- MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

~ ALMemo 399 December 1976

SYMBOLIC EVALUATION USING CONCEPTUAL REPRESENTATIONS

FOR PROGRAMS WITH SIDE-EFFECTS

AKINORI YONEZAWA
and

CARL HEWITT

ABSTRACT

Symbolic evaluation is a process which abstractly evaluates an program on
abstract data. A formalism based on conceptual representations is proposed as a
specification language for programs with side-effects. Relations between algebraic
specifications and specifications based on conceptual representations are discussed and
limitations of the current algebraic specification techniques are pointed out. Symbolic
evaluation is carried out with explicit use of a notion of situations. Uses of
situational tags in assertions make it possible to state relations about properties of
objects in different situations. The proposed formalism can deal with problems of
side-effects which have been beyond the scope of Floyd-Hoare proof rules and.give a
-solution to McCarthy’s frame problem. '

This report describes research done at the Artificial Intelligence
Laboratory of the Massachusetts Institute of Technology. Support
for the laboratory's artificial intelligence research is provided
in part by the Advanced Research Projects Agency of the Department
of Defense under Office of Naval Research contract N00014-75-C0522.

. INTRODUCTION

Our goal is to construct a software system called a Programming Apprentice

[Hewitt & Smith 1975) which aids expert programmers in various aspects of programming

activities, such as verification, debugging and refinement of programs. As its major
component, the Programming Apprentice has a very high level interpreter which abstractly

evaluates a program on abstract data and tries to see whether the program satisfies its
contracts (specifications). We call this process "symbolic evaluation” [Hewitt et al 1973,

Boyer & More 1975, Burstall & Darlington 1975, Rich & Shrobe 1975, Yonezawa 1975, King
1976). The main-purpose of symbolic evaluation is not simply to verify that implementations
meet their specification. Rather the purpose is to provide sufficient information for

answering questions about dependencies between progtam modules in order to understand
implications of the proposed changes in both specifications and implementations. Te
accomplish these purposes, symbolic evaluation must be based on an adequate coherent
formalism which consists of:

1) a formal language for writing specifications of modules (procedures or data structures)
which may change their behavior (side-effects) [Burstall 1972, Greif & Hewitt 1975,
Yonezawa 1975},

2) a formal system for reasoning in situations where side-éffects are involved, and

3) a formal language for expressing commentary about modules.

Since the Programming Apprentice should provide an environment where
programmers. can easily communicate and cooperate with the system in an interactive
manner, it is equally important that the formalism used in the Programming Apprentice
should be intuitively clear and easily understood by programmers. This paper describes a
formalism which attempts to meet these requirements »

Our research is closely related to the research on program verification systems
Previous program verification systems{King 1969, Deutch 1973, Igarashi London & Luckham
1973, Suzuki 1974, Boyer & Moore 1975, Good London & Bledsoe 1975, King 1976] have been
limited in their ability to deal with programs which change their behavior (side-effects)
because of the inadequacy of the formal systems on which these implementations were
based. Furthermore, previous reseatch on algebraic and axiomatic techniques [Hoare 1972,
Spitzen & Wegbreit 1975, Zilles 1975, Guttag 1976, Wegbreit & Spitzen 1976] for specifying
data-structures has concentrated on data-structures without side-effects. Although a
program with side-effects can sometimes be transformed into a program without side-effects
[Greif & Hewitt 1975], the transformation decreases efficiency and requires more storage.
" Also there is a certain type of side-effect in communication between concurrent processes
which is impossible to realize without side-effects. In the early sections of this paper, we will
present a new formalism which can deal with side-effects and discuss limitations of previous
work on program venr ication and algebraic (or axlomattc) specification techniques. Then

in the later sections, we will illustrate how the symbolic evaluation is carried in. our
formalism. :

2. CONCEPTUAL REPRESENTATIONS

In this section we introduce the idea of conceptual representations as an important

_part of our specification language. Conceptual representations can be used for specifying a

wide range of data structures at various levels of abstraction[Liskov & Zilles 1975) The
basic motivation of conceptual representations is to aid in providing a specification
language which serves as a good interface between programmers and the computer and also
between users and implementors. A "good” interface language should allow programmers to
easily express and understand their intuitive concept of a data structure and how it behaves
for various operations. In this sense the "language” of diagrams using boxes and arrows is
a very good language in which people can exchange their intuitive ideas, but it is ‘not
rigourous and unambiguous enough for the computer to understand without many hidden
assumptions. Conceptual representations can be viewed as a language which can express
graphical specifications of data structures. Different degrees of awareness about the

- implementation of a data structure are required in the different activities of implementing a

system such as the initial design, coding, and the subsequent evolution. Conceptual
representations should be flexible enough to express just the details that are important in

. each activities. In this section we give a simple example of the use of conceptual
representations.

Consider queues as an illustrative example. Programmers envisage a queue a
linear sequence of elements which are enqueued at one end and dequeued at the other end.
Suppose we have a queue consisting three eiements, a, b, and ¢, where a is its front element
and c is its last element. We can use the following notation for the conceptual
representation of this queue.

(QUEUE ab¢c)

To express a queue which has an indefinite number (including zero) of elements, the
notation: '

(QUEUE)

js used where Ix is an abbreviation of the "unpack” operation on x whose result is
equivalent to writing out all of elements denoted by x individually. For example, if x
denotes a sequence [b ¢ d], then the sequence [a] is equivalent to [a b ¢ d] whereas the
sequence [a x] is equivalent to [a [b ¢ d]]. Thus (QUEUE x) is equivalent to (QUEUE b ¢ d).
If y denotes an empty sequence [}, then (QUEUE Yy) is equivalent to (QUEUE) which is the
conceptual representation of an empty queue. More elaborate example are '

(QUEUE a 12) and (QUEUE 12 b)

which are the conceptual representations of queues with a as its front element and with b as
its last element, respectively.

A complete specification of queues is given by describing how a queue is created
and how it behaves when certain legitimate operations are applied. First, we specify the
 domains and ranges of the operations:

f1. create-queus: -==) queue

f2. enqueue: queue x item ---) queue

3. dequeue: queue ---> item x queue or error
t4. is-emply: queue ~-~-> Dboolean

The following is a formal specification of queues using the conceptual representations.
. cl. create-queue() = (QUEUE) |

c2. enqueue(_(OUEUE ix), A) = (QUEUE x A)
| ¢3. dequeue((QUEUE)) = ERROR: altompt-lo-doquouo-umpty_-quouo
cA, Hequeue((OUEUE A Ix)) = <A, (QUEUE x)

5. is=emply((QUEUE)) = true |

¢6. is~empty ((QUEUE A X)) = false’

Previous investigators have used algebraic and axiomatic techniques for the

formal specifications of data structures [Hoare 1972, Sptizen & Wegbreit 1975, Zilles 1975,

Guttag 1976, Wegbreit & Spitzen 1976). To compare it with our approach, we present an
algebraic specification of queues.

al. is~emply(create-queue()) = true

. a2. is-emply(enqueué(q. A)) = false
33. dequeue(create-queue()) = ERROR: atlempl-to-dequeuofemply-quauo
a4. if is-empt‘y(q) then dequeue(onqueuo(q, A)) = <A, @

a5. if -is-empty(q) A dequeue(q) = <B, q"
then dequeue(enqueue(q, A)) = <B, enqueue(q’, A)>

The above axioms are easily derived from our specification of queues based on conceptual
representations. (For the derivation of the axiom a5, see Appendix 1) We believe that
specifications using conceptual representations are often easier for programmers to both
write and understand than algebraic or axiomatic specifications. Because the conceptual
representation approach directly describes what effects take place in data structures (at the
conceptual level) when the operations are applied, whereas the algebraic and axiomatic
specifications describes the effects of the operations indirectly in terms of relations (or ’
equations) among the operations as illustrated in the above axioms al to a5. Such indirect
specifications are often difficult to grasp. Thus the author or reader of such an indirect
specification of a data type D tends to be less confident whether or not the specification
completely describes the desired properties of the data type D. Furthermore the current
algebraic and axiomatic techniques do not capture an important difference between data
structures without side-effects and data structures with side-effects. (This difference will be
explained in Section 3 and Section 4.) As we will see in Section 6, the specification technique
using conceptual representations can easily capture this difference.

Besides queues discussed above, conceptual representations of other simple data
structure such as cells and sequences will be used in this paper. More detailed discussions
and examples of the conceptual representations of more complicated data structures such as
sets, bags, arrays, lists, symbol tables, file directories et.c. will be found in {Yonezawa 1977].

3. ACTORS, PURE AND IMPURE

Since our symbolic evaluation is based on the actor model of computation [Hewitt
and Baker 1376, Greif & Hewitt 1975), we wili begin with a brief explanation of actors.

An actor is a potentially active piece of knowledge (procedure) which is activated
when it is sent a message by another actor. Actors interact by sending messages to other
-actors. Each actor decides itself how to respond to messages sent to it. An actor is defined
by its two parts, script and acquaintances. Its script is a description of how it should
behave when it is sent a message. Its acquaintances are a finite set of actors that it directly
knows about. If an actor A directly knows about another actor B, A can directly send a
~ message to B. The behavior of an actor can be roughly characterized by stimuli (messages as
data and questions) and responses (messages as answers). In the actor paradigm, the
traditional concepts of procedure and data-structure are unified. Furthermore variovus kinds
of control structures such as go-to’s, procedure calls, and coroutines can be viewed as
particular patterns of message passing [Hewitt 1976a]l. Thus a complete mode] of
computation can be constructed with a system of actors. An implementation of this model is
realized as a programming language PLASM A[Hewitt 1976b].

