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ABSTRACT This is the second of a two part presentation of a model for motor control
and learmng The model was implemented using a small computer and the MIT- Scheinman.

j manipulator. Experlments were conducted which demonstrate the controller's ability to learn '

_ . hew movements, adapt to mechanical changes caused by inertial and elastic loading, and

) ‘generalize its behavior among similar movements. A second generatlon model based on
- improvements suggested by these experimems, is suggested.
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Introduction

The human motor systemvis organized into high- and low-level processes [7,17]. '
'High-level processes produce descriptions of desired movements which are mdependent of
the mechanical considerations necessary for production of the movement. Low-level
~ processes, each associated with the kinematic and dynamic properties of a particular ef fector
system, translate the high-level descriptions into motor commands When man improves in
motor performance through practice or adapts to changes in the mechanical properties-of
his limbs, part of his 1mprovement is due to a more ef fective translation of the high-level
descriptions.

A model for sensorimotor control has been proposed which helps to account for this
behavior, and presents the possiblhty of designing machines which exhibit these -
characteristics [17]. Such a model for the low-level processes is based on the f ollowmg
considerations: An ‘internal inverse dynamic model’ translates descriptions of desired
tra jectories into motor plans. The high-level processes providing input to the translator do- -
not have to deal with the non-linear mechanical properties of the manipulator; properties
which vary with the static and dynamic configuration of the limb. The specified ( -
tra jectories may be expressed in a coordinate system appropriate to the available sensors (eg.
visual coordinates). The translator’s outputs are motor comma'n'ds suited to the dynamic
properties of a particular manipulator and its actuators. '

The translation is based on a form of the equations of motion which allows a tabular
representation of a manipulator’s dynamic behavior. The table, actually a quantized multi-
dimensional memory organized by state variables, is supplied with data derived from the
analysis of ‘practice’ movements. The analysis performed is based on ‘measurement’ rather o

“than search - error correction and hill-climbing are avoided. Fig. | summarizes the model’s -~
essential componenets. (See [7] for more details and [22] for a discussion of !earnlng based
on search techniques.) '

We predict that a device which performs this translatxon process in the manner
outlined, will have the following desirable properties: Each limb motion ‘will contribute to

* the improvement of subsequent motions. When a particular movement is practiced, the
controller’s ablhty to generate the desired tra  jectory will rapidly improve. Other movements,
similar to the one practiced should also improve. No a priori information about the
particular kinematic and dynamic properties of the manipulator need be supplied, and a

~ large range of sensory, actuator, and kinemaric non-linearities will be acceptable. The choice
of coordinate system in which to specify desired movements will be quite flexible.
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Fig. 1 Major componenets of the model, The translator converts descriptions of desired
tra jetories into motor commands suited to the kinematic and dynamic properties of a
particular limb. This operation makes use of the tabular equations of motion in con junction
with the state space memory. Each movement of the limb generates data which, when
processed by the inversnon equations, contribute to the state space memory.
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Adaptauon to changes in the mecha.nical properties of the limb will also take place.
These predictions are based only on intuition; this paper examines these predictions
experzmentaﬂy We would like answers to the foilowmg questions: :
1) How well does the translator perform vis-a-vis its expected desirable
propertles?
2) How does the behavior of each component of the translator inf luence
overall performance and contribute to successes and failures? ,
2) What relationships can be drawn between the behavior of the translator
‘and that of the human?
4) How might the processes descrlbed here coexist with other models for
control? , o
Qur answers to these questions depend on data obtained using a variety of tests applied to
an implementation of the model which we hope adequately reflects its power and its
weaknesses. These data include measures of overall performance during learning and -
- adaptatlon as well as lnformation about the behavior of lnternal vanables.

