Massachusetts Institute of Technology
S Artificial Intelligence Laboratory
AI Memo 388 December 1976 | Logo Memo 35

PAZATN: A Linguistic Approach to Automatic

Analysis of Elementary Programming Protocols
Mark L. Miller and Ira P. Goldstein

PATN is a design for a machine problem solver which uses an
augmented transition network (ATN) to represent planning knowledge. 1In
order to explore PATN's potential as a theory of human problem solving, a
linguistic approach to protocol analysis is presented. An interpretation
of a protocol is taken to be a parse tree supplemented by semantic and
pragmatic annotation attached to various nodes. This paradigm has
implications for constructing a cognitive model of the individual and
designing computerized tutors.

Manual protocol analysis is tedious and informal; hence the
design for PAZATN, an automatic protocol analyzer, is presented. PAZATN
uses PATN as a generator for possible interpretations of the protocol,
with bottom-up evidence biasing PATN toward plans which are likely to
match the data.

PAZATN is a domain independent framework for constructing
specialized protocol analyzers. To apply PAZATN to a particular task
domain, event specialists (ESP's) are needed which embody syntactically
organized domain knowledge. ESP's for the Logo graphics programming
domain are defined and PAZATN's operation is hand-simulated on an
elementary protocol for this domain.

This is a revised version of a report describing research supported in
part by the Intelligent Instructional Systems Group at Bolt Beranek and Newman,
under contract number MDA 903-76-C-0108 jointly sponsored by Advanced Research
Projects Agency, Air Force Human Resources Laboratory, Army Research Institute,
and Naval Personnel Research & Development Center. The research was conducted at
the Artificial Intelligence Laboratory of the Massachusetts Institute of
Technology. Investigation of the application to elementary programming was
supported in part by the National Science Foundation under grant C40708X, and in
part by the Division for Study and Research in Education, Massachusetts Institute
of Technology.

Protocol Analysis ‘ 1.2 Miller & Goldstein

Contents

Book I: A Linguistic Approach to Protocol Analysis

1. Introduction

2. An Example of Protocol Analysis as Parsing
3. Toward a Cognitive Model of the Individual
4

. Notes to Book I

Book II: Automating the Protocol Parsing Process
5. Introduction to Book II
6. Simulating Automatic Parsing of the Example Protocol
7. Organization of the PAZATN Protocol Parser
8. Refining the Protocol Parser
9. Conclusion
10. Notes to Book II

References

Thanks are due to J. Aiello, J.S. Brown, S. Purcell, and S. Rosenberg for
carefully criticizing preliminary drafts of this report. The authors would also

like to thank Carol Roberts for assistance with the illustrations.

Protocol Analysis 1.3 ' Miller & Goldstein

Book I: A Linguistic Approach to Protocol Analysis

1. Introduction

1.1. SPADE: A Linguistic Theory of Design
1.2. PATN: Analysis by Synthesis
1.3. Theoretical Interpreta;ions

1.1. SPADE: A Linguistic Theory of Design

In recent research we have developed a theory of design called SPADE
which provides_a model of the planning and debugging processes.! We contend that,
in addition to being a powerful theory of machine problem solving, SPADE is also
a useful framework for describing human problem solving. To support this
contention, we apply the SPADE theory to the task of analyzing problem solving
protocols.

By adopting this methodology we follow the precedent established in
seminal protocol analysis studies conducted at Carnegie Mellon University
[Newell 1966; Newell & Simon 1972; Waterman & Newell 1972, 1973; Bhaskar &

- Simon 1976]. Our work extends their approach along three dimensions.

1. With the exception of the recent Bhaskar & Simon effort, the CMU
studies have been restricted to very limited domains such as
cryptarithmetic. Rather than limiting the task domain, we limit
the range of responses. Typically protocols are transcriptions
of think-aloud verbalizations; we focus on the more restricted
interactions arising from a problem solving session at a
computer console.? The analysis task in this setting is to
interpret user actions -- editing, executing, tracing, etc. --
in terms of the SPADE theory of planning and debugging.

2. The CMU theory centers on the production systems model. Although
productions are Turing universal, they tend to result in a less
structured program organization than the linguistic formalisms
of the SPADE theory. The PATN program, the procedural
embodiment of the SPADE theory, uses an qugmented transition
network [Woods 1970] to represent planning knowledge.

Protocol Analysis 1.4 Miller & Goldstein

3. CMU analyses are based on the problem behavior graph. Pursuing
an analogy to computational linguistics, we define an
interpretation of a protocol to be a parse tree supplemented by
semantic and pragmatic annotation. The parse tree characterizes
the constituent structure of the protocol. Semantic and
pragmatic annotation -- variables and assertions attached to
nodes of the parse tree -- formalize the problem description and
the rationale for particular planning choices. Annotated parse
trees closely reflect the local structure of PATN's linguistic
problem solving machinery, leadiiig more directly to inferences
regarding individual differences than is evident from problem
behavior graphs.

Ruven Brooks [(1975] applied the CMU approach to the programming domain,
developing a model of coding -- the translation of high level plans into the
statements of a particular programming language -- and testing the model by
analyzing protocols. His model is a set of production rules whose conditions
match the patterns of plan elements and whose actions generate code statements.
Protocols are analyzed manually, with the experimenter attempting to infer the
plan which is then expanded by the production system into code paralleling that
of the protocol. The processes of understanding the problem, generating the
plan, and debugging are not formalized. SPADE goes beyond this in that it can be
used to parse protocols and that the parse constitutes a formal hypothesis
regarding not only the coding knowledge but also the planning and debugging
strategies employed by the problem solver.

The paper is divided into two books. Book I develops SPADE's linguistic
paradigm for protocol analysis. A prototypical elementary programming protocol
is parsed, and the implications of this information processing analysis for
constructing cognitive models and designing computerized tutors are discussed.

Book I does not address the question of how a protocol parse is derived.
In earlier work, problem solving protocols werae analyzed manually.3 However,

manual analysis is tedious and informal; hence Book II presents the design for

PAZATN, an automatic protocol aqalyzer. PAZATN uses PATNY -- the procedural

Protocol Analysis 1.5 Miller & Goldstein

embodiment of the SPADE theory -- as a generator for possible interpretations of
the protocol, with bottom-up evidence biasing PATN toward plans which are likely
to match the data (figure I:1).

PAZATN is a domain independent framework for constructing specialized
protocol analyzers. To apply PAZATN to a particular task domain, event
specialists (ESP's) are supplied which embody domain-spécific knowledge. For
concreteness, we employ examples from the Logo elementary graphics programming
doméin; ESP's for this domain are discussed. PAZATN's operation is hand-

simulated on an elementary protocol from this domain.

1.2. PATN: Analysis by Synthesis

A major insight of the generative grammarians (e.g., Chomsky [1965]) was
that it is often helpful to characterize phenomena synthetically: one devises
rules to generate thekphenomena. Analysis can then be viewed as a recognition
process for selecting derivations from the space of synthetic possibilities. We
adopt this viewpoint in analyzing protocols, with PATN as our generative
formalism.

The SPADE theory, which PATN embodies, begins with a taxonomy of commonly
observed planning techniques (figure I:2). When a problem is confronted --
according to the theory -- one of three types of plans may be pursued. (1) The
problem may be .solved by identification: recognizing it as already having a
solution. This planning category, seemingly trivial, is of course essential to
avoid infinite regress. (2) The problenm may be solved by decomposition:
dividing it into smaller, easier subproblems. These are each solved separately,
and then recombined, thereby disposing of the original problenm. (3) Should the
first two strategies fail, the problem may be solved by reformulation:

redescribing it in terms that Seem more amenable to solution. The reformulated

Protocol Analysis

1.6 Miller & Goldstein _
PROBLEM \ PATN
DESCRIPTION P
BOTTOM-UP POSSIBLE PLANS
CLUES GIVEN PROBLEM & CLUES
...... ANALYZED
PROTOCOL ~ peveee+- 2 PAZATN PROTOCOL

FIGURE I$l1 TOP LEVEL ORGANIZATION‘OF THE PROTOCOL ANALYZER

Protocol Analysis 1.7 Miller & Goldstein

—- PRIMITIVE

— IDENTIFY
| PREVIOUSLY DEFINED PROCEDURE
INEAR
| CONJUNCTION
ONLINEAR
PLAN | DECOMPOSE—|
L_ROUND
—REPETITION —t
| RECURSTON
| REGROUP
| £QUIVALENCE—
~GENERIC ¢~ EXPLICIT
. REFORMULATE—

SPECIALIZE
__SIMPLIFY GENERALIZE
ANALOGY
FIGURE T:2

TAXONOMY OF PLANNING CONCEPTS

Protocol Analysis 1.8 Miller & Goldstein

problem must, in turn, be solved by identification, decomposition, or further
reformulation. As the figure indicates, each of these categories of plans is
further subdivided.

PATN (figure I:3) is a problem solving program based on this taxonomy.
PATN was derived by first representing the taxonomy as a recursive transition
network.> This produces a non;deterministic problem solver. Supplying precedence
ordering fqr arcs from each node, predicates which test preconditions for
transitions, and actions to be performed when arc transitions occur, produces an
augmented transition network [Woods 1970] that is far more deterministic in
solving problems (although backup is permitted). The predicates access registers
which store semantic information about the problem; the actions modify'theso
registers.

PATN's solutions can exhibit rational bugs -- errors arising from
heuristically justifiable but incorrect planning decisions -- such as the trial
execution of an incomplete plan, which omits necessary interface steps. Hence a
complementary theory'of debugging is developed using the same approach as in the
planning theoryf Figure I:4 shows a taxonomy of debugging techniques. This
taxonomy bifurcates into techniques for diagnosing thé underlying cause of a bug
and techniques for repairing the bug once isolated. Model diagnosis 1is typical
of the diagnostic techniques. It consists of executing the program in order to
construct a list of violated model predicates, which is then examined to check if
any che was written to accomplish the violated predicates. As in the planning
theory, the debugging taxonomy is transformed into an ATN (figure 1:5) by
providing registers, arc predicates and so on. The debugging ATN is called DAPR
(debugger of annotated programs), and is an integral part of the PATN system.

Consider the operation of the planning ATN on an example from the Logo

graphics environment, where students define, test, and debug procedures to draw

8 L eeeg— AW e
5 (W) ALV INWYO0S T+
m
. uoTadransep weTqoad
SATITUIDITE YITM awmoﬁ aoeTday,, ~ (W)23IBINUIOINIK
' Kieaqy zomsue
Y3l uT punoj uoIIN[os 8yl uiniay, - (W)LIBIqIT>S oo f— d3y 4
{suot3oy arduexy f
h1UBWRTe OTi9uad B Sse pojuas (W) u:_m_z”._@ (£)
-21doa uotidravsep warqoad syl s, - (W) OFILuUH
o wo£1e1qTT aemsue oyl ut Suryjfue ANL
— £q payojew uoridriosep wayqoad s, - %umunﬂgamz ANV
:suoT3lTpuo) orduexyg
| . T |¢—— NVId Aﬂ'
SUOT30BI9IUT TROTF INOQE DOFAPY - V 193ST39y mmoz.vz
uotr3idraosop weyqoad oi8o0T muQUMvwgm - W 1935180y
1819315139y oTdwexyg :.v
1IN AR : (1)
~ST409 (VW) US-NV1d?) L1917dX3
d0d e 535 lq UHDYI0-STV09 @) | oy g | R
— D] AR
0 G SNOILOV¥ALNT (W) JZIUVANIT-H
maivmiom + MY Td-Nyd: ~ INTVY1SNOD! <<+< 09! =9
E SI¥09: 1STY~STv09: d001 JITAQY: =Y
o ST¥03¢ ISYId> Tyog: dOOT NOILYZIYYINIT NV1d?=d
: L E EE 300K =i
5 ‘ szééﬁfzi
2 SNOTLVIAINEaY
. RN BER
C C C

NLYd 40 METIA QIATATITWIS ¥

€:1 J4No14d

Protocol

DEBUG =]

1.10 | Miller & Goldstein

Analysis
FIGURE I:4 A TAXONOMY OF DEBUGGING TECHNIQUES
~—PARSF—-ADVISE (planning choices)
——PRINTOUT
CODE
—-ADVISE (rational form violations)
—— DIAGMNOSE-
—— MODFL — ADVISE (model violations)
—— ASK
—— PROCESS—1— TRACE
— DO
COMPLETE

— REPAIR—

— CORRECT

1.11 Miller & Goldstein

Protocol Analysis

MLY DNIODONHEdd S,NLVd :¥d¥d G*I HINDIJA

H549v¥d

LOHIIO0O

\ v\ (THAOW: HFA0D: LIANJIYALNI)+>SNOILVTIOIA:
2

\
/ \
SISONDVId

AAAAoom\zaqm"v ddLS SNISSIN)

(d9LS TYNOILJO) AaNVY)
(D01 d4dILS) SLSIX)

SsUdD0dd

THAONW

((((D0T N¥Id:) a4 SSIN)
((d4LS TAAOW:) INIWNHLYLS-TAUOW TVNOH)
((DOT SNOILVTIOIA®:) (INAWHLYLS-TIAOW ALYDAN) VIALWIW) ANVY)
(00T dd41S INAWILVLS-TIAOW) SLSIXH)

Protocol Analysis : 1.12 Miller & Goldstein

simple pictures. The WISHINGWELL (figure 1:6) is a typical beginner's project.
The students' task description is a sketch of the desired picture. PATN,
however, requires a formal task description: figure I:7 illustrates this
description, the model, for WISHINGWELL. Models are expressed in an assertional
formalism developed by Goldstein [1974, 1975], which is similar to the first
order predicate calculus. The model characterizes the range of pictures which
match the sketch.®

PATN's solution to the WISHINGWELL task has three aspects: (1) an
hierarchical plan derivation, summarizing the arc transitions which were
followed; (2) a snapshot of the values of the ATN's registers attached to each
node of the defivation, representing the semantic context at the time the node
was created; and (3) a set of instantiated arc predicates at each node
describing why the chosen arc transition was preferred to its competitors; these
are called the pragmatic assertions of the node.” The semantic variables and
pragmatic assertions relate the subgoal structure of the problem solving protocol
to the model describing the task to be accomplished.

