MASSACHUSETTS INSTITUTE OF TECHNOLOGY =~
A.I. LABORATORY
‘Artificial Intelligence December 1976

Memo No. 396 Lo _ LOGO Memo No. 41.

”'“Tééchihé the Coﬁputer to Add: An Example of Problem-Solving in'an_

Anthropomorphic’Computer’Culture

by
Cynthia J. Solomon

Computers open up new ways to think about knowledge and learning.
Learning computer science should draw upon and feed these new
approaches. 1In a previous paper called "Leading a Child to a
Computer Culture" I discuss some ways to do so in a very element-
ary context. This paper is a contribution to extending such
thinking to a more advanced project. . : -

The research described in this paper was conducted at Massachusetts
Institute of Technology in the Artificial Intelligence Laboratory's
LOGO Group under the support of the National Science Foundation -
Grant No. EC40708X and at Boston University. ’ L '

Teaching the Computer to Add: iAn'Example of Problem-Solving in an

Anthropomorphic Computer -Cul ture
by Cynthia J.-Sotomon
The project of defining numbere and setting up the rulee of
“addition has been undertaken or discussed in elementary school math

classes, in college mathematical Ioguc classes, in computer science log'c

desugn. in egeteme programmlng courses and in child pegchologg courses, and
so on. In each case very different aspects of the pro;ect have been
etreeeedt‘ Here, we look at the project as an exampte of problem solving in

uhat ue have called an Anthropomorphic Computer Cu!ture. V | B
o ‘ Th:e paper describes hou to teach a computer to add numpers;

v "Teach?“. you mught sag. ”doee that mean program?" Yes, the paper
describes a programm)ng pro;ect and hou a student mnght develop it. So'lt
givee a model for developnng programs. But there is eomethnng else. .
Learning to add numbers is an experaence ue have all had. Ng model of
develop|ng the program uses ‘ourselves as an anthropomorphlc model for the
computer (a useful resource for etudent programmere) and the computer as a
model for us (a ueeful resource for evergone). The paper is reallg about

f uags to thtnk about: donng thse tuo thlnge at once. Hence its unorthodox

4 stgle. Nuch of it is in the form of a monolog which tries to reflect uhat

| goes on in my mind as I work on euch a pro;ect' at Ieaet that part of uhat
goee on uh'ch I uould offer to a begnnner as a model.

N In elementarg school kads are presented with "number facts" and

additlon facte . But they are deprived of a»most valuable and important

notlon: what it is like to make up a set of rujes, to define a domain

PAGE 2

under uhich theee rules can be consustentlg applied. Kids are not giVen a

. chance to eee the process at work, get a feel for the pouer of recursuon,

or get a sense of hou procedures are bullt up, debugged elaborated. The

-»klde are not helped to look for tPleS (or look at some "facts" or

technlquee as trlcke towards maklng problems easier to deal ulth) The

ldea that gou can develop gour oun set of heurletncs is a very umportant .

' contrlbutlon to your oun problem solvung abllntles.‘ Maybe an even more -

lmportant ldea is that of learnlng from mlstakes or "bugs" and developing .

debugglng technlquee. but in a uorld where everything is a "fact“ it is

hard to appreciate or get |nvolved ulth debugglng processes.

_ ThlB reactton mlght aleo _be encountered in recursive functvon
theory claeeee uhere the ldea of recursion is knoun. but its real pouer as
a problem solvung lnstrument is not felt and where the Peano axloms are

recelved as "facts“ (albeit formal proofe are |ntroduced) Students come

~out of the expernence as if they had undergone a sex of well proscrlbed ,

exercneee. Theg thlnk of recursion and |nductvve methods as hocue pocus.

E ‘ not eomethlng that is really practlcal but somethcng to be applled in verg‘

epecnal eituatlone lcke courses in recursive functton theorg or lnductxon'

They do not see the deep lmpllcatlons which thls rlch pro;ect offers them.

Of course, the case might be made for the overuhelmlng |

»dtfflcultg in glVlng kids a taste for debuggcng. heurlstlcs. procees.j

procedure ulthout the use of computers. But in mang computer courses, thle”
pro;ect le agann vueued verg narroulg as an exerclse. not as a way of
gaining lnsvghte |nto the nature of’lntelligence.

UWe present a different point of vieu; here, in thls.conputer'

PAGE 3

cul ture, ue_explore this project as a lggitimate research question. UWe
f:uill‘build our oun system, find our own way. He might drau upon personal
knouledge of number facts and skill algorithms.

