship between level of expertise and application of top-down planning can
be ascertained from the frequency of using the LATER capability. More subtle
experiments along these lines will examine the use of LATER in various planning
contexts.

4.72. The RAID Debugging Assistant: SPADE keeps a thorough record of tha
user's planning decisions, called the plan derivation. Because of this, it is
possible to design a debugging assistant (RAID) for the SPADE environment which
embodies what we belisve to he a fairly deep motion of debugging. As the user is
prompted through the decision tree represented by the planning grammar, those
cheices which might lsad te syntactic, semantic, or pragmatic bugs can bae
internally flagged by the i¥ystem. In subsequant debugging episodes, RAID can
alert the user to the relevant bug warnings, thereby aiding in diagnosis.
Moreover, the SPADE monitor can then be reinvoked to guide repair of the bug, by
resuming planning in the context of the culpable decision (figure o).
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Figure 9 ., RAID Advice for syntactically Incomplate Flanning Bugs

la. Which subgeal would you like to pursue?

l1b. >POLE

Z&. Rule for POLE-1 is: PLAN -3 IDENTIFY | DECOMPOSE | REFORMULATE.
What now?
Zb. »IDEMTIFY

3a. Rule For POLE-Z 1s: IDENTIFY => FRINITIVE | DEFINED.
What now?
3b. »LATER.

The LATER command ceuses further processing of this subgoal to be postponed.
RAID. the debugging component, creates g cavedat each time ¢ LATER command occurs,
The coveat records the fect that this part of the plan is spntectically
incomplete gt Lhis point,

4a. POLE-Z postponed. Your pending goal 1list contains the repaining subgoal
WELL. Which goal would like te pursue?
db. DWELL

da. We have now completed the WELL subgoal. What now?
Sh. »BEUN WISHINGWELL

The caveat recorded earlier is o "demnr,” triggered by premature execution of the
procedure being designed. If this occurs, the function of the caveot is to
remind the wser of the syntectic incorrectness of the progranm.

Ga. Running WISHINGWELL at this time results in the bug manifestation:
UNMDEFIMED PROCEDURE: POLE.
This is because WISHINGWELL is syntactically incomplete: it contains
the pending subgoal POLE-2Z. The recommended repair technique is to
complete the solutien of the subgoal POLE-Z. Would vou like to work on
FOLE=-2T
oh. >Yes.

7a. You were solving POLE via an IDENTIFICATION plan. You postponed the
decision (POLE-£) as to which answer library to use.
The rale for POLE-2 is: IDENTIFY -» PRIMITIVE | DEFINED.
Hhat nmow?
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4.3. SHERLOCE -- A Computerized Tutor Computational theories of problem

solving have important ramifications for education. Such theories can serve as

the normative justification For a given curriculum, reveal eritical knowledge for
the student excluded from the traditional syllabus, provide a basis fer
qualitative -- not merely quantitative -- evaluation, and be embodiad in
intelligent tutering programs to serve as personal learning environments for the
student. This pesition is exemplified by SHERLOCK [Goldstein & Miller 1976a].
SHERLOCKE 1s an hypothetical computerized tutor which represents a long term
research direction rather than a detailed program design. SHERLOCK embodies our
¥ision of flexible, sensitive uses of computers to teach problem selving and
enhance education. The other programs we have designed, each significant
undertakings in their own right, can also be thought of as necessary components
Tor SHERLOCK.

SHERLOCR's goal 1s to imbue a working knowledge of the SPADE theory in
novice programmers. This does met necessarily mean that fifth graders must use
terminology such as context free grommar. 1t does mean that they should
experience, actively manipulate, and explicitly discuss problem solving
situations which highlight the planning and debugging concepts which the theory
attempts to fl:;r-aliza, Let us illustrate what this might mean via a brief

dialogue.
SHERLOCK : allo Debbie.
What problem are you working on today?
Debbia: *1 am going to draw a wishingwell.

Initially in a less intrusive, backward looking mode, SHERLOCE might
remain silent as Debbie typed in her code for a wishingwell. Unlike the highly
structured SPADE, SHERLOCK will not take an extremely active role im prompting
the student. (We plan to experiment with the relative virtuss of these two
tutorial styles.) Howaver, SHERLOCK might intervena when difficulties were
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encountered by the student.