Figure I:8 shows PATN's hierarchically annotated solution. Naturally,
this 1is not the only solution to the WISHINGWELL problem: to apply PATN to
protocol analysis, we allow PAZATN to reject solutions which do not match the
protocol ﬁata. forcing PATN to backup so that alternative solutions are

generated.

1.3. Theoretical Interpretations

We define an.interpretation of a protocol to be a PATN plan derivation:
a parse tree whose fringe is the list of events (e.g., figure 1:8), augmented by
annotation associated with each node of the parse. Since different plans

sometimes lead to the same coding events, some protocols have more than a single

Protocol Analysis 1.13 Miller & Goldstein

FIGURE TI:6
WISHINGWELL PICTURE
AN ELEMENTARY LOGO GRAPHICS PROJECT

Protocol Analysis 1.14 Miller & Goldstein

Draw a WISHINGWELL with a square well and a triangular roof,
connected by a pole which is a line. The roof should be above
the pole, and the pole above the well. The well should be
connected to the pole at the midpoint of the upper side of the
well and the lower endpoint of the pole. The pole should be
connected to the rqof at the midpoint of the bottom side of the
roof and the upper endpoint of the pole. The bottom side bf the

roof and the upper side of the well should be horizontal.

(DEFINE-MODEL WISHINGWELL ()
(EXISTS (ROOF POLE WELL)
(AND (TRIANGLE ROOF)
(LINE POLE)
(SQUARE WELL)
(ABOVE ROOF POLE)
(ABOVE POLE WELL)
(EXISTS (P)
(AND (CONNECTED WELL POLE (AT P))
(EQ P (MIDDLE (UPPER (SIDE WELL))))
, ~ (EQ P (BOTTOM (ENDPOINT POLE)))))
(EXISTS (Q)
. (AND (CONNECTED POLE ROOF (AT Q))
(EQ Q (MIDDLE (BOTTOM (SIDE ROOF))))
(EQ Q (UPPER (ENDPOINT POLE)))))
(HORIZONTAL (BOTTOM (SIDE ROOF)))
(HORIZONTAL (UPPER (SIDE WELL))))))

Figure I:1. Predicate Model for a Wishingwell

1.15 Miller & Goldstein

Protocol Analysis

ASYL TIAMONIHSIM HHL 904 dddd NOILVAISAd AALVIONNY S,NLVd 8:I H¥NDIJ

aNd<

021 LHOIY¥ 0¢€<

00T QUVMdod 02<

[0€ 02] € Ivdddd 0T«

10O, ¢

Tcd

—

024
6Td
§Td
%l

‘7 HATS) QEIOANNOD v 00T

(¥ QO T4+7HAIS N
| =(73AIS)HIONAT v (7 A1S)YOLDEA -¢ 2 ALSE ¢ C0=2¥0d |

and<
06 LHOI¥ Q€<
00T QUVMY0d 0Z<

[o€ 02] v ILvddayd 0T<
TIdM 0L ¢

aNd<

J00¥ 06<

0ZT LHOIY 08<
05 QIYMIO0d 0L<
06 IJIT 09<
00T QUVYMJOd 06<
06 LJAAT 0O¥<

05 QIVMI0d 0€<
TIdIM 02Z<

06 LHOIY 0T<
MM 0L &

_—

| Aqmooz"onmzmmwv

—

=TAAON:*

©0T=(X)HIONIT

gIT-SNV 2 THAONW:*

(T13M T70d) FA0LV v/
(2704 JI00¥) FAOIV V

Ano- <

('TTIM) TIVOOS'V
(470d) INITV

(200¥) TIONVIEL
T1dM ‘TT0d ‘J00¥ £) =TAAOW:

(4IT-SNV > TIaoW:) -

—~

&

914 ~ (X)¥010dA € YE) = TAQOW:

sT1a

p1d .

€T uotrj3zriyadax

21d $——— ... —(400¥) JdALSNIVW

aaNIJAd

114

0Td —v v N\ e

603 ° * dANNVITO —

80d °*JALSNIVWH- 0FS—| ~ *° IOVIYALNT —

LO0Z *°°dNLIs

90d *tt AAILININA—J-AIIINIAI® * *L(d70d) dALSNIVIH

sod o
ﬁuuuuuuvomm.nnzoonxf\tlillll.omo....l:mu«mmmezHll

pod

cod ++e T @INIJEA-"C (TTEM) dATLSNIVW —

z0d IAILININd—XATINIAL * * —dNLIS -

104 _

I T-SNV > TIA0W: ((X) SNOTLOVYILLINI

S 23a NVId (MM)JATOS

"
£ 13aon: > x £) L

A

Protocol Analysis 1.16 Miller & Goldstein

interpretation. The basic claim of this paper is that PATN can efficiently
generate the psychologically plausible interpretations.
Evidence for this claim rests on four sources of evidence.

1. The heuristic adequacy of PATN as a problem solving program
provides suggestive, though by no means decisive, evidence. At
least for the restricted world of elementary Logo graphics,
hand-simulations indicate that PATN is heuristically adequate.

2. Introspection by human problem solvers is a weak but useful
source of evidence. To some extent PATN was designed on the

basis of introspection and hence has some support along this
dimension.

3. A strong source of evidence is the appropriateness of the replies
of a question-answering module that performs retrievals and
simple inferences over a database composed of these
interpretations. The question-answering module is introduced in
chapter two. The replies to the example questions given in that
chapter seem appropriate to the authors.

4. The strongest source of evidence is ability to predict
performance in future situations on the basis of past behavior.
Chapter three describes modifications to the ATN that provide
predictive models of typical problem solving behaviors.

We find this informal evidence sufficiently encouraging (as detailed in
the remainder of Book I) to warrant the design (in Book II) of a precise
framework for generating SPADE-style protocol interpretations. Future research

will rigorously evaluate the psychological validity of these interpretations as

follows.

1. PATN will be implemented and tested on a broad range of examples.
This will confirm its heuristic adequacy.

2. An editor based on SPADE will be constructed as a structured
programming environment, and transcripts of the problem solving
behavior of programmers using this editor analyzed. Coupled
with systematic interviews, this will provide evidence regarding

the sufficiency of SPADE's repertoire of planning and debugging
concepts. '

Protocol Analysis 1.17 Miller & Goldstein

3. PAZATN with a question-answering interface will be implemented.
The appropriateness of the replies generated by the question-
answering module will be judged by skilled but unbiased
informants, and by systematic subject interviews.

4. A modeling component will be implemented that modifies the PATN
ATN to be more in accord with a particular student's behavior.

Tests will be conducted to determine whether the modified ATN is
more successful in predicting performance on subsequent

protocols.

Before proceediﬁg, a possible misconception involving the distinction
between representational frameworks and psychological theories should be
dispelled. Two hypotheses are defended by the research program outlined in this
paper: (1) that ATN's are a useful representation for the models we are
developing; and (2) that particular ATN's, the output of our modeling procedure,
constitute theories of individuals -- stated in the language of ATN's -- which
make statements about the presence or absence of certain problem solving skills.
Both hypoﬁheses are of course subject to experimental verification. We do not
arguévthat other Turing-universal formalisms (such as productions or Heidorn's
[1975] augmented phrase structure grammars) cannot also represent these theories.
Stronger claims regarding the validity of ATN's per se as psychological
mechanisms require additional assumptions regarding processing costs and

limitations which we are not currently prepared to defend.

Protocol Analysis 1.18 Miller & Goldstein

2.‘ An Example of Protocol Analysis as Parsing

.1. An Example Problem Solving Protocol
.2. Structural Description

.3. Semantics

.4. Pragmatics

NN N

An analogy to computational linguistics has been fruitful both in-
defining the objectives of analysis and in designing the PAZATN system for
automating the analysis process. The analogy suggests partitioning analyses into
syntactic, semantic, and pragmatic components. These components correspond to
the potential control paths, data flow, and branching conditions of a procedural
problem solver. From a problem solving standpoint, these are modeled by the
network of states and arcs, the registers, and the transition conditions of the
augmented transition network. From a protocol analysis standpoint, syntax is
represeknted as a ’parse tre‘e;k sgmantics and pragmatvivcs are represented as
annotation (variables and assertions) associated with each node of the parse
tree.

This chapter4presents a SPADE interpretation for a typical WISHINGWELL
protocol. Book II provides a hand-simulation of PAZATN generating this

interpretation.

2.1. An Example Problem Solving Protocol

Since analysis consists of the selection of a PATN plan derivation,
analyzing a protocol identical to PATN's default solution (figure 1:8) is
trivial. Hence, a different protocol, involving a variety of plans including

reformulation and repetition, serves as our example.8

Protocol Analysis

1.19 Miller & Goldstein

The student begins by writing an iterative procedure to draw the

sSquare WELL.

EO1
E02
EO03
E04
E05

?TO WELL

>10 REPEAT 4 [20 30]
>20 FORWARD 100

>30 RIGHT 90

>END

A superprocedure for the WISHINGWELL is defined by a sequential
plan drawing first TREE, a previously defined procedure, and

then WELL.

E06
E07
E08
E09

?7TO WW
>10 TREE
>20 MWELL
>END

The WW program is executed, producing figure I:9.

El0

WW

The program is edited to include an interface establishing the
proper relation between TREE and WELL.

Ell
El12
E13
El4
E15

?EDIT WW

>13 RIGHT 90
>15 FORWARD 50
>17 RIGHT 180
>END

2.2. Structural Description

The result of analyzing this protocol is a data structure, the

interpretation, consisting of syntactic, semantic, and pragmatic components.

The

syntactic component, diagrammed in figure I1:10, is the protocol's structural

description:

required to generate it.°

a parse tree representing the sequence of PATN arc transitions

Such structural descriptions capture one aspect of problem solving

behavior.

They provide a formal basis for answering questions regarding which

plan‘types were used, a topic which could otherwise be discussed only

intuitively.'” Their most direct application is to answering "how questions."

Protocol Analysis 1.20 Miller & Goldstein

TURTLE BEGINS HERE A& i

|
P | v‘ TURTLE ENDS HERE
i
‘ . ;

e e e

FIGURE I:9 WW AT E10 -- INTERFACE NEEDED

Miller & Goldstein

1.21

Protocol Analysis

MH ILNHJANLS Y04 NOILJIdOoSHAd TVENLONILS AILYIATI99Y

TaANT <

08T LHOIY¥ LT<
09 QIVMYOJA GT<
06 LHOIY €71<
iMM LIQ3E

MMe

iaANd<
TTIM 0¢Z<
dHIL 0T<
iMM OLé

iaNd<

06 ILHOIY Q€<

00T QIYMIOI 0Z<

[0€ 0¢] ¥ LvIamy 01<
iTTIM OLé

STdi
vTd
€1d
c1d

TTdi

0TH

294

AZEIBZHVm>HomqmmemEOUoMﬂmmmm

0TI TdN51J

bnqgaqg

6041
804

L ‘y
sTsoubeTp-Topon

Lod

Hﬁ@Olunzmlﬂwmwvﬁ

9041

S0di
vod
€0d
204

y/

1041

TIeOo-Iqus—I9sn

\,

.

T (T13M) eAToOg~

dor3Tyedex

pouryy

\:uu:%m,% ApYoYYD | (ATYL) SATOS—

9p

sTsoube1qg

(TTIdMx) SATOS—

TOdS-LNOD" * “ueTg - Jyoy-‘ -

ﬂﬂlA*mmme*v miomlH

Protocol Analysis A 1.22 Miller & Goldstein

Ql. How does procedure WELL accomplish a square?

“Al. WELL uses a repetition plan. The generic subgoal is a side.

Q2. How does procedure TREE accomplish a roof and pole?

A2. The roof and pole model parts were regrouped into a tree by a
reformulation plan. Procedure TREE was already in the answer
library, allowing an identification plan.

Still, the parse tree is an incomplete description: it does not indicate
the semantic relationships between subgoals or the pragmatic criteria governing

the choice of one plan over another.

» 2.3. Semantics

Semantic annotation is defined to be the values of semantic variables
associated with each node of the parse. These variables relate the plan to the
formal problem,model by recording the contents of the ATN's registers at the time

the node was generated. The following are typical PATN registers.

1. :PLAN is the hierarchically annotated program defined below the

current node, reflecting its state after dominated editing
events have been processed.

2. :CODE is the fringe of :PLAN.

3. :EFFECT is a description of the effect of executing the code
defined below the current node. Since the code may contain
references to undefined user procedures, :EFFECT may be
unassigned at a given node. For the elementary graphics domain,
this variable is called :PICTURE, and describes the picture
drawn by the program in Cartesian coordinates.

4. :MODEL is the set of predicates which :CODE is intended to

accomplish. For a correct program :EFFECT is an instance of
:MODEL.

5. :ADVICE is a list of planning suggestions generated by PATN arc
actions. For example, the linearization arc (see PATN's
conjunction node in figure 1:3) creates advice regarding both
the order in which subprocedures should be written, and the
order in which they should be invoked.

Protocol Analysis 1.23 Miller & Goldstein

6. :CAVEATS is a list of warnings for potential bugs generated by
PATN when heuristic guidelines are used in planning. For
example, if no interactions are detected when solving a problem
involving an unfamiliar domain predicate, it is possible that
the predicate actually give rises to interactions, but their
patterns have not yet been learned by the system. Hence,
:CAVEATS can be set, recording this potential bug, on the arc
transition fronm conjunction to sequential plans. This
information guides DAPR, PATN's debugging module, in subsequent
diagnosis. : '

7. :VIOLATIONS is the list of model predicates which are not
satisfied by the :EFFECT achieved by :CODE. This register and
:EFFECT are set by a performance annotation module designed by
Goldstein [1974].
Let us sample the values of the semantic variables at various nodes of
the parsed WW protocol. :MODEL for the top level SOLVE node was shown in

figure 1:7. For the INT-TW SOLVE node, :MODEL is:

The tree must be above the well, and the bottom endpoint of the
tree must connect to the midpoint of the upper side of the well.

