Massachusetts Institute of Technology"m’
Artificial Intelligencg Laboratory

AI Memo 386 December 1976 Logo Memo 33
SPADE: A Grammar Based Editor For Planning And Debugging Programs

Mark L. Miller and Ira P. Goldstein

A grammar of plans is developed from a taxonomy of basic
planning techniques. This grammar serves as the basis for the'design of
a new kind of interactive programming environment (SPADE), in which
programs are generated by explicitly articulating planning decisions.

_The utility of this approach to program definition is that a record of
these decisions, called the plan derivation, provides guidance for
" subsequent modification or debugging of the program. ‘

Moreover, this grammatical approach to planning allows the
development of a taxonomy of bugs, as particular kinds of errors in
applying the planning grammar. Following a linguistic analogy, five
types of planning bugs are characterized: syntactic, semantic,
pragmatic, circumlocutions, and slips of the tongue. The plan derivation
can be accessed during subsequent debugging, to aid in diagnosing the
underlying cause of erroneous code. Repair is accomplished via
replanning, in which a substructure of the derivation is replaced. A
debugging assistant for the SPADE environment (RAID) is designed based on
this theory.

" The enterprise embodies Dijkstra's philosophy of programming in
a structured fashion, but represents a more detailed study of planning
and debugging techniques than has previously been attempted.

This report describes research done at the Artificial Intelligence
Laboratory of the Massachusetts Institute of Technology. It was supported in
part by the National Science Foundation under grant C40708X, in part by the
Advanced Research Projects Agency of the Department of Defense under_Office of
Naval Research contract N00014-75-C-0643, and in part by the Division for Study
and Research in Education, Massachusetts Institute of Technology.

Grammar Based Editor 2 Miller & Goldstein

Table of Contents

1. Introduction

1.1. Background and Objectives
1.2. Overview

2. A Grammatical Theory of Planning
2.1. A Taxonomy Of Plans
2.2. A Planning Grammar

3. The SPADE Editor ,
3.1. SPADE-0: A Rudimentary Planning Assistant
3.2. Towards SPADE-1, and Beyond

4. A Grammatical Theory Of Debugging

. Types Of Bugs
Syntactic Planning Bugs
Semantic Planning Bugs
Pragmatic Planning Bugs
"Circumlocutions" (Inefficiency Bugs)
"Slips of the Tongue" (Execution Errors)

LI T~ SN N N
S B W N e

5. The RAID Debugging Assistant

Diagnosis and Repair

Aid In Diagnosing Syntactic Bugs
Aid In Diagnosing Semantic Bugs
Aid in Diagnosing Pragmatic Bugs
Assistance in Repair

(& IS BN RS NS]
G B W N

6. Conclusions
6.1. Limitations and Extensions
6.2. Further Applications

7. Notes
8. References

The authors would like to thank Carol Roberts for help with the
illustrations.

Grammar Based Editor 3 Miller & Goldstein
1. Introduction

1.1. Background and Objectives

Our goals in this report are: (1) to understand the processes by which a
programmer, whether human or machine, moves from a declarative statement of a
problem to a procedural statement of its solution; and (2) to discover methods
by which these processes can be facilitated. We see programming as involving two
principle activities: planning and debugding. Most previous research has
studied these two activities in an isolated fashion. This report presents a
unified theory of planning and debugging, based on a linguistic analogy.

The investigation includes the design of an interactive programming
environment called SPADE. SPADE is an acronym for Structured Planning and
Debugging Editor. This name emphasizes two themes: (1) our perspective on
programming as a process of planning and debugging; and (2) our expectation that
SPADE-like systems will eventually help in achieving the structured programming
movement's goals of program reliability, readability, extensibility, portability,
and so on. The objectives for the SPADE programming environment are that it
- serve, not only as a practical application of the theory, but also as an
experimental crucible for testing claims of the 1;heory.l

In other papers the authors elaborate other dimensions of this linguistic
approach to problem solving. [Miller & Goldstein 1976a] provides an overview of
our research as a whole. [Goldstein & Miller 1976a] presents a long term
research direction: applying the problem solving theory to the construction of a
learning environment to teach elementary programming. In [Goldstein &
Miller 1976b] the authors design PATN, an automated problem solver. 1In [Miller &
Goldstein 1976b] the authors consider the use of grammars in the analysis of
elementary programming protocols. In [Miller & Goldstein 1976d] the authors take
steps toward automating this analysis task by designing a system called PAZATN.

1.2. Overview

The basis for SPADE's design is a unified problem solving theory which
incorporates a fundamental linguistic analogy. The theory rests on a taxonomy of
basic planning techniques. Planning, according to the theory, proceeds by a
sequence of design decisions, in which the programmer selects a plan type and
then carries out the subgoals defined by the application of that plan type to the
current problem situation. This decision process is modeled by a context free
grammar.

This analysis of planning leads to a taxonomy of program bugs as well.

Grammar Based Editor 4 Miller & Goldstein

Our claim that the theory unifies planning and debugging is based on the fact

that classes of bugs are defined by tracing their origins to particular types of
erroneous decisions in applying the planning grammar. Following a linguistic.
analogy, these planning bugs are characterized as: syntactic, semantic,

pragmatic, circumlocutions, and slips of the tongue.

The SPADE system will provide an interpreter for context free grammar
rules. It will provide bookkeeping facilities, maintaining a record of the
pPlanning decisions made in the application of each rule. This data structure
generated by the grammar is called the plan derivation. Programs are merely the
terminal strings of such derivations. Hence, SPADE should encourage programmers
to articulate their planning decisions, rather than merely leaving the plan
implicit in the resulting code.

The derivation structure created during planning episodes can be accessed
during subsequent debugging episodes to aid in diagnosing the underlying cause of
malfunctioning code. Repair would then proceed via replanning, in which a
substructure of the plan derivation is replaced. One result of this repair would
be that the purely hierarchical derivation tree is replaced by a chart of
alternative derivation trees. Diagnosis and repair techniques based on this
theory are to be implemented in a debugging assistant called RAID (for RAtional
Implementation of Debugging). RAID will be a component of the SPADE environment.

This paper'presents the design for SPADE. We plan to implement the
system. The implemented System will serve as the basis for a set of experiments
exploring aspects of the theory, such as the relative effectiveness of
alternative planning grammars. Examination of session transcripts coupled with
systematic interviews of SPADE users will provide evidence for answering the
following sorts of questions:

1. Do users find the planning grammars adequate; or are there
planning decisions which simply cannot be made given the
restrictions of the grammar?

2. How much of the grammar would remain the same in moving from
one application to another? We initially plan to implement the
domain dependent portion of the grammar for the Logo elementary
graphics programming domain.? Later we intend experimenting with
planning grammars for different domains, to include: the
"blocks world," a set theory world, and an elementary calculator
world.3

3. Do the plan derivation structures generated by the grammar
serve as useful documentation, aiding one programmer in
understanding and modifying programs written by another?

Grammar Based Editor 5 Miller & Goldstein

4. How effective is the System as a pedagogical alternative for
teaching programming and problem solving? Can its effectiveness
‘be attributed to such factors as greater articulation of
Planning and debugging strategies?®

The answers to these questions, in turn, will shed light upon a larger
question addressed by the enterprise: does computational linguistics provide a

valuable set of formal concepts and algorithms for constructing a theory of
problem solving? .

Section two presents our theory of planning. The third section
introduces the SPADE system. Our theory of debugging, and its embodiment in
RAID, are the topics of sections four and five. We conclude by discussing

limitations, extensions, and applications to Structured programming, automatic
programming, and protocol analysis.

~

Grammar Based Editor 6 Miller & Goldstein

2. A Grammatical Theory of Planning

B It would help a great deal if we had a general language
specially designed for talking about Plans.... Such a language
would, presumably, give us a convenient notation for such
aspects as flexibility of Plans, the substitution of subplans,
conditional and preparatory subplans, etc. For example, it does

SR not particularly matter in what order Mrs. Jones chooses to run
her errands when she dgets to town. The ... subplans can be
- permuted in order, and so we say that this part of her Plan is
flexible. But she cannot permute the order of these with the
subplan for driving to town, or for driving home. That part of
the plan is inflexible. Some subplans are executed solely for
the purpose of creating the conditions under which another
subplan is relevant. Such preparatory or mobilizing subplans
cannot be freely moved about with respect to the other subplans
that they anticipate. Another important dimension of freedom
that should be analyzed is the interchangeability of subplans.
Mrs. Jones can drive to town over a variety of equivalent
routes. The variety is limited only by the condition that they
terminate when one of her three alternative destinations 1is
reached, since only then would the next part of her Plan become
relevant. Given a satisfactory Plan and a statement of the
flexibility and substitutability of its subplans, we should then
be able to generate many alternative Plans that are also
satisfactory. And we should like to have ways for deciding

which combinations of Plans are most efficient....
[(Miller et al. 1960]

2.1. A Taxonomy of Plans

To arrive at a syntax of plans, we begin by formulating a taxonomy of
planning methods. Figure 1 presents a taxonomy of a variety of common planning
techniques.® We arrived at this taxonomy partly by introspection, partly by
examining problem solving protocols [Miller & Goldstein 1976b], and partly by
studying the analyses of problem solving provided by Polya [1957, 1962, 1965,
1967, 1968]. The taxonomy is incomplete: different domains would emphasize
different planning techniques. Yet there is certainly a core set of planning
techniques common to all domains.®

The initial division in the taxonomy is into planning by identification,
by decomposition and by reformulation. The first category captures those methods
which solve the problem by identifying it as one which is already known. The
second provides guidelines for breaking the problem into pieces. The third

Grammar Based Editor Miller & Goldstein

PRIMITIVE
— IDENTIFY
PREVIOUSLY DEFINED PROCEDURE
-SET
| LINEAR——
~SEQUENTIAL
- CONJUNCTION—
- DECOMPOSITION
 NONILINEAR—
-COMPOSITION
PLAN | DECOMPOSE— '
|_ROUND
—REPETITION —
_RECURSION
|_REGROUP
| EQUIVALENCE—
~GENERIC ¢-) EXPLICIT
| REFORMULATE—
SPECTIALIZE
SIMPLIFY GENERALIZE
ANALOGY
FIGURE 1

TAXONOMY OF PLANNING CONCEPTS

Grammar Based Editor 7 Miller & Goldstein

includes techniques that attempt to reformulate the problem into a form more
amenable to identification or decomposition.

For any domain, there are primitives and previously solved problems.
Hence, the identification class breaks into these two sub-categories. Of course,
there can be enormous subtlety in how a problem is recognized as an instance of a
previously solved case. Constructing a taxonomy does not resolve this issue. In
[Goldstein & Miller 1976b] we introduce formal descriptions of the problem
domain, and hence can address this issue more precisely.

There are many decomposition techniques. The taxonomy of figure 1 cites
only two: decomposition into conjunctive subgoals and decomposition into a
single subgoal, repeated some number of times. Other decomposition techniques
are appropriate for problems that can be decomposed into a disjunctive set of
subgoals, or into a negation of some goal. Conjunction involves the critical
question of whether each conjunct can be solved independently of the others, or
whether there are interactions. Repetition divides into solution by simple
iteration of a single subgoal or solution by full recursion.

Reformulation is perhaps the subtlest of the planning categories. It
includes finding an equivalent formulation of the problem which presumably is
easier to solve or a critical simplification whose solution is a stepping stone
to the solution of the original problem. Occasionally, one may even reformulate
a problem into a stronger form: such as constructing an example when only an
existence proof is required.

How can we further explore this set of planning concepts? Our first step

is to be more explicit about the decision process involved in selecting planning
methods from this taxonomy.

2.2. A Planning Grammar

We view planning as a process in which the problem solver selects the
appropriate plan type and then carries out the subgoals defined by that plan
applied to the current problem.” From this viewpoint, the planning taxonomy
represents a decision tree of alternative plans. This decision process can be
formalized by a context free grammar.® A grammar is chosen to present these rules
because it provides a simple and compact representation, useful for
characterizing the hierarchical structure of planning. We would not argue that a
context free grammar is the appropriate formalism for representing a complete
theory of prbblem solving -- elsewhere we employ a more elaborate formalism.
However, we believe that the grammar represents a useful abstraction of the
decision points in the planning process.