Iniplementation

In order to evaluate the power of this model we developed a set of computer
programs which embody its various elements. These programs are used to control a
mechanical arm in order to study the detailed nature of the resulting movement. We have
introduced a number of notions -- practice movements, a temporary buffer, inverse

" computations, a discretized state space memory. desired tra jectories, and a translation pl’OCESS T

(17] - which now have to be made concrete. ‘
A PDP-11/45 computer is used to perform all computations, to issue commands to the
manipulator, and to make measurements. The manipulator is the MIT- Vicarm,
manufactured by Victor Scheinman. It has six degrees of freedom; the three joints used in
this study, (N=3), allow the wrist to be positioned arbitrarily within the arm’s work space.
See Fig. 2. Each joint is powered by a DC torque motor and provided with a clutch-type
brake which can be used to hold the arm stationary when no movement is in progress. The
PDP-Il may, through suitable circuitry, specify the current delivered to each motor. DC
torque motors have the characteristic that the torque they deliver is proportional to the
- winding current, mdependent of armature velocity. Since the currents for each motor may
be specif 1ed lndependently and simultaneously the PDP-1l computes a vector which

SV —
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Fig. 2 Layout of the first three joints of the MIT-Vicarm mampulator are shown. ¢1 acts
about the vertical axis. The mampualtor is about the size of a human arm; {p=273m,
pmig=059m, lo=l4=.203m. Each joint is provided with a DC torque motor, a potentiometer, a
tachometer, and a ciutch-type brake. The diagram is from [10] with modifications.
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determines the torques applied to the Joints of the arm.
o Signals proportional to angular position and velocity are available from

potentiometers and tachometers provided for each joint. When a movement is made ihe
~computer makes position and velocity measurements every 10 mse;. In addition, the
velocities, sampled every .5 msec., allow the accelerations to be estimated using least mean
square error techniques. A record of each movement can be saved for future use where
_each record represents up to 1.2 seconds of movement and contains position, velocity,
acceleration, and motor current information or each of the three joints.

The mechanics of the joints are completely backdrivable -- the torque produced by the
motor plus externally induced torques sum to determine the motion of the joint.
Consequently, the motions of each joint are a function of the torques applied to all the
Joints. This fact, which is generally true of biological limbs, is illustrated in F ig. 3. A step
of current applied to the motor which drives Joint 2 caused changes in the tra jectories of
Joints 1 and 3. For some manipulators, these interactions may be ignored [15].

- Two types of movement

Each manipulator movement may be classified according to the way the translator
processes it. Practice movements are those which generate data for the state space memory
via inversion (see below). The sources of the commands used to produce practice :
movements are unrestricted. Test movements are those produced by translation of awsired
tra jectories and they are used to assess performance. The trajectories are converted into sets’
of motor commands using data from the state space memory. When these commands are
issued to the arm a test movement results, In principle a movement can be both test and
~ practice, but for the sake of clarity no such overlap was permitted here.

In order to make use of a practice movement it must be divided into short duration

pieces called sections. The duration of a section was chosen to resolve two conflicting
factors. The state of the arm, its mechanical properties, and its accelerations are more nearly
constant during very short time intervals. On the other hand, longer intervals allow more
precise estimates of acceleration because mors samples can be used. We examined sections
of 40, 50, 60, 80, and 120 msec. in order to find an acceptable compromise. Sixty msec. 7
sections were used for all the data reported here. By superimposing 10 tra jectories Fig. 4a -
shows that the repeatability of typical acceleration measurements is very good, indicating an
adequately long estimation interval. Fig. 4b, showing a rather faithful reconstruction of an '
original movement from its estimated accelerations, substantiates the use of piécewise
constant accelerations. Occasionally, accelerations violate this assumption, but they are small
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~ Joint
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Fig. 3 The mahipu\ator was used to demonstrate the potential.f or mechapisal u;tt:;:ctions :
among joints of a limb. These graphs show how torques applied to one JOl:i\[ t; e ying
manipulator influenced the other joints. Each movement l,abgl}ed I was r;a e. ‘ym g‘;; Z‘ 8
constant torque to each joint. In movement 2 the torques at joints land wex;: meha! ged,
but a step was applied to joint 2 after 500 msec. (at arrow). ' Note that thg positio

velocity tra jectories of all three joints were aff: e;ted. P-pos;tiqn; V-velocntyf
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“Joint 1

Joint 2 0
Joint 3

T 1
0 600 1200
Time (msec.)
o~ ' Fig. 4a In order to determine the variability of acceleration estimates, the manipulator
executed ten repetitions of the same movement. Most sections only experienced small S

variations.in estimated acceleration, indicating an adequately long sampling interval. s
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Fig. 4b These curves show that 60 msec. piecewise-constant estimates of acceleration

.adequately describe a typical movement. During execution of the movement, position,

velocity, and estimated acceleration were recorded. The reconstructed position and velocity
tra jectories were computed by integrating the estimates of acceleration. The comparlson
between the recorded and reconstructed tra jectories is quxte good
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-in number.