In our LISP-oriented model language notation this is represented as:

(AND (ABOVE TREE WELL)
(EXISTS (P)
(AND (CONNECTED TREE WELL (AT P))
(EQ P (MIDDLE (UPPER (SIDE WELL)))
(EQ P (BOTTOM (ENDPOINT TREE))))))

)
This submodel reflects the reformulation of WISHINGWELL 1n§o a TREE and a WELL.
Typically, semantic annotation is relevant to answering "what

questions.” The above value of :MODEL for the INT-TW node provides an example.

-Q3. What is the purpose of lines 13, 15 and 17 of WW?
A3. Those three lines are in-1ine code interfacing subprocedures TREE

and WELL. The interface establishes connectivity at the
appropriate point, and causes the tree to appear above the well.

:VIOLATIONS at the PLAN node for WW provides another example.

Protocol Analysis 1.24 Miller & Goldstein

Q4. What is wrong with procedure WW when it is first executed (at
event E10)7?

A4. The necessary relations between the model parts TREE and WELL
have not been established: specifically, there is no point P
such that the tree is connected to the well at P, P is the

middle upper side of the well, and P is the lower endpoint of
the tree.

The :VIOLATIONS variable which mediates this answer is non-empty at the PLAN node

because the debugging which generates the missing interface has not yet occurred:
the English answer simply paraphrases its LISP value:

(NOT (EXISTS (P)
(AND (CONNECTED WELL TREE (AT P))
(EQ P (MIDDLE (UPPER (SIDE WELL))))
(EQ P (BOTTOM (ENDPOINT TREE))))))

2.4. Pragmatics

Pragmatic annotation is defined to be a record of the justifications for
selecting a given arc transition over its competitors, and constitutes an
hypothesis about the reasons for using a particular plan. REASONs are assertions
attached to each node of the parse. The REASON for using a particular plan in a
particular situation is an instance of the arc predicate leading to the ATWN state
Jor that plan, where the current values of the registers are taken into
account.'' For example, the reason that WELL was decomposed using a repetition
plan in the protocol 1s that :MODEL at that node was dgeneric.

(REASON (REPETITION E02)
(GENERIC (:MODEL E02))).

Pragmatic annotation is germane to answering "why questions."

Q5. Why did the student execute WW at event E10 -- did (s)he believe
the program to be correct?

A5. Probably the student expected bugs. A reasonable strategy 1is to
initially plan only for the main steps, with the interfaces
solved later by debugging. WW was executed at E10 in order to
discover what interfacing, if any, was needed.

Protocol Analysis 1.25 Miller & Goldstein

This illustrates the analysis of a procedure containing the rational bug
of constructing an incomplete plan.!? Debugging operations are analyzed by
postulating the application of some DAPR technique. The reasons for debugging
operations typically involve localizing or repairing the cause of some model
violation. The purpose of running the program at E10 was to perform model
diagnosis; this technique was chosen because the occurrence of two consecutive
mainsteps (with no explicit interface) implies that the plan may be incomplete:

(REASON (MODEL-DIAGNOSIS E10)
(AND (OPTIONAL (INTERFACE TREE WELL))
(MISSING (INTERFACE TREE WELL)
(:PLAN E06)))).

In this case, model diagnosis demonstrates the existence of violated predicates
for which no code exists: the plan is in fact incomplete. This is the reason
for the subsgquent editing:‘ repair of the incomplete plan by resuming planning
at the offending locale.

The reason for the completion plan in the editing episode (E£12
through E14) is to eliminate the violations by supplying the
missing interface between TREE and WELL.

(REASON (COMPLETE (E12 E13 El4))
(AND
(MEMBER
'(NOT
(EXISTS (P)
(AND (CONNECTED WELL POLE (AT P))

(:VIOLATIONS E10))
(EQUAL
'(EXISTS (P)
(AND (CONNECTED WELL POLE (AT P))
==))
(:MODEL (INTERFACE TREE WELL))) .
~ (MISSING (INTERFACE TREE WELL) (:PLAN E10)))).

The conjunction of predicates collectively called SEQ (on the arc from

conjunction to sequential) plays a role in the following example.

Prqtocol Analysis 1.26 Miller & Goldstein

Q6. Why was the invocation order {TREE WELL} used, rather than the
reverse?

A6. TREE ends at its bottom, a required connection point, resulting
in simpler interfacing for that ordering. If the TREE began at

that connection point, the reverse order would have been
preferable.

Here one of the SEQ predicates incorporates knowledge about the domain predicate
CONNECTED, that interfacing can be simplified if two subprocedures are invoked in

an order such that the endpoint of the first corresponds to a mutual connection

point. An instance of this rule becomes a pragmatic assertion of the SEQ node in

the parse.

The reason for preferring the {TREE WELL} sequencing is that
TREE ends at a required connection point of WELL.

(REASON (SEQ (E07 E08))
(AND

(EQ (POSITION :TURTLE (AFTER TREE))
(BOTTOM (ENDPOINT TREE)))

(EQ (POSITION :TURTLE (AFTER TREE))
(MIDDLE (UPPER (SIDE WELL))))))

A precise definition of a linguistic approach to protocol analysis has

been provided and a concrete analysis of this kind supplied. We now turn our

attention to the potential utility of the approach for constructing cognitive
models of individuals.

Protocol Analysis 1.27 Miller & Goldstein

3. Toward a Cognitive Model of the Individual

3.1. Tailoring the ATN to the Individual
3.2. Individual Differences and Overlay Modeling
3.3. Issues and Examples, and the Computer as Coach

3.1. Tailoring the ATN to the Individual

Advocates of computer-aided instruction point out that computers can be
used to tailor instruction to the needs of the individual. Yet little is known
about what it means to construct cognitive models of individual students, or
about how to use them in providing sensitive and effective automatic tutoring.
The SPADE theory suggests an approach.

SPADE confronts the problem of individual differences by considering the
possible ways in which the student's ATN can differ from that of an expert. One
error would be to have a variant of the optimal pragmatic arc constraints. More
serious would be to have missing or extra arcs. Even more serious would be to
have missing or extra states. Differences which can be formalized as alterations
to the topology of the ATN are manifested in the prbduction of a different set of
parse trees: PATN might be capable of some derivations not available td the
student, or vice versa. Differences in arc conditions or arc actions gfe
manifested by the selection of other than the optimal plan for a particular
problem situation, although the same repertoire of plans may be available.

These types of modifications, properly combined, can account for many
commonly observed weaknesses in student problenm solving. To demonstrate this
point, we present six examples of student weaknesses and the fashion in which our
modeling scheme is able to capture them. The examples are derived from informal

data collected in our prior Logo tutoring experiences.

Protocol Analysis 1.28 Miller & Goldstein

1. BASIC Syndrome: A student with prior programming experience in

the BASIC language never uses recursion. Problems for which

. iteration is awkward are solved only with difficulty; problems

.for which iteration is inadequate, such as drawing arbitrarily
deep binary trees, are unsolvable.

A deviant version of the PATN subgraph for repetition planning is
illustrated in figure I:11. The correct subgraph has an intermediate ROUND plan
state; the deviant version, missing this state and its associated arcs,
characterizes the BASIC syndrome. The student's repetition arc bypasses the
ROUND state, short circuiting the ATN to pursue the iteration option with no
possibility_of recursion. In general, failure to employ a full repertoire of

planning options can be modeled in this fashion: the short circuit is postulated

to occur at the node immediately prior to the least common superset of the class

of unused plahs.

2. Discontinuity: A Studént fails torbuild upon previous work,
never taking advantage of relevant existing procedures. Each
new picture to be drawn is treated as an isolated problem, and
recurring subproblems are repeatedly solved afresh.

PATN can accomplish identifications using either primitives or previously
solved problems. Discontinuity amounts to examining the primitive library only.
This is modeled by the absence of the corresponding predicate on the arc from
PLAN to IDENTIFY. A similar but more subtle case would be a student that
occasionally uses previous solutions, but not as often as PATN predicts. This
indicates that the identification network is probably intact, but parts of the
reformulation subgraph are missing. Such a student fails to notice the relevance

of previous problems because they are described in slightly different terms.

Introspection suggests that this is a common source of difficulty.

Protocol Analysis 1.29 Miller & Goldstein

"short circuit"”

\
/
| 1TERATION

7 N\ -
\\ / v
\ | \
REPETITION = — - — - - 3 ROUND]
/ {
7 I~
/ b / -
AN —~ ~
‘—""‘;r’ \'\-_// T / \\
Y
| RECURSION]
/
~ /
Dotted lines are missing arcs. ~—

Dotted circles are missing states.

FIGURE I:11 DEVIANT ATN SUBGRAPH FOR REPETITION PLANS

Protocol Analysis 1.30 Miller & Goldstein

3. Diagnosis Avoidance: A student performs well in planning and
defining prograns. However, when a bug occurs, the student
falters. Rather than systematically localizing the underlying
cause of the error, followed by repair, the student immediately
begins to edit the program. The changes are haphazard and
counterproductive, creating more bugs than they eliminate.

Relative to the DAPR debugging ATN, diagnosis avoidance is a weakness
wherein the student has an extra arc not present in the expert. Whereas DAPR
cannot proceed to the REPAIR state without first passing through DIAGNOSIS, the
student is modeled as having an undesirable extra arc bypassing this state
(figure I:12). This allows diagnosis to be (incorrectly) treated as optional.

4. Syntactically Unstructured Code: A student never uses
subprocedures, instead relying entirely on in-line code. This
results in long, unreadable programs which are difficult to
debug. Often the student forgets which subgoals have been
solved, or forgets how previously solved code segments work.

Few projects are successfully completed.

PATN's use of subprocedures is governed by register setting actions
associated with the sequential refinement loop. This is the culpable locale for
& type of non-modular design we call syntactically unstructured code. Instead of
fir;t setting the :PLAN register to a sequence of subprocedure calls, and then
pushing for a solution to each in turn, the student apparently performs these
actions in the reverse order: first pushing for a solution to each subprocedure,
and then setting the :PLAN register to the concatenation of the popped results.
Note that this deviant ordering of arc actions requires far more intermediate
storage to keep track of recursive calls to the ATN: given a limited pushdown
stack, it is not surprising that the student forgets things.

5. Semantically Unstructured Code: A student mechanically begins
every Logo procedure with the PENUP command. Usually this works
out well, in preparation for a position setup. However, even

when the position setup is unnecessary, the PENUP is still used,
resulting in either: (a) a rational Jorm violation, in which

Miller & Goldstein

1.31

Protocol Analysis

SISONSYIA HNISSVJAAd HAVYODENS NIV INVIAZA ¢T:I HINDIA

eI3X9 STqeRITSOPUN

("TIAOW: dd0D: ILIIJYILNI)>SNOILVIOIA:

SISONDVYIA

dIvdadd

((((DOT N¥Id:) dILS SNISSINW)
(d41S TYNOILJO) dNVY)
(DOT daALS) SILSIXA)

—

ALATIWOOD

((((DOT NVTId:) dILS—ONISSIN)

((dFLS THAOW:)~ LNTHILYLS —TId0W TVNOd)
((DOT SNOIIVIOIA:) (INIWIALVLIS-TIAOW ALVOAN) WAGWIN) ANY)
: (00T ddLS INIWALVIS-TIAOW) SISIXH)

Protocol Analysis 1.32 Miller & Goldstein

the PENUP is followed immediately by a PENDOWN; or (b) one or
more missing model part violations, due to the invisibility of
vectors intended to accomplish main steps. (Solomon [1976] uses
the term cliché to describe this class of phenomena.)

Treating some optional constituent as if it is required results in a
second kind of non-modularity, semantically unstructured code. The particular
cliché just described, mechanically including PENUP commands, is mediated by the
linear decomposition arc. If this arc is modified to create position setup
subgoals without testing whether :MODEL actually requires such a setup, the
effect is to include a PENUP at the start of each turtle program.

6. Pragmatically Unstructured Code: A student who normally does
break large programs into subprocedures nevertheless encounters
numerous bugs, many of which are difficult to localize. The
subprocedures lack modularity, each being dependent on knowledge
of the inner workings of others. For example, interfaces are
included as part of main steps, so that the initial state of a

given procedure is determined by the final state of whichever
procedure happens to precede it in the planned order of

invocation.

While failure of a particular arc action to consider the problem at hand
results in semantically unstructured code, faulty arc predicates in deciding
among alternative arcs leads to a third form of non-modularity, pragmatically
unstructured code. The unnecessary construction of non-linear subprocedures is
attfibutable to either improper default ordering or malfunctioning predicates on
the arcs leaving the conjunction node. For example, the INTERACTIONS predicate
may not be imposing sufficiently strong conditions on accepting the model: th;s

leads to the addition of constraints on the subprocedures when no real non-

linearity is present.

Thus perturbations on PATN provide a deep theory of student weaknesses,

explaining unsuccessful behavior in terms of the syntactic, semantic, and

Protocol Analysis 1.33 Miller & Goldstein
pragmatic structure of the ATN.

3.2. Individual Differences and Overlay Modeling

Ve enyision inducing a model of individual idiosyncrasies as
perturbations of PATN by applying Goldstein's [1976] overlay modeling technique.
This approach describes individuals with respect to an expert problem solving
prograui hy associating probabilities with each decision point in the expert,
representing our state of knowledge about a given individual's preferences. The
prdbabilities are a summary of the available evidence rather than an integral
part of the model: at any given time, a process model is obtained from the
overlay probabilities by including those possibilities that are above threshold
and excluding those that are below.'® Goldstein and Carr [1977] use this
technique to infer process models of behavior in a logic and probability game
called WUMPUS.

This raises the question of whether all of the perturbations mentioned‘
above, including the alterations in ATN topology, can in fact be represented by
such an overlay, i.e., by a numerical plausibility table: it turns out that they
can. A missing arc can be handled by assigning it an priori transition
plausibility of 0. A missing intermediate state can likewise be represented by
the plausibility of the arcs leading to the unused states being 0, but the
plausibility of the arc to the "short circuited" state being 1. Similarly,
default orderings can be reversed by reversing their relative piausibilities.