Grammar Based Editor 8 Miller & Goldstein

The top level rule in the problem solving grammar is:
P1: SOLVE -> PLAN + [DEBUG]®

The nonterminal SOLVE is formally analogous to the nonterminal SENTENCE in a
linguistic grammar for parsing or generating sentences. Pl states that planning
is first used to generate a plan, with subsequent debugging then being required
to complete the solution. Of course, the plan may be entirely correct. For this
reason, DEBUG is in brackets, indicating that it is an optional constituent. We
shall have more to say about debugging in a later section. ‘

The planning taxonomy characterizes the planning process as involving
three mutually exclusive plan categories: identification, decomposition, and
reformulation. Hence, in planning, the problem solver must choose among these
alternatives. We represent this by the disjunctive rule P2. '

P2: PLAN -> IDENTIFY | DECOMPOSE | REFORMULATE

Now let us consider the details of each of these planning categories.
Identification consisted of using a primitive or using a previously solved
problem. This is described by P3.

P3: IDENTIFY -> PRIMITIVE | DEFINED

The first alternative leads to the use of primitives from the particular problem
domain being investigated.

The planning theory 1is modular, and independent of the application
domain. But it is obviously critical to illustrate its applicability by concrete
examples. In this report, we use the Logo elementary graphics programming domain
as our source of examples. The task in this domain is to draw pictures with a
cursor called the "turtle" by means of programs that move the cursor on the
screen. Figure 2 illustrates the grammar rules for the primitives of this
domain. Figure 3 illustrates a typical goal undertaken by beginning programmers,
a "wishingwell picture.”

The second identification alternative, DEFINED, involves retrieving a
solution from the library of previously defined solutions and inserting it into
the current solution. These two steps are captured by the rule P4.

P4: DEFINED -> USE-CODE & GET-FILE'®
We now turn to the second major planning category, decomposition: Two

important decomposition techniques are conjunctive plans, in which the problem is
sub-divided into independent parts, and repetition plans, in which the problem is

Grammar Based Editor A . Miller & Goldstein

Figure 2. Grammar Rules for Logo Primitives

L1. PRIMITIVE -> VECTOR | ROTATION | PENSTATE
L2. VECTOR => FORWARD|BACK + "number"
L3. ROTATION -> LEFT|RIGHT + "number"

L4. PENSTATE -> PENUP | PENDOWN

Grammar Based Editor

FIGURE 3
WISHINGWELL PICTURE

Miller & Goldstein

Grammar Based Editor 9 Miller & Goldstein

characterized in terms of a sub-problem repeated some number of times.
P5: DECOMPOSE => CONJUNCTION | REPETITION

Were we to include other plans for decomposing problems, such as disjunctive
plans, this rule would be extended by adding additional options.

The taxonomy shows conjunction as splitting into two cases: linear and
nonlinear. The linear case is intended to represent the situation wherein the
conjuncts can be solved entirely independedtly. The solution to the original
problem then becomes simply sequencing the solutions to the subgoals; or, in
Some cases, executing them in any order, i.e the independence extends even to the
composition process. Solving for the roots of a factored polynomial is linear
(each root can be solved for independently) and the composition is set structured
(the order of the solution does not matter). Solving for the sub-pictures of the
wishingwell shown earlier is independent, but to obtain the desired relations
between the parts, some specific sequence must be established. Rule P6 defines
the two cases for conjunction:

P6: CONJUNCTION -> LINEAR | NONLINEAR

X}

Rule P7 specifies the two alternatives for a linear solution:
P7: LINEAR -> SET | SEQ

P7 is incomplete: The composition of independently solved subgoals might
" be in parallel, or via some interrupt control structure. A goal of our research
is to develop the depth and breadth of the taxonomy and its associated procedural
forms so as to include such constructs.

A sequential plan consists of a sequence of actions, each consisting of a
main step followed by an optional interface; these are preceded and followed by
optional setup and cleanup steps.

P8: SEQ => [SETUP] + <MAINSTEP + [INTERFACE])‘ + [CLEANUP]

The essence of a sequential plan is that the solutions to the main steps can be
designed independently of each other.

A set plan is simpler: the independence of the composition implies that
no setup or cleanup steps are necessary.

P9: SET -> <STEP>®

For the programming domain, a setup, main step, interface, or cleanup

Grammar Bésed Editor ' 10 Miller & Goldstein

consists of either the addition of a line of code or a recursive application of
SOLVE. '

P10: SETUP -> STEP
P11: MAINSTEP -> STEP
P12: INTERFACE => STEP
P13: CLEANUP -> STEP
P14: STEP => ADD | SOLVE

The grammar now admits potentially infinite recursion. What is not
formalized by the context free grammar is the fact that SOLVE is always attempted
‘with respect to some specific problem and in a definite context. Successful
planning involves solving successively simpler problems until a direct solution
in terms of the answer library is possible. The semantic and pragmatic
components, formalized in [Goldstein & Miller 1976b], would constrain “the
potentially infinite recursion allowed by the grammar.

Similarly, the grammar does not capture the distinction between a setup,
main step, and cleanup: they are all simply steps. There is, however, a
semantic distinction. For example, the distinction between a main step and a
setup depends on whether the code is designed to directly accomplish some subgoal
== a main step; or to establish some prerequisite for accomplishing some subgoal
-- a setup. For example, in the Logo graphics domain, main steps generally
involve drawing a visible part of the picture while setup steps have the goal of
invisibly modifying the position or heading of the turtle between adjacent main
steps. The Mycroft program [Goldstein 1974] included a program annotator that
made such distinctions by comparing the picture drawn by the code with a
predicate logic description of the intended picture.!!

P15 states that repetition plans can be accomplished either by simple
loops or by full recursion. (The latter is not elaborated here.)

P15: REPETITION -> ROUND | RECURSION

A round plan is the simple looping case, which can be accomplished either by
iteration or by tail-recursion. (Tail-recursion is the restricted case wherein
the recursion is constrained to be the last line of the program. It is
computationally equivalent to a simple loop structure.) The following rule
captures this:

P16: ROUND -> ITER-PLAN | TAIL-RECUR
Figure 4 illustrates a triangle being accomplished by three different

Logo programs. These correspond to the use of a sequential plan, a recursive
round plan and an iterative round plan. The annotations in parentheses, stating

Grammar Based Editor Miller & Goldstein

Figure 4. Accomplishing A Triangle

(Sequential Plan)

TO TRI-SEQ

FD 100 ——Main Step——(accomplish side one)—e
RT 120 —Interface Step—(prepare heading for side two j—
FD 100 ——Main Step——(accomplish side two) —m—
*— Sequential

RT 120 —Interface Step—(prepare heading for side three)- Plan

FD 100 ——Main Step——(accomplish side three)

RT 120 —Cleanup Step—(accomplish heading tr-anspar-ency)--J

END
(Tail Recursive Plan)

TO TRI-REC ! (no stop step: does not halt) !

FD 100 —mMain Step-(accomplish side n)

*e~Seq Plan
RT 120 -~Interface Step—(prep. heading side n+1)-
o— Tail
TRI-REC ———— _Recursion Step J Recursive
Plan
END
(Iterative P1an)
TO TRI-ITER

REPEAT 3 —————Repeat Step
e—Iterative

FD 100 —Main Step—(accomplish side n)—-————-—j n-J Plan
e—Seq Pla

RT 120 —Interface Step—(prep. heading side n+1)-

END

Grammar Based Editor 11 Miller & Goldstein

what the planning step is intended to accomplish, are semantic descriptions not
generated by the grammar. The grammar must be supplemented by semantic
interpretation rules to allow for such analysis.

Tail recursion méy be represented as a sequential plan plus recursion and
stop steps. Iteration is similar.

P17: ITER-PLAN => "repeat step" + SEQ

P18: TAIL-REC -> STOP-STEP + SEQ + REC-STEP
P19: REC-STEP -> "recursive program call®
P20: STOP-STEP => "stop program call"

Reformulation, the third major planning category, should be briefly
mentioned. Figure 5 provides a simple example of reformulation by regrouping the
parts: a wishingwell, originally decomposed into a roof, a pole and a well, is
later viewed as decomposable into a tree and a well. Reformulation techniques
depend intimately on the problem description. Hence, we do not consider them

further in this report. The subset of the planning grammar employed here is
summarized in figure 6.

Grammar Based Editor Miller & Goldstein

Figure 5

REFORMULATING THE WISHINGWELL IN TERMS OF A TREE

- -
—ROCF
TREE — _
__POLE
= .
WELL — HELL
- -

SINCE SPADE-0 HAS NO PROBLEM DESCRIPTION, IT MAY NOT ALWAYS
BE APPARENT WHEN A REFORMULATION HAS OCCURRED. SOMETIMES IT
WILL BE APPARENT, THOUGH, FROM THE DIALOGUE. FOR EXAMPLE:

1A, WHAT ARE YOUR SUBGOALS?

18. RooF, POLE, WELL,

2A. WHAT WOULD YOU LIKE To Do?
2B. REDO cHoice 1,

3A. CHoice 1 UNDONE.
WHAT ARE YOUR SUBGOALS?

38. TREE, WELL.

4a, RULE FOR TREE IS: SOLVE =» -

Grammar Based Editor

Miller & Goldstein

P1:
p2:
P3:
P4:
PS:
P6:
P7:
P8:
‘PQ:
P10:
Pl1:
P12:
P13:
P14:
P15:
P16:
- P17:
P18:
P19:

P20:

SOLVE
PLAN
IDENTIFY
DEFINED

DECOMPOSE

Figure 6. G2: A Grammar of Plans

-> PLAN + [DEBUG]-

-> IDENTIFY | DECOMPOSE | REFORMULATE
-> PRIMITIVE | DEFINED

-> USE-CODE & GET-FILE

-> CONJUNCTION | REPETITION

CONJUNCTION -> LINEAR | NONLINEAR

LINEAR

SEQ

SET

SETUP
MAINSTEP
INTERFACE
CLEANUP
STEP
REPETITION

ROUND

ITER-PLAN

TAIL-RECUR

REC-STEP

STOP-STEP

-> SET | SEQ

-> [SETUP] + <MAINSTEP + [INTERFACE]>™ + [CLEANUP]
<STEPY"

STEP

STEP

STEP

STEP

ADD | SOLVE

ROUND | RECURSION

ITER-PLAN | TAIL-RECUR

"repeat step" + SEQ
STOP-STEP + SEQ + REC-STEP

"recursive program call"

"stop program call"

Grammar Based Editor 12 Miller & Goldstein

3. The SPADE Editor

et

How can we validate a particular grammar? How can we judge whether the
grammar captures at some level of abstraction the set of planning decisions
involved in solving problems for some domain? One traditional methodology for Al
is to develop an automated problem solving system. The grammar, however, is
insufficient for this. Semantics and pragmatics are required to make our theory
deterministic. (We develop this in [Goldstein & Miller 1976b].)

But another methodology is possible. This involves incorporating the
grammar into an intelligent editing system to augment the capabilities of the
human problem solver. The critical question is whether such an intelligent
support system successfully aids the user. In this section we design SPADE, an
editor for defining programs that incorporates our planning grammar. '

3.1. SPADE-0: A Rudimentary Planning Assistant

The name Structured Planning and Debugging Editor emphasizes the link
between the problenm solving theory being evolved here and the structured
programming movement. Dahl, Dijkstra, and Hoare [1972] properly argue for
programs that reflect coherently structured problem solving. But they do not
develop a theory of planning in any great detail. Our effort in this direction,
therefore, naturally supplements the examination of programming style initiated
by Dijkstra and colleagues.