A Vieu of'the Computer Cu&turé_

Computers open up new ways to learn about the development of
_knouledée and thinking.’vThe coﬁputerist-—the computer scientist-teacher-
mathematician-psgcﬁo}ogist-—can create a culture in which it'is possibie to
- obsérve gtudents engaéed in a Iearning process. We can éxpérimgnt ”ithf'

Ateaﬁhiﬁg'techniques aﬁd cohtent éreas., And thus, we can develop a combpter
cul ture Cohducive to léafning for a'fange of stUdent: from naive terkpert,>
- So we také a bare coﬁbdtér and énfiéh‘it Qith)anguages‘to taik in and
,'aftach.deviées_fike iuétles and musié_boxes 80 ue haye cchcrété things to'
do and talk with. : |
u One reason turt[és were introduced intovthis culture was to
concretize an ;nderlging ﬁéuristfc pfinéiﬁfe'ln pboblem4so|vfﬁ§--:'
anthroppmofpﬁiiéﬁ Make thé idéa COﬁe alive; be aqhéone-—élbeit~it iives
qnfg ﬁh'tﬁe mfﬁd. Talking to inénimate'objecés and thQs giving them life
is an impljcit batterh in our liQes; ue have tried‘tottuﬁn'if‘tp advantége
and make it ah éxﬁficit process. The fuftle uor!d jerne'example‘and A
éasilg fostefg the idea of deyeloping mental imagery fqr concrefizingvvvv
abétractions. But‘thtoughout this culture anthropomorﬁhisms éboﬁnd; ue_sgé
ithe COﬁputer,'fh; prqgraﬁ; fhe»debuggingrﬁgocéss. étc{ as people ué can
talk fdrandAtaik éﬁout.b We extend this even fufther.fo.imagihe-flittle
mgn; residing in theAcomputer and com;ng-élfveAtb éarrg outAé procedure,

then digappéaring.‘

PAGE &4

. LOGO, the programming language ueluee. is designed to encourage
anthropomorphlsms.‘ LOGO is procedural>and recursive. The imoortance of
having a procedural_language is oorn'out og our hgpotheeis that an’ |
eeaentlalraspect ot the grouth of our knouledge baee is the process of
-abeorbing local procedures into a hierarchical structure where only tne
- top—moet procedure is even recalled by name .or description.

We observe the development of our programs from one buggg state to
another. We feel ourselves learnlng from these bugs as we carefullg modi fy
tne brocedures so tnat_thelr behavior grous closer to‘ourrgoal state. As
our experience~increases ue see that some‘bugs afford us orilliant neu
, 'lnelghtedinto unexpected ways of achieving reeulte,‘ We begin:to_uatch'for

them, readg_to capitalize on bugs; Bugs are living creatures which we

':_ name, pamper;'ecold 'laugh at, laugh uith and learn from and enjoy.

Another anthropomorphlc influence on the programmvng language :

' deeign affected procedure names and variable names. - Their compoeltlon’has
i feu reetrtctuons and thelr e:ze can be longer than most people want to .
.tgpe. In thle anthropomorphlc computer culture naming is an lmportant
element. It helps to separate out and ndentlfg one procedure from another
. .and one bug’from another. ,Again._the explicit use of naming as a problem-
‘eolving'tool le recognized as an essential ingredlent. A flretvetep touard
- creative'development‘for beginners occurevuhen they make upitheir first
oroceduresvand in eo doing muet glve them‘names, This oarallel activitg
".can reallg be mind—blouing. The'etudent "teaches aAneu>uord“ to the
computer.- This pouer,'toldefine andvcreate.'tolgive meanings to words, is

. reemphaeized bg'the project described oelou. ‘The same feeling of pouer

CPAGE 5

7 offered to beginners in their firatiexperiences defining procedures is

reinforced even more strongly when as more'eophisticated students they

create procedures to add numbers.

Qiecueethg the Project

" In the next eeotione a stgle»of problem solving'is presented in
the context of‘de?elopino an actual program for addition. The style is
dtscurslve and reflectlve as I attempt to follou through the pro;ect as if
1 were doing it now while talking to you. V

The way the procedurea are constructed in thas paper reflects a

definlte style of probtem-solvnng. Rather than maklng a formal plan flrst

bg:floqtcharting’for example, I relg on a procedural approach uhlch |s more

.natural and ihtuitive.‘ Procedural thlnking and ln particular recursive

.thlnking in themselves encourage a etructurnng and planning out. Advace

Ilket Reduce the problen, eampllfg. do first uhat you knou hou to do,

defer probleme. try to I:mnt the-number of jObS any one procedure has to do

' eo that its role ls clear-—ls an act've part of the procedural development

~of a program.

