Massachusetts Institute Of Technology
Artificial Intelligence Laboratory

Al Memo 3B3A February 1977 Logoe Memo 30A

Overview of a Linguistic Theory of Duilnl

Mark L. Miller and Ira P. Goldstein

The SPADE theory uses linguistic formalisms to model the program planning
and debugging processes. The theory has been applied to constructing a
grammar-based editor in which programs are written im a structured fashion,
designing an automatic programming system based on an Augmented Transition
Network, and parsing protocels of programming episodes.

The SPADE theory begins with a taxonomy of basic planning concepts
covering strategles for identification, decomposition and reformulation. A
handle is provided for recognizing interactions between goals and deriving a
linear solution.

A complementary theory of rational bugs and associated repair tachniques
is also provided. SPADE introduces a new data structure to facilitate
debugging -- the derivation tree of the program. The SPADE editor makes this
structure available to the programmer.

The SPADE theory generalizes recent work in Artificial Intelligence by
Sussman and Sacerdoti on automatic programming, and extends the theory of
program design developed by the Structured Programming movement. It provides
& more structured information processing model of human problem solving than
the production systems of Newell and Simon, and articulates the typs of
problem solving curriculum advocated by Papert's Logo Project.

This report describes research done at the Artificial Intelligence Laboratory of
the Massachusetts Institute of Technology. The automatic problem solving aspect of
this research was su}: ortad by the Advanced Research Projects ﬂEancir of the Department
of Defense under Office of Naval Research contract NOOG14-75-C-0643, the educational
aspact by the National Science Foundation under grant C40708X, and the protocel
analysis aspect by the Intelligent Instructional Systems Group at Bolt Beranek and
Newman, under contract number MDA 903-76-C-0108 jointly sponsored by Advanced Ressarch
Projects Agency, Air Force Human Resources Laboratory, Army Research Instituta, and
Maval Personnel Research & Development Center.

l‘l'hh 1s an expanded version of a paper submitted to the Fifth International Joint
Conference on Artificial Intelligence.

1
.
3
q.
5
L

7. DAPR -- An Augmented Transition Network for Debugging

8
9

Tabla of Contents

» A Multi-Faceted Approach

- A Linguistic Analogy

. A Grammatical Theory of Planning

SPADE-0, A Planning Assistant

. RAID, A Debugging Assistant

. PATN -- An Augmented Transition Network for Planning

. PAZATN, an Automatic Protocol Analyzer
. Conclusions

10. References

B e M R

10
14
18
19
27
29

1. A Multi-Faceted Approach

This paper provides an overview of three separate contexts in which the SPADE
theory is being simultaneously developed and tested -- computer uses im education,
automatic programming (a traditional AL arena), and protocol analysis (the domain of
information processing psychology). Our experience has been that a powerful synerglsm
results from this multi-faceted approach.

1. The Education Context: an editor has been implemented that encourages students
to define and debug programs in terms of explicit SPADE design choices. The sditor
provides a structured programming environment based on a detailed theory of the
processes involved in coherently structured problem solving.

2. The Al Context: an automatic programmer called PATN has been designed using an
augmented transition network embodiment of the SPADE theory. This results in a unified
framework which clarifies recent work on planning and debugging by Sacerdoti [1975] and
Sussman [1975].

3. The Psychology Context: a parser called PAZATN has been designed that applies
the SPADE theory to the analysis of programming protocols. PAZATN produces a parsa of
the protocol that delineates the planning and debugging strategies employed by the
problem solver. PAZATN extends the serles of automatic protocel analvzers developed at
Carnagie-Mellon University [Waterman & Mewell 1972, 1973; Bhaskar & Simon 197a].

Hand-simulations of PATM and PAZATN on elementary programming problems and
informal experiments with the SPADE editor attest to the theory's cogency in accounting
for a wide range of planning and debugging techniques [Goldstein & Miller 1976a,b;
Miller & Goldstein 1976b,c,d].

2. A Linguistic Analegy

In developing a represention for problem solving techniques, we have besn guided
by an analegy to computational linguistics, for three reasons.

1. The concepts and algorithms of computational linguistics, though originally

intended to explain the nature of lamguage per se, supply persplicuocus yet powerful
descriptions of complex computations in general. Problem solving, as a complex
process, benefits from the application of these tools.

2. Computational linguistics decomposes computations into syntactic, semantic, and
pragmatic components. This decomposition clarifies the explanation of complax
processes when viewed in the following manner: syntax formalizes the range of possible
decisions; semantics the problem description, and pragmatics the procedural
rehtilnnahip between the two,

3. Computational linguistics has undergone an evolution of procedural formalisms,
beginning with finite state automata, later employing recursive transition networks
(context free grammars), next moving on to augmented transition networks, and
culminating in the current set of theories involving frames [Minsky 1975,
Winograd 1975, Schank 1975). Each phase captured some properties of languwage, but was
incomplete and required generalization to more powerful and elaborate formalisms.
Following this evelutionary sequence illuminates the complexity of language theory. We
have pursued a similar evolutionary approach te clarify the complexity of problem
solving processes.

To date, our theory of design has evolved through the following stages: wa
initially explored context free grammars for planning and debugging, and subsequently
their generalization to ATN's; we examined the metaphor of protocol analysis as
parsing, initially using the planning and debugging grammars to reveal the constituent
structure of protocols and later using the derivationz produced by the ATN formalism;
and, finally, our most recent work has studied the use of a chart-based parsar to
discover these analyses.