All actors are classified into two categories depending upon their behavior. Actors
which belong to one category never change their behavior. They are called pure actors.
Actors which belong to the other category are called impure actors and their behavior

may change with time. More precise definitions are as follows.
An actor is pure if it always gives the same response to the same message.

An actor is impure (not pure) if it does not always give the same response to the
same message.

From this definition, it can be said that a pure actor behaves like a mathematical function.
The only primitive impure actor we will use is the "cell”. A cell-actor accepts a message
(update: v) which updates its contents and a message (contents?) which retrieves its contents.
A cell-actor may change its behavior because it can give different answers to the (contents?)
message, depending upon what it contains at the moment. An example of a pure actor is a
sequence-actor. One can retrieve elements of a sequence-actor, but cannot change its
elements; instead a completely new sequence-actor must be created. So a sequence-actor is
pure. The notion of impureness of actors is closely related to that of side-effects in the
traditional programming languages. A typical example of "side-effects” is the effect of
updating components of a shared record. This type of side-effect can be viewed as the
change of behavior of actors which behave like data-structures. Cells do not make serious
trouble for program verification if sharing is not involved. But as will be seen in Section 5,
serious problems arise when impure actors which behave like data structures are shared
between actors. -

4. PURE QUEUES AND IMPURE QUEUES

In this section, we introduce a pure actor and an impure actor, both of which
behave like a queue. Using them as an illustrative example we discuss the problems of
previous work on program verification systems and formal specification techniques in
dealing with side-effects. (cf. Section 5)

Both pure queue-actors and impure queue-actors accept the same two kinds of
messages: one is (nq: x) which is a request to enqueue a new elements x, and the other is
(dq:) which is a request to take out the front element of the queue and return it with the
remaining queue. However if the queue is empty, it returns a complaint message
(exhausted:). The important difference between a pure queue-actor and an impure
queue-actor is whether or not a new queue-actor is created when (nq: ...) and (dq:) are sént.
When (nq: x) is sent to a pure queue-actor PQ, a new pure queue-actor PQ’ which has x as
the last element of the queue is created and returned. The original queue-actor PQ still has
the same elements as before. When (nq: x) is sent to an impure queue-actor IQ, x is
absorbed inside IQ and enqueued at rear of the previous elements. So IQ itself is extended
and returned. No new queue-actors are created. (See Figure 1) When (dq:) is sent to a pure
queue-actor PQ (which is not empty), a new pure queue-actor PQ’' whose elements are ail
elements of PQ except the front element of PQ is created and the front element of PQ and

the new pure queue—éctor PQ’ are returned. Again the original PQ is intact and has the
same elements as before. When (dq:) is sent to 1Q (which is not empty), then the front
element of 1Q and I1Q itself which now has the rest of the original elements are returned.
No queue-actors are created.

It might be helpful to see LISP analogy in understanding this difference between
pure queues and impure queues. Suppose that a queue is implemented as a list L. Then
sending (nq: x) to a pure queue-actor corresponds to (append L (list x)) whose result is a
totally new list constructed from a copy of L and x and sending (nq: x) to an impure
queue-actor corresponds to (nconc L (list x)) whose result does not consist of a copy of L.

Figufe 1

The two formal specifications of queues in Section 2, one based on the conceptual
representations and the other by algebraic specifications, do not distinguish the above
important difference between impure queues and pure queues. In Section 6 by slightly

extending the interpretation of the conceptual representations, we will give a specif icatio of

queues which captures this distinction.

5. SITUATIONS AND SIDE-EFFECTS

In order to deal with behavior that changes with time, we need a powerful
coherent formalism for specifications and reasoning. A general technique we employ to cope

with this kind of problems is to explicitly introduce a notion of situation[McCarthy &

Hayes 1969] into the formalism.

A situation is the local state of an actor system at a given moment. (If an actor
system has no concurrency, there is no distinction between the local states and the global
states of the actor system.) For example, the contents of a cell-actor C changes from time to
_time according to the update messages which have been most recently sent to C. Suppose that

in a situation S the contents of C is 3 and that C receives (update: 4) message in S. Then in.

the situation S’ after C receives the message, the contents of C is 4. (See Figure 2)

Fig'ure? 2

PN

By usmg a symbol S to denote a situation, we can refer to the contents of C in the situation
in the following manner:

{contents C) in S.

We call a symbol such as S, which is used to refer to a situation, a situational tag. In
the later sections, we will see how the notion of situations is used in writing specifications of
modules (Section 6) and in carrying out symbolic evaluation (Section 8, 10 and 12) where
side-effects are involved. In the rest of this section we restrict curselves to giving simple
examples of how the notion of situations is introduced into our formalism.

The previous work on formal proof rules and program verification systems[King
1969, Deutch 1973, Igarashi London & Luckham 1973, Suzuki 1974, Boyer & Moore 1975, Good
London & Bledsoe 1975] has difficulties in dealing with the problems of side-effects. To
illustrate such difficulties, let us consider the following piece of PLASMA program

(let ‘(quelje-l = (create-queus)) ;an emply queue is created and bound to queue-1
then .
(let (queue=-2 = (creale-queue)) . ;an empty queue is created and bound to queue~2
then

£ d

(let (queue-3 = (queue-l <= (nq: 2)))
s{nq: 2) is sent to queue=-1 (i.e. 2 is enqueued at rear o[queua=-1)
sand the result is bound to queue=-3

then

~ (queue=-1 <= (nq: 3)) (nq: 3) is sent to queue~1 (i.e. 3 is enqueued at rear of queue~-1.)
)

Suppose that a verification system is asked whether or not the length of queue-1 is equal to
that of queue-3 after the last statement. A usual way of answering this question is to find
out which queue-actor queue-1 and queue-3 refer to and get the length of each queue and
then compare each length. To do so, the system has to know at least the following things:

1) what kind of queue-actors are created (e.g. pure or impure), -
2) whether or not and how queue-actors are shared and
3) which queue-actors are affected by each event (i.e. message passmg)

Our formalism that uses the notion of situations can easily deal with this kind of
problem. Let S _, denote the situation after the last statement in the above code is
executed. The question whether or not the length of queue-1 is equal to that of queue-3 in
that situation is stated as follows: '

((length queue-1) is-equal (length queve-3)) in Spos‘.

10

By distributing the situational tag S ,. the same question can be stated in the following
two different manners: o

((length queve=-1) in S _) is-equal ((length queve-3)inS_ ') or

post post

(length (queue=~1 in Sp)) is-equal (length (quoue-? inS_ N

os t post

" Since situational tags allow us to relativize facts, relations between facts holding in different
situations can be easily stated in our formalism. For example, an assertion that the length of
queue-1 in Spo .t is greater than the length of queue-1 in the situation S'Dr , before the last

statement is executed is stated as:

((length queue-1) in'S_) is-greater ((length queue-1) in S'm)

post
This kind of assertion is quite useful to show the termination of progfams[Yonezawa 19751
Furthermore a question about the identity of the queues is easily stated as:

(queue-1 in S

post) 1520 (queue-3 in S ;")

We will see how our reasoning system deals with these statements in the later
sections.

6. CONTRACTS FOR IMPURE QUEUES AND PURE QUEUES

In this section we will illustrate how contracts for impure queues and pure queue
can be expressed in our formalism based upon the conceptual representations. We use the
term “contract” instead of “specification” to emphasize the fact that it is an agreement or a
“treaty” between implementors of a module and its users. Users of a module M should only
" rely on properties stated in the contract of M. On the other hand, when implementors
implement a module M, they need only satisfy the contract of M.(See Figure 3) In the
symbolic evaluation of a program which uses a module N, the system should only rely on the
properties of N which are derived from the contract of N. '

n

e a8 GO Ew s W e > o "> 02 "y > -

/ /
/ contract
/ / | /
/ / ! /
! user / - | implementor |
) / / /
Figure 3

Conceptual representations can be used to capture the difference between the
pureness and impureness of queue-actors. To do this the conceptual representation of

~ queues must distinguish the state of a queue-actor in a situation from its identity. Our

strategy for capturing the distinction between the pureness and impureness is to let the
conceptual representation describe the state of an actor in a particular situation. For

~ example, to state the fact that an impure queue-actor has elements a, b and ¢ in a situation S,

we use the following assertion:

(Q is-a (IMPURE-QUEUE ab¢)) in S
where Q represents the identity of the queue-actor and (IMPURE-QUEUE a b c) is the
description of the state of the queue-actor. In order to diff erentiate the ideniity of an actor,
the predicate "is-eq” is used. When there is a queue Q' such that

(Q' is-a (IMPURE-QUEUE abc)) in S,
it may or may not be true that

(Q is-eq Q).

A contract for impure queues includes specifications of events relevant to impure

: queue-a'ctors.’ (In the actor model of computation, a transmission of a message actor M toa

target actor T is called an "event” and is denoted by the expression (T <= M) borrowed from
PLASMA syntax.) In our formalism, a specification of an event is expressed in the
following form.