Figures 7a and b illustrate an interaction with SPADE-0, our proposed
grammar based editor.!? The user is interested in defining a Logo program for
drawing the wishingwell shown earlier. 1In the SPADE environment, this is done by
applying the planning grammar in generative mode. The user begins by specifying
whether the plan is to be an identification, decomposition or reformulation. The

editor keeps track of the pending subgoals, allowing the user to move from one
goal to another.

Consider lines 6a and b of the SPADE-0 scenario.

6a. Do you wish to include the optional constituent CLEANUP?
6b. DLATER

These;lines illustrate the user suspending one subgoal, without completing it, in
order to pursue another. Although SPADE's default is to suggest subgoals in "top
down" order, the system will offer the user the freedom to deviate from this
default, pursuing the set of required goals in any other order. The decision as
to whether a CLEANUP step is needed in the sequential plan is part of the

Grammar Based Editor Miller & Goldstein

Figure 7a. SPADE-0 Scenario (part a)

The preliminary version of SPADE is little more than a bookkeeper for the
user's subgoals. It is currently being implemented by assigning an interpretive
procedure to each grammatical primitive.

la. What is the name of your top level procedure?
1b. >WW ‘

2a. Rule for WW is: SOLVE -> PLAN + [DEBUG].
. ‘Rule for WW-1 is: PLAN -> IDENTIFY | DECOMPOSE | REFORMULATE.
What now?
Z2b. >DECOMPOSE

3a. Rule for WW-4 is: LINEAR -> SEQUENTIAL | SET.
What now?
3b. >SEQUENTIAL

4a. Rule for WW-5 is: SEQ -> [SETUP] + <MAIN + [INTERFACE]>* + [CLEANUP]
Do you wish to include the optional constituent SETUP?
4b. >No

5a. How many occurrences of <MAIN + [INTERFACE]> do you want?
5b. >3

6a. Do you wish to include the optional constituent CLEANUP?
6b. DLATER

LATER is a command understood by SPADE. It means that the user wants to
terminate this path, but that it must be recommenced later. SPADE keeps track of
conjunctive goals, reminding the user of the pending goal list if asked. Here it
records the information required to return to, and eventually complete, the
application of the SEQ rule. It can then go on to other goals.

Grammar Based Editor - Miller & Goldstein

Figure 7b. SPADE-0 Scenario {part b)

7a. Your pending goals are POLE, ... and WELL. What NOW?
7b. >POLE

SPADE applies the SOLVE rule recursively.

8a. Rule for POLE is: SOLVE -)> PLAN + [DEBUG] _
Rule for POLE-1 is: IDENTIFY | DECOMPOSE | REFORMULATE.
What now? ’ :

8b. >IDENTIFY

9a. Rule for POLE-2 is: IDENTIFY -> PRIMITIVE | DEFINED.
What now?
9b. >PRIMITIVE

10a. Rule for POLE-3 is: PRIMITIVE -> VECTOR | ROTATION | PENSTATE
What now?
10b. >VECTOR

.

' >FORWARD 100

1la. POLE completed. Pending goals are: ROOF, WELL, and WW-17 (CLEANUP of
WW). What now?
- 11b. D>WELL

‘12a. Rule for WELL-1 is: PLAN -> IDENTIFY | DECOMPOSE | REFORMULATE.
What now?

12b. >DECOMPOSE

| Here we have substituted a grammar which contains rules for conjunction but not
repetition. This allows us to illustrate the manner in which SPADE avoids
interrogating the user when no actual decision is required.

13a. Rule for WELL-4 is: DECOMPOSE -> CONJUNCTION.
(Forced.)

Rule for WELL-5 is: CONJUNCTION -> LINEAR | NONLINEAR
What now?

Grammar Based Editor 13 Miller & Goldstein

skeleton for the superprocedure. (The goal of deciding whether to include the
- CLEANUP should not be confused with the goal of designing the CLEANUP once the
need for it has been established.) Some users might prefer to defer this
decision until the main steps have been further elaborated. SPADE should be able
to accomodate the alternative solution order.

The typeouf commencing at line 13a illustrates another feature of SPADE-
0. (A similar sequence is shown at 2a.)

13a. Rule for WELL-4 is: DECOMPOSE =) CONJUNCTION.
(Forced.)
Rule for WELL-5 is: CONJUNCTION -> LINEAR | NONLINEAR
What now?

Since the grammar is interpreted (rather than being "programmed in"), it is easy
to try out alternative grammars. Suppose, as is shown here, we employ a
simplified grammar in which the REPETITION rules have been eliminated. (This
might be useful in tutoring a novice for example.) Then no decision is actually
required in applying the DECOMPOSITION rule. SPADE should notice this, and not
interrogate the user in such cases.

Figure 8 illustrates one possible derivation tree for WISHINGWELL as
defined using SPADE-0. The utility of this record of the user's design decisions
will become clearer when additional features of SPADE-0 are presented in the
section on RAID. ’

The implementation of SPADE-0 (which 1is now in progress) will not be
difficult. It is simply a bookkeeeping system for applying the planning grammar
in generative mode to build a solution. The basic implementation technique is to
provide an interpretive procedure for each grammatical operator (such as "1").
Additional features can be implemented by assigning specialist procedures to non-
terminals of the grammar, as will be done for the debugging assistance
illustrated later.

3.2. Towards SPADE-1, and Beyond

There is an upper bound on the utility of SPADE-0 which cannot be
overcome by more careful human engineering. This is due to the fact that SPADE-0
does not have access to a description of the problem being solved. When
application of the grammar rules results in a recursive application of SOLVE,
SPADE-0 has no notion of the relationship of the subproblem to the top level
goal. To overcome this fundamental limitation, we intend to design and implement
SPADE-1.

Miller & Goldstein

Grammar Based Editor

00T TIONVIYL Tt CAENILEd— *°* (J00¥) JHLSNIVIN—
02T LHOIY— ~~ ~dONVAT
05 qQUUMNOd— ° " dALSNIVWHOHS— NIT-* ° *DdG—"°** (J00¥ 3 HTOd NAIMIAE) FOVINTINT -
06 LddT— " ' "dOLd
00T QUVYMNOM AATLINIMd— dI— °** (270d) dTLSNIVH -
- OES—NIT-0Hd~NVTId-HATOS
06 LJZT— .m:z<mqouﬁommx;qu;u..umasu..Amqom 3 TIIM NIEMIHE) HOVJIHTLNI—
0S aQYYMyod—" "~ dILSNIVW
ITTA
—HYYA0S LED d1ld amwwnomszmo.noH;....Aqqmzv dALSNTYN -
00T 4¥vN0s ddoo-4dsn
06 IHOIY AATILIWIEd —dI— * * * dNLAS

TTEMONIHSTIM ¥V d0d NOILVAI¥AA NVTId TVOIHOUVIAIH dILVIATNLIY

g oandtg

Grammar Based Editor 14 Miller & Goldstein

Figure 9 shows a hypothetical interaction with SPADE-1. In many respects,
SPADE-1 will be similar to SPADE-0. It still is governed by a set of context free
grammar rules, and still provides bookkeeping facilities for suspending and
resuming subgoals. However, SPADE-1 requests that the user supply a formal
description of the problem. (A library of standard problem descriptions is
supplied for use as building blocks). The user need not comply with the request:

however, without the problem description, SPADE-1 can help only as much as SPADE-
00 ' ’

With a problen description, SPADE-1 would be able to provide additional
assistance. It could notice when a procedure for solving a subproblem already
exists in the answer library, by accessing the description of what that procedure
accomplishes. It could perform rudimentary decompositions, and perform more
substantial inferences when the user bypasses intermediate steps. Coupled with a
performance annotation module (such as in [Goldstein 1974]), SPADE-1 could
determine (in many cases) whether a given subprocedure satisfies its
specifications.

The introduction of formal problem descriptions provides a first
improvement over SPADE-0; introducing pragmatic constraints at choice points in
the grammar would provide a second. This leads to a more elaborate linguistic
formalism which we briefly consider in the concluding section.

While we plan to perform these extensions, from SPADE-0 to SPADE-1 and
beyond, SPADE-0 will still serve a useful role. The grammar based editor can
support experiments on several important issues: (1) the adequacy of the
planning grammar; (2) the domain independence of the planning grammar; (3) the
utility of the planning grammar in terms of structured programming
considerations; (4) the pedagogical value of an articulate planning environment.

There is another dimension along which the theory as presented so far is
incomplete. While the planning rules alone are sufficient to describe programs
as static, finished objects, they do not capture the process of defining possible
solutions, testing these solutions, and then debugging them. We need a theory of
bugs, and of their diagnosis and repair, to supplement our theory of plans. This
is the purpose of the next two sections.

Grammar Based Editor ' Miller & Goldstein

Figure 9. SPADE-1 Scenario

With a description of the problem, SPADE could be more helpful.

la.
1b.

2a.
2b.

3a.

3b.
4a.
4b.
5a.
5b.
6a.
6b.
7a.
7b.
8a.

8b.

9a.

Tell me the name of your toplevel procedure?
SWW

Would you like to define a model?
PWISHINGWELL ‘

OK. WISHINGWELL model found in Model Library.
Rule for WW-1 is: PLAN -> IDENTIFY | DECOMPOSE | REFORMULATE.
What now? :

>ROOF POLE WELL

These subgoals correspond to model parts. Are you pursuing a LINEAR.
DECOMPOSITION plan?
>YES

The pending subgoals are: ROOF, POLE, WELL and the decisions regarding
inclusion of preparatory steps (WW-5) for WW. What now?
>ROOF .

In the WW model, ROOF is described as a triangle. There is a TRIANGLE
procedure in the answer library. Hence, an IDENTIFICATION plan may
succeed. What now?

DIDENTIFY

The TRIANGLE procedure in the answer library satisfies the intrinsic
description of ROOF. Would you like to use it?
>YES

OK. The ROOF is complete. Your pending goals are POLE, WELL, and WW-5.
What now?
>

The first order goals for the parts are now complete. WW-5 (the choice
of preparatory steps for WW) is complete. You have not expanded the
definitions for the interface step, WW-6, nor for the cleanup step, WW-
8. What now?

Grammar Based Editor , 15 Miller & Goldstein

4. A Grammatical Theory of Debugging

Bugs are so important that it is useful to classify them
and give the classes names. In real world problem solving we
often give names to important classes of bugs. In electrical
engineering, for example, one class of bug is "instability." It
may be manifest as "thermal runaway"” or "spurious oscillation"
in an amplifier. The underlying cause is "positive feedback, "
and there are several possible cures (patches) which may be
applied: "negative feedback," or "i{solation," for example.

[Sussman, 1973, p. 170.]

In earlier sections, we constructed a grammar of planning concepts and
described programs as the terminal strings generated by this grammar.
Unfortunately, problem solvers, whether human or machine, must often decide on a
plan despite not only knowledge which is incomplete or uncertain, but also
limitations on time and memory resources. The best of choices in such situations
can turn out wrongly: debugging is then required. In this section, we follow
Sussman's advice, developing a classification of bugs. Our goal in this
classification scheme is to unify our approaches to planning and debugging by
tracing the origin of bugs to various types of erroneous planning choices. In
section five, we apply this perspective on possible planning errors to the design
of a debugging assistant called RAID to be incorporated into the SPADE
environment. '

4.1. Types of Bugs

Given our perspective on planning, debugging can be analyzed as the
localization and repair of errors in applying the grammar rules during
generation. Since our planning rules were constructed from operators for

conjunction, for disjunction and for optionality, there arise three basic classes
of error:

(1) syntactic bugs in which the planning grammar is violated,
such as when a required conjunct is missing.

(2) semantic bugs in which the plan is syntactically well-formed
but some semantic constraint arising from the particular
problem is violated, such as when a syntactically optional
constituent, needed because of the semantics of the
particular problem, is missing.

(3) pragmatic bugs in which an inappropriate selection from a
set of mutually exclusive disjuncts is made.