3. A Grammatical Theory of Planning

The basis for SPADE i3z a taxonomy of frequently observed planning concepts
[(fig. 1). We arrived at this taxonomy by introspection, by examining problem solving
protocols [Miller & Goldstein 1976b1, by studying the literature on problem solving
[Polya 1957, 1965, 1968; Newell & Simon 1972; Sussman 1975; Sacerdoti 1975], and by

enumerating technigues for finding procedural solutions to problems expressed as

PLAN

— PRIMITIVE

— IDENTIFY—7

. PREVIOUSLY DEFINEDRD PROCEDURE

L LINEAR
e CON T UNCT TON -

—NONLTNEAR

— DECOMPOSE—0o

—ROTUMND
——REFETITION—

—RECURSION

-REGROUP
—EQUIVALENCE—

"GENERIC =} EXPLICIT

— REFORMULATE—

SPECIALIZE
—SIMPLIFY
GENERALIZE
ANALOGY
FIGURE 1

TAXONOMY OF PLANNING CONCEPTS

The SPADE Theory & Miller & Goldstein

meem——— .

predicate calculus formulae [Emden & Eowalski 1976]. This last criterion demonstrates
that the taxonomy is currently incomplete -- for example, techniques for handling
disjunctions have not yet been analyzed thoroughly enough to warrant incluszion.
Howaver, the taxonomy is adequate for a wide range of elementary programming problems.
Future research will investigate additional planning techniques.

There are three major classes of plans in the taxonomy: Addentification,
decomposition, and reformulation. Identification means recognizing a problem as
previously solved. Decomposition refers to strateglies for dividing a problem into
simpler sub-problems. Reformulation plans alter the problem description, seeking a
representation which is more amenable to identification or decomposition. The figure
indicates how these classes of plans are further subdivided in the SPADE theory.

Planning, according to the theory, i% a process in which the problem solver
selects the appropriate plam type, and then carries out the subgoals defined by that
plan applied to the current problem. From this viewpoint, the planning tu:un;:r-y
represents a decision tree of alternative plans. The decision process can be modeled
by the context free grammar given below. The grammar explicitly states which planning
rules involve recursive application of solution technigues to subgoals: satup,
interface, mainstep, cleanup, and parallel.

(The rules of the grammar are written using the following syntax: *|® is
disjunction, "+" is ordered conjunction, "&" is unordered conjunction,
we. . .0% g iteration, [...] 1z optionality, and a lower case English phrasa
enclosed in quotation marks (e.g., "repeat step®) describes a lexical item
which 15 not further expanded in the grammar.)

FLAN _ =» TDENTIFY | DECOMPOSE | REFORMULATE

IDENTIFY =* PRINITIVE | DEFINED

DEFINED = "call uwser subprocedura®™ & PLAN

DECOMPOSE =» CONJUNCTION | REPETITION

CONJUNCTION =2 SEQUENTIAL | PARALLEL

SEQUENTIAL -> [SETUP] + <MAINSTEP + [INTERFACE]>" + [CLEANUP]
PARALLEL -> ¢PLAN>"

SETUP -» PLAN

MAINSTEP = PLAN

INTERFACE - = PLAN

CLEANUP =3 PLAN

REPETITION =» ROUND | RECURSTION

ROUND =» TTER-PLAN | TAIL-RECUR

ITER-PLAN =» "repeat step” + SEQ

TAITL=-RECUR =% "stop step™ + SEQ + “recursion step®

The SPADE theory 1is not restricted to any particular domaim. However, to provide
concrete examples, we have concentrated on problems from elementary Logo gf'apilics
programming [Papert 1971]. This domain was chosen because of the avallability of
extensive data on the performance of students writing "turtle® programs to draw simple
pictures. The grammar rules for primitives in this domain are:

PRINITIVE -» VECTOR | ROTATION | PENSTATE
VECTOR =» (FORWARD | BACK) + <number}
ROTATION =» (LEFT | RIGHT) + <number>
PENSTATE =» PENUP | PENDOWN

A typical task undertaken by beginners in the Logo environment is to draw a wishingwell
picture using the computer.

Fig. 2 -- A Logo Wishingwell

Fig. 3 1llustrates a solution to the wishingwell problem with its hierarchical
annotation according to our planning grammar.

The grammar characterizes the decision process involved in selecting plans from
the taxonomy. We illustrate its utility in the next two sections by constructing an

Miller & GColdstein

The SPADE Theory

HEYE

ANE -«
02T LHOTW 0f<
00T J9¥ME0d 02 <

foe 02] £ avd&ayg o1«
A00d AL é
asg«

06 LHJITY JEf«
00T THEYMHOS 0F«

(0f 02] ¢ I¥34TY 0T«
TIIM ol ¢

aNd-«

J00W de«

02T IHOIY 08«
05 JU¥MHE0T 0i<
06 1437 (o~

007 JEYMMOd 0%«
06 LIAFTT Ob<

08 JUYMH0S (f<
TIaM OZ<

06 IHOIY 0OT=
MM 0L ¢

TTIAMD

HNIHSIHM

[£d
nzd
6T3
BI13
L1d

= & @

UoT3Taads

319
cT3
u.r_.Hm " a o=
£13 OT3TIodea

13

T3 |
01z
e0d "t ANNYITY

B03 " dIISNIVW
LO0Z " dNLds <

a0d T HATLIWIH g

mamﬁuuuuuvamm+,hzouu;

DEs —

Fo=

Il.l.l.l|-ll.I|-—.r|J.:.-l|

—

JINT S0

e = { JO0E)

A LLNEAT " ={3T0d)

uma+1l|l|l

.w”_...:_. "o
c0d
Tod

=

— OINIAAd-* " (TTAM)

JAILINIHd ——A4dIINIII " * * =—dN1IS -

JHL 403 43U MOILWATHId TYOIHOMYHEAIH S, MLYE

dALENIYH —

dIVITIINT —

JILENIWK

£ Jun

&

AN ATILNT —

JILEMIV —

oIS

odd WWld

(MM) 3ATOS

editor that embodies the grammar and analyzing debugging in terms of the grammar. Then
wa show how the grammar can be augmented to include not only the syntax of plans, but
.helr semantics and pragmatics as well.

4, SPADE-0, A Planning Assistant

sna reason for calling our theory of planning and debugging structured is to
emphasize the link betwsen our rasearch and the Structured Programming movement. Dahl,
Dijkstra, and Hoare [1972] call for a styla of programming which reflects coherantly
structured problem sclving. But a detailed formalization of what this style entalls is
lacking. ©Our efforts in this directioen, therafora, supplement the work of Dijkstra and

others. The SPADE-0 editing environment servas &3 an example .