12

(event: (Ctarget-actor> <= <(message-actor)
(pre-conditions: ..<assertion)...)
(returns: <actor>)

(post-conditions: ..<assertion...))

This form states that if the assertions in (pre-conditions: ..)-clause hold in the situation
where the event takes place, then the assertions in (post-conditions:..)-clause hold in the
situation where the actor in (returns:..)-clause is returned (or sent to the continuatmn) It
should be noted that the above form guarantees the return of the actor.

Using this form, a specification of how an impure queue-actor is created is given
as follows

(event: (create-impure-queue <= [])
(returns: (new-actor Q))
(post-conditions: (Q is-a (IMPURE*QUEUE n))

When an actor creata-ampure-queue receives an empty sequence [} it returns a new actor Q
where Q is an empty impure queue. Since there are no pre-condxtxons for this event,
(pre-conditions:...)-clause is not used. The notation (new-actor Q) indjcates that Q is a newly
created actor which is not eq (in the LISP sense) to other actors ever created before.
(IMPURE-QUEUE) is the conceptual representation of empty impure queues.
A specification of the event where an impure queue receives a message (nq:..) is as
follows. ‘

{event: (Q <= {nq: A))
(pre-conditions: (Q is-a (IM PURE-QUEUE %x)))
{returns: Q)
(post-conditions: (Q is-a (IMPURE-QUEUE ¥ A))))

Note that the same queue-actor Q is returned and the state of Q has changed as asserted in
the (post-conditions:...). The specification of the event where an impure queue-actor receives
the message (dq:) is given in the complete contract of impure queues in Figure 4 below.
Besides specifications of events relevant to the actor concerned, what has to be

‘stated in contracts is the conservation of validity of assertiohs, from one situation to another
used in the specifications of events. For example, the validity of the assertion

(Q is-a (IMPURE-QUEUE a b ¢)) does not change after some other queue-actor QQ receives
(dq:) or (nq:.) messages. In other words, such-an event does not cause side-ef fects which
change the validity of the assertion. Also.the validity of this assertion does not change even
after an event where one of the elements of the queue, say b, receives some message,
‘provided that b is not the same actor as Q. To state this kind of .conservation of validity in
contracts, we'list all events which do affect the validity of the assertions using the conceptual
representation. This can be viewed as a solution to McCarthy’s frame problem[McCarthy &
‘Hayes 1969). In the case of assertions of the form: ’

13

Y

(Q is-a (IMPURE-QUEUF. ..)),

(Q <= (nq:..)) and (Q <= (dq:)) are such events. No other events affect the conservation of
the validity of the assertions using the conceptual representation for impure queues. This is
expressed in our formalism as follows.

(for-assertion: (Q is-a (M PURE-QUEUE...))
(only-affecting-events-are:

{Q <= (nq:.)) (Q<=Wda:)})

As will been seen in Section 8, 10 and 12, the reasoning in situations where side-effects are
involved depends heavily on how statements are affected by going from situation to
situation.

[contract-for (M PURE-QUEUE..) =

(event: (create-impure-queue <= []) '
(returns: (new-actor Q))

(post-conditions: (Q is-a {IMPURE-QUEUE))))

(event: (Q <= (nq: A))

' (prc—condmons (Q is-a (IMPURE-QUEUE %)))
(returns: Q)
(post-conditions: (Q is-a (IMPURE-QUEUE x A))))

(event: (Q <= (dq:))
(case-1:
(pre-conditions: (Q is-a (IMPURE-QUEUE)))
(returns: (exhausted:)) '

(post-conditions: (Q is-a (IMPURE-QUEUE))))

(case-2:
(pre-conditions: (Q is-a (IMPURE-QUEUE B Yy)))
(returns: {next: B (rest: Q)) :
(post-conditions: (Q is-a (IMPURE-QUEUE NN

(for-c;sscr-tiom (Q is-a (IMPURE-QUEUE..))
" (only-affecting-cvents-are: '
{(Q ¢= (nq:.)) (Q ¢= (dq:))} Nl
. Flguro 4

" In contrast to the above contract, we glve a complete contract for pure queues in

14

‘Figure 5.
[contract-for (PURE-QUEUE..) =

{cvent: (create-pure-quéue CH§))
(returns: {new-actor Q))
(post-condmom (Q is-a (PURE-OIJFUF »)

(event: (Q <= (nq: A))
(pre-conditions: (Q is-a (PURE-QUEUE)})
(returns: (new-actor Q'))
(post-conditions:
(Q' is-a (PURE-QUEUE !x A))
(Q is-a (PURE-QUEUE ¥x))))

(event: (Q <= (dq:))
(case-1:
~ {pre-conditions: (Q is-a (PURE-QUEUE)))
(returns: (cxhausted:)) ‘
(post-conditions: (Q is-a (PURE-QUEUE)))

(case-2:
(pre-conditions: (Q is-a (PURE-QUEUE B ly)))
(returns: (next: B (rest: (new-actor Q')))
(post-conditions:
(Q’ is-a (PURE-QUEUE ty))
(Q is-a (PURE-QUEUE B 1y)))))]

Figure 5

The important fact stated in the above contract is that every time a pure queue-actor
receives (dq:) or (nq:..) messages, a new pure queue-actor is created and that the state of the
original queue-actor does not change. In fact the state of each pure queue-actor never
changes after it is created, which implies that assertions about the state of pure queue-actors .
are always valid. Therefore the (for-assortions:..)-clause is not necessary in the contract for
pure queues. In Appendix I a contract for cell-actors is given in the same formalism.

It should be remarked that since the actor model of computatign serves as .he
underlying semantics of various programming languages such as SIMULA-67[Dahl et al
1968), CLUI[Liskov 1974, Schaffert, Snyder & Atkinson 1975), ALPHARD[Wqu 1974} and
SMALL TALKI[Learning Research Group 1976], these contracts are not biased by the
Tanguage in which implementations are written, because the contracts can be precisely
interpreted in terms of the actor model of computation.

15

7. A CONTRACT FOR EMPTY-ONE-QUEUE-INTO-ANOTHER

~ In this section we will give the code and contract for an actor which is supposed to
transfer elements (i.e. queuees) of one impure queue to another impure queue. This code
and contract will be used to illustrate the symbolic evaluation in Section 10. We present the
contract for this actor (Figure 6) before presenting its concrete implementation. Other
modules which use empty-one-queue-into-another below should rely only on properties that
can be derived from the contract given bellow. '

[contract-for empty-one-queue-into-another =

(event: (empty-one-queue-into-another <= [Q1 Q2])

(pre-conditions:
(Q1 is-a (IMPURE-QUEUE x1))
(Q2 is-a (IMPURE-QUEUE x2))

. (Q1 not-eq Q2))

(rcmrns (done: (emptied: Q1) (cxlomled QZ)))

(post-condmom :
(Q1 is-a (IMPURE-QUEUE)) :
(Q2 is-a (IMPURE-QUEUE %2 ¥x1))))]

Figure 6

Figure 7 below shows an implementation of this actor in PLASMA. 4
(<name>: <elementsd) is an expression which stands for an actor called a “package”.
Packages are analogous to records in some languages. Examples of packages in Figure 7 are
(dq:), (next:.(rest...)), (nq:.) and (done: (emptied:..) (extended:..)). A similar lmplementation
in CLU[Schaffert, Snyder & Atkinson 1975) is found in Appendix IIL '

i6

{6mpty-one-queue-into-another =

(=> [=q1 =q2] " ;two impure quoues are received by empty-one-queue-into-another
, : sand bound to ql and q2.

(rule; (q1 <= (dq:)) ‘ ' : ' sthe dequeuing message is sent to ql.
(=> (exhausted:) sif q1 is empty, the complaint message is received

(done: (emptied: q1) (extended: q2))) sthen emptied q1 and
‘ sextended q2 are returned.

(=> (next: =front-of-g1 sif q1 it not empty, the front element of q1 and
(rest: =dequeuved=-ql)) sthe remaining queue are received
sand bound to front-of-q1 end dequeued-q1.

(92 <= (nq: front-of-q1)) sfront-of-ql is enqueued at rear of q2.

(empty-one-queue=into-another <= [dequeued-q1 g2})) }))
" sdequeued-ql and q2 are sent to emply-one-queue-into-another.

Figure 7

, One should note that the implementation in Figure 7 crucially depends on the fact
that queue-actors referred to by ql and q2 are impure actors. If q1 and q2 are pure actors,
then every time (dq:) or (nq:..) messages are sent, a hew quetie-actor would be created, but qt
and q2 would still refer to the same queué-actors to which they originally referred.
Therefore after completing of the evaluation of empty-one-queue-into-another, the original
queue-actors referred to by q1 and q2 would remain intact, which would violate the contract
in Figure 6. Also note that if the original queue-actor refered to by ql is a pure queue-actor,
then q1 and dequeued-ql would always denote different queue-actors.