" Here is an example of the kind of dsscuseton uhuch might occur

" withe etudente.

Farat of all Iet 8 remember He uant to make up an addttuon
operation so that ue can say

~PRINT ADD 16 532

and the cohputer will sag

- 548.

PAGE 6

Ne‘also have to remember that there are no arithmetic_operatore (helpers)

-avallable to us.

Hou do computers really add? Some people answer: it's in their

" harduare; it's built into the system; it's harduired. Is addition
“"harduired" into our system, are we like computers and so if a wire is

“loose we can't do it.

It le true that arithmetic is a very neceeearg part of any
computer] harduare, but the harduare is made up of "logical units"” uhnch

are based on the same ideas we wWill nnveetlgate.. "Well, could we do_

uithout arlthmetlc prvmctnves?" To the beg:nner it really doesn’t seem
- poeelble. It 8 Iike recursion you tell me addstlon is not prtmttlve but

‘emotionallg it just seems unthinkable. What about addntuon in chlldren.

Is it reallg a primltlve or are there pieces of knouledge uhnch are

:acquired. Maybe we are so famllcar with addltlon that we forget its
:componente. Yee. addutson le a familiar operat'on. But uhat if we had to
ltell a little man hou to add? Hhere do we start? MUe mlght ask ourselves
if we know of a similar experuence. Heg, ook what uevhave to do is "teach',

‘the computer" to add e-»;ust like we might teach a person! Well nou

teachere teach kids to add, we were once those kids. ‘hou did we Iearn - can

" we give ourselves eome tlpe (But I thought it was harduured and teacher

~juet..);

At this point in past dlSCUSSIOnS ‘tuo suggestnons emerge.
Teachere say we have to teach the computer -the ' number facts" and

computeriete eag we have to DUIId a 18 x 10 tab!e. Great I sag. a

“beginning. To the teachere I' ask hou do we teach the number facts and what

[

PAGE 7

are they and hou many ofAthem are there. To computer students | ask is a

. 18 x 18 table large enough and hou do we organize it. The teachers will

face these issues too, after all making a table is a way of "teaching"

number facts.

What kind of table and what are number facts. A table of the sums

" of the first 108 numbers is very limited and building a larger table is
-i still very limited. Is that uhat 1 have in my head. Isn't there a key

~idea or.tuo that I could build on uithout exheusﬁing the computer's memory.

-Is it the case that children learn "number facts" like 16 + 28 =

" 36 as a prlmittve notlon or is there a more prnmctuve :dea underlgung it
all. Nhat do kids learn about numbers. Theg |earn about thetr
frelationsh|p to each other. Theg learn to order them._ Sesame Street
‘teaches kids to count from 1 to 19 (and -nou to 20). ‘Let’s pick up on that

and teach the compputer to count.

| 'Counfing bg 1

A first description'df a pfocedure for counting might look Iike :

the follouing command:

TO COUNTUP :NUMBER
18 PRINT ADD! :NUMBER
END

. uhét He héve is a proceddre requireing one'inpuf, a number.,-CUUNTUPfe job'

13 to print the number folloulng this lnput. To do this. we knou, 1 must

'be added to :NUNBER 0f course, ue don't get know how to do that Job. But

He applg a pouerful heuristlc-—ue pretent we knou so that We can describe

hou_to count. That ie e imagine ue have aII the procedures ue ‘need to do

i. work. Thus

PAGE 8

the job. Hhat He are doung now is getting a feel for what those needs are,

then naming and llstong them, and then puttnng their detanls aside until

later.

 Actually we can temporarily "cheat" and define ADD1 to be

SUM 1 :NUMBER

“l.e,

7O ADD1 :NUMBER
18 OUTPUT SUM 1 :NUMBER
END

We uill replace this ”phoney"'aIQOrithm later!!

DIGRESSION: In LOGO there are 2 procedure types: commands and operatuons.
COUNTUP is a command, it does something but doesn’t send back a message.
ADDI Is an operatnon' it does eend back a message.

Nou He uant to reallg understand what COUNTUP does. One methcd ue

offer is to trace through the script of a procedure in the gu:se of Iittle

men. Set into paper-and-pencll action a concrete example of CDUNTUP at

COUNTUP 25 | - EFFECT

. -——%}g;% 26

 NUMBER is 25
18 PRINT 26

|

SPAN

Ne embel | ish LOGU with a knnd of meta-language nn urltlng out what is

happenlng. Ne use arrous to |nd|cate flou.