This table driven organization allows distinguishing between personal and
archetypal ATN's. Archetypal ATN's are analogous to Winston's [1970] concept
‘models, and in fact our scheme for inducing personalized ATN's bears some
resemblance to Winston's learning system, except that our networks happen to have

procedural rather than structural meanings. Personalized ATN's are created from

Protocol Analysis 1.34 Miller & Goldstein

the archetype by thresholding over a particular plausibility table. This
simplifies the tunind and debugging of the system and eliminates the danger that
states or arcs added to model non-expert behaviors might degrade the performance
of the expert. The expert ATN is obtained by coupling the archetype with an
expert plausibility table. The entries for undesirable options are zeroes.

A firsi: approximation to the plausibility table for an individual can be
derived from the relative frequencies of arc transitions in previously analzyed
protocols. However, this ignores the semantic and pragmatic context. It could
be that infrequently used transitions were inappropriate for the tasks performed.
Consequently, this is refined by comparing the tallies to a record of the
expert's performance over the same set of tasks. (This technique, differential
modeling, is suggested by Burton & Brown [1976].) Naturally there will be
différences in individual protorcols because of arbitrary choices, but in the long
term consistent properties of the student's behavior should emerge.

Just recording arc transitions is still too crude. One should account
for differences in terms of the smallest chunks of malfunctioning knowledge which
can be isolated. As a second order cognitive model, the units of analysis are
taken to be the individual arc predicates and actions. The statistical evidence

can be used to differentiate which arc operations are malfunctioning or missing.

3.3. Issues and Examples, and the Computer as Coach

Two crucial ingredients are lacking in current uses of computers in
education: a cognitive theory describing the problem solving and learning
processes, and a pedagogical theory prescribing techniques to facilitate and
enhance these processes. As a result, many instructional applications of
computers are ad hoc, if not detrimental.

There are exceptions to these criticisms. The Logo project [Papert 1971]

Protocol Analysis 1.35 Miller & Goldstein

offers educational applications of computer fechnology suggested by a
computational aﬁproach to problem solving and learning. However, the
Justification for many Logo insights remains informal and intuitive. The current
work is an effort to increase the theoretical precision and experimental rigor of
Logo research. Other exceptions include the work of John Seely Brown's group
[Brown et al. 1974,1975; Burton & Brown 1976] on intelligent instructional
systems for electronics (SOPHIE) and elementary mathematics (WEST), and that of
Stansfield, Carr and Goldstein [Stansfield et al. 1976; Goldstein & Carr 1977] on
an advisor for WUMPUS. The WEST tutor suggests a paradigm, also used in NﬂHPUS,
in which issues (abstracted differences between expert aqd novice behavior) are
illustrated by concrete examples of their application to active learning
situations.

Given the cognitive modeling tools developed in this chapter, an issues-
and-examples Logo tutor can be cdntemplated. When PATN's expectations are
violated because of a difference between the expert and student versions of the
ATN, then that issue can be raised with the student. This would extend the
issues-and-examples paradigm of WEST and the computer-as-coach paradigm of
WUMPUS, not only by addressing a more difficult task domain, but also by
elaborating the notion of issues, from abstractions of empirically selected
features, to specific programmatic weaknesses.

The theory would also constrain the order in which issues should be
presented to the student. The topology of the ATN should be nearly right before
pragmatic arc constraints are discussed. Likewise, the general form of the
pragmatics should be correct before domain-specific arc critics are taught.
Although many subtleties arise which are not touched on here, the approach takes
a step toward theoretical foundations for computer tutors which provide

sensitive, flexible, individual instruction in problem solving skills.

Protocol Analysis 1.36 Miller & Goldstein

4. Notes to Book I

1. SPADE is an acronym for Structured Planning and Debugging. See
[Goldstein. & Miller 1976a,b; Miller & Goldstein 1976a,b,c].

2. More accurately, the session transcript is a partial protocol.
Considerable leverage is obtained by assuming that the dialogue occurs within the
confines of a small, well-defined response menu: natural language processing
need not be attempted. We recognize that thorough protocol analysis includes
parallel examination of the subject's utterances during the session, eye movement
data, retrospective accounts, and so on. Although our sole objective here is
analysis of the session transcript, we intend to corroborate our analyses using
these other sorts of evidence.

3. Miller & Goldstein [1976b] used a context free problem solving grammar
to extract the constituent structure of a student's Logo protocol. That paper
did not develop the more thorough view of analysis we describe in Book I of the
current report.

4. PATN is designed in [Goldstein & Miller 1976b]. It has not yet been
implemented. The use of present tense throughout this document in describing both
PATN and PAZATN is for readability only.

5. For efficiency, some states with similar topology are merged, and a
few additional arcs are added to provide for such features as iterative control,
when recursively invoking the complete system is unnecessary.

6. The figure adopts a parenthesized notation (which is formally
equivalent to that used in our earlier papers) to emphasize that predicate models
are just LISP S-expressions which can be evaluated.

At first these predicate models will be supplied by the experimenter.
Eventually we plan to construct a module to induce the model from a hand-drawn
tablet sketch. A significant undertaking itself, this would enhance the
practicality of automatic protocol analysis in the graphics domain. .

7. Generation of pragmatic assertions representing instances of arc
predicates is an elaboration of the basic PATN design, not presented in
[Goldstein & Miller 1976b]. These assertions, being directly computable by
examining the ATN's arcs and the semantic variables, are synthetically redundant,
but become important when analytic complexities such as irrational bugs and
personalized ATN's are considered.

8. The -example is a simplified hypothetical protocol not involving
careless errors such as mistypings. In other respects, however, it is typical of
student protocols for tasks similar to WISHINGWELL.

Protocol Analysis 1.37 Miller & Goldstein

9. The root of the parse tree is shown at the left; the leaves are to
the right. Some details are not shown: ellipses are indicated by three periods.
For clarity, some semantic information is included parenthetically: SOLVE(WELL).

Logo punctuation events are of minor importance in the underlying plan.
Although used as clues during parsing, they are not included in the structural
description. In the figure they are shown enclosed in exclamation marks:
'EO05 DEND!. _

Since the order in which subgoals are solved need not mirror their
execution order in the resulting plan, events need not occur in the parse in
temporal order. In the figure the events are shown in temporal order, but lines
are crossed.

10. To illustrate the insights gained from the analysis, we use a
scenario for a question-answering module which performs retrievals and simple
inferences over a database consisting of the analyzed protocol. We are confident
that the data structures generated by our style of analysis are sufficient to
support this type of interaction. However, we have not yet designed the
question-answering module per se; instead, we have concentrated on isolating the
relevant knowledge base. For readability, the questions and answers are stated
here in unrestricted English; for ease of implementation, the actual system will
be restricted to a formal query language.

11. It might seem that this definition of pragmatic annotation is
inadequate for protocol analysis, since a student may select the right plan but
for the wrong reason. The SPADE approach handles this circumstance by a separate
mechanism, personalized ATN's, to be discussed shortly. For ease of

presentation, the example uses the expert ATN as the basis for its REASON
assertions.

12. Although PATN's default solution to the wishingwell task did not
involve debugging, PATN is capable of rational bugs such as this particular
incomplete plan. When solving novel tasks, it is sometimes more efficient to
plan only for the main steps, with the interfaces being solved by subsequent
debugging. During planning, PATN notes those points where the plan is
incomplete; when a bug is encountered, this advice guides PATN's debugging
module, DAPR.

Not all rational bugs are incomplete plans, and not all bugs are
rational. Overlooking an interaction between subgoals is another type of
rational bug. Mistypings and mispellings are typical irrational bugs; our
approach to their analysis should be mentioned. The reason for such an event is
assumed to be the same as the reason for the correct version of the event, but
flagged by an additional assertion stating the nature of the mistake.

13. Of course, one can also use probabilities to model actual non-
determinism in the subject's behavior, but we do not consider that possibility
here.

Protocol Analysis 2.1 Miller & Goldstein

Book II: Automating the Protocol Parsing Process

5. Introduction to Book II

" 5.1. The CMU Series of Analyzers
5.2. Overview of PAZATN ‘

Book I developed the SPADE notion of protocol ar{alysis as parsing, but
did not indicate how parses are to be derived. Automating the analysis process
is d_e_sirable, because manual analysis is informal, tedious, error prona,' and not
amenable to incorporation into computerized tutors. Hence, this second book
| presents the design f_or PAZATN, an automatic protocol analyzer based on the SPADE
th-eory. As background for assessing the design of PAZATN, we first summarize the

features and limitations of a series of automatic protocol analyzers developed at

Carnegie-Mellon University.

5.1. The CMU Series of Analyzers

Much ground-breaking research in automatic protocol analysis has been
performed at Carnegie-Mellon University. PAS-I [Waterman & Newell 1972], the
first of three CMU systems, analyzes think-aloud protocols for cryptarithmetic.
PAS-II [Waterman & Newell 1973] is an interactive version which makes fewer task-
specific assumptions. SAPA [Bhaskar & Simon 1976] addresses the additional
complexities of Semantically rich task domains.

By focusing on the cryptarithmetic task, PAS-I obtains sufficient
leverage to completely automate the analysis process. The input to PAS-I is a
transcription of a tape recorded think-aloud protocol and its output is a problem
behavior graph. PAS-I operates in four stages, the first two of which occur

sequentially in time: 1linguistic analysis, semantic analysis, processing of

Protocol Analysis 2.2 Miller & .Goldstein

operator groups, and problem behavior graph geﬁeration. PAS-1 does not attempt
generality; for example, the linguistic analyzer employs a key word grammar
oriented to cryptarithmetic. Similarly, Process-Column is a typical operator.

| PAS-II reduces dependency on a single domain by requesting guidance. from
a human encoder. Task-specific knowledge is factored into a separate set of
rules; the domain independent part of the system amounts to a command language
or subroutine library to assist a human protocol-analyst. Moving from automatic
to interactive analysis may seem counter to progress. However, this
methodological contribution allows flexibility to incorporate the experimenter's
insight, while still imposing discipline on the encoding process. We intend to
construct an interact‘ive analyzer as an intermediate milestone in implementing
PAZATN.

SAPA, in cooperation with a human encoder, analyzes protocols in chemical
engineering thermodynamics. By considering a domain rich in background
knowledge, rather than puzzle problems such as cryptarithmetic, SAPA addresses a
complex riew facet of problenm solving. However, SAPA is highly domain specific.
For example, SAPA begins the analysis by asking for the form of the energy '
equation used by the subject. Thermodynamics problem solving is viewed as a
variant of means-ends analysis in which the energy equation plays a predominate
role.

When implemented, PAZATN will extend the automatic protocol analysis
techniques developed at CMU by complementing their features and limitations. On
one hend a PAZATN shortcoming -- its restriction to a small menu of responses --
is addressed by the considerable effort CMU researchers have invested in natural
language front-ends for protocol analysis. On the other hand, CMU has devoted
less attention to the investigation of planning concepts, a limitation addressed

by the SPADE theory. For example, the CMU theory does not provide a deep account

Protocol Analysis 2.3 Miller & Goldstein

of the origins.of planning errors in the PATN sense. Likewise, a practical
limitation of the CﬁU analyzers has been task specificity. 1In designing PAZATN
we have tried to minimize task specificity through modular design; this is made
possible, in part, by the highly structured underlying SPADE theory. However,
testing the generality of PAZATN by applying it to several domains remains a
research goal.! Finally, the elementary programming world to which PAZATN is
applied in this paper resembles thermodynamics in that background knowledge of

the domain plays a significant role in solving problens.

5.2. Overview of PAZATN

PAZATN is a scheme for matching a protocol to a PATIN plan derivation; it
can only understand protocols which PATN can generate.? Thergfore the analysis
could be performed, in principle, by trying all possible PATN solutions,
selecting the first which matches the data. Since exhaustive enumeration is
impractical, a primary consideration is efficient search in PATN's plan space.
Bottom-up protocol evidence is used for this purpose (figure I:1).

PAZATN consists of PATN supplemented by several additional modules and
data structures (figure II:1). This design incorporates three key ideas:

1. the use of the chart data structure [Kay 1973; Kaplan 19737 in
two distinct roles, both involving the need to economically

store alternative combinations of substructures;

2. the use of a lidbrary of domain-specific specialists for
processing events in various syntactic categories;

3. the use of best first coroutine search driven by a separate
scheduler -- with modules communicating by means of the charts
== to ensure early application of strong sources of constraint.
1. Two charts: One of PAZATN's charts, the planchart, keeps track of
subgoals proposed by PATN. PAZATN's second chart, the datachart, records the

alternative ways of associating protocol events with planchart leaves.

ller & Goldstein

Mi

2.4

Protocol Analysis

NIVZVA d0 WYIOVTA Y00 T4

[FIT 34NH14

— - —— — — — Pt

e i i P L¥VHIVLYg

' 10010%d

] " T T

O S S “)

1 r | %

' ! D e - 1517 !
I ! L - — {

il |

! I AIN _
|

| _ |

)) ‘

'

SHOTLV1IYdUILN]
(Wildvy)

ATHO M014 vivg = % -

MOTd VIVQ + TONINGD & <t——

Vivg =

14343

4 0 e 0 e

==

- —— -

— - - -

Y3134dNIN]

SISTTVIOHAAS INAAH """ ctvsvevnees

¥31NA3HIS 805532044344

S1N3A3
Q314ISSV1D

LYVHINYId

_...5

et ".I"l"llll'.'ll.ll!lllll'lll!'l

73004

Protocol Analysis . 2.5 : Miller & Goldstein

2. Library of event specialists: The syntactic classification of
possible events for a given domain results in a highly modular design. (ADDCODE
RUNCODE and END are typical Logo event types.) _For each event type PAZATN is
sqpplied with an ESP, i.e., a specialist for associating events of that type with
planchart leaves. Adapting PAZATN to other problem domains is possible by
replacing this library.

3. Best first coroutine search: PAZATN receives the model and protocol
as input. The model is a formal Statement of the problem as shown in figure I:7;
the protocol is a list of events as shown at the top of page 1.19. PAZATN's
output is a SPADE interpretation of the protocol as described in Book I: a parse
tree augmented by semantic and pragmatic annotation. At any given time during
. analysis, several partial interpretations will be active. The outer loop is a
scheduler which allows each active partial interpretation to examine one event
per cycle. For a given interpretation, events are processed in a single left-to-
right pass. At the end of a cycle the active set is re-chosen. This repeats

until at least one interpretation has processed the final event.