8. SYMBOLIC EVALUATION AND SITUATIONS

In this section we give an overview of symbolic evaluation. Also important rules
in our reasoning system, called trans-situational rules, are explained. As briefly
mentioned before, symbolic evaluation is a process which abstractly evaluates a module on
abstract data in the context of its contract. If the symbolic evaluation of a module M
encounters an invocation of some module N, then the contract of N is used to continue the
" symbolic evaluation. The implementation of N is not used! The purpose of symbolic
evaluation is to gather information for various purposes stuch as verification that the
implementation satisfies its specification, question answering for debugging, perturbation
analysis{Hewitt & Smith 1975], and refinement of the implementation. , L

In symbolic evaluation, the code of a program is interpreted step by step according
to either pre-defined semantics of language primitives or contracts of modules invoked in
the program. Each such step is triggered by the symbolic evaluation of an expression in the

17

code. The state of the program at each moment before or after such interpretation steps is
refered as a situation. The symbolic evaluator has a data base to record what events
happen, what facts ‘hold and what is assumed in each situation. Facts that hold in a
situation S are recorded as assertions associated with the situation S. Since the interpretation
of each expression is performed on abstract data, when a conditional expression is

_interpreted, the subsequent symbolic execution path must split in the usual fashion. For

example, consider the symbolic evaluation of
if (P x) then ... else ...

Af ter the symbolic evaluation of the expression (P x), the symbohc execution path splits into
two branches: one for then-clause and the other for else-clause. To start the subsequent

'symbolic evaluation, (P x) must be assumed for then-clause and ~(P x) for else-clause. If the

evaluation of (P x) has no side-effects, the assertions holding in the situation where (P x) is
evaluated are inherited for both clauses.

Symbolic evaluation can be viewed as a process which evaluates the code f orward; N

along the execution path and produces a tree structure whose nodes correspond to situations.
At each node of such a tree structure, assertions which hold in the corresponding situations
can be entered. We call this tree structure a situational tree. (See Figure 8.) The
assertions in the situational tree are used as the pnmary source of information for
answering questions about the implementation.

In what follows, we illustrate how a situational tree is used. In general questions
about a given situation are answered by reasoning backward to previous situations.
Suppose that the system is asked whether or not a certain impure queue, say Q, has elements
a b and ¢ in a situation Sg. First, the system tries to find an assertion

(Q is-a (IM PURF~OUI«UF a b ¢)) at the node of the situational tree which corresponds to S

If it is found there, the answer is "yes", but if it is not found there, the system looks for the
assertion (Q is-a (IMPURE-QUEUE a b c)) backward along the branch of the situational tree
from the node of S, Suppose that the assertion is found at the node of a situation S;. (See
a dotted line in Figure 8) All we know, at this point, is that the assertion holds in S,, but it
is not sure that the assertion holds in S, because some events which destroy the validity of

~ this assertion in S, might have happended between S, a"nd,Sa.‘

8

S.: (Q is-a (IMPURE-QUEUF, a b c))

Figure 8.

So the system has to check whether or not such events have happened. In this case, in order
to know what events destroy the validity of the assertion, the system consults the contract of
(IMPURE-QUEUE..) given in Figure 4 and finds out the events (Q <= (dq:)) and (Q <= (nq:..))
in the (for-assertions:..)-clause. Thus the answer to the original question whether or not (Q
is-a (IMPURE-QUEUE a b ¢)) holds in Sa is "yes" if neither (Q <= {dq:)) nor (Q <= (nq:.N
have happened between S, and S, . '

The process working forward in interpreting each expression also relies on the
process retrieving the situational tree backward. Suppose that an event {(Q <= (nq: d)) takes
place in S, in the above example. To get the state of the actor Q in the next situation Sg

the system wants to know the state of Q in S,, which is not found the at the node of 58. So

the system tries to retrieve the information using the situational tree backward in the same
" manner as above.

In general the information which indicates what conditions assure the conservation
of validity of assertions from one situation to another is called a trans-situational rule.
For particular assertions or particular types of assertions, appropriate trans-situational rules
are necessary for correct reasoning. In what follows, we will give trans-situational rules
which will be used in the examples of symbolic evaluation in this paper.

’ Assertions of the form: {<identifier> = <actor>) _

which states that <actor> is bound to <identifier>, can be passed unchanged between any two
situations within the scope of <identifier>. ' B

Assertions of the forms: (<actor1> eq <aclor2)) and (<actor1> not-eq <actor2>),

by

19

which state the identity of actors can be always inherited from one situation to anothei

- without any conditions.

Assertions of the forms: (<saguancel> = (sequence2>) and (<sequencel> # <sequancoz>).
which state the equahty sequences which appear in conceptual representations can be also
inherited without any conditions. (Note that <sequencel> and <(sequence2> are not
sequence-actors but mathematical sequences. All mathematical facts can be inherited without
any conditions. This is a special case.)

Assertions of the form: (cactor> is-a (SEQUENCE !x))

which states that <actor> is a sequence-actor whose elements are Ix can be inherited without
any conditions because a sequence-actor ns a pure actor which never changes its state.

Assertions of the form: (<actor1> knows-about <aclor2>)
which state the knows-about relatiqﬁ ’betrv)e‘en actors can be inherited without any condvitions'.‘
Assertions of the form: (<variable> has-contents <actor3)
which state that <variable> has <actor> as it.svcontents in some situation S can be inherited to a
situation T if no assignments to this <variable> take place between S and T. '

9. SYMBOLIC EVALUATION AND NAMES

Before we give a concrete example of symbolic evaluation, we will explain the use
of names in symbolic evaluation. Names in PLASMA fall into two classes: identifiers
and variables. An :dentlf ier x can be declared and bound to the value of an expression E

ot (x - E_)...‘) |
A yvariable x can be de,clafed and initialized withthe, value of an exp’ressioﬁ E by
(let (x initially E)...).
* The above statement is implemented by creating a new cell-actor C whose initial |

contents are the value of E and binding x to C. Evaluation of x is implemented by retrieving
the contents of C. The value of x can be changed only by an expression of the form:

20

o~

(x « E)

" and this is implemented by updating the contents of € with the value of E. PLASMA has
been carefully designed so that there is no way to rélease theé cell-actor C to other actors. In

~ order to state that a variable x has an actor A as its value in a certain situation, the

following assertion
(x h;s-comém'c A)

is used in symbolic evaluation. When an expréssion
(x « E) |

is interpreted in a situation §, the following assertion
(x has-contents B)

is entered in the situation following S where B is the valué of E in §.

In the symbolic evaluation of a module , an identifier x in the code of module can —
be always regarded as the actor which is bound to x, becausé ohié identifier does not bind ‘
more than one different actor throughout the symbolic evaluation of M. This is guaranteed
by:

1) the restriction on the syntax of PLASMA that no names are allowed to be rebound
inside a module (referential transparency) and

2) the fact that symbolic evaluation passes 6ver each exptéssion in 2 module exactly once.
For example, let us consider the following piéce of code.

(let (queue~1 = (create-impuré-queue))
then
(let (queue~-2 = queue-1)

in the first staternent an empty impure queue-actor Q is created and bound to an identifier
queue-1. To record this event, instead of using two assertions:

(Q is-a (IMPURE-QUEUE))

(queue-1 = Q),
one assertion:

. (queue-1 is-a (IMPURE-QUEUE))

.

suffices our purposes. This type of assertions will be frequemly used in Sectlon 12. By the
second statement in the above code, the assertion:

21

(queue=-2 eq queue-1)

will be entered in the data base and it tells the actor bound to _gua'ua-z is the same actor
denoted by queue-1. The question about the identity of queue-2 and queue-1 is answered by
this assertion. (cf. Section 5) ' '

1. AN EXAMPLE OF SYMB‘O‘L'IC EVALUATION

As an example of symbolic evaluation, let us consider the symbolic evaluation of |
the code of empty-one-queue-into-another in Figure 7 in Section 7. In this example, we
assume that the system tries to verify the implementation of empty-one-queue-into-another

against its contract given in Figure 6 in Section 7. In order to ease the interaction between =~

the system and users and also to aid the symbolic evaluation, programs should be
augumented with commentary which denotes situations or identify important parts of code.

.In Figure 9 the augumented code of empty-one-queue-into-another is given. (This
~ augumentation in Figure 9 is solely for the purpose of the presentation of this paper. For

our existing system, somewhat different augumentations are used.) The large capital letters
S between the lines denotes situations.

22

(empty-one-queue-into-ancther =
= [=q1 =q2) stwo impure queues are received by empty-one-queue-into-ansther
‘ sand bound to q1 and q2.

received-queues -

(rules (q1 <= (dq:)) o sthe dequeufng message is sent to ql.

(=> (exhausted:) ~ sif ql is empty, the complaint messnge is received B
exhausted-ql -

(done: (empticd: q1) {extended: q2))) sthen emptied q1 and
sextended q2 are returned.

(=> (rext: =front-of-q1 sif ql is not empty, the front element of q1 ‘a)nd
{rest: =dequeued-ql1)) : sthe remaining queue are received
sand bound to tront-of-q1 and dequeued-ql.

- sdoquouod-ql -

(92 <= (nq: fronl-of-ql)) " siront-of-ql is enqueued at rear of q2.

enqueued-q2 T -
(empty-one-queue-into-another <= [dequeued-ql Y3 R R
sdequeved-ql and q2 are sent to empty-one-queue-into-another.