Nas this how you expected COUNTUP to behave? Not real ly. COUNTUP

-_'V'uas eupposed to contlnue countung. It was eypposed to

' jCDUNTUP ADDI :NUMBER

PAGE 39

and then COUNTUP ADDL ADDI :NUMBER
and then COUNTUP ADDL ADD1 ADDI :NUMBER

and so on.

We can look at thekproblem a little differently.
| The action is to take QNUNBER and
PRINT ADD1 :NUMBER - |
“then e uanfrthat same action to be perforﬁed
| ‘on ADDL :NUMBER and so on. | B
Uell, let's tell COUNTUP to do just ‘that. ué change COUNTUP,
10 COUNTUP :NUMBER | |
18 PRINT ADDl :NUMBER -
ggncounrup ADD1 :NUMBER

COUNTUP tells itself to COUNTUP. Good. Let's trace through this version.

PAGE 18

o
) EFFECT
COUNTUP 26 27
' > 28
' 5% 29
:NUMBER is 26
18 PRINT 27
- 20 COUNTUP 27>
. - =
-m:w“1‘f>w”wjvm'wwnqiiii® - <)
| :NUMBER is 27
18 PRINT 28 —
‘ COUNTUP 28
e
‘ . ; - - +NUMBER is 28
N i ety R . 18 PRINT 29
okég; CDUNTUP‘eeeﬁe to be’uorking uefl.: It is a eimple recereive procedure
which doesn’ t knou heu to stop by itself. MWe see the little men never
report back, theg never d:sappear. but remain fn a dormant state. Let 8 ZFK;J:‘
' change the script by extendung it to |nclude a descr:ptton of uhen the job
1s done and the process should be stopped,
To complete the descrtptnon e have to glve COUNTUP more
informatnon. another input. Thle second |nput could be an upper bound
'uhlch ¢NUMBER muet never exceed or it could be the number of ttmes the
procese ehould be repeated startlng from <NUMBER. The first way seems
| limiting and confuelngvtn poesnble situations like o

A - COUNTWP 1917

- where there would be no visible effect of COUNTUP doing angthfhg. "So we

PAGE 11

follou the aiterhate‘sogoestion. — :

- .Althouohrue could‘changeVCOUNTUP let's not. Instead uevuill make,'

a neu procedure. REPEATADD1, and glve :t 2 lnputs. |
TO REPEATADDI :NUMBER : TIMES

vlta’vieible action is the same as CDUNTUP's

! PRINT ADDI NUHBER

i except REPEATADD! is goxng to stop on its oun.

In deciding hou to describe the STDP rule, we Iook at various -
poeslbllitnes. We could use a cute programmlng trick based on the ' 'number

fact" that if we reduce 'TINES bg 1 each time the PRlNT action is taken ’

- sTINES uill eventuallg become B So ue could '

TEST TIHES - 0

and

IFTRUE STOP
Oh, ‘but we don t know hou to reduce by 1. MWe don t knou yet hou to

increaee by 1!' So let’s keep thne possab»l|tg in mlnd for later on when

Ma~uo have ploued though the uho!e ;ob. For nou, let's look for another

’method which ulll use onlg addvtlon.

DIGRESSION = is the lnfvx form of EQUAL used here as a truth-valued
identity operator not as a numeric "equals". By the way this special form
of conditional is very useful froma pedagogic point of view because it is a

more explicit statement of what is happening and eaeler to debug than
IF TIHES -8 STOP B :

Uell, of course. ue could conJure up a new specual:st which couunts up from

0 (lnstead of doun to 8) untll |t reaches :TIMES. Let’s call the

’ epec:a]net "COUNTER "It can be a third anput to REPEATADDI.‘_i

T0 REPEATADDI NUNBER TIHES 'COUNTER

v

Then

_inputs.

PAGE 12

18 TEST :TIMES = :COUNTER |
28 IFTRUE STOP :
otheruise o

38 PRINT ADDL :number

and nou turn the job over to the next little man, but give him the changed

" 4@ REPEATADDL
- ADD1 :NUMBER

¢ TIMES
ADDl s COUNTER

END

- DIGRESSION: A pfocedure Wwith 3 inputs!! It's Sfrikinglg cumbersome.r True

enough and we will alleviate the situation by creating a superprocedure.
But it is extremely important to see that there are 3 separate roles to the

_ Job, 'Bg_naming them we can talk about them.