Grammar Based Editor 16 Miller & Goldstein

This categorization is not complete: two other classes of bugs are
'circumlocutions” and "slips of the tongue."'3 The first class represents plans
which are successful but inefficient. The second class refers to miscellaneous
errors in execution including mis-typings, mis-spellings and incorrect

programming language‘syntax that do not reflect basic conceptual mistakes in .the
plan.

4.2. Syntactic Planning Bugs

When a decision made during a problem solving session violates the
planning grammar, the resultant bug is termed syntactic.!'? An example of a
syntactic bug is failure to include an obligatory conjunct. To illustrate this,
consider the following error. In the solution of a problem, one subgoal matches
a previously solved problem. Hence, the problem solver incorporates a call to
the appropriate subroutine into the solution. But it is common to forget to load
the file containing the subroutine into the current workspace. Figure 10
illustrates this difficulty: as before, the goal is to write a program that
draws a wishingwell. The roof is a triangle, which corresponds to a previously
defined subprocedure. A call to TRIANGLE is placed in the WW procedure, but WW
is executed before the file containing TRIANGLE is loaded.'S

In terms of our planning grammar, this is a syntactic bug. The WW
procedure is ungrammatical. The appropriate rule describing this situation is:

P4: DEFINED -> USE-CODE & GET-FILE

but the file retrieval is missing.

Thus, syntactic bugs are those in which a necessary conjunct of a
planning rule is not present in the plan. (Syntactic bugs might also be caused
by the presence of an illegal extra constituent, but this class of problems seems
less common.) Normally one would not expect a machine problem solver to make
this kind of error, given a correct planning theory and no heuristic limitations.
However, resource limits on time or space might result in this performance.
Moreover, it is a common human error.'®

The basic technique for repairing a syntactic bug (once isolated) is to
redo the culpable planning decision in such a way that the grammar is no longer
violated. For the case of a missing but obligatory conjunct, this implies
solving for the constituent in question, and incorporating that solution into the
larger solution at the required point. For the WW example in particular, it
means getting the TRIANGLE procedure from a file, and then reexecuting WW in the
corrected environment.

Grammar Based Editor Miller & Goldstein

Figure 10

DEBUGGING A SYNTACTICALLY INCORRECT PLAN
A NECESSARY COMJUNCT IS MISSING

T0 ¥
10 TRIANGLE USE

ID-PLAN
END
WH GET
29 TRIANGLE UMDEFINED 277

("GET” MISSING. UNGRAMMATICAL PLAN,
DEBUG BY COMPLETING PLAN.)

GET TRIANGLE FILE

the intended picture

Grammar Based Editor 17 Miller & Goldstein

4.3. Semantic Planning Bugs

Semantic bugs differ from syntactic bugs in that no planning decision
violates the underlying grammar; rather the usual case is that a constituent
which is optional in the grammar 1is not present, but is needed due to the
semantics of the particular problem. This distinction can be understood more
clearly by considering that syntax supplies broad constraints on the structure of
solutions to all problems; semantics supplies additional constraints in terms of
features of the particular problem at hand. Rules Pl and P8 are typical rules in
the grammar for which this kind of difficulty can arise:

Pl: SOLVE -> PLAN + [DEBUG] |
P8: SEQ -> [SETUP] + CMAINSTEP + [INTERFACE]>® + [CLEANUP].

Debugging is necessary if the program produced during planning fails to
accomplish its intended goals; otherwise, debugging is unnecessary. For a
concrete example involving P8, let us return to the WW problem. Part of the
problem specification is that the wishingwell be drawn in an upright position.
Suppose that the order in which the main steps are executed is to be: ROOF,
POLE, and then WELL. The subprocedure for the TRIANGLE expects the turtle to
begin at a vertex, oriented along the circumference. Therefore, an initial SETUP
(syntactically optional) rotation is required to vertically orient the
wishingwell as a whole. Furthermore, additional interface steps are required to
establish the required relationship between the ROOF and the POLE, that the POLE
connect to the ROOF by intersecting with the center of its bottom side. Figure

11 illustrates this local geometry, contrasting a semantically incomplete WW
program to a corrected version.

Since it is often an effective heuristic to design main steps before
interfaces, one would not be surprised if a human programmer designed the
subprocedures for the roof, pole and well, and then concatenated them, but forgot
to include these necessary interfaces. Moreover, even for a machine problem
solver, there are situations in which it would be more efficient (and therefore
rational) to determine the need, if any, for such interface steps via trial
execution and debugging, than via thorough but resource-intensive initial
planning.

In terms of the planning grammar, the overall Plan for the WW is
described as a sequential plan -- that is, a sequence of main steps for the parts
with optional interfaces. Given rule P8, the WW program illustrated by the
previous figure is syntactically acceptable, but semantically incomplete.

Semantic bugs can also occur when an optional constituent is present, but

Grammar Based Editor
Figu

DEBUGGING A SEMANTI

Miller & Goldstein

re 11

CALLY INCORRECT PLAN

AN OPTIONAL CONJUNCT IS MISSING

FOR EXAMPLE:

"WW" MISSING INITIAL SETUP,
AND INTERFACE FOR POLE.,

T0 WW

* USE IMPERATIVE KNOWLEDGE
OF MODEL PREDICATES TO
COMPUTE MISSING STEPS.

10 WELL —— MAINSTEP (ji:::::3229
20 POLE-——-—-MAINSTEP<:L ENDS HERE
Z SEQ-PLAN

T‘r* 2
At
—

STARTS HERE

THE SEMANTICALLY CCRRECTED PROCEDURE

TO WYy
*5 WW-SETUP ————— SETUP —
10 WELL MAINSTEP
* 15 WELL-POLE-INTER — INTERFACEA
20 POLE — MAINSTEP o
' SEQ PLAN
TO WW-SETUP
10 RIGHT 90 ——
BODY OF I |
20 FORWARD 50 ————SEQ— sTARTE
30 RIGHT 90 ———o SETUP STEP SIRTI—& |V

END

Grammar Based Editor 18 Miller & Goldstein

semantically inappropriate. An example which we observed in a high school
student was to always begin a procedure with the PENUP command, even when the
first main step was to draw a visible vector. This resulted in either: (a) when
the program was first run, the first vector would be missing, and then the PENUP
would be deleted by a debugging edit; or (b) a PENDOWN command would be added to
the procedure: inefficient but otherwise harmless extra steps.

The general repair strategy for semantic bugs is to redo the culpable
planning decision in such a way as to satisfy the violated semantic constraints.
In particular the repair for a semantically incomplete plan is to solve for the
missing conjuncts and incorporate them into the solution as a whole. For the
wishingwell, this involves designing setup and interface steps, and then editing
the WW superprocedure to employ them.

4.4. Pragmatic Planning Bugs

Some grammar rules describe alternative strategies to accomplish a given
plan. Formally these appear as mutually exclusive disjuncts. Examples include:

P2: PLAN -> IDENTIFY | DECOMPOSE | REFORMULATE
P3: IDENTIFY : => PRIMITIVE | DEFINED

P6: CONJUNCTION -> LINEAR | NONLINEAR

P15: REPETITION => ROUND | RECURSION

Pragmatic bugs are those in which an incorrect disjunct is chosen.

As an illustration, consider grammar rule P6 for conjunctive plans. It
specifies two alternatives for accomplishing a set of subgoals: a linear and a
nonlinear strategy. Now in this case, the formal roles played by the alternative
disjuncts are syntactically indistinguishable with respect to the overall
grammar. The pragmatic difference, which is not formalized here, is that a
linear decomposition solves for the sub-problems independently while a nonlinear
decomposition solves for some subgoals given knowledge of other subgoals.

In general, linear plans are simpler to apply because of their
independence assumption. However, pragmatic bugs arise when the planner is faced
with a type of problem in which there are inherent interactions between the
steps. An example of where linear problem solving is inadequate in the graphics
world is the apparently simple task of drawing a square inside a triangle (figure
12). Suppose a linear plan is pursued. This gives rise to two main steps (the
square and the triangle), and an interface step. If the main steps are solved
independently of one another (by means of SQUARE and TRIANGLE subprocedures), it
is likely that the figures produced will be of the wrong size to permit the
desired INSIDE relation to hold. This violation cannot be corrected by altering

Grammar Based Editor Miller & Goldstein
Figure 12

DEBUGGING A PRAGMATICALLY INCORRECT PLAN

AN INCORRECT DISJUNCT HAS BEEN SELECTED

T0 SQUARE-INSIDE-TRIANGLE © LINEAR PLAN --
10 SQUARE SQUARE AND TRIANGLE
20 TRIANGLE ! DESIGRED
END ! INDEPENDENTLY.
\\
INTENDED PICTURE: ACTUAL PICTURE:

DEBUG BY CHANGING TO HON-LINEAR PLAN.
DESIGN SQUARE IN THE CONTEXT OF TRIANGLE.

Grammar Based Editor 19 Miller & Goldstein

the order of composition; nor can it be repaired by modifying the interface.
The bug is pragmatic, in that neither syntax nor semantics are violated, but .the

choice of the linear over the nonlinear disjunct nevertheless leads to an
unsuccessful plan.

A pragmatic bug is repaired by redoing the culpable planning decision so
as to satisfy the violated pragmatic constraint. (It may be that the problem
solver was ignorant of the relevant constraint prior to solving the current
problem. This brings up the matter of skill acquisition which is deferred till
the concluding section.) 1In the SQUARE-WITHIN-TRIANGLE problem, violation of the
predicate INSIDE is repaired by changing to a non-linear plan. The second main
step to be solved must be designed in the context of a particular size decision
for the first main step. For example, the specification for TRIANGLE is changed
to require that its side be larger than a constant which is determined by the
side length of SQUARE.

4.5. "Circumlocutions" (Inefficiency Bugs)

A procedure which solves its specified problem, but in a roundabout
manner, 1is said to have a "circumlocution" or an inefficiency bug. Such
inefficiencies can occur in plans where a non-optimal disjunct is chosen or an
unnecessary (but harmless) optional constituent is included. Correcting
inefficiencies is the typical concern of compiler theory and we do not address it
here, except to make the point that the hierarchical annotation (or derivation)
generated by the grammar is conceivably a useful description for a compiler to
access.

To illustrate this, consider rational form violations, the subclass of
inefficiencies due to local oddities in the code, such as sequential invocations
of a given primitive.!” This class of inefficiencies has been extensively
investigated in the literature on optimizing compilers. However, it is possible
that such a rational fornm violation is due to some serious omission in the
program; 1i.e., it is a warning that a bug may exist [Goldstein 1974].
Traditional compilers have no basis for a judgment, but access to the planning
derivation of the program can often illuminate this issue.

For example, one of the ways in which such an inefficiency bug can arise
is from the use of an "evolutionary" plan [Miller 1976]. Although the grammar
provided in this paper does not attempt to formalize this type of plan, basic
evolutionary plans are not complex. The programmer attempts to alter the code of
a previous program to achieve the specifications of a new, but similar, problem.
To illustrate such a situation, however, we must develop a somewhat elaborate
example. Please reexamine figure 5. A wishingwell, initially viewed as
involving three subproblems, has been reformulated S0 as to involve two main

Grammar Based Editor 20 Miller & Goldstein

steps, the TREE and the WELL. The TREE program is state transparent: it leaves
the turtle in the same state in which it started, at the bottom of its TRUNK
(which serves as the POLE of WW). WW incorporates a nonlinearity for efficiency:
the top side of the WELL is accomplished in two parts, to avoid retracing
previous vectors.!8 Suppose that the programmer needs a SQUARE subprocedure for
use in another project. One strategy is to adapt WW by deleting the call to TREE
(figure 13). After this deletion, though, the resulting SQUARE contains
sequential calls to FORWARD: a rational form violation. The optimization is to
combine these two invocations into a single call to the FORWARD primitive.

Thus, a compiler could first check whether an evolutionary plan governs
the inefficiency. If so, it could perform the optimization with some confidence.
If not, it should notify the programmer of the oddity in the code.