How can we judge whether a particular gramsar of plans capturas, at some laval of
abstraction, the set of planning decisions invalved in solving problems for some
domain? One methodology we employ is to inmcorporate the grammar into an editor (SPADE-
0) whose purpose is to augment and direct the capabilities of a human user. The
critical guestion then becomes determining the extent to which such a system alds or
hinders the user.

Suppose a problem solver is defining & Logo program for drawing the wishingwell
shown earlier. In SPADE-0, this is accomplished by applying the planning grammar in
generative mode:

la. What it the name of your top level procedura?
1b. >WM

2a. The rule is: PLAN -» IDENTIFY | DECOMPOSE | REFORMULATE.
What now?

2b. »DECOMPOSE.

3a. The rule is: DECOMPOSE -» CONJUNCTION | REPETITION
3b. JCONJUNCTION

4a. The rule is: CONJUNCTION -> SEQUENTIAL.

The rula is: SEQUENTIAL =» [SETUP] + {MAINSTEP + {IHTERFAEE]}* + [CLEANUP].
Do vou wish to define an optional SETUP?T
4b. Later.

In this way, SPADE-D encourages users to articulate their design decisions im top-
down order. At the zame time, the system allows the user to escape from this strict
dizcipline if an alternative solution order seems preferable. This was illustrated by
the user's "later® instruction. "Later®™ suspends the current goal for later solution.

SPADE-0 was implemented by assigning an interpretive procedure to each grammatical
oparator. In essence, the editor is a bookkeeper for the user's goal tree. Despite

its simplicity, we saa three useful applications of the program.

1. From an educational standpoint, the editor encourages students to articulate
their problem solving strategies. The fundamental hypothesis of the Loge Project, as
presanted by Papert in Tecching Children Thinking [1971], is that such articulate
problem solving 15 bemeficlal to the learner. The SPADE editor, with its extreme form
of articulation, provides an experimental wehicle for evaluating Papert's claim: do
students axposed to SPADE progress fastar in learning Logo than controls whose problem

solving is more tacit?

2. From an AI standpoint, its use will indicate whether the planning grammar 1s

adeguate, or whather certailn plans are not present that competent problem solvers feel

area neceaiiary.

3. From a psychological standpoint, we will collect transcripts of individuals
using the editor and formulate personcl grommors based on the particular rules wsually
employed by each user. The personal grammar will model the probles solving skills of
that inmdividual. In the past we have manually analyzed protocols from standard Logo.
SPADE protocols, with their explicit planning cholces, can be far mora revealing.

5. RAID, A Debugging Assistant

SPADE includes a theory of debugging. Such a theory is essential, since problem
solvers must often formulate plans in the face of imperfect knowledge and limited
resources, Under such circumstances, even carefully reasomed judgments may bea
mistaken.

Given a grammatical theory of planning, debugging can be analvyzed as the
localization and repair of arrors in applying grammar rules during planning. Since our
planning rules were constructed from operators for conjunction, disjunction, and

optionality, three basic classes of errors arise:

1. syntactic bugs, in which the basic grammar is wiolated, such as when =&

required confunct is missing:

2. semantic bugs, in which a semantic constraint arising from the particular
problem 15 violated, such as when a syntactically eptional constituent, neesded
because of the semantics of the particular problem, is missing;

3. pragmatic bugs, in which an inappropriate selection from a set of mutually
axclusive disjuncts 1s made.

Fig. 4 provides examples of these bug types. Although additional categories
{including execution and efficiency bugs) must be defined to make this taxonomy of bugs
complete, these classes are adequate to characterize many examples which arise In
elementary programming.

RAID is a debugging assistant for SPADE-0 implemented on the basis of this
taxonomy of errors. As SPADE-0 prompts the user through planning process, those
cholces which might lead to syntactic, semantic, or pragmatic bugs ara recorded by the
system. In subsequent debugging episodes, RAID alerts the user to the relevant bug
warnings, thereby aiding in diagnosis. Moreover, the SPADE-0 planning editor. can then
be reinvoked to guide repair of the bug by resuming planning in the context of the
culpable decision. An interaction with RAID that would arise from premature execution
of a program is illustrated below:

FIGURE 4 - SYNTACTICALLY INCORRECT PLAN
A NECESSARY CONJUNCT 1S5 MISS] NG

TO Wi
10 TRIANGLE — USE

= —-Th=PLAN

END
Wi GET
777 TRIANGLE UNDEFINED 777

{"GET" MISSING. UNGRAMMATICAL PLAR.
DEBUG BY COMPLETING PLAN.)

GET TRIANGLE FILE

FIGURE 4 - SEMANTICALLY INCORRECT PLAN
AN OPTIONAL CONJUNCT IS MISSTHG

FOR EXAMPLE: "WW" MISSING INITIAL SETUT, AND INTERFACE FOL 00 F.

¥
TO W
10 WELL — MAINSTEP
20 POLE — MAINSTEP - ends hern
) SEQ-FLAN Tie

Ht
[]
starts hore

FIGURE 4 - PRAGMATTCALLY INCORRECT D'LAN
AN TNCORRECT DISJUNCT HAS BEEN SFLECTED

TO SQUARE-INSIDE-TRIANCLE LINEAR PLAN --

10 SQ0UARE SOUARE AND TRIANGLE
20 TRIANGLE DESIGNED

END INDEPENDENTLY .

INTENDED PICTURE: ACTUAL PMICTURE -

The user hos contimued defiming the wishingwell program begun eariier. with

its current definition o5 shown In fig. 4b. Although on imitial SETUP and an
INTERFACE have not pet beenm supplied, the wser reguests executiom of the
program.

la. ... What now?
1b. *RUN WISHIMNGWELL.

Za. OK. (Fig 4b shows the resulting picture.)
What now?
£b. *Diagnose

Ja. The rule is: DIAGNDOSE-» {PARSE | CODE | MODEL | PROCESSy®.
What now? '
db. >Parse

da. The rule 1s: PARSE -» SYNTAX | SEMANTICS | PRAGMATICS.
What now?

da. »Semantics

Sa. The following optlional constituents are missing in WW:
The SETUF and the INTERFACE between WELL amnd POLE.
What now?