Debbie: »forward 100
»right 90
*forward 500

¥0h no! Erase that last forward.

SHERLOCE Ok. "Forward 500" has been erased.
Do you wish to group the other

lines together into a procedure?

Here, a simple rule of programming style -- the use of subprocedures -- is being
amphaszized,

Hany complex issues are ralsed by the design of such tutoring programs.
Our purpose in introducing SHERLOCK has merely been to illustrate one potential
pedagogical application for a computational theory of design. The next section
turns our attention to the synthetic aspects of our enterprise, by introducing an
Al problem solver called PATN.

3. Synthatic Aspects

While context free grammars can represent a useful abstraction of
planning decisions, they have limitations which prevent them from providing a
complete theory of design. To address this, we have designed PATN, an AI problem
solver. PATN, like SPADE, starts from our taxonomy of plans. But PATN takes the
linguistic analogy one step further. An augmented transition network (ATN,
[Woods 1970]) is used, to capture not only the syntax of plans, but also their
semantics and pragmatics.
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S5.1. PATN -- An Augmented Transition Metwork for Planning: Figure 10
provides a global view of PATN [Goldstein & Miller 1976b]. Mere the decision to

pursue an identiflcation plan versus a decomposition, for example, is modeled by
an arc transition. GSemantics are added, by defining a set of registers te record
the problem descripiien, proposed solutiem, planning edvice, and debugging
caveats. Pragmatic information is also incorporated, by associating conditions
and actions with various arcs. For instance, an identification plan cannot
proceed if the problem description cannot be found in the answer library. PATN
alaborates our notiom of a plan, by assoclating semantic variables {snapshots of
the ATN reglsters) with each node of the plan derivation. One application of
PATHN is as a moduls of SPADE, providing am enhanced set of features to aid the
user In communicating plans. Our implementatlion plan for PATN is to provide
SPADE with a mode of operation in which a progressively larger percentage of
planning choices are made without consulting the user.

3.2. DAPE _-- A Model of Debugging: PATN can make mistakes. That is,

FATH will sometimes introduce what we term rotionol bugs into its plans, dues to
making arc transitions wilh imperfect knowledge of subtlaties and interactions in
the task domain Maturally, PATN will come equipped with a corresponding
debugging module (DAPI). Whersas RAID is designed to assist human programmers in
finding a variety of buys (primarily by plan diagnosis), DAPR is specifically
designed to analyze PFATN's bugs, employing three diagnostic techniques: model,
process, and plan diagnosis. Hodel diagnosis is the basiec technique. It amounts
to comparing the effects of executing a plan to a formal description of its
goals, te determine if, and in what fashion, the plan has failed. Another DAPR
technlgue, based on Sussman’s HACKER [1975], is examining the state of the
process at the time of the error manifestation. Plan diagnosis is a DAPR First.
It is accompliished 3y examining the caveats variable associated with various
nodes of PATN's plan derivation.

DAPR could be wsed to provide additional guidance to RAID. This
possibility illustrates the synergism possible when normative, synthetie, and
analyiic facets of a cognitive theory are studied in an integrated fashionm. 1In
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the next section we pursue the analytic facet of our investigation of the design
process, introducing PAZATN, an automatic protocol analyzer.

6. Analytic Azpects

As soon as one has an heuristically adequate theory of design, it is
natural to ask, "Can the theory provide an account of how people solve
problems?®. The traditional {e.g., [Mewell 1966]) experimental technique for
answering this question is the analysis of protocols collected during problem
solving sessions. While this generally implies transeriptions of thinmk aloud
verbalizations, a useful simplification is to examine the sequence of keystrokes

from a console session in a computerized data gathering context.

6.1. Protocol Analysis as Parsing: The analysis task in such a setting

is to interpret user type-ins during a console session in terms of a theoretical
modal of the planning and debugging processes. Our linguistic analogy is helpful
here, wherein we dafine protocel analysis as the construction of an hierarchical
description of the protocol in terms of our problem solving grammar. [Miller &
Goldstein 1976b] provides a detailed example of such analysis being performed by
hand. In that paper, we examine a high school student's Logoe protocol in detail,

summarizing the sorts of insights obtalned when protocol analysis i3 wviewad as
parsing in this sanse.