4.6. "Slips of the Tongue" (Execution Errors)

A final category of bugs is necessary when human programming protocols
are to be analyzed. This class, "slips of the tongue," is a catch-all for
typographical errors, confusions due to orthographic similarity, incorrect
programming language syntax, noise on the computer 1line, and other failures to
successfully type in a statement of code. They are often diagnosed by
conventional computing environments, simply as a result of the code being
unrecognizable. The plan is not affected. We include this class for
completeness, so that our discussions may span the space of possible bugs. The
planning grammar does not provide an explanation for the origins of these bugs.’9

The general repair technique for slips of the tongue is to: (a) undo the
side effects, if any, of the incorrect type-in; and (b) reexecute the type-in
correctly in the restored environment. This could be captured by a rule such as:

REPAIR => [UNDO] + REDO

A common error in debugging technique is to compound an initial "slip of the
tongue error" by reexecuting, without undoing undesirable side effects.?

Having a classification of basic bug types does not solve the debugging
problem: it is only a starting point. The next step is to develop a theory of
diagnosis and repair, by which the underlying bug made manifest by an
unsuccessful program run can be diagnosed, and then repair knowledge associated
with this bug type can be applied to correct the program. Section five designs
the RAID assistant that will monitor a programmer during the planning of a
procedure and generate caveats regarding possible errors for aid in subsequent
debugging. This monitoring will happen within the SPADE editing environment.

Grammar Based Editor Miller & Goldstein

. Figure 13

DEBUGGING A CIRCUMLCCUTION OR INEFFICIENT PLAN

T0 WW

5 RIGHT 90
10 FORWARD 50
20 TREE

(R

30 FORWARD 50
40 RIGHT 90

50 FORWARD 100
60 RIGHT 90 STARTS HERE

30 RIGHT 90
90 FORWARD 100

70 FORWARD 100 ENDS HERE 1[
EHD 1L

{ EVOLUTIONARY PLARN

T0 SOUARE-1

T

5 RIGHT 90 STARTS HER

ENDS HERE
10 FORWARD 50
30 FORWARD 50}‘RATIOIAL ~ORM VIOLATION

40 RIGHT 90 | 1L

y

J

END

} CAVEAT DRIVEN DEBUSGING

T0 SQUARE-2
5 RIGHT 90
10 FORWARD 100
40 RIGHT 90

END

» SQUARE-1

Grammar Based Editor Miller & Goldstein

Figure 14. A Surface Grammar For Debugging

!

DEBUG <[DIAGNOSE] + [REPAIR]>

t
v

DIAGNOSE CASK | TRACE | "errorm>*

]
v

TRACE -> [SELF-Doc*] + RUN*

SELF-DOC -> ADD-PAUSE | ADD-PRINT | ADD-TRACE

ASK => "print definition" | "print value" |"print file"} ...
REPAIR -> <RUN j EDIT | SOLVEX"

ADD-PAUSE -> ADD

ADD-PRINT -> ADD

ADD-TRACE -> ADD

EDIT . => ADD | DELETE | CHANGE
RUN => "run statement of code" + "response™ + [DEBUG]
ADD -> "add statement of code" + "response" + [DEBUG]

DELETE -> "delete statement of code" + "response” + [DEBUG]

CHANGE -> "change statement of code" + "response” + [DEBUG]

T

i it

Grammar Based Fditor , Miller & Goldstein
] (—PARSE—ADVISE (planning choices) |
—PRINTOUT
CODE))
T '—ADVISE (rational form violations) =~~~
—— DIAGNOSE-
|[YODFL—RDVISE (model violations)
—ASK
_\ | PROCESS——TRACE)
Do
_pEBUG— o »
o —CoMPLETE
—— REPAIR—
— CORRECT s

Grammar'Based Editor ' 21 Miller & Goldstein

5. The RAID Debugging Assistant

Let us focus on one particular component of [general heuristic
knowledge]: the art and techniques of ... debugging. The
school experience is dominated by the normative attitude implied
by "right answer vs. wrong answer". The mathematician's
experience of mathematics is dominated by the purposeful-
constructive attitude implied by the struggle to "make it work".
He abandons an idea not because it happened to go wrong, but
because he has understood that it is unfixable. Dwelling on
what went wrong becomes a source of power rather than a piece of
masochism (as it would appear to most fifth graders in
traditional math classes).

[Papert, 1973, p. 10]

5.1. Diagnosis and Repair

We have now developed a taxonomy of bug types -- of what use is it? Its
"first use, we believe, is that it clarifies our understanding of debugging by
identifying major categories of error. Secondly, it suggests how to design
better debugging aids for the programmer and problem solver. In this section, we
develop this position by designing the RAID component of the SPADE program
editor. RAID is an acronym for RAtional Implementation of Debugging, stressing
our belief that debugging is often a consequence of heuristically justifiable
problem solving, not an embarrassment indicative of irrational or "sloppy"
thinking. RAID is a tool designed to make debugging a source of power to the
problem solver, as Papert suggests it can be.

Let us consider further how the taxonomy clarifies our understanding of
debugging. A programmer's approach to debugging is, naturally, colored by the
diagnostic tools provided by the particular computer system. However, the
facilities provided by a wide range of computing environments have much in
common. These tools manifest what we term surface debugging techniques. They
are based on examination of the code and snapshots of the computational process
elicited by the code, both relatively superficial descriptions of the procedure’
as conceived by the programmer. Figure 14 shows a grammar which partially
formalizes this surface debugging activity.

, Access to the problem description and -- most importantly -- the
progfammer's plan allows for a deeper analysis of debugging strategies.
Figure 15 shows a taxonomy of these debugging strategies. Figure 16 shows how
this taxonomy is transformed into what we term a deep debugging grammar, for
contrast with the previous grammar. Notice that examination of the plan plays an
important role.

Grammar Based Editor Miller & Goldstein

s

Figure 17. RAID Advice for Syntactically Incomplete Planning Bugs

la. Which subgoal would you like to pursue?

1b. >POLE

2a. Rule for POLE-1 is: PLAN -> IDENTIFY. | DECOMPOSE | REFORMULATE.
What now?

- 2b. >IDENTIFY

3a. Rule for POLE-2 is: IDENTIFY -> PRIMITIVE | DEFINED.
What now?

3b. DLATER.

The LATER command causes Sfurther processing of this subgoal to be postponed.
RAID, the debugging component, creates a caveat each time a LATER command occurs.

The caveat records the fact that this part of the plan is syntactically
tncomplete at this point.

4a. POLE-2 postponed. Your pending goal list contains the remaining subgoal
WELL. Which goal would like to pursue?
4b. >WELL

‘5a. We have now completed the WELL subgoal. What now?
Sb. >RUN WISHINGWELL

The caveat recorded earlier is a "demon," triggered by premature execution of the
procedure being designed. If this occurs, the function of the caveat is to
remind the user of the syntactic incorrectness of the program.

6a. Running WISHINGWELL at this time results in the bug manifestation:
UNDEFINED PROCEDURE: POLE.
This is because WISHINGWELL is syntactically incomplete: it contains
the pending subgoal POLE-2. The recommended repair technique is to

complete the solution of the subgoal POLE-2. Would you like to work on
POLE-2?

6b. >Yes.

7a. You were solving POLE via an IDENTIFICATION plan. You postponed the
decision (POLE-2) as to which answer library to use.

. The rule for POLE-2 is: IDENTIFY -> PRIMITIVE | DEFINED.
What now?

e e S

Grammar Based Editor - Miller & Goldstein

Figure 16. A Deep Grammar For Debugging

DEBUG -> <[DIAGNOSE] + [REPAIR]>*
DIAGNOSE -> <PARSE | CODE | MODEL I.PRO(.IESS>x
PROCESS -> ASK | TRACE | DO
CODE => PRINTOUT | "advise rational form violations"
MODEL -> "advise model violations"
PARSE -> Madvise heuristic planning choices"
~ REPAIR -> COMPLETE | CORRECT

COMPLETE -> "solve for missing conjunct”

CORRECT =-> "choose alternative disjunct”

—

Grammar Based Editor 22 Miller & Goldstein

In the SPADE system, the end product of the interaction is not merely a
program, but a program annotated by its associated plan derivation (please refer
to figure 8 presented earlier). The reader has undoubtedly noted that far more
interaction would be necessary with SPADE, than with an ordinary editor.2! 1In
return for this extra planning effort, there are several potential benefits. The
first is that by knowing the plan, the RAID component of SPADE would generate
caveats regarding possible bugs for aid in subsequent debugging. Since
definition of the program generally occupies far less time than debugging, some
additional effort in planning may well be worthwhile in terms of more efficient
debugging. It is also possible that articulating the plan serves to improve a
student's planning skills.?? Finally, the plan as commentary should make the
resulting code far more understandable to other programmers who, in large
projects, may be expected to modify or debug the package. We have yet to
consider "human-engineering" aspects in designing SPADE/RAID, nor have we begun
to experiment with it. Here, our goal is only to describe those parts of the
RAID debugging assistant that are predicated on our taxonomy of bug types.

§.2. Aid In Diagnosing Syntactic Bugs

SPADE provides the facility of being able to suspend the construction of
a solution of one sub-problem in order to analyze other goals. This is useful,
since occasionally insight into the solution of other goals is helpful for
completing the current problenm. SPADE provides bookkeeping facilities for this
suspension. The goal can be resumed later. To illustrate this, we shall refer
to figure 17. Line 3b shows the user choosing to postpone a goal.

3a. Rule for POLE-2 is: IDENTIFY -> PRIMITIVE | DEFINED.
What now?
3b. DLATER.

RAID, the debugging component, would create a caveat each time this
happens. The caveat would record the fact that the plan is syntactically
incomplete at this point. A caveat is a demon, which would triggered by
premature execution of the procedure being designed. If this occurs, the
function of the caveat would be to remind the user of the syntactic incorrectness
of the program.

5b. DRUN WISHINGWELL

6a. Running WISHINGWELL at this time results in the bug manifestation:
UNDEFINED PROCEDURE POLE.
This is because WISHINGWELL is syntactically incomplete: it contains
the pending subgoal POLE-2. The recommended repair technique is to

Grammar Based Editor 23 Miller & Goldstein
complete the solution of the subgoal POLE-2. Would you like to work on
POLE-27?

Line 6a in the figure illustrates this.

5.3. Aid in Diagnosing Semantic Bugs

Whenever an optional constituent is rejected, RAID would create a caveat
to the effect that the plan may be semantically incorrect at this point. When
the program subsequently is executed and bugs occur, the programmer could request
aid. This aid would include a description of which planning decisions are
possible semantic errors. This sort of interaction with SPADE is illustrated by
figure 18.

Line 1b shows the programmer choosing to dispense with an optional
interface step.

la. Is there an INTERFACE following WELL?
1b. >NO

When the program 1is subsequently tested at line 2b, the programmer is not
satisfied with the results.

4b. >ADVISE-PLAN

Sa. WELL may be semantically incomplete. Perhaps an INTERFACE is needed
after WELL. Would you like to reconsider, and include such a step?

RAID is then depicted pointing out that the decision to not include an optional
interface may be the culprit (line 5a).

5.4. Aid in Diagnosing Pragmatic Bugs

‘ Certain alternative planning methods have the relationship that one

method is simpler but subject to failure in some cases, while the other is more
complex but more powerful. Examples are LINEAR versus NONLINEAR plans and ROUND
versus RECURSIVE plans. Whenever the user applies the simpler of one of these
pairs, RAID creates a caveat to the effect that a commitment to a possibly
incorrect plan has been made. This caveat serves the same purpose as those
created above for possible semantic bugs. Upon subsequent execution, if the user
is unhappy with the results, aid can be requested. The caveat then points out
- possible pragmatic errors.