S5b. »Repair

Ga. The rule is: REFAIR -» COMPLETE | REPLACE.

6b. »Complate interface between well and pole.

Ta. The rule is: PLAN - IDENTIFY | DECOMPOSE | REFORMULATE
Th. > ...

In this example, the interaction with SPADE was again guided by a grammar;
debugging grammar is given below.

this

DIAGNOSE

¢PARSE | CODE | MODEL | PROCESS)=

PROCESS -» <ASK | TRACE}"

CODE =% "print definition®

MODEL -3 RUN

PARSE - SYNTAX | SEMANTICS | PRAGMATICS

SYNTAX =» "raview conjunctive choices in plan®
SEMANTICS =» "raview optional choices in plan®
PRAGMATICS =¥ "review disjunctive cholces in plan®
REPAIR -» COMPLETE | CORRECT

COMPLETE =¥ "golve for missing comjunct®

CORRECT =3 "choose alternative disjunct®

RUN =» "run code line® + ["error msg"] + [DEBUG]
ASE =» "print dafinition® | “print value®
TRACE -» [SELF-DOC"] + RUN'

SELF-DOC =» "add break” | "add print* | "add trace"

This grammar represents the traditional debugging strategies employed by programmers

supplemented by the PARSE-based strategies allowed by the existence of the SPADE

derivation tree.

For more complex programs, thers will ba too many potential bug lecations for
RAID's undirected advice to bes helpful. Hence, following SPADE-0's structured
b::-u'k.tupi“ philosophy, we allow the user to set caveats during planning regarding
those declisions which appear to be potential trouble spots. . In this fashion, SPADE
permits an exploratory style of problem solving, as illustrated below.

Suppose the wishingwell program is part of @ lerge profect. Then the number
of optiomal constituents thet have not been defimed will be large. The user
will probably hove some dnsight imto which of these {5 ectuclly meeded. To

Jacilitate debugging, the user i3 encowroged to ploce caveots of those
decisions he suspects moy reguire later debugging.

.ﬁa. Do vou wish to include the optional initial SETUP in WW?
6b. >No.

7a. Do you wish to record a caveat here?
Th. >Yes.

Ba. OK. Your pending goals are ROOF, POLE and WELL. What now?
Bb. » ...

Anocther mechanism to make SPADE's and RAID's advice more directed is to supply the
semantics for problems. This i3 the topic of the next section.

6. PATN -- An Augmented Transition MNetwork for Planning

While context free grammars can represent a useful abstraction of planning
decislons, they have limitat.'inna. which prevent them from providing a complete theory of
design. They provide no representation for the semantics of the problem nor for the
pragmatics involved in choosing ome plam over another. For this reason, we have
designed and are currently implementing PATN, an augmented transition network (ATN)
problem solver. We have adopted the ATN formalism for the same reasons that led Woods
[1970] te introduce it into computational linguistics: the semantic and pragmatic
limitations of context free grammars,

Fig. 5 provides a global view of PATN [Goldstein & Miller 1976b]. The topology of
the network embodies the planning grammar. Registers contain descriptions of the
problem, the solution, and various temporary constructs built during planning. Arc
predicates supply pragmatic guidance by examining the registers and appropriately
directing the planning process. For example, an identification plan r_ar.l-nnt. proceed 1if
tha problem desﬁripttun cannot be found in the answer library. PATN haz beaen

successfully hand-simulated on elementary Logo and Blocks World problems.

PATN allows us to elaborate our notion of a completed plan by defining an
ognnotated derivotion tree. Associated with sach node of the plan derivation is a
snapshot of the values of the ATN registers at the point in the planning process whan
that node was created. A derivation tree reveals the constituent structure of the
plan; these semantic veriaebles reveal the semantic intemt. A set of assertions at
each node, derived as instances of PATN's arc predicates, reveal the progmatic ressons
for preferring a given plan over its competitors. Fig. 6 shows the annotated

Miller & Goldsteln

15

The SPADE Theory

HL¥d 40 MdIA JAIATT4WMIS ¥ § FdN9Id

g uoridriosap watgoad

JATIFUI2ITE YIfa Tapom a2eTday, - (K)2I18TNEIoIaygsH
WTAARIGTT damSUR
241 U pUNOI WOTIRTOS 3yl winday, - (H)AIRIqTl+5 B

(BUOTI0y apdmExy

piluamaTa aTIsuad B 8¢ paluas
-axda1 noridrissap mafqosd 9yl s1, - (H) oTIauasg
GLAIBIQTT IamsuE ayj up Jupyjdue
&g payalem wopjdiassap wergoad ST, - £IBIQET IW
PENOTITPUOS @ durxg

SUOTIIRIFIUT TEOE InOge 20TAPY - ¥ a2357dsy
wotadyasssp mayqoid ofBol alEDTRpaIg - W asastioy
iGi938T09)y Plduvxy

1IN . LY TSN
st (VW BIS-NY1d

oo df—
(W) LV INWH04T W

EELI =

S R (O] P T
HNL

130

ﬂﬁi
W) 11917dx3

dld

&)

(W) INT0S + R 1d*-NY1d*
STW09+ 1S34-STW09:

STY09: 1S¥14- Tyog: 4001
| LN3W3NIS

- (W) mzmupuﬁmw_mﬂﬂ

B3s ﬁﬁuzummmmc+w4¢5w"ﬁmu 'NOD

(&)