Analysis of a protocol proceeds as follows. First PAZAIN requests PATN
to generate its most plausible plan on the basis of the model alone. This plan
is inserted into the planchart. Next, protocol events are examined one by one,
matching them with subgoals in the PATN plan. Each match is recorded in the
datachart.

If an event is encountered for which no plausible match can be found,
PATN 1is asked to generate its next most plausible plan, now potentially
considering thg nature of the mismatch as well as the model. The planchart is
extended by insérting PATN's next plan. Those subgoals which are common to both

plans share the same structure in the chart.

Protocol Analysis ' 2.6 Miller & Goldstein

If an event is encountered for which more than one plausible match can be
found, the datachart records each such pairing in similar fashion. Each of these

is then allowed to continue examining protocol events according to the best first

scheduling algorithm.

Protocol Analysis 2.7 Miller & Goldstein

6. Simulating Automatic Parsing of the Example Protocol

1. Preliminary Generation of Expectations
.2. Modifications Based on Bottom-up Evidence
.3. Some Informal Observations

DO

This chapter is a hand-simulation of PAZATN on the WISHINGWELL protocol
introduced in Book I. Various components of PAZATN are introduced as they are

needed. Subsequent chapters provide details regarding these components.

6.1. Preliminary Generation of Expectations

The protocol parsing process is initiated by executing (PAZATW¥
WISHINGWELL WW), where WISHINGWELL is the model and WW the protocol. The initial
answer library is assumed to contain procedures for TRIANGLE and TREE.

Before PAZATN examings the protocol, PATN examines the model. Since
WISHINGWELL is not in the answer library, PATN determines that an identification
plan is not viable. Both decomposition and reformulation are possibie. since
they are applicable to any model.

PATN can determine, using lookahead, that reformulation results in an
identification involving TREE; for this particular protocol, this quickly leads
to a successfui parse. However, reformulations rapidly expand the search space,
so PAZATN adopts a conservative approach to reformulation: decompositions which
lead to a straightforward solution are preferred unless protocol evidehce
indicating reformulation is discovered. Consequently decomposition is predicted,
with three main steps: ROOF, POLE, and WELL. But since the decision is'
uncertain, a demon procedured® is created to handle the possibility that
decomposition fails to parse the protocol.

_ The model is examined for interactions. None are detected, so a linear

decomposition into subgoals is expected. However, sinc¢e required connection

Protocol Analysis 2.8 Miller & Goldstein

points occur at the midpoints of sides of WELL and ROOF, a non-linear subgoal
decomposition might be used for efficiency, to avoid retracing. As a result, two
demon procedures are created to check for WELL or ROOF sides being accomplished
in two steps. Such a plan is less likely for ROOF which can be identified with
the existing TRIANGLE.

The transitive ABOVE predicates suggest a sequential plan utilizing
either the order, {ROOF POLE WELL}, or the order, {WELL POLE ROOF}. There is no
basis for selection. Hence, PATN follows a principle of least commitment,
predicting the disjunction of the two invocation orders.

This application of the principle of least commitment is accomplished
using a chart? of alternative plan derivations called the planchart. The
planchart is similar to an AND/OR goal tree but involves a variety of node types
and shares substructures economically.b Figure II:2 illustrates how the two
equally likely sequences are represented in the planchart. As PATN generates
predictions, the required bookkeeping is performed by expanding this planchart.

Since the main steps for the two sequences are identical, they provide no
evidence regarding ordering. The interfaces provide the critical evidence, so
PATN solves the interfaces for one order, {WELL POLE ROOF}. Because the choice
is arbitrary, another demon is created to expand the {ROOF POLE WELL} order in
case the interfaces fail to match. Except that TRIANGLE is already in the answer
library, PATN has predicted the protocol of figure I:8.

‘ Besides predicting PATN's default solution, three arbitrary choices have
been flagged as likely failure points. If the specific discrepancy pattern
monitored by one of the three corresponding demons is detected, that choice will
be reconsidered. If non-specific mismatches are encountered, backup to other
decisions will occur in the usual way. Noie that most choices are not arbitrary

and have not been flagged. (This helps to avoid the usual inefficiency

Protocol Analysis . 2.9 Miller & Goldstein

OQCV
T—SOLVE (WELL)

7 SOLVE (INTERFACE 1)

OOCV

—SOLVE (ROOF)

T SOLVE (INTERFACE 2)

OOT

SOLVE (POLE)

SOLVE (WW) ——. CONJ ...—*¢SPLIT

[SOLVE (POLE)

—— SOLVE (INTERFACE 3)

SEQ —SOLVE (ROOF)

—SOLVE (INTERFACE 4)

—SOLVE (WELL)

FIGURE I1:2 SIMPLE PLANCHART FOR ALTERNATIVE ORDERS

Protocol Analysis 2.10 Miller & Goldstein

associated with pure backtracking control structure: "failing in all possible
ways.")

At this point, control passes to the bottom-up analytic routines.

6.2. Modifications Based on Bottom-up Evidence

PAZATN now attempts to interpret the first protocol event in a manner
consistent with PATN's default solution.
_ E01 ?TO WELL
EO1 is classified as a TO event -- Logo punctuation beginning a procedure
definition. The event specialist for TO events is called upon to assign the
event to some expectation.
PAZATN does not use mnemonic clues, and no significance is attached to

the student's particular choice of the name WELL.5 The TO specialist examines the

planchart (figure II:2) for candidate subprocedures. There are expectations for

the top level (WW), WELL; POLE and the two int’erfaces. The default solution
order is top-down, so EO1 is assumed to start WW. However, solution order is so
variable that other interpretations are plausible. Consequently the
interpretation splits into separate analyses for each.

Whereas the planchart is used to keep track of alternative expectations,
a second chart, the datachart, is used to keep track of alternative associations
between protocol events and expectations. PATN expands the planchart; PAZATN's
event 1interpreter expands the datachart. At any given time, some of the partial
interpretations in the datachart are considered to be active; the rest are hung.

For expository purposes, we will assume that only one partial
interpretation is active at a time. Rather than pursuing several alternatives in
parallel, we will merely record them in case the need to back up arises. Hence

after the split is performed, EO1 is assigned to be the TO for the top level

brotocol Analysis 2.11 Miller & Goldstein

procedure, WW. The parent node of this interpretation, a generator for
alternative interpretations of E01, is hung.
With E01 assumed to start WW, E02 is now processed.
E02 >10 REPEAT 4 [20 30]

This does not match the expectation for a definition of the top level WW
procédure. Therefore, backup occurs to the most recent split (at EO1). The only
alternative that can account for E02, that EO1 is the start of WELL, is activated
(figure II:3).

The protocol matches this new interpretation through E05.

E03 >20 FORWARD 100
E04 >30 RIGHT 90
EOS >END

Ambiguity arises at E06.
E06 >TO WW
Since ROOF can be identified with TRIANGLE and WELL has already been found, this
must be WW, POLE or an interface. The POLE and interfaces are apt to be solved
by in-line code; furthermore, top-down order is the default preference. Hence,
althoﬁgh E06 causes a split, WW is clearly chosen as the active interpretation.
Next, E07 is exahined.
E07 >10 TREE
Rather than matching WW's expectations for a setup or a call to WELL, E07
matches theldiscrepancy pattern for two active demons. One demon represents the
possibility that the {ROOF POLE WELL} order was used; this would require TREE to
be thé setup for ROOF. The other demon represents a potential reformulation
involving TREE. This second demon is highly specific for this evidence and is
therefore triggered. Control returns to PATN with a request for a reformulated

model in which TREE is a subgoal.

PATN regroups ROOF and POLE into TREE, and then expands for a solution to

Protocol Analysis

’E51=ww DEF'N

FIGURE II:3

2.12 Miller & Goldstein

EOl=WELL @
DEF'N

EO2=REPEATg
ACTIVE

DATACHART AT E02 OF WW

Protocol Analysis : 2.13 Miller & Goldstein

the revised model. When the sequential fefinement loop.is reached, the
{TREE WELL} invocation order is chosen immediately on the basis of known protocol
data. This need not have been PATN's choice from a problem solving point of
view: this decision is forced by the bottom-up evidence. Figure II:4 shows the
modified planchart.

After PATN has processed the reformulation request, EO07 can be
accommodated, as shown in the datachart of figure II:§. E08 is now examined. An
interface is expected.

E08 >20 WELL
WELL is known to be a previously solved mainstep, violating that expectation.
This is the standard pattern for an incomplete plan: an interface is expected
but instead the next mainstep is found. A demon for incomplete plans is always
active and is triggered by this situation. It passes control to DAPR which
generates debugging expectations.

Each remaining event matches a DAPR expectation.

E09 >END

El0 >7WW

Ell >?EDIT ww

El2 >13 RIGHT 90
E13 >15 FORWARD 100
El4 >17 RIGHT 180
E15 >END

Hence the parse succeeds. Figure II:6 shows the final planchart and datachart,

with marked nodes indicating the parse tree which is returned.

6.3. Some Informal Observations

We have hand-simulated PAZATN on about a half-dozen hypothetical
protocols. This informal exercising of the design has led us to a number of
tentative observations regarding PAZATN's capabilities. One question which

arises is PAZATN's flexibility to handle alternative solutions. We are confident

Protocol Analysis 2.14 Miller & Goldstein

~+++SEQ—- |- SOLVE (P1L5)1
&

© \
-SOLVE* (ROOF) y
\
—DECOMPOSE~ ++- —— |SPLIT N |
\ {
/
"SOLVE (RQOF)// ////

- ...SEQ—}SOLVE (POLE)

SOLVE (WW) — PLAN— SPLIT -SOLVE (WELL)

|
——REFORMULATE - ++*SEQ "‘{
|
!

-SOLVE (TREE) //
! /
/
/
/
(WELL) - ‘/

FIGURE IT:4 PLANCHART AT E07, AFTER REFORMULATION

Protocol Analysis

Miller & Goldstein

SPLIT

EOl1=WW DEF'N
8E01=WELL DEF'N

HUNG
¢E02=REPEAT
°
°
.
SPLIT
EO06="?
HUNG
EO6=WW DEF'N
EQ07=?

EO7=TREE CALL

HUNG ACTIVE

FIGURE II:5 DATACHART AT

07, AFTER REFORMULATION

Protocol Analysis 2.16 Miller & Goldstein

Planchart Datachart
—oantiart '——j‘ﬁr*
9§ 7

— DECOMPOSE EO1¢DEF OF ww) A<
HUNG

} E01=DNEF OF)
”WELL
//;////
/.
// ¢
\ °
SOLVE—-ese |SPLIT
E() : EO6=DEF OF ww

|

®* o O

SOLVE (TREE) — IDENTIFY. . . /
< s E07=CALL TO

PLAN 2] TREE
K p—sEQ — 1 HUNG
* ‘ 08 =
hi¢ |2 EO0Q CALL TO
-SOLVE(WELL)—DEC—REP...\\J 3dyS WELL
' $E10=
REFORMUL /MODET,
— REFORMULATE — DIAGNOSIS
N— =
X \
¢ E11;
El2 !
E13
E14 |
hat-4 - ElS !
A ,
MODEL Cta O“Isé'"““///
4 kN ..
) 4. X .
DEBUG ~REPAIR-COMPLETE - SOLVE { ITNTERFACE). . <:]3
3(

s/

Nodes mashed by "J{" arne paré of finat paxse.

FPIGURE II:6 FINAL PLANCHART & DATACHART

Protocol Analysis 2.17 Miller & Goldstein
thaf.the following types of variation can he handled:

1. subprocedures versus in-line code;
2. incomplete plans where interfaces are solved by debugging;

3. incorrect plans where interactions are overlooked by the student
(but known by PATN);

4. permutations of invocation or solution order;

§. standard reformulations (regrouping, generic-explicit
~conversion);

6. unnecessary nonlinear decompositions (accidental or for
efficiency);

7. non-standard default parameters (FORWARD 75 as the basic unit);
8. simple forms of equivalence (BACK 100 versus FORWARD -100);

9. common errors such as mistyping, or omission of a line number.
On the other hand, the following types of variation pose problems for PAZATN:
1. interleaving of lines from different procedures if errors also
occur in that a procedure is accidentally edited;

2. unrecognizable reformulations due to gaps in PATN's knowledge;

3. deliberately obscure code, or code involving many needless
operations;

4. equivalence transformations resting on subtle domain theorems;

§. fully general recursion including heterarchical procedure calls.

Another observation concerns PAZATN's efficiency. For the simple
protocols we have considered, after only a few false starts, PAZATN latches onto
a correct set of expectations regarding the student’'s overall plan. After that
point (which we would place at E08 for this protocol) interpretation of the

remaining events proceeds without incident.

Protocol Analysis 2.18 Miller & Goldstein

7. Organization of the PAZATN Protocol Parser

7.1. The Planchart

7.2. Representing Interpretations
7.3. The Datachart

7.4. Incremental Planchart Expansion
7.5. Markers and Marker Propagation
7.6. Preprocessing

7.7. The Event Classifier

7.8. The Event Interpreter

7.9. The Event Specialists

7.10. The Scheduler

In generating potential protocol interpretations, PATN is guided not only
by synthetic evidence derived from examining the model, but also by analytic
evidence derived from previously examined protocol events. If pfevious events
have established that the student is pursuing a particular subgoal, then PATN
. will-propose candidate solutions for that subgoal, even if it is not one which
arises in PATN's preferred‘plan. Likewise if previous events have established
thafuthe student is pursuing a particular invocation order, then PATN will use
that order in creating interfates, even if another sequence leads to simpler
interfaces. This sensitivity to the student's plan is accomplished by adding
additiohal predicates to PATN's arcs which access assertions in the current
partial interpretation.

This chapter presents the major PAZATN modules needed to use PATN in this

analytic role. Chapter eight refines the discussion presented here.