Once a practice movement has been divided into sections, vectors are produced and

‘stored in the temporary buffer. These vectors contain a record of the motor currents, one

for each Jomt a set of acceleration estimates, and information regardmg the state of the

limb prevailing during the section. These measurement vectors are ‘collected in the
“temporary buffer until enough are present to perform an inverse computation.

Computatxon of the inverse

In order to calculate the constants of mechanical descnptlon which are the data

* stored in the state space memory, it is necessary to invert an N dimensional matrix of

acceleration measurements. (Actually these are acceleration diff erences taken from Nd sets
of measurements. See Eq. 5. in the Appendix). One may not invert a matrix if it is
singular, but N sets of N measurements taken from a physncal system are unlikely to be
strictly linearly dependent. We must take care that the matrix of acceleration estimates are
well conditioned, for inversion of an ill-conditioned matrix amplifies noise (14). In order to
avoid the potentlally disastrous effects of inverting an 1ll-condltmned set of noxsy |
measurements, two precautions are taken.

Each group of vectors are screened before inversion by a condxtiomng index, X,
which determines the degree to which a set of measurement vectors are independent well
conditioned: '

A% Alol A'y|
"A'lll*“A'2||+”A’3“  .

X =

where' : _ 7
At is a column vector of dlmension Na«3 -
Al is the norm of A.

~ The numerator of this index will be near zero if the matrix, A, is nearly singular.
The denominator insures that very large vectors do not make a nearly singular matrix
appear to be non-singular. Only sets of measurements that meet a criterion vaiue of the
index contribute to the state space memory When a set of vectors fail the conditioning test
the two least conmbutory vectors (smallest cross-product) are averaged together and replaced
in the temporary buffer. _

In theory, the calculations that produce data for the state space memory can be

-
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performed when only N+l measurement vectors have been collected. (See Eq. 5 of the.
Appendix.) When the computations are perforrhed in this perfectly constrained manner, the
effects of noise can be quite large. The resulting inverse rigidly applies to the measurement
data, analogous to the way a straight line fits only two data points. More than No+i -

' measurements can be used to reduce the effects of noise, much the way a straight line fit to

more than two data points minimizes the influence of noise present at each point. To
perform the computation on more than N+| measurements we have to use the generalized
inverse, since a matrix must be square to be inverted in the usual sense. Using the

~ generalized inverse any number of measurements can be regressed ‘and the procedure is -

quite analogous to the line fit mentioned above. This inverse does, in fact, minimize the
error of the inverse in the mean square sense. ' '

, The value of using more than N+l measurements is demonstrated in Fig. 5. These
htstograms were made by generating a set of measurement vectors relevant to one region in

~ state space and inverting them N’ at a time, where N’ was 4, 6, and 8. The value distributed

is one element of the resulting matrix. The figure shows that when more than the
minimum number of measurements is used, N'>Na, the results are more consistent and less’-
sub ject to extreme vartattons Values of N'=12 and 16 were also tested, but’ the additional
computational burden was not justified by the resulting improvements in noise re jection.
For this report N'=8. (A discussion of the generalized or pseudo inverse can be found in ul

, rThe pamcular algorithm used here, an extension of an orthogonahzatton method, is given
in [20]) ' ‘

The state space memory .
~The state space memory is organized into a large number of small regions, each -

- corresponding to a different state of the manipulator. Two factors determine the effective

size of these hyperregions; the parameter M, the number of divisions along each dimension
of the state space, and the range of values each state variable is permitted to assume. For
the present xmplementation with M=i0, (M2N or 108 defined states (for N-S)) each
hyperregion measures (15 deg)3 by (25 __e_%)s These regions are actually qulte small, and the

.'mechanical properties of the arm are fairly constant throughout.