: Nou let’s see our little men at work.

PAGE 13

EFFECT

24
25

REPEATADD1 2328
5§> é%%
:NUMBER is 23
:TIMES is 2

+COUNTER is B —
18 TEST 2 = @
| 28 IFTRUE —— -
T 38 PRINT 24
- 49 REPEATADD 24 21

:NUﬂBER
:TIMES is 2

sCOUNTER is 1 »
| | | IBTESTZ-I

Ve R - : ' 286 ——
' 38 PRINT 25
48 REPEATADDL 25 2 2

=0
%
" :NUMBER is 25
©:TIMES is 2
~ :COUNTER is 2 |
‘ 19.75572-2_
28 IFTRUE STOP

~

done

o ng DIGRESSION: This kind of "plaglng computer" rea!lg helps in debugglng and
- in general understanding the flow of a process. But it is personal, and
gou have to be the initiator to raallg apprec:ate the help

Nqu that REPEATADD1 works we can create a superprocedure to handle

PAGE 14

zCOUNTER let’s make CUUNTBYI -gerve that purpose.

TO COUNTBY1 : NUNBER :TINES _
10 REPEATADD1
' :NUMBER
- :+TIMES
_ END
Nouw we try it.

h counrevz 518

" Great!!

" Hey look, 51 + 8 = 59. Ue'reallg haVe’an adding machine!!.

There is a'broblem. The job isn't really done. | We reallg are x
onlg tnterested ln the final number not the intermednate ones, Ue might |
not aluags uwant to print the number. We uant to be free to decnde uhat to
- do wWith the result each tlme e set the procedure in motion. Stated in

LDGD terms we uant CUUNTBYI to be an operation not a command. Ue'uant

' COUNTBYI to eend back a message

TO COUNTBY1 : NUHBER s TIMES -
lB OUTPUT REPEATADD!
:NUMBER
: TIMES
, | '
'END : : . .
But, of course. for thfs change to uork REPEATADDI must be transformed lnto

an operation. Dkag. let's do |t

PAGE 15

Let’evlook at REPEATADDI as it nou is.

TO REPEATADD1 :NUMBER : TXHES s COUNTER
18 TEST :TIMES « :COUNTER
28 IFTRUE STOP
38 PRINT ADD1 NUNBER
48 REPEATADD1
~ ADD1 :NUMBER
: TIMES
ADD1 :COUNTER

Let's go through the script and see ‘what needs changung 80 that We can

convert REPEATADDI to an operatvon. There are 3 actions taken bg
REPEATADDI o |
1. when 'TIHES-'COUNTER ‘the procedure halts
2. a number is printed

»3. the job is repeated~on new inputs

.Let 8 decnde what changes need to be made in each case.

1. Instead of onlg haltlng when' the)ob IS done we want to send

. back :NUNBER. So

- IFTRUE OUTPUT :NUMBER
2. We no longer uant to prlnt. S0 Wwe can erase llne 38
3; In th«s case uhere the]Ob is repeated but with new snputs.‘it
is clear that the resul tant actlon is uhat needs to be output So
| 48 OUTPUT REPEATADDI |
ADD1 :NUMBER

t TIMES
ADD1 :COUNTER

,-Thie ie obvious but also hard for many people to accept after a moment s
reflection. Dh. the maglc of recursion!! Uell. it's not 80 magical. _Put

goureelf into the place of littie men. Plag computer gourself.

For example, imagnne you want to increase 17 by 1 So you give

the job to REPEATADDI

PAGE 18

REPEATADDI 1718

e

- tNUMBER is 17
¢ TIMES is 1

:COUNTER is @
10 TEST 1-8 (false)
28 ——

REPEATADDL 18 1 1

\3/%

" :NUMBER is 18
sTIMES is 1

:COUNTER is 1
19 TEST 1«1 rue
IFTRUE output™ |18

the message is

the message is 18

(j—;; there was no instruction telling uhat to do with the message a BUG would
~_have occurred causing the computer to exclaim 'What do | do with 18,

lt looks |ike we have an operation which will do the jOb. Of
course, the uhole process depends upon ADDI. It's nou ttme to look closélg

‘at what is needed there.

ADUA_Q‘; to a Number |
| Let’s add 1
18 +1 ---> 19
'- 276 + 1 ——=> 277
uhen He add 1toa number e reallg transform the Iast dcgnt of
the number. So what we uant is to take the number apart.
1 and 8

Then change. 8 to 9.