7.1. The Planchart

PATN is an intensional representation of the plan space; there are a
number of reasons for needing an extensional representation of the ATN process.
Consequently a complete trace of PATN's operation, the planchart, is maintained.
One reason for creating this data structure is to avoid repetitive calculations,

but additional uses for the planchart will appear in the course of the

Protocol Analysis 2.19 Miller & Goldstein

discussion. (Figure II:4 shows an example planchart from the analysis of WW.)

The planchart includes not only plans, but nodes of other types such as
-debugging episodes. As its name suggests, the planchart is a chart [Kay 1973;
Kaplan 1973], d network which compactly represents alternative combinations of
subexpressions. This economically represents PATN's partial solutions and their
hierarchical annotation. Rather than generating the entire solution space at
once -- which would be impractical even if it happened to be finite -- PATN
expands this planchart incrementally as additional possibilities are needed by
the analyzer.

Looking upward frdm a given leaf, the planchart resembles an AND/OR goal
tree. However, there are a greater variety of node types, rather than just AND
and OR. This allows the planchart to represent such concepts as whether
conjunctive subgoals need to be accomplished in a specified order, or whether any
order will do, allowing a greater variety of potential interpretations to be
expressed parsimoniously.

The analysis'process is closely tied to modifications of this data
structure. Inv pa'rticular, the structural description assigned to a protocol
corresponds to a pathway through the planchart starting from the root -- the top
level SOLVE node -- to the individual protocol events corresponding to a sub(s.et
ﬁf the leaves. The semantic variables and pragmatic assertions are generated by

PATN along with the parse, and are attached to the corresponding planchartA

6

nodes. Consequently, the structure building actions of the protocol parser are

performed entirely by PATN.

Protocol Analysis 2.20 Miller & Goldstein

7.2. Representing Interpretations

An interpretation of an event is represented as an assignment of that}
event to a leaf of the planchart (figure II:7). Similarly, an interpretation of
the protocol is a complete association list of such event assignments. A partial
interpretation is an association list containing assignments for a subset of the
events in the complete protocol.

Because of the chart representation of plans, individual events can be
assigned to a single leaf but remain ambiguous as to which plan they belong to.
The assignment captures exactly what can be concluded from the event: no more
and no less. All possible interpretations consistent with the data are carried
along.

In order to be assigned to a given leaf of the planchart, it is not
necessary for the protocol event to match identically. Data events are converted
to canonical form before assignment, so that equivalent forms (e.g., LEFT 90 and
RIGHT 270) are not distinguished. Non-equivalent assignments are also possible,
representing the analyzer's Judgment that the protocol event was intended to
match the planchart leaf but contains either errors, such as mispellings or
mistypings, or different default parameters where a range of values 1is

acceptable.

7.3. The Datachart

A partial interpretation splits when it proposes hore than a single
planchart assignment for an event. Some method for keeping track of the
analyzer's alternative partial interpretations is needed. It should take
advantage of the fact that, following a split, the event interpretations prior to
that split remain the same: the common ancestry should be preserved. Ideally

interpretations which agree on events both before and after a split should share

Protocol Analysis 2.21 Miller & Goldstein

Planchart Protocol

EO02 REPEAT 4[20 30]

— REPEAT 4
EO3 FORWARD 100
ee s SOLVE (WELL)—PLAN—DEC—REP— — FORWARD 100 E0O4 RIGHT 90
— SEQ—

— RIGHT 90

EO3 has been assigned to the planchart generic side for WELL.

FIGURE II:7 INTERPRETING AN EVENT

Protocol Analysis _ 2.22 Miller & Goldstein

the same representation for them; this is called a join.

The datachaft serves these functions. Like the planchart, the datachart
is a chart, so that it can economically store common substructure. Suppose that
two interpretations have identical assignments for the first M events, and then
split. The split corresponds to a single node having two descendants.
Assertions corfesponding to the shared part of the interpretation are
automaticaily inherited from the parent node (figure II:8).

) Whenever a low plausibility event assignment occurs the following actions

are perforned:

1. An assertion is added at the current node, indicating which event
assignment is about to be made. This ensures that the same
possibilities will not be repeatedly pursued.

2. A new node is sprouted, which will inherit prior assignments from
the parent node. This ensures that changes which reflect the
uncertain assignment will not affect the state information of
the parent node.

3. The uncertain assignment is performed at the new node. The
normal operations associated with event interpretation
(described below) are carried out.

4. The new node is placed on a list of NEW partial interpretations.
This ensures that it will be scheduled for at least one cycle of
further investigation.

5. The parent node is re-examined to determine if additional nodes
should be sprouted representing alternative event assignments.
If so, the above sequence of operations is carried out for each.
When no further alternatives seem worth considering at the
present time, the parent node is placed on a 1list of HUNG
interpretations. :

This technique has the feature that it is not necessary to explicitly
list all of the possible alternative interpretations for a given event. After
sprouting, the parent node no longer represents a single partial interpretation,
but an indefinite number of implicit alternatives to its current offspring. Even

after it is HUNG, the parent node contains the necessary state information to

Protocol Analysis 2.23 Miller & Goldstein

SPLIT

EOl=WW DEF'N % EOl=WELL DEFINITION

FO2=2 P E02=REPEAT
HUNG

E07=SETUP WELL EO07=TREE CALL

JOIN
EO08=WELL CALL

The hypothesis that E0l starts the definition of
WELL can be "seen® from the node for E08. Two
possible explanations of E07 can also be seen.

FIGURE I1:8 INHERITANCE OF DATA CHART ASSERTIONS

Protocol Analysis 2.24 Miller & Goldstein
generate additional possibilities if these are ever needed.

7.4. Incremental Planchart Expansion

Consider the situation in which an active partial interpretation cannot
find an acceptable planchart assignment for its next event. Two conclusions are
possible: either (a¢) the current partial interpretation is a dead end, and
should be moved to the HUNG list; or (b) the current partial interpretation is
viable, but the planchart has not been expanded sufficiently to account for the
current data.

This decision is crucial. If PAZATN is too miserly in allowing planchart
growth, an eveht could be mis-interpreted as a deviant version of an existing
leaf, when only slight growth would have allowed it to match a new leaf exactly.
But if PAZATN is too eager to expand the planchart, the number of irrelevént
solutions proposed could be enormous.

This decision is also very difficult, being complicated by the
circumstance that data events need not identically match planchart leaves: they
can differ because of postulated bugs or variant but acceptable parameter values
(such as scale factors).

Four techniques are germane to this decision and its complications.

1. Protocol events are converted to a canonical form. This allows
for handling simple forms of equivalence such as FORWARD -100
versus BACK 100.

2. Standard spelling correction procedures’ are applied to
unrecognized protocol events, using the fringe of the planchart
as a dictionary. This allows for handling simple mistypings and
mispellings.

3. A hash coding scheme uses the critical terms of an event (e.g.,
the FORWARD, but not the 100) as keys.® This allows acceptable
variants of events (e.g.,, those differing only by a scale

factor) to be located.

4. The neighbors of a planchart leaf provide expectations which

Protocol Analysis 2.25 Miller & Goldstein

influence the plausibility of event assignments to that leaf.
The next section describes a scheme for generating these
expectations.

7.5. Markers and Marker Propagation

A marker propagation technique helps in deciding whether to expand the
pPlanchart by providing a precise representation for expectations. Markers also
determine the final protocol parse by selecting a pathway through the planchart.
Assigningra protocol event to a planchart leaf marks that leaf. Three types of
markers are used: (1) a standard marker for events that match identically or
differ only in a flexible parameter value; (2) a distinguished marker for top
down DEFINED pléns prior to encountering the body of the subproéedure; and (3) a
distinguished marker for deviant events involving mistypings or similar errors.

A constituent is expected to the extent to which finding it results in
prppgggtions, where propagation through the planchart is characterized by rules.
such as:

MPR-DISJ. If the parent of a marked node is disjunctivg (i.e., a
split), the parent is marked;

MPR-CONJ. If the parent of a marked node is conjunctive (e.g., SEQ) and
every sibling of the marked node is marked, the parent is
marked.

The rules shown here are incomplete. Top down DEFINED plans, for
example, receive special treatment to ensure that after completing a
Superprocedure the expectations for 1ts subprocedures remain in effect.

As an example of the use of these rules, consider a bottom-up DEFINED
plan, where a éubprocedure is first defined and then called by a superprocedure.
After the subprocedure definition has been encountered, its use by sonme
Superprocedure is expected. The planchart would contain a marked SOLVE node for

the subprocedure and an unmarked USE node for its use in the other procedure,

Pro;ocol Analysis 2.26 Miller & Goldstein

bothhdominated by an unordéred conjunctive.'&' node (figure II:9). The USE is
expected because marking its node would result in a propagation at least as far
as the SOLVE dominating the DEFINED node.

Suppose that an expectation (such as the bottom-up DEFINED plan example)
fails to be satisfied after many events. One possibility is that the partial
interpretation which expects it is completely wrong, and should be abandoned. A
second possibiiity is that the partial interpretation is basically correct, but
the student has accomplished the expected effect in an alternative way (e.g.,
incorporated the subprocedure's definition in-line instead of calling it as
expected). This second case turns off the expectation, since it becomes
dominated by a marked node (figure II:10).

A third possibility is that the student accidentally left out the
relevant line of code. This is detected when protocol events indicate that the
episode is finished. 1In the Logo world this corresponds to encountering the END
Statement for the superprocedure. END statements force propagations even when
some expectations are not satisfied; but the plan is flagged as incomplete,
debugging expectations are generated, and the plausibility is lowered. If the
debugging predictions are then confirmed, the plausibility is restored and the
expectation considered satisfied.

Markers, as a representation for expectations, provide evidence regarding
the plausibility of interpretations, which is especially useful when planchart
expansion is under consideration. Typical plausibility guidelines include:

PLG-1. Event assignments that result in longer chains of propagations
are more plausible than those that result in shorter chains of
propagations or none at all.

PLG-2. Interpretations that leave few expectations unsatisfied are more
plausible than those that leave many expectations unsatisfied.

Protocol Analysis

? ?
e ¢ o SOLVE (*WELL*)———+ ¢« «DEFINED—_]
?

*

(already
marked)

X
[SOLVE (WELL)—= =«

?
USE (WELL)——v -«

Miller & Goldstein

A use of WELL is expected because it would cause
the propagations shown as?'s.

FIGURE II:9

DEFINED PLANS: AN EXAMPLE OF PROPAGATION AS EXPECTATION

Protocol Analysis 2.28 Miller & Goldstein

Planchart Protocol
TO WW
|
]
i
X |
—SOLVE (WELL) \
i
S :
&
fo@/ |
|
SOLVE (WW)—e ¢ «SEQ M/SOLVE (*WELL*) —{ & |
{
!
i
?
—USE (WELL)
N~ ST
) ¢ /] o
in-line code for well
._SOLVE(WELL)——\\\\\\ | pagisanitioag b
,\\J‘ - \- _/‘\\‘ ~~._/— N «.'/r/— \~~—/

END

This use of WELL is no longer expected,
since it is now dominated by a marked

node.

FIGURE II:10 EXPECTATIONS CANCELLED, DOMINATED BY MARKED NODE

Protocol Analysis 2.29 Miller & Goldstein

7.6. Prepfocessigg

PAZATN includes a preprocessor which performs four functions.

1. Low -level syntactic anomalies such as typographical errors
corrected using the RUBOUT and BREAK keys are filtered out;
only the corrected versions of such events are examined.

2. Low level segmentation clues are noted. For example, with raster
scan TV TURTLES [Lieberman 1976] global connectivity of vectors
is readily detectable and suggests a segment boundary.

3. Timing data are collected. This information may be of value in

testing psychological claims, and in some instances the

plausibility of an interpretation depends upon the elapsed time
between type-ins.®

4. The primary syntactic class of each event is recorded to avoid
recomputing it under each interpretation. Classification is
performed by a separate module which can be re-invoked if the
primary class is later called into question.

7.7. The Event Classifier

The event classifier, one of the few PAZATN modules which must be
redefined for each domain, contains the Syntactic knowledge necessary to
distinguish various domain-specific event types. For the programming world, the
eVent types include RUN events, EDIT events, and so on. In assigning an
interpretation to an event, a variety of semantic and pragmatic evidence is
ultimately considered by PAZATN, but the event classifier is restricted to
syntactic evidence.

The event classifier can be invoked in three modes. Normally it is
invoked by the preprocessor, with its input an event and its output the event's
primary syntactic class; for most events, this is sufficient. In the second
mode it is invoked by partial interpretations which question the primary
Syntactic class, with a specific alternative class being considered. Here its
input is an event and a class name; its output is a numerical score summarizing

the syntactic evidence supporting the alternative class. 1In the third mode the

Protocol Analysis 2.30 Miller & Goldstein

classifierA is invoked by partial interpretations which question the primary
syntactic class but with no specific alternative class under consideration. An
exhaustive rank ordered list of Categories and scores is returned.

Event classification will be performed using straightforward pattern

matching. No further details are given here.

7.8. The Event Interpreter

The event interpreter is responsible for category independent operations
of event interpretation. This includes the node sprouting sequence described in
the datachart section, the processing required for marker propagation, and the
plausibility computations. The rationale for grouping these activities is
modularity: they are required for every category of event interpretation.

The event interpreter is PAZATN's inner loop. It is invoked by th_e
scheduler with two arguments: a partial interpretation, and a protocol event.
Ikt attempts, in cooperation with one or more event specialists, to account for
the protocol event in the context of the partial interpretation. This can result
in the creation of additional (descendant) partial interpretations. Control

returns to the scheduler when event interpretation is complete.

7.9. The Event Specialists

A collection of domain specific event specialists (ESP's) are responsible
for category dependent operations of event interpretation. Each specialist
contains the requisite knowledge for analyzing events of a particular syntactic
type. The event interpreter invokes an ESP, in the context of a partial
interpretation, with an event and an implicit assumption regarding its syntactic
category. The specialist is free to assign any interpretation to the event which

is consistent with the category.