(Z) |

Ny .1ﬂ|4
d A0W-W

(T}

AIVHETT =W

o (W) JZTHVINIT-M

INIYHLISNOD: V=Y

d007

| NOLLYZIMWANIY o qg |

(W) AHE T TN *

TH09+=Y
3TNV =Y
NY1d*=d
1300W =W
SHOTLVIATYETY
44151934

Lo

G Ll

&

Millew

16

The SPADE Theory

ASYL TIZADHIHSIN FHL J0d 34l HNOILYAIHIA pALEUHATY S NLY¥Yd 9 JdN0Id

N3«

02T LEOIYE OE-s

COT Qdv¥eHod 02«

[0E 0g] © Ivsddy ol

[ed
1z4
L

T2

- .||rrr;._
~ UTI00K: DTHINED)

e S—_ e

—

T2

- JACOH 0§ S -
{ (% 00K T+ 3018 730150 03LANN0D v 00T g1 T-SNY 21300K:
Y =("HTISIHLIONTT v (* ITISIHOLITA . * fo=1 ’] — -
-|||55.|¢5.) L ASEE 00 RO L ot aaman .
<4< 314 B (X)H0L23A-« *E) = TAA0K: :
06 IHDIY 0F< =13 . !
..-I.I.Illl|]JI-I.JI.|.J|.| - | _H W
00T QE¥MHOZ 0Z< ¥Td - ' rtan 100 asosy v M
[0f 02] ¢ Iv3ddE 0T« €13 HeribAmeed - \(I0d 1008) A0V \
TIIM oL ¢ 714 pb—— - —(I00H) JILENIVW o " (1iam) Tevads v \
Qan]43a . _ \
\\\ [3r0d) antv |
asd- 113 .H (400d) IIOKVIYL |
3908 06< 3713 y W ,c 113N *310d ‘3009 £) =1300K:
OZ1 LHOIH OB« 604 ° dONVITD y — . -
05 JU¥MHOL 0L< 803 " " 4dLSNI 0Fs —J ~ - ——— JOVJEIINTI—H —
06 L43T 09« L03 Tt d0LAS - (A1T-sNV s 1EaoR:) L
i 2
00T O¥YMH0d 0S< 503 "t AATLIWI¥G—J-AIIINAQI* * *(3T0d) JILSHIVW e —— _
06 1d31 ob< $pd N bas 23T NVTId (MM)3ATOS
038" " pNOD ~fm———— 0F0" " — FIVIEIINI —
05 QE¥MHOd 0F< P03
TIEM 0Z< £03 Tt T QENIZIg-TC (T73M) JILSHIVN -
08 LHODIM O0T< ZOF FATLIWIYMd——AdTLNIOT * ° —dNL35 -
MM oL & TO3 \\,, - T ——— ~,

.IIELI
Ca11-swv > 1300K:

P

.,.r:.rrl

- ﬁ ((X) SHOTIOVEZINI £ T2q0K: T ¥ ww.\.\

e ——

derivation tree for the wishingwell program given sarlier.

An intended application of PATN is as a module of the SPADE editor for providing
the user with additional direction and advice. The following hypothetical dialogue
with SPADE-1 (the SPADE editor augmented by PATN) illustrates this.

la.
Ib.

2a.
. HISHINGWELL

Ja.

da.

db.

Sa.

Sh.

Ga.

Gb.

Ta.

b.

Tell me the name of your toplevel procedura?
b2 L]

Would wou like to define a model?

OK. WISHINGWELL model found in Model Library. The rule is:
PLAN -» IDENTIFY | DECOMPOSE | REFORMULATE, What now?

. JROOF POLE WELL

These subgoals correspond to model parts.
Are you pursuing a LINEAR DECOMPOSITION plan?
WES

The pending subgoals are: ROOF, POLE, WELL and the preparatory steps.
What now?
»RO0OF

In the WW model, ROOF is described as a triangle.
There is a TRIANGLE procedure in the answer library.
Would you like to use 1it?

*YES

OK. The ROOF is completa. Your pending goals are:
- POLE, WELL, and the preparatory steps. What now?
b .

PATN's Linearization Loop provides a theoretical superstructure for handling

dependent, interacting subgoals. The approach is to view a non-linearity as a property

of the problem description. That 1s, even though one description of the problem leads
to an unsuccessful refinement process because of Interactions betwsen subgoals, another
description can succeed by making the dependent constraints explicit. For axampla,
consider the SQUARE-INSIDE-TRIANGLE of fig. 4C. If the problem description is:

SQUARE X;
TRIANGLE ¥;
INSIDE X Y;

then a decomposition that draws the square and triangle independently and then attempts
to fit them together to achieve the inside relation will fail. However, a problam
description of the following form allows a successful decomposition:

SQUARE X, WITH SIDE = 100;
TRIANGLE ¥, WITH SIDE = 300;
CENTER OF X = CENTER OF Y.

The INTERACTIONS predicate is a conjunction of tests on the model reglster. Each
test is responsible for detecting a given non-linearity. A corresponding _ll-z‘l'.i.ﬂl'l
modifies the model, adding new statements to make the interaction explicit. The
REFINEMENT loop is the repository for what Sussman [1975] calls the Critics Gallary.
The theoretical progress of PATN is to integrate the Critics Gallery concept into &
theory of planning. In Sussman's HACKER, the critics gallery and library of
programming techniques were separate modules: there was no integrated theory.

Of course, at any point in time the system may be unaware of a given type of non-
linearity. In such cases, the absence of an interaction test will lead to a sequential
decomposition that ultimately fails. The design of a program for debugging such
failures is the subject of the next section.

7. DAPR -- An Augmented Tramsition Network for Debugging

PATN can make mistakes. That is, PATN will sometimes introduce what we term
rational bugs into its plans, dus to making arc transitions with imperfect knowledge of
subtleties or interactions in the task domain. Hence, PATN must be equipped with &

complementary debugging module, DAPR (fig. 7).

While RAID was designed to assist human programmers in finding & varisty of bugs
(primarily by plan diagnosis), DAPR waz designed to analyze PATN's bugs. DAPR employs
three diagnostic techniques: model, process, and plan diagnosis. Model diagnosis 1is
the basic technigue. It amounts to comparing the effects of executing a plan to a
formal description of its goals, to determine if, and in what fashion, the plan has
failed. Another DAPR technique, based on Sussman's HACKER [1975], i: examining the
state of the process at the time of the error manifestation. Plan diagnosis is a DAPR
first. It is accomplished by examining the covests variable associated with various
nodes of PATN's annotated plan derivation.

DAPR will also be used to provide additional guidance to RAID. This illustrates
the synergism possible when educational, psychological and Al facets of a cognitive
theory are studied in an integrated fashion. This integration is further exenplified
in the next section when we apply the SPADE theory to protocel analysis.