.Grammar Based Editor | Miller & Goldstein

Figure 18. RAID Advice For Semanti@gl;y Incomplete Planning Bugs

la. Is there an INTERFACE following WELL?
1b. >NO

Whenever an optional constituent is rejected, the RAID debugging component

creates a caveat to the effect that the plan may be semantically incomplete at
this point. ' :

2a. We have now completed subgoal WELL. What now?
2b. >RUN WISHINGWELL

When the program subsequently is executed and bugs occur, the programmer can
request aid. This aid includes aq description of which planning decisions are
possible semantic errors. In this case, the WW procedure produces a picture
which does not satisfy the WISHINGWELL model. While SPADE-0 can aid in plan
diagnosis, it cannot detect model violations without user input. (SPADE-1,
however, would perform model diagnosis.)

3a. OK. What now?
3b. >DIAGNOSE

4a. Rule is:
DIAGNOSE -> ADVISE-PLAN | ADVISE-CODE | ADVISE-MODEL | ADVISE-PROCESS.
What now?

4b. >ADVISE-PLAN

S5a. WELL may be semantically incomplete. Perhaps an INTERFACE is needed

after WELL. Would you like to reconsider, and include such a step?
- 8b. D>YES '

6a. Solving for WELL-13 (INTERFACE after WELL).
Rule is: SOLVE -> ...

Grammar Based Editor 24 Miller & Goldstein

Figure 19 illustrates this kind of interaction with SPADE.

Sb. DADVISE-PLAN

6a. In designing SQUARE-WITHIN-TRIANGLE-3, you opted for a LINEAR
decomposition. It is possible that this problem involves some
interaction between TRIANGLE and SQUARE. Do you wish to reconsider
your previous decision, and try a NONLINEAR decomposition?

Line 6a in the figure shows the RAID component alerting the user to a possible
pragmatic planning bug.

5.5. Assistance in Repair

The system could do more than Jjust alert the user to the problem. It
could also (a) return the user to the suspended goal, and (b) inform the user, by
means of the grammar, of what alternative constituents are available. Line 7a of
figure 17 (presented earlier) illustrates this repair assistance for the case of
a syntactic bug.

7a. You were solving POLE via an IDENTIFICATION PLAN. You postponed the
decision (POLE-2) as to which answer library to use.
The rule for POLE-2 is: IDENTIFY -> PRIMITIVE | DEFINED.

Suppose the user decides to undo a given planning decision, perhaps
abandoning a very detailed plan which resulted from considerable effort, in favor
of a new approach. It is possible that later the user may reconsider, and wish
to reactivate the abandoned approach. It would be rather unfortunate if RAID had
erased all records of its existence. In fact, it would not. In order to keep
track of both active and hung alternative versions of each planning decision,
however, the derivation tree representation ceases to be adequate. A more
elaborate data structure is required; SPADE/RAID would use a chart for this
purpose. The chart data structure was introduced in computational linguistics
(Kay 1973; Kaplan 1973] to economically store a record of alternative well-formed
substrings discovered during sentence parsing. We introduce the chart here for
similar reasons. An example of such a chart applied to the planning context is
shown in figure 20; figure 21 shows a user taking advantage of this capability.

The chart data structure provides benefits which feed back into the
planning assistant as well. For example, with the chart one can distinguish
between using a copy of a previous subprocedure "in line,"™ versus using the
previous subprocedure as a "black box" which is invoked:

Grammar Based Editor Miller & Goldstein

Figure 19. RAID Advice For Pragmatically Incorrect Planning Bugs

la. Rule for SQUARE-WITHIN-TRIANGLE-1 is:
, ’ PLAN -> IDENTIFY | DECOMPOSE | REFORMULATE
What now?
1b. >CONJ

2a. I have assumed DECOMPOSE -> CONJUNCTION.
Rule for SQUARE-WITHIN-TRIANGLE-3 is:
CONJUNCTION -> LINEAR | NON-LINEAR.
What now?
2b. DLINEAR

Certain alternative planning methods have the relationship that one method is
simpler but subject to SJailure in some cases, while the other is more complex but
more powerful. Examples are LINEAR versus NVONLINEAR plans and ROUND versus
RECURSIVE plans. Whenever the user applies the simpler of one of these pairs,
RAID creates a caveat to the effect that a commitment to a possibly incorrect
plan has been made.

3a. Rule is ...
3b. >

4a. We have now completed SQUARE-WITHIN-TRIANGLE. What now?
4b. >RUN SQUARE-WITHIN-TRIANGLE

Upon subsequent execution, if the user is unhappy with the results, aid can be
requested. The caveat then informs him of possible pragmatic errors. Here, the
SQUARE-WITHIN-TRIANGLE procedure draws the picture "inside out."

S5a. Rule is;:
DIAGNOSE -> ADVISE-PLAN | ADVISE-CODE | ADVISE-MODEL | ADVISE-PROCESS.
What now?

5b. D>ADVISE-PLAN

6a. In designing SQUARE-WITHIN-TRIANGLE-3, you opted for a LINEAR
decomposition. It is possible that this problem involves some
interaction between TRIANGLE and SQUARE. Do you wish to reconsider
your previous decision, and try a NONLINEAR decomposition?

6b. >YES

7a. What non-linear constraint(s) do you wish to add to the SQUARE?
7b. >

Miller & Goldstein

Grammar Based Editor

JANNYL

|

Z NOISY3A

40 jemNIT—I30—NYd

cmm_ 3341
\ YVNOS — TT1IM mm———
HOLITN e ERLER
v3s
ITINVIYL , 500Y pum——]

SNV'Td JAILVNYHALTIV 40 LIVHD ¥ - 0C THNOIA

T NOIS¥IA M

Grammar Based Editor Miller & Goldstein

Figure 21. Returning to a Previously Hung Plan

la. Rule for WW-1 is: PLAN -> IDENTIFY | DECOMPOSE | REFORMULATE

What now?
1b. >DECOMPOSE

.

2a. What are your subgoals?
2b. >ROOF POLE WELL

3a. Rule for POLE-3 is: IDENTIFY -> PRIMITIVE IkDEFINED
What now?
- 3b. DREDO WW-1

Considerable planning effort has been invested in the current version of WW-1.
The system should be able to record the state of the work so Jar in case it 1is
ever needed again. It might seem too costly, though, to save away multiple
copies of the plan derivation every time a choice is redone...

4a. Previous choice on WW-1 undone.
Rule for WW-1 is: PLAN -> IDENTIFY | DECOMPOSE | REFORMULATE
What now?

4b. >REFORMULATE

Sa. What are your subgoals?
5b. D>TREE WELL :

6a. Rule is: SEQ -> [SETUP] + <MAINSTEP + [INTERFACE]>* + [CLEANUP]
What now?

6b. DREDO WW-1

At this point, the user has decided to return to the previous approach, finding
that the REFORMULATION has resulted in an even harder problem. SPADE's chart
representation for plan derivations in Sfact allows prior versions to be saved,
without incurring overwhelming storage costs.

7a. A previously hung version of WwW-1 (WW-1:V1) exists, involving a
DECOMPOSITION plan. Do you wish to reactivate it?
7b. >YES

8a. When WW-1:V1 was hung, your current goal was POLE-3.
Rule for POLE-B is: ...

Grammar Based Editor 25 Miller & Goldstein

P4': DEFINED => COPY-CODE|CALL-CODE & GET-FILE

The revised rule P4' has the virtue that one can specify whether future
changes to the existing subprocedure should affect the procedure currently being
solved. If the CALL-CODE disjunct is chosen, the chart will contain only a
pointer to the shared substructure: future improvements in the subprocedure will
also benefit the current procedure. Conversely, future changes could introduce
unanticipated perturbations. This indicates how the insights gained from a
grammatical approach to problem solving can lead to formalizing the origins of
yet another commonly observed source of program bugs. '

Grammar Based Editor - 26 Miller & Goldstein

6. Conclusions

6.1. Limitations and Extensions

The ultimate version of SPADE ought to include a module for providing
intelligent planning advice and filling in low level details of partially
specified solutions. However, a context free grammar, being inherently non-
deterministic, would not suffice as the basis for a machine problem solver.
Solving problems by generating all possible derivations and then testing for a
solution would hardly be practical.

There is also a theoretical deficiency. There ought to be a facility for
Skill acquisition: for summarizing previous semantic or pragmatic planning
errors to prevent their recurrence on similar problems in the future. Such a
capability was exhibited by Sussman's [1973] HACKER program for example. But our
context free grammar has no way of representing repair knowledge in such a way
that semantic or pragmatic bugs are not repeated.

Both of these deficiencies can be addressed by moving from the context
free grammar representation for planning knowledge to an augmented transition
network [Woods 1970]. Augmented transition networks generalize the context free
grammar representation. To see the way the ATN serves as a natural
generalization of the grammar, first examine figure 22. Here we have an
equivalent representation for the G2 planning grammar as a (non-augmented)
recursive transition network. The augmented transition network provides several
generalizations: (1) registers can be provided to store the values of variables;
(2) predicates can be'associated with arcs to control the order of transition;
and (3) actions can be associated with arcs to build structures during
transitions. These generalizations were introduced in computational linguistics
to overcome limitations of the CFG representation that parallel those that we
have met in the problem solving realm. Figure 23 is the planning ATN based on
G2. Some (not all) of the registers, conditions, and actions (for storing and
manipulating information about the current sub-problem) are shown. Notice how
greater efficiency can be achieved via techniques such as collapsing states --
moving some information from the topological configuration to the registers
(e.g., the CONJUNCTION and SEQ+SET nodes). Figure 24 shows how arc predicates
can be used to select the appropriate plan type on the basis of features of the
problem description. This approach (called PATN, for Planning ATWN) is developed
at length in [Goldstein & Miller 1976b]. Here our goal is only to show how
repair skill could be acquired by SPADE/RAID by representing planning knowledge
in an ATN.

Consider again the SQUARE-WITHIN-TRIANGLE problem discussed in the RAID
section. Recall that the underlying cause of the bug was treating the SQUARE and

FIGURE 22 - (NON AUGMENTED) RECURSIVE TRANSITION NETWORK FOR

G2

POP

PRIM Tv POP
USE- GET-
_ W cope M| FILE
‘ ID s\-\\\.
P
SA T
PEF / _
GET- USE-
FILE * CODE
zozﬂzﬂlv.: ﬁ\/
PLAN m=fp| DEC |map| CONJ
| SET =P STEP ﬁlv POP
LIN _
MAIN- INTER-
SEQ |==Pp| spTup [=p| STEP FACE
Y CLEANUP =
=3 REP |mmjp| ROUND
RECUR
- REF ‘voo 10..

S«<Library (M)
m [—--.. NLD fe
ReFINEMENT | (G}16}-Gy
LOOP
M < Linearize (M) NLC L Interactions (M) SEQ mmwu+moH<w mz¢mwu
Me Library
A

A SEQ +
(1) CONJ > LIN SET [T WJ POP

Explicit (M)

Independent ™

M+ Model ~
—>3 PLAN DEC
(2) Example Registers:
Register M - Predicate logic problem description
Register S - Current solution (plan derivation)
Register {G} - Current set of subgoals

Generic (M)
1(3) Example Conditions:
REP IIJV .. Me Library - "Is problem description matched by
anything in the answer library?"
Generic (M) - "Is the problem description repre-

sented as a generic element?"

Example Actions:
ﬁmw+ﬁnwumw - "Set register {G} to its current
contents minus subgoal G, ."
M o« M S«Library (M) - '"Return the solution moc:m in

the answer library."
REF f— ... | Y

FIGURE 23 - AN AUGMENTED TRANSITION NETWORK FOR PLANNING

(C C

- Grammar Based Editor Miller & Goldstein

EXPLICIT (M) CONJUNCTION ...
b
— DECOMPOSE
) a
GENERIC (M) REPETITION

pacns ¢ o o

C

FIGURE 24
PATN'S DECOMPOSE NODE

Grammar Based Editor 27 Miller & Goldstein

TRIANGLE subgoals as if they were independent. In fact, a second order
constraint on their sizes was imposed by the INSIDE restriction. Future
occurrences of this error could be prevented by adding a condition that tests for
the existence of the INSIDE predicate to the arc constraint that governs the
selection of nonlinear plans.