Figure 9

Symbolic evaluation of a module takes place in the context of the specifications of
the module. Thus in the case of this example, the symbolic evaluator reads the contract of
empty-one-queue-into-another in Figure 6 and enters the f ollowing assertions which are the
pre-requisites of empty-one-queus-into-another in the data base. b

initiat *

(Q1 is-a (IMPURE-QUEUE 1))
(Q2 is-a {IMPURE-QUEUE ¥2))
(Q1 not-eq Q2)

inS

After the symbolic pattern matching is performed, Q1 and Q2 are bound to identifiers q1
and q2, respectively. So the following assertions are entered in the data base.

inS___ :
. received-queues

(q1 =Q1)
(q2 =Q2)

Then the expression (q1 <= (dq:)) in the rules-statement is interpreted. Namely, tﬁé

23

dequeuing message (dq:) is sent to Q1 which is bound to qi. To know the result of this
event, the symbolic evaluator must consult the (event..) clause for dequeuing in the contract:

(event: (Q1 <= (dq:))
 (case-1:
(pre-conditions: (Q1 is-a (IMPURF -QUEUE))
(returns: (exhausted:))
(post-conditions: (Q1 is-a (IMPURF~OUFUF n))
(case-2: :

(pre-conditions: (Q1 is-a (IMPURE-QUEUE B ly)))
(returns: (next: B (rest: Q1)))
(post-conditions: (Q1 is-a (IMPURE-QUEUF ty)))))

Note that the above clause is an instantiation of the {event..)~clause for the dequeuing in the
contract for impure queues in Figure 4, which is obtained by substituting Q1 for Q. Now the
symbolic evaluator has to consider two case: one case where Q1 is empty and the other case
‘where Q1 is not empty. (See the situational tree for this example in Figure 10.)

Slnnlal
/ Sr.co Ived-queues
~ Texhausted-ql dequesue-ql
enqueued-q2
~N
Figure 10

'Ca'se I (Q1 is-a (IMPURE-QUEUE))

In this case, the contract specifies that the (exhausted:) message is returned. This message
matches against the first (=)..)-statement inside the (rules..) statement. To follow this path,
the symbohc evaluator needs to assume that xl =[]. Soin S“M“"d at’ the fo!lowmg

assertions are entered in the data base.

24

in soxhaustod-ql .

xt =D
(Q1 is-e (IMPURF-OUFUF)]

"Then in S, hauste d-q1 the message (done: (emptied: q1) (extended: q2)) is returned. At this
point the contract of empty-one-queue-into-another in Figure 6 requires three things:

ri: (done: (emptied: Q1) (cxtended: Q2)) must be returned
r2: (Q1 is-a (IMPURE-QUFEUE)) must hold and '
r3: (Q2 is-a (IMPURE-QUEUE x2 Ix1)) must hold.

It is easy to show that each requirement is satisfied in S_ exhausted=qt’

for r1, since the trans-situational rules for binding allow the inheritance of the _
‘assertions (q1 = Q1) and (q2 = Q2) from S to S the required |

received-queuss nhaul ted-gl’

message is returned in S o ihousted-g1’

for r2, since the assertion (Q1 is-a (IMPURF-OUFUP)) is ehtexed in S.xhaus“d_ql, it
holds in sexhaustod-ql and o
for r3, (Q2 is-a (IMPURE-QUEUE 1x2)) hold in S because it can be —~

exhausted-ql
inherited from S, by the trans-situational rule for (<actor> is-a (/MPURE-QUEUE ..))

" and the following fact about sequences can be used because x1 = [] holds in S“hm“ deat

[8x2 Ix1] is equivalent to [3x2] if x1 is equal to [].

So (Q2 is-a (IMPURE-QUEUE x2 ¥x1)) holds in S Thus Case-1 is done.

oxhausted-ql’

Case-2: (Q1 is-a (IMPURE-QUEUE B ly))

In this case, the contract specifies that {rext: B (rest: Q1)) is the result of (q1 <= (dq:)) where
the following assertions are assumed.

(x1 = [B ty])
Q1 is-a (IMPURE-QUEUE Yy))

'Sfo (next: B (rest: Q1)) is matched against the pattern in the first (>..) statement inside of
the (rules..) statement. The symbolic evaluator also asserts the binding information in

dequeued-ql’

in sdoqueued-ql :) ﬁ.
(front-of-q1 = B)
(dequeued-q1 = Q1)
(x1 = [B fy])
(Q1 is-a (IMPURE-QUEUE 1))

inS

25

Then in this situation (nq: B) message is sent to Q2 which is bound to q2 and the assertion
(Q2 is-e (IMPURE-QUEUE ™2)) holds because it can be inherited fromvSmi a1 DY the
trans-situational rule for (<actor> is-a (/MPURE-QUEUE..)). From the instantiated clause for

the event (Q2 <= (nq: B))..) of the contract in Figure 4 (note the substitutions of Q2 for Q, x2
for x, and B for A): ‘

(event: (Q2 <= (nq: B)) v
(pre-conditions: (Q2 is-a (IM PURE-QUEUE ¥x2)))
(returns: Q2)
~ {post-conditions: (Q2 is-a (I MPURE-QUEUE x2 B))))

the symbolic evaluator enters the following assertion in S anqueusd-q2°

onqueued-qu

(Q2 is-a (IMPURE-QUEUE x2 B))

‘Now the symbolic evaluator encounters the transmission of Q1 and Q2 to

empty-one-queue-into-another in sonqu.ued-qZ' Then in order to know the behavior of the
empty-one-queue-into-another, the symbolic evaluator refers to the contract for
empty-one-@eu_efinto-anothor in Figure 6. (Note that this is a "recursive” use of the contract.)
Since the assertions: - ' N A A)

(Q1 is-a (IMPURE-QUEUE Yy)) and (Q1 not-eq Q2)

can be inherited from S J by the trans-situational rules for

equeued-ql
(<actor> is-a (I ﬁl PURE-OUEUE...))l and (($c!or1) not-eq <actor2>),
respectively, the following pre-conditions of omply.-one-guaua-inlp-anolh,er are satisfied.
(Q1 is-a (IMPURE-QUEUE ty)) |

(Q2 is-a (IMPURE-QUEUE x2 B)) and
(Q1 not-eq Q2)

Therefore the post-conditions of the contract for omply-om-qdaue-inlo-anolhér guarantees

that (done: (emptied: Q1) (extended: Q2)) is returned and that the following assertions:

(Q1 is-a (IMPURE-QUEUE)) and
(Q2 is-a (IMPURE-QUEUE ¥[x2 B] ¥y))

~ hold in the situation following Smmw d-q2 Then the following knowledge about sequences

is used to simplify the above assertions; -

[3{3x2 B] Yy] is equivalent to [1x2 B ly],
(!x2 B ly] is equivalent to [Ix2 Ix1]if x1 = [B By).

Since x1 = [B ly] can be inherited from S dsqueusd-q1 0V the trans-situational rule for
(<sequencel) = (sequence?2>), the symbolic evaluator can claim that

(Q1 is-a (IMPURE-QUEUE)) and
(Q2 is-a (IMPURE-QUEUE x2 x1)).

- Thus the post-conditions for empiy-one-quouob-iniﬂ.o-.-,an.olhe,.r are also satisfied in Case-2.

Since the requirements stated in the contact for empty-one-gueue-into-another are '
satisfied, we conclude that the implementation of emply-one-queue-into-another in Figure 7 is
guaranteed to meet its contract in Figure 6. It should be noted that the above assertions are
guaranteed to hold in a given situation only if control passes through that situation. There

is no guarantee that any of situations after S_ . d-queues 3DOVE will ever be reached.

‘Therefore the demonstration of convergence is another part of the symbolic evaluation that
can be incorporated into the above symbolic evaluation. As we mentioned in Section 5,
explicit use of situational tags is powerful to the formal demonstration of the convergence.
For a detailed demonstration of the convergence, see [Yonezawa 1975).

1. AN IMPLEMENTATION FOR IMPURE-QUEUE

» In the symbolic evaluation of empty-one-queue-into-another, the only properties of
impure queues used were only the ones given in the contract for impure queues in Figure 4. ’
- This fact guarantees that empty-one-queue-into-another satisfies its specification on all
~ implementations of impure queues that satisfy the contract in Figure 4. Now we give an
~ example of an implementation of an impure queue which is supposed to satisfy the contract

in Figure 4. The PLASMA code depicted in Figure 1l is such an 1mp|ementat|on Note that
queuees is an example of a PLASMA variable explained in Section 9. So the value of
queuees changes, but other names such as new-element, the-queue-itsell, front etc. are
identifiers and thus are bound to the same actor throughout their scope. ‘

27

(crea!e-impure-queué =

= (] , : ' screate~impure-queua receives an empty sequence.
(let (queuees initially []) sa variable queuees it declared
then . : ;and initialized with an empty sequence.
(the-queue-itself = sa queuc-actor is defined by the cases-statement given below
:and denoted by the-queus-itself.

(cases ' o
=> (nq: =new-element) sichen an enqueue message with an element is received,
. " ;the element is bound to new-element.
(queuees « [Iqueuees new-element]) :a new sequence-actor whose elements are
' - sthe unpack of the value of quevees and new-element
‘ sit created and stored in queuees.
the-queue-itself) sand then the-gqueue-itself is returned.
(=> (dq?) swhen a dequeue message is received,
(rules queuees sif the contents of queuses
(= [] (exhausted:)) sis empty, then the message is returned.
- (2> [=tront =rest] sotherwise the first element is bound to front
‘ ' :and the rest of the elements is bound to rest.
(queuees « rest) ' sthe value of queuees is updated.
(next: front (rest: tho-queuo-ilsoll)) mm s(next:.) is returned.