Just as a context free grammar is incomplete as a theory of planning,
likewise a parse is only a partial analysis of a protocol. The theory of
annotation developed in the PATN work leads us from describing only the structure
to more complete analyses of protocols: an interpretation of a protocol is tha
selection of a particular PATN plan derivation. Hence analysis should consist of

linking protocol events into the data structures of PATN and of advanced versions
of SPADE.
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6.2. PAZATN -- A Parser for Elementary Prograeming Protocols: Manual
protocol analysis is unacceptably tedious and infoermal. Hence [Miller &
Goldstein 1976d] introduces the design for an automatic protocol parser, PAZATM.
PAZATN will analyze protocols by matching them against possible solutions which
PATN generates. PAZATN will operata by causing PATN to deviate from its
preferred approach in response to bottem-up evidence (figure 11). Also, "buggy"
varsions of synthetic plans (including irrational bugs which would not be
introduced by PATN) can probably bea recognized.

PAZATN's design is a generalization and elaboration of the coroutinme
search plan-finding procedure described for Mycroft [Goldstein 19757. Looking to
computational linguistics for guidance, PAZATN has been extended to take
advantage of powerful search strategies developed in research on spoaach
understanding [Lesser et al. 1975: Paxton & Robinson 1975], as well as
sophisticated data structures developed in work on syntactic analysis [Kay 1973;
Kaplan 1973].

PAZATN will be constructed by supplementing PATN with a number of
additional modules and data structures. Figure 12 provides a more detailed block
d'tngratu. One data structure, the PLANCHART, keeps track of the set of plausible
subgoals which have been proposed by PATN. Another, the DATACHART, records the
state of partially completed interpretations. A preprocessor module will be used
to suppress uninteresting syntactic details and to perform praliminary
segmentation. The preprocessor employs an event classifier to determine the
syntactic class of each event. Corresponding te each syntactic category, PAZATN
will be supplied with an event specialist which embodies the requisite domain
knowledge for assisting an event interpreter in associating an event of that typa
with some synthetic subgoal. Since a purely top down or bottom up strategy would
ba too inefficient, a scheduler module is necessary to direct the analyvzer
through a best first coroutine search.

Just as PATN will be implemented by extending SPADE to the extreme of
never requesting guidance from the user, PAZATN will be lmplemented by extending
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SPADE to the opposite extreme. That is, in the pure PAZATN situation, the system
must infer the user's plan entirely from code level events, with no explicit
articulation of the intermediate levals of the plan. PAZATN will be useful in
increasing SPADE's flexibility in handling ambiguous events, and in alleviating
what might seem to some users to be an excessive allecatiom of time and effort to
the planning phase. Moreover, systematlc pxperimentation with PAZATN will
provide evidence regarding whether PATN can serve as the basis for models of

human problem solving.

7. Conclusions

We have studied problem solving for tasks which may be characterized as
the design of artifacts: the outlines for SPADE, a computational theory of
design, have been presented. The normative, synthetic, and anmalytic aspects of
its role in the overall research encerprise have been illustrated by introducing
saveral experimental applications programs. The exploitation of concepts and
algorithms from computational linguistics is a recurring theme: grammars, ATN's,
derivation trees, search strategies from speech understanding, chart=based
parsers. We believe that our unified approach to the objectives of sevaral
fields, utilizing methods from each, represents a new paradigm which can provide
benefits to all of them.

Mueh remains to be done. While far greater detail is available in our
other papers, not every detail of the SPADE theory has been specified. Although
almost all of the programs have been designed, even hand-simulated, none have
been implemented. Neither the utility, the validity, nor the generality of the
theory has been demonstrated. [If the individual research projects succeed, a new
clarity will have been brought to the study of problem solving. If, perchance,
they should fail, then the reasons for the failures should nevertheless provide
uzeful insights.



Overview 20 Miller & Goldstein

8. References

Dahl, Ole-Johan, Edsger Dijkstra and C.A.R. Hoare, 1972. Structured Programming.
London, Academic Press.

Goldstein, Ira P., 1975. "Understanding Simple Picture Programs.® Artificlial
Intelligence, Volume 6, Number 3.

Goldstein, Ira P., and Mark L. Miller, December 1976a. Af Bosed Personal
Learning Environments: Directions For Long Term Research. Massachusetts
Institute of Technology, Artificial Intelligence Laboratory, Memo 3184
(Logo Memo 31).