_ Specifically, this is done as follows: figure 25 shows that part of PATN
that corresponds to the rule,

P6: CONJUNCTION -> LINEAR | NONLINEAR.

The default arc ordering causes the LINEAR plan to be attempted first. The
NONLINEAR transition is allowed only if the NLC or NLD predicates recognize the
problem as containing a nonlinearity. Here, if INSIDE is present, the NLD loop
is taken and the prbblem description modified to make the interaction explicit.
A size predicate is added to the description of the parts. Thus, a new arc
constraint, NLD-INSIDE, serves to prevent this particular pragmatic planning
error from happening again.

6.2. Applications

These ideas lend themselves to a variety of applications. We consider
three: automatic programming, automatic protocol analysis, and structured
programming.

As semantic and pragmatic capabilities are added to SPADE (reflected by
the increasing role of PATN in providing advice), the user would be consulted on
progressively fewer planning decisions. The ultimate extension in this direction
is of course for SPADE to request no guidance at all from the user. The user
would supply the problem description; SPADE would provide the solution
procedure. One novel aspect of this approach to automatic programming is
methodological: the SPADE series of systems provides an implementation strategy
based on incremental simulation [Woods & Makhoul 1973].

Automatic programming is an extension of SPADE in a direction in which
the user is pushed toward the higher level planning decisions, whereas the system
performs more of the lower level choices. Exploration in the opposite direction
is also possible; in the extreme this amounts to protocol analysis. Suppose
that the problem solving of a SPADE user is running far ahead of the system: the
user may wish to type in code directly, rather than laboriously detailing the
intermediate steps of the plan. The system's Job then becomes linking the 1low
level event into a higher level planning structure. If every event typed by the
user were at this code level, SPADE would superficially be serving as a
conventional editing environment. The difference would lie in the assistance

Miller & Goldstein

Grammar Based Editor

dJON NOILOMNNLNOD S,NILVd

6z NSO
b P
INIVMISNOD + FDIAQY-FDIAQY NOILISOdWOD (W)OIN g
YVANTIINON
3
an o
NOILISOdWOOEd S
_ W) OIN
i AVANITINON (W) ?
w
)%+ (7x%)%d + wew
% NOILONNLNOD
= a

Ve
e A dVINIT , (/1

Grammar Based Editor‘ _ 28 Miller & Goldstein

possible during subsequent debugging. Ideally, SPADE would have a module (which
we call PAZATN, for Protocol AnalZer based on an AT¥) for inferring the user's
plan -- and would therefore be able to support our deeper notion of debugging
even when the plan is only implicit. Figure 26 illustrates how a hypothetical
version of the SPADE system, augmented by PAZATN, could significantly reduce the
amount of interaction required to articulate the planning knowledge as well as
the code for use by the system. [Miller & Goldstein 1976d] takes a more careful
look at the difficulties which the PAZATN module must face, and presents a
preliminary design.

A final application is to prescribe improved programming methodology.
The entire enterprise embodies Dijkstra's philosophy of programming in a
structured fashion. Moreover, it represents a more detailed study of planning
and debugging techniques than has previously been attempted. It indicates how
interactive editors can strongly encourage coherently structured articulate
planning. The underlying theory provides an analysis of the nature and origin of
bugs, suggesting which sorts of bugs can be avoided by improved design, and which
arise from justifiable heuristic choices. The occurrence of such uncertain
choices however, can be recorded, leading to bookkeeping and diagnostic
capabilities such as those planned for RAID. Better debugging advice -- going
beyond caveats for potential difficulties -- must await the incorporation of PATN
(and to some extent PAZATN) into SPADE.

This report has presented a unified theory of planning and debugging
based on a linguistic analogy. The design of an interactive programming
environment has also been described. The objectives for this programming
environment, SPADE, are that it serve, not only as a practical application of the
theory, but also as an experimental crucible for testing claims of the theory.

We expect that experimentation with SPADE will yield the following kinds
of information: (a) AI evidence regarding the heuristic adequacy of the planning
taxonomy and grammar; (b) psychological evidence regarding the utility of the
grammatical formalism as a modeling tool, for characterizing varying skill
levels, in terms of which subsets of the grammar are used successfully and
unsuccessfully; (c) computer science evidence regarding the efficacy of
alternative documentation standards and design methodologies; and (d)
pedagogical evidence regarding the value for a learner of programming in this
type of articulate environment.

Grammar Based Editor ' Miller & Goldstein

Figure 26. A Scenario Illustrating SPADE Augmenfed by PAZATN

la. We are now solving for a WISHINGWELL. Your pending subgoals are ROOF,
POLE, WELL, and the interfaces. What now?
1b. >SQUARE

Here the user types in an event at level of the actual code. The proper
inference is that the user is solving for WELL using an IDENTIFICATION plan.
SQUARE 1is presumably in the user-defined answer library.

2a. OK. I am assuming that WELL has been solved by IDENTIFYing it with the
previously solved SQUARE procedure. What now?
Z2b. >FORWARD 100

Again, the user has typed in a very low-level event which requires careful
interpretation. There are q number of vector commands which might be expected
synthetically. For example, this could be the interface between the WELL and the
POLE. However, if the SQUARE used Sfor the WELL is of size 100, then FORWARD 100
would bhe too large. Also, a preparatory rotation would have been needed. The
vector might also be a side of the TRIANGLE for the ROOF. However, if TRIANGLE
is already in the answer library, an identification would be expected, not a new
solution. Probably, this vector accomplishes the next main step in PATN's
default solution order: POLE. However, PAZATN can employ a demon to postpone a
Jtinal commitment until Jurther evidence arrives.

3a. OK. What now?
3b. ITRIANGLE

4da. OK. I guess ROOF has been solved by IDENTIFICATION with the existing
TRIANGLE. So the FORWARD 100 must be the POLE. Your only remaining
subgoals are the interfaces. Which interface would you like to solve?

It is worth noticing how few user type-ins have been required in this dialogue --
SJewer than even in conventional code -- yet the solution Jor the WISHINGWELL 1is
almost complete. Moreover, the system has inferred not only the code, but a
rather thorough description of the user's plan as well. This economy of
interaction would be achievable by the combination of SPADE, PATN, and PAZATN
enabling the user to focus on the few critical planning choices that more or less
Jorce the remainder of the solution.

Grammar Based Editor 29 Miller & Goldstein

7. Notes

1. While there is some overlap, our objectives for SPADE differ in this
respect from the objectives of those working to construct programming apprentices
[Teitelman 1970,1974; Hewitt & Smith 1975; Rich & Shrobe 1975]. It is too early,
however, for a detailed comparison of either goals or methods.

2. The virtues of the Logo graphics world [Papert 1971a,b; 1973] are:
(a) graphics is an environment in which aultiple problem descriptions are
possible, ranging from Euclidean geometry to Cartesian geometry; (b) the
possible programs range over a wide spectrum of complexity; and (c) there is

extensive documentation on human performance in this area [G. Goldstein 1973;
Okumura 1973].

3. These task domains are natural candidates for testing the generality
of the theory. The blocks world is a benchmark Al domain which provides a
yardstick against which to measure the progress of our approach. The set theory
world has the virtues of both intrinsic interest and straightforward semantics.
The creation of programs embodying concrete realizations of set theoretic
constructs is a standard programming task. Similar remarks are appropriate for

the domain of programming an elementary calculator, such as to perform routine
statistical analyses.

4. In [Goldstein & Miller 1976a] we presented a scenario for a
programming tutor called Sherlock. One extension of the SPADE system presented
here is toward such mixed-initiative AI based personal learning environments. At
the same time, the SPADE style of interaction suggests a more structured
alternative approach. Whether the additional structure is desirable for some (or
most) students is an empirical question to be addressed in future research.

5. In [Miller & Goldstein 1976b] we presented a different version (Gl) of
the planning taxonomy and grammar, in the context of parsing a student protocol.
Our reasons for abandoning that version in favor of the current one should be
discussed. The earlier taxonomy was based on examining the directions from which
a planner could obtain guidance: looking upward to general principles, downward
to domain specific heuristics, forward to anticipated needs, and backwards to
previously solved problems. The current taxonomy derives fron examining the
logistic description of the current problem. The former taxonomy emphasized the
roles of experimentation and uses of past problems; whereas the current one
treats these as details, some of which (such as experimentation) remain to be
addressed. It remains true that decomposition techniques can vary along
dimensions of domain specificity and generality. However, in some cases we found
the earlier taxonomy to be problematic. As we began to incorporate semantic and
pragmatic constraints on the grammar (see [Goldstein & Miller 1976b]), it became

Grammar Based Editor 30 _ Miller & Goldstein

increasingly difficult to maintain a formal distinction between certain examples
of domain dependent and evolutionary plans. There is of course a trade-off in
assigning knowledge to the syntactic rules, as opposed to assigning it to
semantic or pragmatic constraints on their application. In order to justify a
claim that the current version of the taxonomy is more parsimonious than the
previous one, we would need to carefully identify the corpus of data. While we
do, in fact, believe that the current version is more elegant, the grounds for
this belief remain intuitive. In subsequent research we intend to employ the
SPADE system as an experimental vehicle for contrasting alternative planning
taxonomies and their corresponding grammars.

6. The statement that there is a core set of planning techniques common
to all domains is justified by examining the formal basis for the taxonomy. On
the assumption that problem descriptions are represented as predicate calculus
statements, it is clear that solution can proceed by: (1) identifying the
statement as one for which a solution procedure is known to exist; (2)
decomposing the problem into subproblems on the basis of the top level logistic
operator; or (3) reformulating the problem description such as by theorem
proving techniques. That is, domain independence of the core set of planning
techniques holds, on a priori grounds, to the same extent that problems in the
domain are describable using predicate calculus problem descriptions.

Of course this argument depends on the efficacy of the first order
predicate calculus as a problem description language. While we are not prepared
to argue for this here, it is clear that the calculus certainly has had some
success in the past (e.g. in mathematics) and hence is an obvious candidate. Its
frequently observed deficiencies, such as non-directed inferencing, are discussed
in [Goldstein & Miller 1976b], where we define a procedural problem solver
organized around logical operators. It is also important to recognize that we
are not arguing for uniform (e.g., resolution-based) theorem prover style
programming techniques. ,

Moreover, extensions of the predicate calculus, such as higher-order
calculi, do not obviate the need for basic problem solving techniques for dealing
with conjunction, disjunction, negation, and quantification.

7. This view of planning is a simplification. It asserts that the
problem is analyzed in a top down fashion. Of course, the problem solver can
engage in exploration and experimentation; or can identify a subgoal without
having a clear understanding of the overall plan. The dynamics of exploration
are not formalized by this grammar.

8. Our use of a context free grammar for problem solving closely
resembles D. Rumelhart's [1975] work on story grammars. It should be interesting
to see to what extent our respective theories, designed to account for
superficially very different phenomena, continue to develop in parallel. Would
it be useful, for instance, to define a set of summarization rules (such as those

Grammar Based Editor 31 Miller & Goldstein

employed by Rumelhart) to describe the planning process? One possible set of
plan summarization rules would focus on the SOLVE nodes, suppressing printout for

nodes of other types. Conceivably, this could be useful in highlighting the
subprocedure organization. '

9. The rules of the grammar are written using the following syntax:
disjunction: "a | b" is read as, "a or b";

ordered conjunction: "a + b" is read as, "a and b",
where the order is significant;

unordered conjunction: "a & b" is read as, "a and b",
where the order is insignificant;

optionality: "[a]" is read as, "a is optional”;

iteration: "<a>'" is read as,
"a repeated 1 or more times";

lexical category: a lower case English phrase enclosed in
quotation marks (e.g., "number")
describes a lexical item which is not
further expanded in the grammar.

10. The & operator is used, because the GET and USE can occur in any
order as long as they both precede execution of the procedure being defined.

11. While the Mycroft system designed by Goldstein was potentially
capable of semantic annotation, it lacked a clear formalization of the range of
possible planning choices a program designer could make, and a description of
possible errors in terms of these design decisions. The grammar we present here
is intended to address these limitations.