8. PAZATN, an Automatic Protocol Analyzer

As soon as one has an heuristically adequate tha'nr:.r of design, it i3 natural to
ask, "Can the theory provide an account of how people solve problems?™. An
experimental technique we employ for answering this question is the analysis of
protocols collected during problem solving sessions. By adopting this methodology we
follow the precedent established in seminal protocol analysis studies conducted at
Carnegie Mellon University [Newell & Simon 1972: Waterman & MNewell 1972, 1973;
Bhaskar & Simon 1976]. Our work extends their approach along three dimensions.

1. With the exception of the recent Bhaskar & S5imon affort, the CHMU studies have
been restricted to very limited domains such as cryptarithmetic. Rather than limiting
the task domain, we limit the range of responses. Typically protocols are
transcriptions of think-aloud verbalizations; we focus on the more restricted
interactions arising from a problem solving session at a computer console. The
analysis task in this setting is to interpret user actions -- editing, executing,
tracing, etc. == in terms of the SPADE theory of planning and debugging.

Miller & I\:':-;'||:||::|_I_' il

20

The SPADE Theory

LIZHE00

FLLY DMIDDNEIT S,MI¥d :¥4vd L E¥NoId

[TIT0M *

COU020T pmvTd:)
(&

(C0(D0T NWId:) 4 S5IH)

((d3L5 TIAOW:) INTIHIVLS-TIUOH TYnod)

((20T SNOIIVIOIA:) {

LNIHILYLES-TITOW ALVOIN) HIGWIW) auNv)
(207 315 LHNAWALYLS-TIAON) SLEIXT)

da02: LIEdYIINT) -SNOILYIOIA !

/

ddLs ONISSIW)
LS TVNMOILAO) auvy)
(20T d43L18) SLSIYI)

The SPADE Theory 21 Miller & Goldstein

2. Tha CHU theory centers on the productiom spstems model. Although productions
ara Turing universal, they tend to result in a less ﬂru:furuﬂ program organization
than the linguistic formalisms of the SPADE theory. In PATN, each arc transition,
consisting of a predicate and an action, can be thought of as a production. However,
PATN orpanizes these productions into local contexts, esach of which consists of the
arcs exiting from a given node. Not all of the arc productions are present at any
moment in time; an arc is present only when the problem :nivar 15 at the releavant
node. In the production systems discussed in Human Problem Solwing [Newall &
Simon 1972], all of the productions are always present and are tested in serial order.

4. CAU analyses are based on the problem behavior graph. Pursuing an analogy to
computational linguistics, we define am interpretation of a protocol to be & parse tree
supplemented by semantic and pragmatic annotation. The parse tree characterizes the
constituent structure of the protocol. Semantic and pragmatic annotation -- wariables
and assertions attached to nodes of tha parse tree -- formalize the problem description
and the rationale for particular planning choices. Annotated parse trees closely
reflect the local structure of PATN's linguistic problem solving machinery, leading
more directly to inferences regarding individual differences than 1is svident from
problem behavior graphs.

Ruven Brooks [1975] applied the CMU approach te the programming domain,
developing a model of coding -- the translation of high level plans into the statements
of a particular programming language -- and testing the model by analyzing protocols.
His model is a set of production rules whose conditions match the pit.terns of plan
@lements and whose actions generate code statements. Protocols are analyzed manually,
with the experimenter attempting to infer the plan which is then expanded by the
production system into code paralleling that of the protocol. The processes of
understanding the problem, generating the plan, and debugging are not formalized.
SPADE goes beyond this inm that it can be used to parse protocols and that the parse
constitutes a formal hypothesis regarding not only the coding knowledge but also the
planning and debugging strategies employed by the problem solver.

[(Miller & Goldsteln 1976b] provides a detailed example of such analysis being
performed by hand. The example is a segment from a protocol several hundred lines long
in which a high school student uses the Logo turtle to draw the letters of his name.

By examining the grammar rules present inm the derivation, we can readily obsarve
various properties of the student's problea solving such as: reliance onm certain
planning choices to the exclusion of others (e.g., the student employed iteration, but
never recursion); the misuse of certain optional constituents (e.g., a setup was
usuwally included im each procedure even when it was unnecessary): and certain
situations whera his problem solving violates the grammar and hence 15 susceptible to
syntactic erreors (e.g., programs wera often executed before their subprocedures had
been dafined).

Just as a context free grammar is incomplete as & theory of planning, likewise a
parse iz only a partial analysis of a protocol. The theory of annotation developed in
the PATN work led us from describing only the sgmtectic structure to more complete
analyses of protocols: an interpretation of a protecol is the selection of a
particular anmototed PATM plan derivation. Fig. B shows such an analysis of a
simplified protocol in which a wishingwell program is defined, executed and debugged.

PAZATN 1is a chart-based parser [Kay 1973; EKaplenm 1973] being implemented to
interpret protocols in terms of PATN's annotated plap derivations [Miller &
Goldstein 1976d]. It will operate by cawsing PATN to deviate from 1lts preferred
approach in response to bottom-up evidence (fig. 9). By taking advantage of powerful
parsing strategles developed in research on speech understanding [Lesser et al. 1979;
Paxton & Robinson 1975], as well as the economical chart representation of ambiguities,

PAZATN has been successfully hand-simulated on approximately 10 Loge protocols.

PAZATN will operate by matching PATMN-generated plans with protocol data. Two
charts will be used to represent altermative interpretations. The PLANCHART keeps
track of the set of plausible subgoals which have been proposed by PATN. Fig. 10 shows
A planchart for a wishingwell in which PATN has proposed two alternative
decompositions. The structure is5 a chart because it shares substructures, as
exemplified by the common solution to the WELL subgoal pointed to by both wishingwell
decompositions. The DATACHART records the state of partially completed
interpretations. Fig. 11 shows how the datachart links events into the planchart for a
PAZATN interpretation of the wishingwell protocol given sarlier.