If the event specialist does not return with a sufficiently plausible

Protocol Analysis 2.31 Miller & Goldstein

event assignment, the event interpreter then considers the possibility that the
'syntactic category postulated for the event is incorrect. Whenever an event 1;
- interpreted as being in error, expectations for diagnosis and repair are
generated by DAPR at the request of the event interpreter.

ESP's use a decision tree organization to factor the analysis into
several cases. Each case represents an assumption about intent; if the
assumption is uncertain, the state of the interpretation is preserved by
sprouting a new datachart node. This is exemplified by the Logo ADDCODE ESP,
whose flowchart appears in figure II:11.10

The ADDCODE classification assumes that the current event is intended to
add a new line of code to the procedure definition. Hence it must be determined
‘whether Logo is actually in definition mode. If not, the following event will be
an error message. If the ADDCODE assumption is correct despite the error, the
current event will be repeated after a TO event.

Lookahead is required to assign the current event to be an erroneous
version of a later event.- However, in a real time tutoring application, the
later event might not have occurred yet; moreover, processling more than one
event would exceed the scheduler's resource allocation. This dilemma is resolved
by creating a demon to represent the current event assignment. The demon will
fire when the future event is assigned, assigning the now current event to be a
deviant version of the later event. |

In the case where Logo is in definition mode, ADDCODE branches to one of
the following subcases: (a) the added code is a turtle primitive; (b) the added
code is a Logo control statement (such as a recursion or iteration 1line); (‘c)

the added code is a call to a user procedure other than a recursion line.

Protocol Analysis 2.32 Miller & Goldstein

START ADDCODE
1
[
//~\/.

ASSERT ERROR

LOGO
IN DEFINE

MODE
?

1
N

RETURN DEMON
PROCEDURE

AN

DEFINEB\\\
ALREADY

RECURSION

REPEA
TURTLE

RUN RECUR

SR EIVE IRUN:REPEAT SPECIALIST
RUN \ SPECIALIST
SLPATN IF-THEN-ELSE
[[RUN COND
ROTATION PE SPECIALIST
VECTOR
ASSIGN TO
EXPECTATION
Y
. VISIBLE \ EXPECTING ASSIGN
? EW MAINSTEP AS
? IN-LINE
CODE
unknown

N
IThe flow of control is interrupted here“'"’

if plausibility falls below threshold.

FIGURE IT:11 FLOWCHART FOR ADDCODE ESP

Protocol Analysis 2.33 ’ Miller & Goldstein

7.10. The Scheduler

The scheduler's task is to cause partial interpretations which have a
reasonable likelihood of succeeding to make progress,'and prevent those that are
likely to fail from consuming valuable resources. Operationally this means
driving PAZATN through a best first coroutine search of the space of partial
interpretations.

The search is accomplished by maintaining three lists of partial
interpretations: NEW, ACTIVE, and HUNG. The scheduler cycles through the ACTIVE
list, allowing each item to process one protocol event. Then the plausibility of
each modified interpretation is recomputed, and the ACTIVE and HUNG lists are re-
chosen. NEW interpretations, which result from the splitting of ACTIVE
interpretations on the previous cycle, are then moved to the ACTIVE 1list,
guarantying them at least one quantum of processing. The plausibility of a
partial interpretation increases with each additional event accounted for. (This
acts to decrease the relative plausibility of older HUNG interpretations.)

This process continues until at least one ACTIVE interpretation has
processed the last input event without unsatisfied expectations. If the first
successful interpretation is not sufficiently better than every other candidate,
some of the better alternatives are pursued until they become implausible or

determine that the protocol may successfully be interpreted in more than one way.

Protocol Analysis 2.34 Miller & Goldstein

8. Refining the Protocol Parser

8.1. Lookahead

8.2. Least Commitment

8.3. Differential Diagnosis

Our basic protocol parsing scheme is to generate expectations with PATN

and then try to match these expectations to a protocol. This process is refined
by several techniques which have enhanced the effectiveness of problem solving
and language processing programs: lookahead (e.g., [Aho & Ullman 1972]), least
commitment (g.g;, [Sacerdoti 1975]) and differential diagnosis (e.g.,
[(Rubin 1975]).

8.1. Lookahead

Lookahead and least commitment are related search strategies designed to
avoid premature decisions based on inadequate evidence, which can result in
neediess backup. Lobkahead consists of briefly examining subsequent input events
before interpreting the current event.

PAZATN can accomplish a limited form of lobkahead by using demon
procedures to represent event assignments. When the current event»assignment
depends upon a future event assignment, a demon is created which will complete
the. current assignment when the missing evidence from the future assignment is

available.

8.2. Least Commitment

| vVariability in solution order exemplifies the need for avoiding premature
commitments. PATN always defines the top level plan before expanding
subproblens, represehting strict top-down problem solving (figure I11:12), but
human programming is rarely this uniformi When the need for a particular subgoal

has been estabiished, it may be expanded immediately, prior to completing the top

Protocol Analysis

Miller & Goldstein

FIGURE ITI:12

>END

A
SOLVE (WwW)
. ?TO WW
. ->10 ROOF
SEQ /////,////////>2o POLE
SOLVE (*ROOF*) o —>30 WELL
DEFINED ! >END
USE’//////// |
SOLVE(ROOFT::>~‘~\‘N~mhl:i-CiN(?TO ROOF
sl
SOLVE (*POLE*) | | >END
DEFINED |
USE -— i {210 POLE
SOLVE (POLE) .
_ . >/{4‘
) . { >END
SOLVE (*WELL*)
DEFINED | {270 WELL
USE * SRR
SOLVE(WELLt;:> | R

A TOP-DOWN EXPANSION FOR WISHINGWELL

Protocol Analysis 2.36 Miller & Goldstein

level plan, representing bottom-up problem solving (figure II:13).

Least commitment helps to minimize misleading mismatches between
planchart and'protocol resulting from different solution orders. This is
accomplished by using unordered conjunctive "&" nodes in the planchart. Thus
when DEFINED plans are expanded to USE & SOLVE, the SOLVE may occur prior to the
USE with no loss in plausibility.

The least commitment policy is applied to variability in invocation order
as well. When, as was the case with WW, more than one invocation order is
acceptable, the planchart is split. This parallels the use of procedural nets
[Sacerdoti 1975] to avoid overspecifying ordering constraints (figure 11:14).
The chart data structure allows the ambiguity to be represented without
significant additional cost: if the mainsteps are identical for both orders,
then two copies will not be stored.

Despite its virtues, though, least commitment could be overdone,
resulting in so large a disjunction of expectations that no guidance would be
obtained. PAZATN strikes a balance between overcommitting itself and refusing to
take decisive action: it avoids arbitrary choices in the course of a given
decomposition strategy, but adheres to a given formulation of the model unless

required to change it by specific bottom-up evidence.

8.3. Differential Diagnosis

The use of demon procedures to implement lookahead was discussed earlier.
Another use of'demons is to perform differential diagnosis, using highly specific
clues to distinguish between similar competing interpretations. The primary
application of differential diagnosis demons is to the choice between assignihg
an event to one of an existing disjunction of expectations, and reformulating the

problem description in response to bottomsup evidepce.

Protocol Analysis

SOLVE (WW)

Miller & Goldstein

?TO ROOF

SEQ
SOLVE (*ROOF *)
DEFINED
SOLVE(ROOF{?

.

>END

?2TO POLE

USE
SOLVE (*POLE*)
DEFINED
SOLVE(POLE{W

USE

SOLVE (*WELL*)
DEFINED

>END

?TO WELL

USE

A

FIGURE I1:13 A BOTTOM-UP EXPANSION FOR WISHINGWELL

>END

?TO WELL
>10 ROOF
>20 POLE

—>30 WELL

>END

Protocol Analysis 2.38 Miller & Goldstein

~
////// Clear A ,
Split Join
Put A on B
Clear B
/
Split
o :
\
) Clear B
Split Join Put B on C
Clear C

FIGURE II:14 A PROCEDURAL NET FOR BUILDING A TOWER
AFTER CRITICISM TO RESOLVE CONFLICTS

[BASED ON SACERDOTI, 1975, p. 15]

Protocol Analysis 2.39 Miller & Goldstein

To illustrate this, we présent one ekahple df a complementary pair of

demon templates. These templates can be instantiated to realize differential

diagnosis behavior in specific situations.

A. If the current code segment (or its picture) matches a
disjunctive subset of the current expectations, select that

subset.

B. If no expectation matches the current code . segment (or its
picture), consider a reformulation using the segment's effect as

~a subgoal.

Protocol Analysis 2.40 Miller & Goldstein

9. Conclusion

9.1. Recapitulation
9.2. Implementation Plans

9.1. Recapitulation

In this report we have investigated the problem of analyzing elementary
problem solving protocols. The result of this investigation is the design for
PAZATN, a domain independent protocol parsing scheme, which was applied to the
Logo graphics programming domain. Coupled with the Logo ESP's, the design was
sufficiently well-specified that PAZATN could be hand-simulated for a simple
example with encouraging results. The foundation for the approach was SPADE, a
linguistic theory of design in which problem solving is viewed as a structured
process of planning and debugging. This led us to the definition of an
intefpretation‘as a parse trge augmented by semantic and pragmatic annotation
associated with each node.

A key ingredient in the design is a machine problem solver called PATN.
PATN employs an augmented transition network to repreSent fundamental planning
concepts, including techniques of identification, decomposition, and
reformulation. Considerable leverage is obtained from PATN's ability to generate
successively léss preferable solution paths, by a series of pragmatically guided
planning decisions, as well as from PATN's characterization of certain bugs as
errors in these planning choices.

Qe found an analogy to computational linguistics to be fruitful,
providing insights into data representations and search strategies which are
characteristic of research in syntactic analysis [(Kay 1973; Kaplan 1973] and
speech recognition (e.g., [Lesser et al. 1975; Paxton & Robinson 1975]). For

example, the chart representation is used to economically store well-formed

Protocol Analysis 2.41 Miller & Goldstein

substructures. Lookahead, least commitment, and differential diagnosis are
example strategies used to refine PAZATN's search for a parse. These allow for
proceeding on the basis of reasonable assumptions when necessary, while retaining
the ability to modify the interpretation in response to anomalies.

The analysis procedure has been designed to obtain maximal advantage from
both top-down guidance from the task description and bottom-up protocol evidence.
Analysis proceeds by a best first coroutine search of a space of partial

interpretations. The planchart, a data structure resembling an AND/OR goal tree,

is used to keep track of expectations. By careful selection of the

representational scheme, this structure achieves considerable storage economy.
Partial knowledge of structure and of the status of expectations is recorded
using a scheme of planchart markings and marker propagations. The planchart is
incrementally expanded by PATN when existing expectations are inadequate in view
of the protocol data. A second chart, the datachart, is used to keep track of
the state of alternative partial interpretations.

Although PAZATN is not yet a working program, the design is sufficiently
specific so as to be hand-simulable. In hand-simulation, there is a danger of
unintentionally drawing upon knowledge which has not been isolated or formaliz'ed.
Care was exercised to avoid this pitfall, and the examples are encouragihg
evidence that the approach is fundamentally sound. Still, hand-simulation is not
seen as a substitute for implementation. The next phase of the research is to
implement and experiment with a prototype analyzer.

PAZATN is a generalization and extension of previous approaches. PAZATN
grew out of Goldstein's [1974; 1975] plan-finder for MYCROFT. The differences
are that PAZATN- (a) generates interpretations consistent with the recently
developed SPADE theory; (b) handles the wider range of event types necessary to

analyze protocols rather than finished programs; (c) takes advantage of the

Protocol Analysis 2.42 Miller & Goldstein

dynamic information in these additional event types regarding subgoal structure .
and deveiopment; and (d) is not limited to the Logo domain. The SPADE theory
developed from the MYCROFT theory of program understanding as well as related
work by Sussman [1973], Papert [1971] and Sacerdoti [1975]. [Goldstein &
Miller 1976b] argues that SPADE represents progress over this earlier theorizing.
PAZATN also complements the features and limitations of analyzers developed at
Carnegie-Mellon University. The major theoretical advance is a highly structured
model of program synthesis. The major practical advance is the modularization of
domain specific knowledge, which indicates that the PAZATN framework ought to be
applicable to a wide variety of task domains.

PAZATN is independent of the detailed form of the synthetic formalism:
it does not intrinsically depend on PATN being an augmented transition network.
It is only necessary that the synthetic component plan and debug by making a
series of pragmatic choices which can be summarized by the planchart data
structure, and that it be capable of generating not one, but an entire space of
progressively léss favored solution paths. Finally, an implicit assumption runs
throughout the analyzer's design that solutions can be decomposed into syntactic,
semantic, and prégmatic elements. It may be that any synthetic formalism
satisfying these constraints is trivially equivalent to an ATN. Such questions
are notoriously difficult to settle.

However, an important issue in the design is the breadth of the synthetic
theory. There are of course particular omissions such as conditional plans,
which have been deliberately -- but only temporarily -- ignored. The greater
thréat comes from the unknown. Even very young children display incredible
richness in their problem solving. Although SPADE's origins are partly
empirical, crucial phenomena -- perhaps those most in need of investigation -;

may have been overlooked. This remains a topic for investigation.

Protocol Analysis 2.43 Miller & Goldstein

9.2. Implementation Plans

There afe several ways in which an apparently sound design could fail in
implementation. The space of partial interpretations cou}d turn out to be very
large relative to the sources of constraint which have been isolated. The
var;ety of knowledge used by human programmers could greatly surpass our current
estimates. PAZATN's storage requirements could exceed practical bounds. The
analyéer could be too rash in its heuristic quest for efficiency, terminating
prematurely with unacceptable interpretations. Too great a demand could be
placed on PATN's ability to find reformulations encompassing bottom up evidence.
Hand-simulations or even partial implementations could overlook such impediments.

Consequently, complete implementation of a prototype system is essential
for validating the research. We intend to perform this implementation
incrementally, beginning with an interactive version. At first, only
straightforward bookkeeping functions will be automated. The computer will
record plans and event assignments using the two charts, but decisions regarding
which interpretations to pursue will be made by a human investigator. This will
be replaced by a version which performs the routine analysis of most events, only
requesting help on more difficult cases. Eventually, the analysis will be
handled completely by the machine. A modeling component for inducihg
personalized ATN's will be implemented, and its predictive power explored. To
demonstrate PAZATN's understanding of the protocols, a question answering module
using a formal query language will be constructed to operate over PAZATN's

output.