Figure 11

The basic idea of this implementation is presented as a diagram in Figure 12. An impure
queue-actor the-queue~itself consists of a variable queuees which has a sequence-actor S as its
value. The elements of this sequence-actor S are the members of the queue. In the diagram
arrows indicate which actors directly reference others (ie. the knows-about refation). (cf.

Section 3) Since the-queue-itself returns itself, the-queue-itself must know-about

the~-queue-itself.

28

the-queue-itself

: J | queuees a -
s
- _»"’] '
B - =
.- - | Figure 12 |

The diagram in Figure 12 is not only a partial and static description of the above
implementation, but it also expresses invariant or integrity conditions which must be
satisfied among the constituents of the implementation before and after each invocation.

“Thus an important property of the implementation can be expressed formally as the
following invariant statement. ' , S

(Invariant: (the-qyeue~itself is-a (IM PURE-QUEUE %a))
where (the-queue-itself knows-about queuees)
(the-queue-itself knotns-about the-queue~itself)
(queuees has-contents S)
(S is-a (SEQUENCE 'a)))

This states that the assertion (the-queue-itself is-a (IMPURE-QUEUE 1)) is an invariant.
When this assertion holds, the-queue-itself has acquaintances queuees and the-queue-itself
{namely, (the~queue-itself knows-about queuees) and (the-queue-itself knows-about
the-queue-itself) hold}, the variable queuees has a sequence-actor § as its value {namely,
(queuses has-contents S) } and § has la as its elements. A notation (SEQUENCE..) is the
conceptual representation of a sequence-actor. ’ '

29

A similar implementation written in CLU is found in Appendix IV. These two
implementations exhibit the same computation sequence in terms of the actor mode! of
computation..

12. SYMBOLIC EVALUATION OF IMPURE-QUEUE

 Now we proceed to the symbolic evaluation of create-impure-queue in Figure Il
against its contract in Figure 4. This time our interest is not only in the demonstration that
the implementation satisfies its specification, but also in the internai structure of the code
which will be exposed during the process of symbolic evaluation. The code of
create-impure-queue in Figure 13 is augumented with situational tags and the (Inveriant:)
statement which was introduced in Section Il. In general (Invariani:..) statements not only
express the invariant or integrity conditions of actors which behave like data structures, but
~ also they express inductive assertions when they are used inside iterative programs.

(create-impure-queve =

=[] ;create-impure-quieue receives an empty sequence.

- {let (queuees initially [}) sa variable queuees is declared
then sand initialized with an empty sequence.
- S -

inttiatized-queuess

(the-queue-itself =

ngq-or-dgq-initial _)
(Invariant: (the-queue-itselt is-a (M PURE-QUEUE 1a))
: where (the-queue-itself knows-about quevses)
(the-queue-itself knows-about the-queus-itself)
(queuess has-contents S)
(S is-a (‘SEOUENCE))

sa qucuc-actor is defined by lhv cases-statement griven below and drnoloé by the-queue-itself.
(cases

(=> (nq: =new-element) swhen an enqueue message with an element is reccivcd.
' sthe element is bound to new-element.

received-nq -

(queuees + [Iqueuees new-element]) :a new sequence-actor whose elements
q H . . 7

;are the unpack of the value of queuees and new-element
is created and is stored in quevees.

-~ . —

updated-queueess-ng

the-queue-itself) sand then the-queue-itself is returned.

(= (dyg2) stwhen an dequeue mes:age is received,

- -

received-dq
(rules queuees

=1l

sif the value of queueos'
sis emply

empty-queuess

(exhausted:)) sthen the complaint message is returned.

(=> [=front ¥=rest] sotherwise the fim element is bound to front

send the rest of the elements is bound to rest.

— —

non-emp ty~-gueuees
(queuees « rest)

-

sthe contents of queuees is updated.

updated-qusueas-dq

(next: tront (rest: the-queue-itself))))))} 1) s{next:..) is returned.

Figure 13

The symbolic evaluauon of the code in Figure 13 is carried out in the context of
the contract. of impure queues in Figure 4. There are four clauses in the contract: one clause

)

in spre-creation : M

i

- each for the creation, enqueuing and dequeuing, and one clause for the trans-situational rule

for assertions of the form (Q is-a (IMPURE-QUEUE..)). As seen in the symbolic evaluation

. of empty-one-queue-into-another in Section 10, trans-situational rules are vital for reasomng

in situations where side-effects are involved. Therefore it is necessary to establish the
trans-situational rule in the contract for |mpure queues as well as the specifications of the
creation, enqueuing, and dequeuing. In what follows, the four clauses in the contract are
established separately.

I. Establishing the CREATION specification

The symbolic evaluator reads the first (event:...) clause in the cdntract for
(IMPURE-QUEUE..) in Figure 4. ' - ’

(event: (create-impure-queue <= {])
(returns: (new-actor Q))
(poct-conditionr (Q is-a (IMPURE-QUEUE)))).

Since there are no pre-conditions for this event no assertions are entered in the data base
for the initial situation.

The let statement declares and initializes a vanable queuees with an empty sequence NS.
The following assertions are entered.

queuees

inS NS

initialized-queueas :
(queuees has-contents NS)

(NS is-a (SEQUENCE))

Then in thls situation an actor whose script (i.e. code) is given as the (cases...) statement af ter
(the-queue~itself = ... is newly created and returned. This actor is denoted by the-queue-itself.
Furthermore by Iookmg for free names (variables or identifiers) in the script of
the-queue-itself, its acquaintances are found: in this case the acquaintances are queuees and
the-queuo-ntself To record thxs, the followmg assertions are entered in the next situation

S

posl-creat ion’

32

A 1‘:I"A1(e~-q'u-cue- itself 1
/N queuees
NS

in :;post-crqalion :

(the-queue=itself knows-about queuoes)

(the-queue~-itself knows-about the-queue-itself)
The contract for the creation requires that the returned actor Q be newly created and have
the property (Q is-a (IMPURE-QUEUE)). Since the returned actor is the-queua-itself, what
has to be shown is that (the-queue-itself is-a (/MPURE-QUEUE)) holds. This assertion is
translated using the assertions in where-clause in the invariant statement. Now it has to be
shown that the following assertions hold in S'mst creation” (Note that the assertions in the
where-clause are instantiated by substituting an empty sequence [] for %a) ‘

(the-queue=-itself knows-about queuoces)

(the-queue-itself knows-about !ho-quoue-atsn")

(queuees has-contents S)%

(S is-a (SEQUENCE))x

T,

because they-are entered in S

The first two assertions hold in S post-creation”

.) post-creation
The two assertions entered in S initialized-queuses’

(queuees has-contents NS) and (NS is-a (SEQUENCE))

can be inherited to SWs t-creation DY the trans-situational rules for types of assertions

' (<variable> has-contents..)) and (<actor> is-a (SEQUENCE..)) and they are matched against the
assertions marked with *. Therefore it is concluded that the returned actor the-queue-itsalf
has the correct internal structure prescribed by the invariant statement. So the result of
(create-impure-queue <= []) satisfies its specification.

L EStablishing the.E'NQ'UEU,ING specification
From the instantiation of the specification for enqueueing:

(rm-m (the-queue-itself <= (rq: A))
(pre-conditions: (the-queue-itself is-a (I'}f PURE -OUFUF X)))
{returns: the-queue-itself)
{post-conditions: (!hefqueue-ilsbli is-a (IMPURE-QUEUE ¥x A)))

~ which is obtained by substituting the-queue-itself for Q in the ,c_o,n:tr,act for
(IMPURE-QUEUE..) in Figure 4, it is assumed that

i"s H . - | ' -)

33

(the-queue-iiself is-a (IMPURE-QUEUE x))

holds in the initial situation. By the invariant statement in the code, this assumption is
translated into the following four assertions. (Note that x is substituted for a in the

invariant statement.) .y the-gueue-itself

gugue=s -

. : /-
in an-or-dq-inuial S T 2

(the-queue-itself Lnow‘-about queuoes) : ,

(the-queue-itself knows-ahout the-queue-itself) ’ v s - .
(queuees has-contents S)) '
(S is-a (SEQUENCE 1x))

x]l x2 | = ** |xn

Now the message (nqg: A) is sent to the-queue-itself. The message sent to the-queue-itself
matches the first clause of the case statement. So the bmdmg of Ato new-element takes
place. : the-queue-itself : A

Y. _queyees

received-nq *

1
(new-elemenlEA)' o : o / } - \

x1] - | x2 e Ixn

Then the value of queuees is updated by a newly created sequence-actor NS with its elements

[!queuees new-element]. Since the value of queuees in Sm.m d-ng IS 3 sequence-actor S,

lqueuees is the result of the unpack operation on S, which is Ix. So the new sequence-actor
NS is represented as (SEQUENCE 1x A). For the assignment of NS to queuees, the new
assertion (queuees has-contents NS) is entered in the data base. So the followmg assertions
hold in the next situation. the=queue-itself

- : \ queuees

. NS s

in supdated-queuses-nq

(queuees has-contents NS) _,_,___/ /

(NS is-a (SEQUENCE x A)) i’/\'
' A

In this situation the-queue-itself is returned. Note that the specification for the enqueueing
requires that the-queue-itself is returned and that

(the-queue-itself is-a (IMPURE-QUEUE ix A)).