These charts are grown as follows. First PAZATN requests PATN to generate 1ts

Miller & Coldurein

23

The SPADE Theory

MM ¥OJ NOILJI¥OSIQ TWENIOMILS QIIVIAZ¥EEY § F40oIld
ﬁ- L -._._.
. COCTTEN) 3AIS)¥TddN) FTAATH=d W
laNg< sTdl ((d 4¥) THEL TTHM) CLIOENNOOE § ¢ L=SKOIIVIOLA'

08T LHOIH LT< ¥14
05 QUYMEOd ST< £14
06 LHOI¥ ET< 214
MM LIQAE 1T bngag

i - &
(ML-INI}@aTo5 #3s7dwoD atedsy

MMZ 0T3 v a
s1soubwip-TapoN stsouberqg

\\ﬂ..ﬂma HTUL) IOVIEIINI) ANTSSIH v ((TTaM aT4L) MEEEEE{HEHEJ\V

S—————UNd< 6031
T1aM oz< BOF [183-IqNS-I35T fos—— (TTAM4) SATO oI Ep——
3 i [i))=
SddL 0T< L0= IIED-IquS~d050) Y i

MM OLE 90 i puauurxxfler:,mdHJ-mzﬂm.rmm
f..11..|.|ﬁ5.h

1aNZ< s0d; (TZA0K: } a5 PrueTgt eyt
06 IHOIH 0E< poOd THANED
00T TE¥MHOd 0Z< £0d Ut ————{TTEM) DATOS—
lo£ 02z] ¥ Ivaamy 0T< zoa cTatiedea poury§p—{+35Ls) 2aTOS- |
ITTIEM 0l TOEi F(pawriep Aprawyv) (IFUL) sAToS- T

N
(X)SHOTLOVHALNI € (MM)T300R: 2 5 L)

-

The SPADE Theory 24 Miller & Goldstein

PROBLEM

DESCRIPTION /™~ 7 PATH

BQTTGH-UFF POSSIBLE PLANS

CLUES | GIVEN PROBLEM & CLUES
\
\

ANALYZET)

PROTOCOL ~ p===="*+ 2 PAZATN [T PROTOCOL

FIGURE 9 TOP LEVEL ORGANIZATION OF THE PROTOCOL ANALYZEER

The SPADE Theory

—DECOMPOSE— ++» ——

SOLVE (WW) — PLAN—

25

- a-rSED"-" SOLVE ‘PGLE]

SPLIT

SPLIT

—REFORMULATE -+ +5EQ —

FIGURE 10 PLANCHART

Miller & Goldstein
iﬁ

ﬂﬁ
S0LVE (WELL)=

-
o

&
P \
~SOLVE « { ROOF) x

FSOLVE (ROOF)

~ -«-5EQ—1-850LVE (POLE)
|

-50LVE (WELL)

“S0LVE (TREE) £
&

o,

~50LVE (WELL})--

OF ALTERENATIVES FOR WW

Planchart Datachart

oo
- . 1
- DECOMPOSE ST EﬂltDEP oF ww\r,ffq
T "_;]r_i_blu:
E01=DEF OF

-

SOLVE—++»+ [SPLIT i
EQd6=DEF OF Wnh

[

J{ i

SOLVE(TREE) —TDENTIFY, . .

% #E07=CALL TO
Ak
PLAN 5?{,f* TREE

X p—sED | HUNG
x\\'EﬂD=CALL TO
W WELL

O

L

SOLVE {WELL) DEC-RED ., a

ElQ=

_ MODEL
X REFORMULATE — A DIAGNOSIS |

/1 e
s E12
! E13 "
s E14f
! E15S
T !
i MODEL DracMosTs 4

IDEHUG 'x

| “REPAIR- HPLETE-SDLUH[TNTERF&FEL.,q:]i

b Nodes manked by "X ane part of {inal parac,

FIGURE 11 DATACHART LINKING PROTOCOL EVENTS TO PLANCHART LEAVES

most plausible plan. This plan is inserted into the PLANCHART. Then protocol events
are analyzed one by one, and matched with subgoals in the PATN plan. The match is
recorded in the DATACHART. If no plausible matches are found, PATN iz asked to
genarate the next most plausible plan. The PLANCHART is thereby extended. Common
subgoals share the same structure in the chart.

At first, PAZATN will be implemented interactively, with the user =-- a
psychologist analyzing a protocol -- directing PAZATN to select different PATN plans.
This follows the incremental implementation strategy used in two of the CHMU protocol
analyzers [Waterman & Newell 1972; Bhaskar & Simon 1976]. PAZATN, even in its early

interactive stages, should provide strong evidence regarding PATN's adequacy as a
cognitive theory.

PAZATN will also be tested in the SPADE context. Below is a hypothetical dialogue
with SPADE-Z, representing the original SPADE-0 augmented by both PATN and PAZATN.

la. We are now solving for a WISHINGWELL. Your pending subgoals are:
ROOF, POLE, WELL, and the interfaces. What now?
1b. >SQUARE

2a. OK. [am assuming that WELL has been solved by identifying it
with the previously solved SQUARE procedurs. What now?
eb. » ...

PAZATN will increase tha editor's flexibility in handling ambiguous events, and in
alleviating what might seem to some users to be an excessive allocation of time and

effort to the planning phase. Ultimately we expect SPADE-2 to provide a programming
environment of value to professional as well as student programmers.

9, Conclusions

An outline of the SPADE theory of design has been presented. One theme has been
the synergism achievable in a multi-faceted research effort. Programs have baan

designed and are being implemented for testing SPADE in educational, psychological and

Al contexts. The Al dimension involves the development of a spectrum of possible

theories of cognition. The psychological and educational dimensions supply feedback
regarding which parts of a theory are rejected by compstent human prohlem solvers.
Furthermore, the psychological dimension would be incomplete were it not to address the
issue of learning, while the educational dimension characterizes the trajectory of the
student's cognitive state through time.

A second theme has been the exploitation of concepts and algorithms from
computational linguistics: grasmars, ATN's, derivation trees, search strategies from
speaech understanding, chart-based parsers. Computational linguistics is also
responsible for suggesting the propitious decomposition of problem solving processes
into components invelving syntactic, semantic and pragmatic knowledge.