12. The interactions presented here are hypothetical dialogues with a
system which has not been implemented. Although a crude preliminary
implementation (SPADE-00) has recently begun, it is currently lacking several
essential features.

One deficiency of SPADE-00 is that it has not been interfaced with LLOGO
[Goldstein et. al. 1974]; hence it is not possible to actually execute the
resulting programs. Another deficiency is that the RAID features described in a
later section have not yet been coded.

The purpose of presenting hypothetical dialogues, rather than actual
transcripts, is to enable the reader to focus on the content, without being

Grammar Based Editor 32 Hilier & Goldstein

sidetracked by details concerning the inadequacies of the implementation.
Readers who have access to the laboratory's timesharing system are nonetheless
invited to experiment with our trial versions of SPADE as follows. After logging
in, type :SPADE<cr>. :NSPADE will generally be a newer, highly experimental
version. :OSPADE will be an older version, in case of disastrous malfunctioning
by :SPADE.

SPADE-OO simplifies the interaction by employing a "menu" or "multiple
choice" style:

WHAT WOULD YOU LIKE TO DO?
=A -- IDENTIFY

=B -- DECOMPOSE

=C -- REFORMULATE

>=a

Certain operations, such as the LATER capability, are implemented as special

"escape commands," in order to reduce ambiguity and simplify parsing. For
example:

>later

I DON'T UNDERSTAND: LATER.
>@later

POLE POSTPONED.

Once started, the system is self-documenting, and is gradually becoming

friendlier to use. Suggestions and bug messages may be sent via the system
mailer to SPADEGMIT-AI.

13. The question arises as to whether the bug taxonomy is exhaustive when
circumlocutions and slips of the tongue are also included. In a trivial sense,
the answer is "yes" because the latter class is open-ended by definition. 1In a
. deeper sense, the answer may also be "yes® in that no bugs need ever be assigned
to this category which violate our intuitive requirement that the underlying plan

not be affected. This is a hypothesis which we tentatively accept but cannot
prove.

14. To avoid possible confusion, it should be stressed that our bug
classification does not correspond to the usual terminology of programming 1lore.
While there is a slight analogy, it may be misleading. That is, "syntactic
planning bugs" does not refer to the syntax of the programming language; it
refers to the hierarchical structure of the process of constructing programs.
Similar remarks are in order for semantic and pragmatic planning bugs. For
brevity, we may use the shorter phrases, e.g., "syntactic bug," to refer to a
syntactic planning bug. For the most part, we are not concerned here with syntax
errors (or "semantic errors"”) in the usual sense.

Grammar Based Editor ' 33 Miller & Goldstein

15. A natural objection is that this particular bug could be eliminated
if the computing environment were modified so as to automatically 1load
appropriate files when needed. We completely agree. Indeed, it illustrates the
point that the grammar illuminates the design of improved computing environments.
It in no way alters the observation that, given any particular computing
environment, certain syntactic constraints on the structure of programming plans
must be adhered to, nor that violation of these constraints constitutes one type
of error.

16. Of course, the issue arises as to whether the human problem solver is
simply forgetting part of a known rule, or is unaware of the rule in the proper
form. This leads to a set of difficult problems in protocol analysis surrounding
the hypothesizing of the grammar underlying a given individual's problem solving.
This topic is pursued in [Miller & Goldstein 1976b,d].

17. The occurrence of two consecutive calls to a given primitive is odd
when a single invocation, perhaps with altered input, will suffice. 1In Logo, two
adjacent PENUP commands, or two adjacent FORWARD instructions would be considered
rational form violations.

18. This wishingwell program employs what Goldstein [1974] termed an
"insertion plan." The TREE shown here is inefficient in that it achieves state
transparency via retracing the TRUNK. There is also a tradeoff in the WELL
between modularity and efficiency. The use of the insertion plan to avoid
retracing on the top side of the WELL results in less modular code. These points
are noted only to avoid misunderstanding -- they have no bearing on the thrust of
the example.

19. Viewing debugging from the vantage point of this taxonomy sheds some
light on the issue of the pedagogical value of various kinds of bugs. Our
current understanding of the first three (and to some extent the fourth)
categories of bugs suggests that encounters with such bugs may be instructive in
teaching planning as well as debugging. However, "slips of the tongue"” at best
provide some exercise in bug localization. Hence, a "forgiving" system that
minimizes the penalties for such low level bugs is probably pedagogically sound.
The best example of this philosophy 1is the Interlisp DWIM (Do What I Mean)
facility [Teitelman 1970,1974]. (By contrast, our effort to make more of the
plan explicit might be called SWIM, i.e., Say What I Mean!)

20. If we define a context free grammar for debugging, then this error in
debugging technique can be classified. For example, if the rule of the debugging
grammar for fixing slips of the tongue is:

REPAIR -> [UNDO] + REDO

Grammar Based Editor 34 Miller & Goldstein

where undoing is optional since it is not always required, then the error of
failure to undo (due to forgetting or to confusion regarding the existence of
side effects) is semantic.

An alternative view of debugging would be to characterize planning as a
context free grammar, while debugging is described as a transformational
component that maps derivation trees to derivation trees. This would be
theoretically elegant, and this possibility deserves further study. However,
resolution of this issue goes beyond the current paper.

21. Later we briefly introduce a module we are designing called PAZATN
which would help to alleviate this difficulty. PAZATN would be capable of
parsing programming protocols, inferring -- from a combination of synthetic
expectations and analytic evidence -- which plans had been used.

22. A fundamental hypothesis of the Logo project is that children learn
by doing and thinking about what they do. One of our purposes in implementing
the SPADE editor is to explore this hypothesis by experimenting with the relative
merits of SPADE versus the traditional Logo programming environment. In SPADE,
the student is required to be articulate. Whether this helps students to master
planning and debugging concepts more quickly -- or hinders them -- remains to be
seen. Our conjecture is that despite the extra interaction demanded, students
will find the need to be articulate about their problem solving a significant

help in learning, as measured by an ability to solve harder problems more
quickly.

Grammar Based Editor 35 Miller & Goldstein

8. References

Dahl, Ole-Johan, Edsger Dijkstra and C.A.R. Hoare, Structured Programming,
London, Academic Press, 1972.

Goldstein, Gerrianne, Logo Classes Commentary, Massachusetts Institute of
Technology, Artificial Intelligence Laboratory, Logo Working Paper 5,
February 1973. ’

Goldstein, Ira P., "Understanding Simple Picture Programs," in Artificial
Intelligence, Vol. 6, No. 3, 1975; and Massachusetts Institute of
Technology, Artificial Intelligence Laboratory, Technical Report 294,
September 1974.

Goldstein, Ira. P., Henry Lieberman, Harry Bochner, and Mark L. Miller, LLOGO:
An Implementation of LOGO in LISP, Massachusetts Institute of Technology,
Artificial Intelligence Laboratory, Memo 307 (Logo Memo 11), June 27, 1974,

Goldstein, Ira P., and Mark L. Miller, AI Based Personal Learning Environments:
Directions For Long Term Research, Massachusetts Institute of Technology,
Artificial Intelligence Laboratory, Memo 384 (Logo Memo 31), December 1976a.

Goldstein, Ira P., and Mark L. Miller, Structured Planning and Debugging: A
Linguistic Theory of Design, Massachusetts Institute of Technology,
Artificial Intelligence Laboratory, Memo 387 (Logo Memo 34), December 1976b.

Hewitt, Carl, and Brian Smith, Towards g Programming Apprentice, IEEE
Transactions on Software Engineering, vol. SE-1, no. 1, March 1975.

Kaplan, Ronald M., "A General Syntactic Processor," in Randall Rustin (ed.),
Natural Language Processing, Courant Computer Science Symposium 8 (December
20-21, 1971), New York, Algorithmics Press, 1973, pp. 193-241.

Kay, Martin, "The MIND System," in Randall Rustin (ed.), WNatural Language
Processing, Courant Computer Science Symposium 8 (December 20-21, 1971), New
York, Algorithmics Press, 1973, pp. 155-188.

Miller, George A., Eugene Galanter and Karl H. Pribram, Plans and the Structure
of Behavior, New York, Holt, Rinehart, and Winston, 1960.

Miller, Mark L., Cognitive and Pedagogical Considerations for a Tutorial Logo
Monitor: An Investigation Into the Evolution of Procedural Knowledge (S.M.
Thesis), Massachusetts Institute of Technology, Department of Electrical
Engineering and Computer Science, February 1976.

Grammar Based Editor : _ 36 Miller & Goldstein

Miller, Mark L., and Ira P. Goldstein, Overview of a Linguistic Theory of Design,
Massachusetts Institute of Technology, Artificial Intelligence Laboratory,
Memo 383 (Logo Memo 30), December 1976a.

Miller, Mark L., and Ira P. Goldstein, Parsing Protocols Using Problem Solving
Grammars, Massachusetts Institute of Technology, Artificial Intelligence
Laboratory, Memo 385 (Logo Memo 32), December 1976b.

Miller, Mark L., and Ira P. Goldstein, PAZATN: A Linguistic Approach To
Automatic Analysis of Elementary Programming Protocols, Massachusetts
Institute of Technology, Artificial Intelligence Laboratory, Memo 388 (Logo
Memo 35), December 1976d.

Okumura, K., Logo Classes Commentary Massachusetts Institute of Technology,
Artificial Intelligence Laboratory, Logo Working Paper 6, February 1973.

Papert, Seymour A., Teaching Children to be Mathematicians Versus Teaching About
Mathematics, Massachusetts Institute of Technology, Artificial Intelligence
Laboratory, Memo 249, 1971a.

Papert, Seymour A., Teaching Children Thinking, Massachusetts Institute of
Technology, Artificial Intelligence Laboratory, Memo 247 (Logo Memo 2),
1971b.

Papert, Seymour A., Uses of Technology to Enhance Education, Massachusetts
Institute of Technology, Artificial Intelligence Laboratory, Memo 298 (Logo
Memo 8), June 1973.

Polya, George, How to Solve It, New York, Doubleday Anchor Books, 1957.

Polya, George, Mathematical Discovery (Volume 1), New York, John Wiley and Sons,
1962.

Polya, George, Mathematical Discovery (Volume 2), New York, John Wiley and Sons,
1965.

Polya, George, Mathematics and Plausible Reasoning (Volume 1), New Jersgy,
Princeton University Press, 1967,

Polya, George, Mathematics and Plausible Reasoning (Volume 2), New Jersey,
Princeton University Press, 1968.

Grammar Based Editor 37 Miller & Goldstein

Rich, Charles, and Howard E. Shrobe, Understanding LISP Programs: Towards a
Programmer's Apprentice (Master's Thesis), Massachusetts Institute of

Technology, Department of Electrical Engineering and Computer Science, August
1975. '

Rumelhart, David, "Notes on a Schema for Stories," in D. Bobrow and A. Collins,
Representation and Understanding: Studies in Cognitive Science, New York,
Academic Press, 1975.

'Sussman, Gerald Jay, 4 Computational Model.of Skill Acquisition, New York,
American Elsevier, 1975; and Massachusetts Institute of Technology,
Artificial Intelligence Laboratory, Technical Report 297, 1973.

Teitelman, Warren, "Toward a Programming Laboratory," in J.N. Buxton and
B. Randell (eds.) Software Engineering Techniques (Report on a Conference
sponsored by the N.A.T.O. Science Committee, Rome, Italy, October 1969),
April 1970, pp. 137-149.

Teitelman, Warren, INTERLISP Reference Manual, Cambridge, Bolt, Beranek and
Newman, October 1974.

Woods, William A., "Transition Network Grammars for Natural Language Analysis,"
Communications of the ACM, Volume 13, Number 10, October 1970, pp. 591-606.

Woods, W.A., and J. Makhoul, "Mechanical Inference Problems in Continuous Speech

Understanding," BBN Report 2565, Bolt Beranek and Newman Inc., Cambridge,
Mass., August 1973.