L Jhus

,‘elements '

PAGE 17

Then put the new number together.

1 énd 3

- This should be easg Let's call this input "NUMBER, 80

'WORD
"~ BUTLAST : NUNBER
DIGITADDl LAST :NUMBER

TO ADD1 :NUMBER
18 OUTPUT WORD
' BUTLAST :NUMBER
. DIGITADDI LAST :NUMBER
- . END
Notice we have changed the problem to one uhlch |nvolves onlg dlgnts--la

Adding 1 to a digit is simple. If the digi{ is B, then the Eesult

is 7. I¢ the dugrt |s g, then the result |s 1. So ue merelg follou

'_through on thts idea and we have a procedure.

T0 DIGITADDL :DIGIT
18 TEST :DIGIT - B
- 28 IFTRUE OUTPUT 1
38 IF. :DIGIT = 5 OUTPUT 6
58 IF :DIGIT=9 QUTPUT 18

.

DIGRESSION: Notlce we have to check for each digit and so it doesn’t .
matter in what order we check on the input's |dent|tg Not does it matter

'about the form of conditional.

ADDI 28 --o> 21
ADDL 346 ---> 347

lt'Todkéufike this.prdcedufe is,uofking!?_
) Let's try countbyl. |
COUNTBYL 8 7 ---> 15
© COUNTBYL 18 7 —-os 115

PAGE 18

_ huh ces uhat s th1s'
‘ COUNTBY]. 176 5 ---> 1711 .
Oh, no! We have a bug!! Look
 couTevi 176 5
should realllg be 181“not 1711, Oh, ha, I'ook. V It's a CARRY bug
B | '
should be 7+1. 1.e.. 8.
Dkag. let's look closely at what ADUI does when the last dcgit of its input
' Ie 9.
ADDL 9 ---> 18
; That's okag.
‘: ADD1 19 ---> 118
;Ugh!i"
: Buf nou ue knbu the bug. we can find a cure. MWe have to take
special action when the Iast diglt is 8. SoAV
TO ADDL NUHBER
18 TEST 9 = LAST tNUMBER
| 28 IFTRUE ,
‘uhat should be done? That 8 snmple;
' ADD 1 to BUTLAST :NUMBER

“and join that to B in place of LAST :NUMBER

I . .
'

PAGE 19

28 IFTRUE OUTPUT WORD
ADDL BUTLAST NUMBER
.
ond
38 OUTPUT WORD
| BUTLAST :NUMBER

e e o= oo DIGITADD1 LAST sNUMBER

END

The ultimate test might be -

ADD1 999 ---> 1888

 SUPERADD

v There is still a slight probiem. Imagine we want to add SS'and-

9998. Ue ulll need 1000 Ilttle men, all ‘alive although in a dormant state.

" That 8 tooo much both tlme-ulse and work-area-size-wise. To be practical
- ue,have“to reduce the amount of'udrk. ue can do that by applging the same

'.matﬁods'ue'used in ADDl. Change the problem to be addttnon of dnglta uhose.

reeults get concatenated together So

- T0 ADD :N1 N2
The p: count by one from LAST Nl- do it LAST :N2 times; do the same for

the rest of the dlgits in 'Nl and :N2- stick it all together. .

WORD ,

ADD BUTLAST :N1

 BUTLAST :N2

COUNTBY1 LAST :Ni-
 LAST N2

) Repeat this until either :N1 or :N2 is stripped of evergthing.k

Extensions

PAGE 28

38 TEST EMPTYP :N2

48 IFTRUE OUTPUT :N1

58 OUTPUT WORD
ADD BUTLAST :N1

: BUTLAST :N2
COUNTBY1 LAST :N1
i LAST :N2
- END

The pfoject is done in a sense, but it is not closed to
ektensioﬁs. For example. you. could reurite the procedures u51ng SUBTRACTI
as uell as ADD1. Better 8till, you could extend the domain to include

negative numbers or even dec:mais. Another dlrect|on to take is to make up

'other arithmetic operations like HULTIPLY or UIVIDE or extend thls to ‘any

base sgstem or build a modul ar arithmetic system, etc.

". Are there some number operations which must be bullt |nto the

-programmlng Ianguage at a more primitive ievei? ~The one that comes
ﬂimmediatelg to mind is CLOCK, an operation uhich reports on the ticks of

 the computera clock, Nhat about operations not restricted to numbers? o

| Hhich are realig primltive?