34

- By making all assertions holding in Supda“d_ww"‘_nq explicit by applying the

trans-situational rules for (<actorl) knows-about <actor2)) and (Cidentifier> = <actord), the
following assertions are obtained.

_ (queuees has-contents NS)*
(NS is-a (SEQUENCE x A))*
(new-element = A)
* (the-queue-itself knows-ahout queuees)x
(the-queue-itself knotws-about the-queue-itself)x
(S is-a (SEQUENCE. 1x)) <-- § is no longer referenced.

It is easy to see that the assertions obtained by translating ,
(the-queue-itself is-a (/M PURE-QUEUF. ¥x A)) through the invariant statement are matched
against the above assertions marked with *. So enqueuing satisfies its specification.

- Besides the fact that the implementation of enqueuing meets its specificétion, a very
interesting fact is revealed by the above symbolic evaluation. The sequence S is created by
this implementation and never passed out. § was initially the value of the variable queuees

NS acinitiat PUIN Syiiaq queuses—ng it 15 MOt the value of queuees and there are no

acquaintances of the-queue-itself which know about it in S, i ' cueesng SO S IS just
floating in the air. Thus there will be no chance for S to be used later. § is subject to the
garbage collection. In this implementation every time enqueuing takes place, a garbage

sequence is produced.

HI Establishing the DEQUEUING specification
- As is indicated in the instantiation of the specification of the ciﬁequ'euing:

(cvent: (the-queue-itself <= (dq:))

(case-1: : '
(pre-conditions: (the-queue-itself is-a (IMPURE-QUEUE)))
(returns: (exhausted:))
(post-conditions: (the-queue-ilselt is-a (IMPURE-QUEUE))))

(case-2: :
(pre-conditions: (the-queus~itself is-a (IMPURE-QUEUE B ly)))
(returns: (next: B (rest: the-queue-~itself)))
(post-conditions: (the-queue-itself is-a (IMPURE-QUEUE ty)))

which is obtained by substituting the-queue-itself for Q in the contract for impure queues in
Figure 4, there are two cases needed to be considered: case 1) where the queue is empty, and

35

case 2) where the queue is not empty.

Case I (the-queue~itself is-a (IMPURE-QUELE))

Assuming that (the-queue-itself is-a (/M PURE-QUEUE)) holds in the initial
situation, the following assertions are obtained through the invariant statement and entered
in the data base.

the-queue-itsa!f

: []
n an-or-dq-initial : queuees

(the-queue~itself knows-about queuees) / S S

(the-queue-itselt knows-about the-queue-itself)
(queuees has-contents S)

(S is-a (SEQUENCE))

Now the (dq:) message is sent to the-queue-itself. Then the message matches against the

~ second clause in the (cases..) ‘statement and S, ecaived- dq 15 reached. Since the value of

queuees is S which is an empty sequence, the first (2>..) clause in the rules statement is
matched and the situation Smp'g queuses is reached. K

Then the (exhausted:) message is returned. At this point the contract requires that
(the-queue-itselt is-a (IMPURE-QUEUE)) holds. Again by the invariant statement, the
following assertions are required to hold.

(\J the-quéixe-i tself

L Y queuees

(the-queue-itself knows-about queuvees)

(the-queue~itself knows-ahout the-queve-itself) o (S
(queuees has-contents) o
(S is-a (SEQUENCE))

The above assertions are matched against the ones which hold in an —or—da-initial and no

events which affect the conservation of validity of the assertions in S
happened between scmptg-queuus and an-or-dq-initial
satisfied for Case I

ng-or-dg-initial
‘So what the contract requires is
Case 2: (the-queue-itsé" is-a (IMPURE-QUEUE B %))

For this case, (tha-quouo-otsen is-a (IMPURE-QUEUE B y)) is assumed in the
~contract and so the assertions translated by the invariant statement are as follows.

-/ the-queue-itself

-, queuees

ng-or-dg-initial .

(the-queue-itself knows-about queuess) ’ /// .o
(the-queue-itsel! knows-about the-queve«itself) = Y
(queuees has-contents S) 0s E a v yn
(S is-a (SEQUENCE B 1ly))

inS

The (dq:) message is sent to the-gueue-itself and the situation S is reached.

réceived-dq
The value of queuees which is § matches the pattern [=front Lrest] because

(S is-a (SEQUENCE B ly)) holds. By this matching a new sequence, say NS, whose elements

“are ly is created and bound to rest and B is bound to front. So the binding information is

also added in the next situation.

the-queue-itself

| ' | _queuees - '
in S"“-O"‘Nu-nueuus : , - ~ A\ s _ NS .
(front = B) . . N |] '
(rest = NS) : , _ .
' (NS is-a (SEQUENCE ly)) L ~ L
B ') y] > , - A ‘ yn

After queuees is assigned the value NS, the following assertion is entered in the next

b 2
K *
v

situation. _ the-queue-itself
< gqueuees /—s\\\ NS
. ’ ’ . : o : . S
in supda!ed—queueqs-dq ¢ . : . : :
(queuees has-contents NS) o Ly
B‘ . y] e & o yn

Now in this situation all assertions which can be inherited from the previous situations by
the appropnate trans-situational rules are as follows

i-~qmauee itself =

(queuess has-contents NS)*

queuges

(tront = B)

(rest = NS) >

(NS is~a (SEQUENCE Yy)x —) - o
(the-queue-itselt knotws-about queuces)x ' 4 T
(the-queue~-itself knows-about the-queve=itself)x B

(S is-a (SEQUENCE 8 'y)) <--$ is no longer referenced !!

37

In this situation (next: B (rest: the-queve-itself)) is returned. The four assertions marked
with x guarantee that (the-queue-itselt is-a (IMPURE- -QUEUE 1y)) holds through the
invariant statement. So all cases are shown.

As in the case of the enqueuing, it is also revealed by the symbolic evaluation that
a sequence $ which was the initial value of queuees becomes a garbage sequence at the end
of the dequeuing.

IV. Establishing the TRANS-SITUATIONAL RULE
for (the-queue-itself is-a (IMPURE-QUEUE ..))

The instantiation of the trans-situational rule:

(for-assertion: (the-queue-itself is-a (IMPURE-QUEUE..))
(only-affocnng-ovmts-aro ,
{(lhe-queue-ltsell ¢= (nq:..)) (the-queue-itselt <= (dq:))}))

which is obtamed by substituting the-queue-itself for Q in the {(for-assertion:..)-clause in the
contract for impure queues in Figure 4 says that the only events which may destroy the
+ conservation of validity of assertions of the form (the-queue=itselt is-a (1M PURE-QUEUE..))

are (lhe-queue*ttself <= (nq:..)) and (the-queue-ilself <= (dq:)). .

This is established by the following facts:

1) The preceding symbolic evaluation has shown that the-queue-itself always maintains the
invariant or integrity conditions before and after each invocation by (uq:..) and (dgq:)
because the following facts are shown by the symbolic evaluation.

a) immediately after the creation of the-queue-itself, it maintains the invariant condition:
(the-queue~itself is-a (IMPURE-QUEUE..)) and

b) if the invariant condition is satisfied before invocations by (nq:...) or (dq:),
the-queue-itself still maintains its invariant condition after the invocations.

2) The preceding symbolic evaluation has shown that no internal constituents of
-~ the-queue-itself are released outside. Note that there is no way of releasing the cell-actor
- with which the variable queuees is implemented. (cf. Section 9)

3) the-queue-itself accepts only messages of the forms (nq:..)'aind (dq:) and the state of
the-queue-itself expressed by the conceptual representatlon (IMPURE-QUEUE..) can be
changed only by events of the form: ‘

(the-quoue-itself <= (nq;...)') and (the-queue-itself <= (dq:)).

38

Since the four clauses in the contract for impure queues have been established, it

'follows that the implementation of impure queues in Figure 1l (or Figure 13) satisfies the

~contract for impure queues in Figure 4.

13. CONCLUSIONS

The work presented in this paper is based upon two main ideas: conceptual

representations and the explicit use of situations.

Conceptual representations serve as a notational devise to describe not only states
of individual data structures, but also how individual data structures are interrelated at
various levels. Since conceptual representations are able to directly express states of data
~structures, specifications of data structures by conceptual representations are often easier to
write and understand than algebraic specifications. By separating the state of an ob ject
from its identity, conceptual representations can describe sharing structures of data and can
easily specify the behaviors of data structures with side-ef fects. L

We introduced a notion of situations which was the state of a system at a given
~moment. By relativizing states of objects in the system with situational tags, relations and
assertions about states of objects in different situations can be expressed. Our assertion
language can describe systems from various points of view and emphasis by appropriate
choices of conceptual representations and situations. Thus the expressive power of our
formalism is strong enough to cover a wide range of the statements which are needed in
debugging, question-answering, and the evolutional developments of programs. '

The traditional approach of program verification is that given a set of assertions
holding in a situation, verification conditions are generated either in backward
direction[Hoare 1968, Dijkstra 1976] or in forward direction(Floyd 1967]. In contrast to the
traditional approach, our approach is: - '
' First, by symbolically evaluating in the forward direction, a "partial® description of
each situation in terms of conceptual representations is produced. (Here a "partial”
description is used in two senses: 1) a description of a situation at a certain level of
details, and 2) in creating a description of one situation, the part of the description of the
previous situation which has not changed is not necessarily duplicated.)