Wa believe that our unified approach to AI, psychology and education represents a
new research paradigm offering the potential for considerable progress in all three
fields. But much remains to be done. Although all of the programs have been designed
and hand-simulated, only the SPADE-0 editor has been implemented. Furthermore, while
SPADE has been applied to Logo graphics, blocks world and alementary calculus problems,
it has not yet been axercised in encugh contexts to prove its generality. If this
research project succeeds, a new clarity will have been brought to the study of problem
soelving. Even if it fails, the reasons for the failures should provide useful
insights. 1In any case, it has already unified the treatment of plans and bugs, a
significant stride for a theory of problem solving.

10, References

Bhaskar, R., and Herbert A, Simon, February 1976. “Problem Solving in Semantically
Rich Domains: An Example from Englreering Thermodynamics.® (draft of paper to
appear im Cognritige Science), Carnegie-Mellon University, C.I.P. Working Paper 314

Brooks, Ruven, Hay 1975. A Model! of Human Cogritive Behavier im Writimg Code for
Computer Programs. - Carnegie-Mellon University, Report AFOSR-TR-1084.

Dahl, Ole-Johanm, Edsger Dijkstra and C.A.R. Hoara, 1972. Structured FProgromming.
London, Academic Press.

Emden, M.H. Van, and R.A. Kowalski, October 1G76. *The Semantics of Predicate Logic as
a Programming Language." Jourral of the ACH, Volume 23, Number 4, pp. 733-742.

Goldstein, Ira P., and Mark L. Willer, December 1976a. Al Bosed Fersomal Learming
Enpironments: Directiors Fer Long Term Research. MIT Artificial Intelligenca
Laboratory, Memo 384 (Logo Memo 31).

Goldstein, Ira P., and Mark L. Miller, December 1976b. Structured Planning and
Debugging: A Li’ngu istic Theory of Design. HNIT Artificial Intelligence Laboratory,
Memo 387 {Logo Memo 34).

Eaplan, Ronald M., 1973. "A General Syntactic Processor.® inm Randall Rustin (ed.).
Noturel Languoge Frocessing, Courant Computer Science Symposium B {December 20-21,
1971), MNew York, Algorithmlcs Press, pp. 193=241.

Eay, Martim, 1973. *"The HIND System.® in Randall Rustin [ud.g. Kotural Longuage
l"rncessins, Courant Computer ience Symposium B (December 20=-Z1, 1971), New York,
Cs

Algorithm Press, pp. 155-188.

Lesser, ¥V.BR., R.D. Fennell, L.D. Erman and D.R. Reddy, February 1975. "Organization of
the Hnr;a&f II Sraach Understanding System." in [EEE Transoctions on Acoustics.
speech, ond Sigaod FProcessing, Volume Assp-23, Number 1, pp. 11-24.

Miller, Mark L., and Ira P. Goldstein, December 1976b. Parsing Protocols Usimg Problem
Solving Grommersz. MIT Artificial Intelligence Laboratory, Memo 385 (Logo linn azy.

Miller, Mark L., and Ira P. Goldstein, December 1976c. SPAPE: A Grommor Bosed Editor
Far Plarming and Debugging Programs. MIT Artificial Imtelligemce Laboratory,
Memo 386 (Logo Memo 33),

Miller, Mark L., and Ira P. Goldstein, December 1976d. PAZATK: A Linguistic Approaoch
To Automotic Analysis of Elementary Progrommiang Protocols. IT Artificial
Intelligence Laboratory, Memo 388 (Logo Memo 35).

Minsky, Marvin, 1975, "-FFBIHB'EEFS';BI-E: A Framework for Representation of Enowledge.™
in Patrick Winston {ed.), The Psychology of Computer Fision, New York, McGraw-Hill.

Mewell, Allen, and H. Simon, 1972, Humanm Problem Solwing. Englewood Cliffs, Neaw
Jersey, Prentice-Hall.

Papert, Seymour A., 1971. Teaching Childrem Thinking. MIT Artificial Intelligence
Laboratory, Memo 247 (Logo Memo 2']

Paxton, William and Ann Robinson, 1975, ®System Integratiom and Control inm a Speoch
UndaESEEnding aystem."” in American Jowrne! of Computetiomcl Lispuistics, Volume 5,
pPp. a=18,

Polya, George, 1957, HNow to Solve It. MNew York, Doubleday Anchor Books.

Polya, George, 1965. Mothemotical Discovery (Volumes 1&2). New York, John Wiley and
ons. .

P-ﬂ;n. George, 1968, Mothemetics and Plousible Ressoning (Volumes 1&Z2). New Jersay,
rinceton University Press.

Sacerdoti, Earl, September 1975. "The Nonlinear Nature of Plans.® in Advance Fapers of
the Fourth Intermotional Joint Conferemce on Artificiol Intelligence, Thilisti,
Georgia, USSR, pp. 206-218.

Schank, Roger C., June 1975. *Usin Enowledge to Understand.® in R. Schank & B, Nash-
Weh “5’ lil"érfurﬂinut Tssues in Natural Lomguage Precessing (Workshop Proceedings),
PP- = .

Sussman, Gerald Jay, 1975. A Computationgl Model of Skill Acquisition. New York,
American Elsevier.

Waterman, D.A., and A. Newell, May 1972. Preliminary Results with a SFstum For
Automatic Protocol Analysis. Carnegie-Mellon University, C.I.P. Working apar 211.

Waterman, D.A., and A. Newell August 1973. "PAS-II: An Interactive Task-Frae Version
of An Automatic Protocol Analysis .‘]i-.fsten." in Advance Papers of the Third

ITatermnational Joint Conferesce om Art ficial [Intelligence, Stanford, California,
Pp. 431-445,

Winograd, Turr;, 1975. "Frame Representations and the Declarative-Procedural
Controversy. in D. Bobrow & A. Collins, Representation and Understanding.
Studies in Cognitive Science, Academic Press, pp. 1B5-210.

Woods, William A., October 1970. *Transition Network Grammars for Natural Language
alysis.® Comsmunications of the ACN, Volume 13, Numbar 10, pp. 591-606.