Protocol Analysis 2.44 Miller & Goldstein

10. Notes to Book II

1. [Brown et. al. 1977] includes a chapter indicating the direction of
our efforts to apply PAZATN to the symbolic integration domain.

2. The one exception to this is that some irrational errors (such as
mistypings) can be recognized as unsuccessful manifestations of PATN plans.

3. This use of demons is inspired by Charniak's [1972] work on story
understanding. Demons are a type of antecedent theorem [Hewitt 1972].

: 4. The chart data structure is due to Kay [1973] and Kaplan [1973].
Generalized AND/OR graphs [Levi & Sirovich 1976] are data structures similar to
our plancharts derived on the basis of independent formal considerations. We
think that, because of the extension from trees to charts as well as the
incorporation of a larger variety of node types, our plancharts are an
improvement over generalized AND/OR graphs along the dimensions of generality,
storage economy, and expressive power. '

5. We intend to provide PAZATN with limited heuristics for recognizing
mnemonic identifiers. However, relying on user chosen names for guidance in
general would be too unreliable. Hence, to emphasize that such guidance can be
dispensed with, we assume here that procedure names are unrecognizable. :

6. In assigning a protocol event to a planchart leaf, the type of event
and the value of :MODEL are considered, but the other semantic variables and the
pragmatic assertions are generally not considered. This is a simplification
which ignores the possibility for complex semantic and pragmatic ambiguities.
For example, two interpretations might be identical except for the value of
:ADVICE at some node. Although this difficulty seems unlikely, PAZATN could be
- elaborated slightly to handle it. Here we ignore the problem and show only the
Structure description and the name of the submodel in our diagrams. (The other
variables and the pragmatic assertions, being assumed unambiguous, are
suppressed.)

7. Interlisp [Teitelman 1974, pp. 17.10-17.14] provides such a spellihg
corrector. See also [Teitelman 1970].

8. Such techniques are in common use. See, for example, [Greenblatt et
al. 1967, pp. 806-807].

9. For example, if much more than the typical time elapses between the
type-in of two consecutive events, it is more plausible to interpret the second
event as initiating a new episode. A more specific example involves the frequent
errors associated with Logo line numbers. There are two such errors: (1)
failing to include a line number when it is needed; and (2) accidentally
including a line number when it is not needed. Consider the second. If much
more than the typical time elapses between the type-in of the line number and the
type-in of the remainder of the event, it becomes more plausible to interpret the
event as a buggy RUN event rather than a legal but inexplicable EDIT event.
Rather than storing every value, however, the preprocessor will accumulate
summary statistics, only recording the specific data for type-ins which are

Protocol Analysis 2.45 Miller & Goldstein

markedly slower than the average.

10. Information concernin

g other Logo event specialists as well as
additional parsed protocols will be

supplied by the authors upon request.

Protocol Analysis 2.46 Miller & Goldstein

References

[Aho & Ullman 1972]

Aho, Alfred V., and Jeffrey D. Ullman, The Theory of Parsing, Translation,

and Compiling, Volume I: Parsing, Englewood Cliffs, New Jersey, Prentice-
Hall, 1972.

[Bhaskar & Simon 19767
Bhaskar, R., and Herbert A. Simon, "Problem Solving in Semantically Rich
.Domains: An Example from Engineering Thermodynamics™ (draft of paper to

appear in Cognitive Science), Carnegie-Mellon University, C.I.P. Working
Paper 314, February 24, 1976.

[Brooks 1975]

Brooks, Ruven, A4 Model of Human Cognitive Behavior in Writing Code for
Computer Programs, Carnegie-Mellon University, Report AFOSR-TR-1084,
May 1975.

[Brown et al. 1974]
Brown, John Seely, Richard R. Burton and Alan G. Bell, SOPHIE: A
Sophisticated Instructional Environment for Teaching Electrontc
Troubleshooting (An Example of AI in cAI) (Final Report), Bolt, Beranek and
Newman, Report 2790 (Artificial Intelligence Report 12), March 1974.

[Brown et al. 1975]
Brown, John Seely, Richard R. Burton, Mark L. Miller, Johan DeKleer, Steven
Purcell, Catherine Hausmann and Robert Bobrow, Steps Toward a Theoretical

Foundation for Complex Knowledge-Based CAI (Final Report), Bolt, Beranek and
Newman, August 1975.

[Brown et al. 1977]
Brown, John Seely, Richard R. Burton, Catherine Hausmann, Ira P. Goldstein

and Mark L. Miller, Intelligent Tutoring Systems: Experiments and Theory,
Bolt, Beranek and Newman, ICAI Report 4, 1977.

[Burton & Brown 1976]
Burton, Richard R., and John Seely Brown, "A Tutoring and Student Modelling
Paradigm for Gaming Environments," in R. Colman and P. Lorton Jr. (eds.),
Computer Science and Education (Advance Proceedings of the Association for
Computing Machinery Special Interest Groups on Computer Science Education and
Computer Uses in Education Joint Symposium, Anaheim, Cal.), SIGCSE Bulletin,
Volume 8, Number 1} (SIGCUE Topics Volume 2), February 1976, pp. 236-246.

[Charniak 1972]

Charniak, Eugene, Toward a Model of Children's Story Comprehension.
Massachusetts Institute of Technology, Artificial Intelligence Laboratory,
Technical Report 266, December 1972.

[Chomsky 1965]

Chomsky, Noam, Aspects of the Theory of Syntax, Cambridge, Massachusetts, The
M.I.T. Press, 1965.

F

Protocol Analysis 2.47 ' Miller & Goldstein

[Goldstein 1974]
Goldstein, Ira P., Understanding Simple Picture Programs, Massachusetts
Institute of Technology, Artificial Intelligence Laboratory, Technical
Report 294, September 1974.

[Goldstein 1975]

Goldstein, Ira P., "Understanding Simple Picture Programs," Artificial
Intelligence, Volume 6, Number 3, Fall 1975.

[Goldstein 1976] :
Goldstein, Ira P., 4 Preliminary Proposal for Research on The Computer as
Coach: An Athletic Paradigm for Intellectual Education, Massachusetts
Institute of Technology, Artificial Intelligence Laboratory, Memo 389
(Logo Memo 37), December 1976. :

[Goldstein & Carr 1977]
Goldstein, Ira P., and Brian P. Carr, Overlays: A Theory of Modelling for
Computer Aided Instruction, Massachusetts Institute of Technology, Artificial
Intelligence Laboratory, forthcoming Memo, February 1977.

[Goldsteinv& Miller 1976a]
. Goldstein, Ira P., and Mark L. Miller, AI Based Personal Learning
Environments: Directions Sfor Long Term Research, Massachusetts Institute of

Technology, Artificial Intelligence Laboratory, Memo 384 (Logo Memo 31),
December 1976a.

[Goldstein & Miller 1976b]
Goldstein, Ira P., and Mark L. Miller, Structured Planning and Debugging: A
Linguistic Theory of Design, Massachusetts Institute of Technology,
Artificial Intelligence Laboratory, Memo 387 (Logo Memo 34), December 1976b.

[Greenblatt et al. 1967]
Greenblatt, Richard D., Donald E. Eastlake III, and Stephen D. Crocker, "The

Greenblatt Chess Program," Proceedings of Fall Joint Computer Conference,"’

Volume 31, Montvale, New Jersey, American Federation of Information
Processing Societies, 1967.

_[Heidorn 1975]

Heidorn, George E., "Augmented Phrase Structure Grammars,® Theoretical Issues
in Natural Language Processing, Cambridge, Mass., Association for
Computational Linguistics, June 1975.

[Hewitt 1972]
Hewitt, Carl, Description and Theoretical Analysis (Using Schemata) of
PLANNER: A Language for Proving Theorems and Manipulating Models in a Robot,
Massachusetts Institute of Technology, Artificial Intelligence Laboratory,
Technical Report 258, April 1972.

[Kaplan 1973]
Kaplan, Ronald M., "A General Syntactic Processor,” in Randall Rustin (ed.),
Natural Language Processing, Courant Computer Science Symposium 8
(December 20-21, 1971), New York, Algorithmics Press, 1973, pp. 193-241.

Protocol Analysis 2.48 Miller & Goldstein

[Kay 1973] .
Kay, Martin, "The MIND System," in Randall Rustin (ed.), Natural Language
Processing, Courant Computer Science Symposium 8 (December 20-21, 1971), New
York, Algorithmics Press, 1973, pp. 155-188.

[Lesser et al. 1975]
Lesser, V.R., R.D. Fennel, L.D. Erman and D.R. Reddy, "Organization of the
Hearsay II Speech Understanding System," in IEEE Transactions on Acoustics,
Speech and Signal Processing, Volume Assp-23, Number 1, February 1975,
pp. 11-24.

[Levi & Sirovich 1976]
Levi, Giorgio, and Franco Sirovich, "Generalized AND/OR Graphs, ™ Artificial
-Intelligence, Volume 7, Number 3, Fall 1976, pp. 243-259.

[Lieberman 1976] -
Lieberman, Henry, "The TV Turtle: A Logo Graphics System for Raster
Displays," Proceedings of SIGGRAPH/SIGPLAN Symposium on Graphics Languages
(Joint issue of SIGPLAN Notices & Computer Graphics), April 1976.

[Miller & Goldstein 1976a]
Miller, Mark L., and Ira P. Goldstein, Overview of a Linguistic Theory of
Design, Massachusetts Institute of Technology, Artificial Intelligence
Laboratory, Memo 383 (Logo Memo 30), December 1976a.

[(Miller & Goldstein 1976b]
Miller, Mark L., and Ira P. Goldstein, Parsing Protocols Using Probdlem
- Solving Grammars, Massachusetts Institute of Technology, Artificial
Intelligence Laboratory, Memo 385'(Logo Memo 32), December 1976b.

[Miller & Goldstein 1976¢] i
Miller, Mark L., and Ira P. Goldstein, SPADE: A Grammar Based Editor for
Planning and Debugging Programs, Massachusetts Institute of Technology,
Artificial Intelligence Laboratory, Memo 386 (Logo Memo 33), December 1976¢.

[Newell 1966]
Newell, Allen, On the Analysis of Human Problem Solving Protocols, Carnegie
Institut- -f Technology, Preprint of paper presented at the International
Symposium on Mathematical and Computational Methods in the Social Sciences,
Rome, June 1966.

[Newell & Simon 1972]
Newell, Allen, and Herbert A. Simon, Human Problem Solving, Englewood Cliffs,
New Jersey, Prentice Hall, 1972.

[Papert 1971]
Papert, Seymour A., Teaching Children to be Mathematicians Versus Teaching
About Mathematics, Massachusetts Institute of Technology, Artificial
. Intelligence Laboratory, Memo 249, 1971.

[Paxton & Robinson 1975]
Paxton, William and Ann Robinson, "System Integration and Control in a Speech
Understanding System," in American Journal of Computational Linguistics,

Protocol Analysis 2.49 Miller & Goldstein

Volume 5, 1975, pp. 5-18.

[Rubin 1975]
Rubin, Andee, Hypothesis Formation and Evaluation in Medical Diagnosis,
Nassachusetts Institute of Technology, Artificial Intelligence Laboratory,
Technical Report 316, January 1975.

[Sacerdoti 1975]
Sacerdoti, Earl, "The Nonlinear Nature of Plans," in Advance Papers of the
Fourth International Joint Conference on Artificial Intelligence, Tbilisi,
- Georgia, U.S.S.R., September 1975, pp. 206-218.

[Solomon 1976]
Solomon, Cynthia, "Leading a Child to a Computer Culture,” in R. Colman and
P. Lorton Jr. (eds.), Computer Science and Education (Advance Proceedings of
the Association for Computing Machinery Special Interest Groups on Computer
Science Education and Computer Uses in Education Joint Symposium, Anaheim,
California), SIGCSE Bulletin, Volume 8, Number 1 (SIGCUE Topics Volume 2),
February 1976, pp. 79-83.

[Stansfield et al. 1976]
Stansfield, James L., Brian P. Carr, and Ira P. Goldstein, Wumpus Advisor I:
A First Implementation of a Program that Tutors Logical and Probabilistic
Reasoning Skills, Massachusetts Institute of Technology, Artificial
Intelligence Laboratory, Memo 381, October 14, 1976.

[Sussman 1973]
Sussman, Gerald Jay, A Computational Model of Skill Acquisition, New York,
American Elsevier, 1975; and Massachusetts Institute of Technology,
Artificial Intelligence Laboratory, Technical Report 297, 1973.

[Teitelman 1970]
Teitelman, Warren, "Toward a Programming Laboratory,™ in J.N. Buxton and
B. Randell (eds.), Software Engineering Techniques (Report on a Conference
Sponsored by the NATO Science Committee, Rome Italy, 27-31 October 1969),
April 1970, pp. 137-149.

[Teitelman 19?4]

Teitelman, Warren, Interlisp Reference Manual, Xerox Palo Alto Research
Center, 1974.

[Waterman & Newell 1972]
Waterman, D.A., and A. Newell, Preliminary Results with a System For
Automatic Protocol Analysis, Carnegie-Mellon University, C.I.P. Working
Paper 211, May 1972. v

[Waterman & Newell 1973]
Waterman, D.A., and A. Newell, "PAS-II: An Interactive Task-Free Version of
An Automatic Protocol Analysis System," in Advance Papers of the Third
International Joint Conference on Artificial Intelligence, Stanford,
California, 20-23 August 1973, pp. 431-445.

Protocol Analysis | 2.50 Miller & Goldstein

[Winston 1970] -
Winston, Patrick H., Learning Structural Descriptions From Examples

Massachusetts Institute of Technology, Artificial Intelligence Laboratory,
Technical Report 231, September 1970. .

[Woods 1970]
Woods, William A., "Transition Network Grammars for Natural Language

- Analysis,"™ Communications of the Association For Computing Machinery,
Volume 13, Number 10, October 1970, pp. 591-606.