Then for answering questions, the retrieval is performed .in the backward direction

using trans-situational rules. -

Descriptions of situations in terms of conceptual representations enable us to deal
" with side-effects and working in both forward.and backward directions allows us the
flexibility to answer questions. '

o

39

14. ACKNOWLEDGEMENTS

The comments and suggestions of B. Liskov were valuable. Thanks are also dvug to
Chuck Rich, Ron Pankiewicz, Ken Kahn, Dick Steiger, Pat Greussay and Harold Weltz who
carefully read an early version of this paper and made comments.

‘ This research was conducted at the Artificial Intelligence Laboratory and
Laboratory for Computer Science (formerly Project MAC), Massachusetts Institute of
Technology under the sponsorship of the Office of Naval Research, contract number
N00014-75C0522. - ’

15. BIBLIOGRAPHY

Boyer, RS, Elspas, B. and Levitt, K.N. "SELECT -- A Formal System for Testing and
Debugging Programs by Symbolic Execution.” Proc. of International Conference
on Reliable Software. Los Angles, 1975.

Boyer, R.S. and Moore,]S. "Proving Theorems about LISP Functions” JACM. Vol.22.
Nol. January, 1975. -

Burstall, R.M. "Some Techniques for Provihg Correctness of Programs Which Alter Data
- Structures” Machine Intelligence 7. 1972.

Burstall, R.M and Darlington,] "Some Transformation for Developing Recursive
~ Functions” Proc. of International Conference on Reliable Softwars. Los Angles,
1975 :

Birtwistle, Dahl, Myhrhang and Nygaard. SIMULA Begin Auerbach.” 1973

" Deutch, LP. "An Interactive Program Verifier” Ph.D Thesis. University of California at
~ Berkeley, June, 1973.

Di jkstra, E. W. A Discipline of Programming Prentice-Hall, Englewood Cliffs, N.J. 1975

Floyd, R.W. "Assigning Meaning to Programs™ Mathematical Aspect of Computer Science,
: J-T.Schwartz (ed.) Vol.l9. American Mathematical Society, Providence Rhode _
Island. 1967.

10

Good, DI, London, R.L. and Bledsoe, and W.W. "An Interactive Program Verification
System.” IEEE Transaction on Software Engineering, Vol. SE-I No. 1. Match,
1975.

Greif, I. "Semantics of Communicating Parallel Processes” Ph.D Thesis MIT, also Technical
Report TR-154. Laboratory for Computer Science (formerly Project MAC)
September, 1975.

Creif . ‘l. and Hewitt, C. "Actor Semantics of PLANNER-73" Proc. of ACM
SIGPLAN-SIGACT Conference. Palo Alto, California. January, 1975.

Guttag, J. "Abstract Data Types and the Development of Data Structures™ Proc. of ACM
SIGPLAN-SIGMOD Conference, Salt Lake City, Utah, March, 1976.

Hewitt, C.E. "How to Use What You Know" Proc. of International Joint Conference on
Artificial Intelligence U.S.S.R. September, 1975.

Hewitt, C.E. "Viewing Control Structures as Patterns of Message Passing™ to appear in the
Journal of Artificial Intelligence.

Hewitt, C.E and Baker, H. "laws for Communi,ca‘tingj Parallel Processes™ Working Paper 134.
Artificial Intelligence Laboratory MIT. December 1976.

Hewitt, C.E. and Smith, B.C. "Towards a Programming Apprentice” IEEE Transaction on
- Software Engineering, Vol. SE-1 No. L March; 1975.

Hoare, C.A.R. ”Proof of Correctness of Data R‘epresematmn Acta Informatica Vol L
pp271-281. 1972

Hoare, C.AR. "An Axiomatic Basis for Computer Programming” CACM 12, October, 1969.

lgarash: S., London R.L. and Luckham, D.C. "Automatic Program Venﬁcatlon LA Logical
Basis and Implementation” Stanford A.l. Memo.200. 1973.

King, J. "A Program Verifier” Ph.D Thesis. Carnegie-Mellon University. 1969.
King, J. "Symbolic Execution andr Program Testing” CACM. Volli9 No. 7 ju!y 1976.

Learning Research Group "Personal Dynamic Media” Technical Report. Xerox Palo Alto
: Research Center. 1976.

4l

Liskov, B "A Note on CLU" Memo 112. Computation Structure Group, Laboratory for
Computer Science (formerly Project MAC) MIT, November, 1974 -

Liskov, B. and Zilles. S. N. "Specification Techniques for Data Abstractions” IEEE
transactions on Software Engineering, Vol. SE-I, No. 1, March 1975.

McCarthy.j and Hayes, P. "Some Philosophical Problems from the Standpomt of Artificial
: Intelhgence Machine Intelhe;enre Vol.4. Amencan Elsevier New York 1909 '

Rlch C. and Shrobe, H.E. "Understanding Lisp Programs Towards a Programmer’s
Apprentice” Masters’ Thesis, Electrical Engineering and Computer Science, MIT
August, 1975,

Schaffert, C., Snyder, A. and Atkinson, R. "The CLU Reference Manual” Laboratory for
Computer Science (formaly Project MAC), MIT September, 1975

Spitzen, J. and Wegbreit, B. "The Verification and Synthesis of Data Structures.” Acta
~ Informatica 4. 1975.

~Suzuki, N. "Automatic Program Verification II: Verifying Programs by Algebraic and
' - Logical Reduction” Stanford A.l. Memo. 255 December, 1974.

Wegbreit, B. and Sptizen, J. M. "Proving Properties of Complex Data Structures” to appear
in JACM, 1976.

Wulf, W. A. "ALPHARD: Towards a Language to Support Structured Programmmg
Department of Computer Science, Carnegie-Mellon University, April 1974.

Yonezawa, A. "Meta-evaluation of Actors with Side-effects” Workmg paper I0l. Artificial
Intelligence Laboratory MIT. June, 1975.

Yonezawa, A. "Conceptual Representatlons - A Specmcatton Technique for Data
Structures Working paper m preparatron Artificial Intelligence Laboratory. MIT

leles S. N. "Abstract Specifications for Data Types IBM Research Laboratory. San Jose,
Cahfornla 1975 '

Y

APPENDIX I DERIVATION OF AXIOM 25 FROM_THE CONTRACT FOR PURE QUEUES

 Axiom aS: if is-emply(q) = false A dequeuelq) = ¢B, q"
then dequeuefenqueus(q, A)) = ¢<B, onquwo(q , AP

is derived from the specif ication of queues based on the conceptual representation in Section

2. In the followmg derivation ¢2, ¢3, ¢4, ¢5, and ¢6 refer to the lines in specif ication base on
the conceptual representation.

1) is-empty(q) = false - ;given as the premise of the axiom a5).

2) dequeue(q) = <B, q" o sgiven as the premise of the axiom a5).
3) q <=-==> (QUEUE B ¥x) - o ~ sfrom 1), 2), and ¢6).
"4) q' <=-==> (QUEUE) sfrom 2), 3) and c4).
5) dequeue(enqueue(q, A)) ' sthe left side of the axiom a5).
¢===> dequeue(enqueuve ((QUEUE B), A)) o sfrom 3).

= dequeue((QUEUE B Ix A)) . sfrom ¢2).
=<B, (QUEUE x A) L . sfrom c8).
= <B, enqueue((QUEUE ix), A> sfrom ¢2).
<---> <B , enqueue(q’, A)> qed sfrom 48).

APPENDIX II. A CONTRACT FOR CELLS

~ [contract-for (CELL ..) =

{event: {create-cell A)
(returns: (new-actor C))

(post-conditions: (C is-a (CELL A))))

{event: (C <= (contents?))
(pre-conditions: (C is-a (CELL B)))
(returns: B)
(pou—condmom (C is-a (CFIL B8))))

(event: (C « D)) A
(pre-conditions: (C is-a (CFLL £))
(returns: C)
(post-conditions: (C is-a (CELL D))))

(for-assertion: (C is-a (CELL ...)) _
(only-affecting-events-are: { (C <= (update:.)) }))]

P

43

APPENDIX III empty-one-queue-into-another in CLU

empty-one-queuo-in!o-anoiher =
proc(ql: impure-queue, q2: tmpure-queue)
returns record[emptlied: i mpure-quaue, extended- lmpure-queue],
front-of=-ql: any;
~ dequeued-q1: impure-queue; .
front-of-q1, dequeued-ql := impure-queue8dqg(ql) A
except exhausted: return {emphed° ql, extended: q2} end;

impure-queue8nq(q2, front-of-q1);
empty-one-queue-into-another(dequeued-q1, q2);

end empty-one-queue-into-another;

APP‘ENDI'X‘IV impure-queue in CLU

impure-queue = cluster is create, nq, dq;
rep = record[queuees: sequence];

create = proc() returns(cet);

return {queuees: sequenceScreate()};
end create; '
%
nq = proc(a-queue: cvt, new-element: any) returns(cut);

a-queue.queuees := sequenceBextendh(a-queue.queuees, new=-element);
© return a-queue;
end nq; ’
%
dq = proc(a-queue: cut) returns (any, cvt) signals exhausted~

if sequence8empty(a-queue.queuees)

then signal exhausted;
else A
front: any := sequence8first(a-queue.queuees);
a-queue.queuees := sequencefrest(a-queue.queuees);

: . .return front, a-queue; % multi-valued return
end dq; ' ' '
% ,

~end impure-queus;