Goldstein, Ira P., and Mark L. Miller, December 1976b. Structured Planning ond
Debugging: A Linguistic Theory of Design. Massachusatts Institute of
Technology, Artificial Intelligence Laboratory, Memo 387 (Logo Memo 34).

Kaplan, Ronald M., 1973. "A General Syntactic Processor.” in Randall Rustin
(ed.), Notural Longuege Processing, Courant Computer Science Symposium 8
(December 20-21, 1971), New York, Algorithmics Press, pp. 103-241.

Kay, Martin, 1973. "The MIND System.” in Randall Rustin (ed.), Notural Longuage
Processing, Courant Computer Sclence Symposium 8 (December 20-21, 1971), New
York, Algorithmics Press, pp. 155-188,

Lesser, V.R., R.D. Fennell, L.O. Erman and D.R. Reddy, February 1975.
"Organization of the Hearsay Il Speech Understanding System.” in [EEE
Transactions on Acoustics, Speech, and Signal Frocessing, Volume Assp=23,
Mumber 1, pp. 11-24.

Miller, Wark L., and Ira P. Goldstein, December 1976b. Parsing Protocols Using
Problem Solving Grommars. Massachusetts Institute of Technology, Artificial
Intelligence Laboratory, Memo 385 (Logo Memo 32).



Overview i Hiller & Goldstein

Miller, Mark L., and Ira P. Goldstein, December 1976c. SPAPE: A Grommar Bosed
Editer For Plonring and Debugging Programs. Massachusetts Institute of
Technology, Artificial Intelligence Laboratory, Mems 386 (Logo Memo 33).

Miller, Mark L., and Ira P. Goldstein, December 1976d. PAZATN: A Linguistic
Approgch To Autometic Amalysis of Elementary Progrommiag Protocols.
Massachusetts Institute of Techmology, Artificial Intelligence Laboratory,
Memo 388 (Logo Memo 35).

Mewell, Allen, Junme 1966. On the Analysis of Humon Problem Solving Protocoels.
Carnegie Imstitute of Technoleogy, Preprint of paper presented at the
International Symposium on Mathematical and Computational Methods in the
Social Sciences, Rome 1966.

Wewell, Allem, and H. Simon, 1972, Human Problem Solving. Englewood Cliffs, New
Jersey, Prentice-Hall.

Papert, Seymour A., 197la. Teoching Children to Bbe Nathematiciens Versus
Teaching Abont Hothematics. Massachusetts Institute of Technology, Artificial
Intelligence Laboratory, Hemo Z49.

Papert, Seymour A., 1971b. Teoching Childrenm Thinkimg. Massachusetts Institute
of Technology, Artificial Intelligence Laboratory, Memo 247 (Logo Memo 2).

Papert, Seymour A., June 1973. [ses of Technology to Enhonce Educationm.
Massachusetts Institute of Technology, Artificial Intelligence Laboratory,
Hemo 298 (Logo Hemo B).

Paxton, William and Ann Robinson, 1975. ®3ystem Integratiom and Control inm a
Speech Understanding S&ystem." in Americen Jourmal of Computotionel
Linguistics, Velume 5, pp. 5-18.



Overview 31 Hiller & Goldstein

Polya, George, 1957. HNow to Solwe JE. New York, Doubleday Anchor Books.

Polya, George, 1962. Mathematicel Discovery (Volume 1). New York, John Wiley
and Sons.

Polya, George, 1965. Mathematical DPiscovery (Volume 2). New York, John Wilaey
and Sons.

Polya, George, 1967. Mathemotics and FPlousibie Regsoning (Volume 1). New
Jarsey, Princeton University Prass.

Polya, George, 1968. Mothematics and Plowsible Reasoning (Volume 2). New
Jersey, Princeton University Press.

Sacerdoti, Earl, September 1975. "The Monlinear Nature of Plans.® 1in Advance
Fapers of the Fourth Intermational Joint Conference on Artificial
Intelligence, Tbilisi, Georgia, USSR, pp. 206-218.

Sussman, Gerald Jay, 1975. A Computational Model of Skill Acquisition. New
York, American Elsevier.

Huud:._. William A., October 1970. “Transition Network Grammars for Natural

Language Analysis." Communrications of the ACM, Volume 13, Number 10, pp. 581~
606.