An assumption of the state space mocel is that memory is mmally tabula rasa. But
what does that mean? For a neuronal mechznism it might be connections of zero strength,
connections of random strengths, no connections, or nothing to do with connections. Here -

" we have dxstmgulshed between no data and zero values. The two situations where this

question arises, entering new data into the mer_nory and applying data from the memory-. are
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Fig. 5 Use of the generalized inverse with more than N’ vectors reduces variability in the
resulting computed data. These histograms show the variation in computed vaiues for one
element of the ] matrix, for different values of the parameter N'. a) N'=4, (ordinary
inverse), b) N'=6; c) N'«8, (used for reported data).
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treated separately and explained below. _ , _

When new data are computed for regiohs of the memory, they must be stored in
combination with data that are already present. Many procedures which combine new and
old data will produce adaptive behavior. Without a great deal of consideration it was

decided to combine data as follows:

If a hyperregion has been updated & times, where k</and [ isa

parametér. each new datum is weighted by unity and the old value is

weighted by k -- the first [ values are weighted uniformly. When k>{ the
" new value is weighted by unity and the old value by 1.

.———- 1 should be chosen to give good immunity to noise while providing rapid ad justmentsto
changes in the dynamics of the manipulator. There is a direct tradeoff between these two
goals. Fig. 6 demonstrates the time course of the weighting factor for each piece of data
stored in the memory for various values of L. One can see that small values of lgivea
large weight to new data, and the effectiveness of the data are rather transitory. Larger
‘values of ! result in small weights, but longer lasting effects. Unless otherwise noted, /=10 in

~ this report. The effects of varying ! are described later. (it should be understood that the
reference to time in this context is indirect. Time is only a factor in that more data enter
the memory as time passes. Procedures for treating time explicitly are discussed later.)

i -

Use o_f' the state space data or Traﬁslation'. - L
Whenpresentedwnththe d‘é‘séfi‘gfioynbf‘ a desired movement, the translater uses the
tabular equations of motion with data which describe the mechanics of the limb to produce
a set of motor commands. First the desired tra jectdry is divided into 60 msec. sections, just
~ as is done to practice movements. Using data from the appropriate regions of the state -
space, the computation defined by Eq. 3 of [17], (see the Appendix), is performed in order to
" determine a set of motor currents. o S

What are the appropriate regions of the memory? Surely, data f rom the desired
hyperx;egipn are appropriate, bui data f rom nearby states can also be useful. Use of data
from neighboring states is justified since the mechanical behavior of our manipulator varies
smoothly throughout the state Space. Data from these neighbors can be used to advantage
whenever the desired hyperregion has never been updated with information about the '
‘prevailing mechanical pfoperiies of the limb. This situation arises when data generated in

_the learning of one part of a movement are used to replicate other parts of the same
‘movement, or when a new movement makes use of data originally derived from a separate
but similar movement. The distinction betwzen these two cases can not be drawn very
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Fig. 6 Each piece of data added to the state space memory is weighted and averaged with
older data. As subsequent data are added to the memory the effective weight of an entry is
reduced. The magnitude of initial contribution and rate of decay are determined by the

paramter /. Note that time is not a direct factor, but rate of decay depends on rate of -
subsequent memory updates. '

Marc Raibert
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sharply
Experimentauon with a number of data combmatlon algorithms lead to the
following simple and effective choice: , : ,
Each of the desired hyperregions’ first order neighbors is accessed. (A
. first order neighbor differs from the desired region by only one unit on
one dimension.) The contents of each are given a weight of one. The
contents of the desired hypercube are given a weight equal to the number
of times that region has been updated with new information. The
weighted average is used. |
~~The range of the netghborhood function can have important effects on the generahzatxon
behavior of the system These effects are discussed more fully later.

Practice : v :
The program which generates practice movements is not attually a part of the
controller. Since the behavior of the translator during testing is so intimately affected by
the details of the practice algorithm, we decided to describe its operation here along with
that of the implementation’s other components. Once a movement is designated as the
- desired movement the practice routine takes the following steps:

On each trial, for each section and joint, the Newton- -Raphson method is

used to choose a'motor current predicted to achieve the desired

acceleration. Only the previous two trials are used in making this

prediction. Whenever the acceleration errors on the previous trial are

within a set of limits for the section for all three Joints, the motor

currents for that section are not changed.
An example of seven consecutive practice trials are shown in Fig. 7, where the nature of
progressive improvements is demonstrated. Since the duration of each practice movement
varies, the number of trials of practice does not precisely lndlcate the amount of data
generated for subsequent analysis.

It must be stressed that althougn the practice program relies on error correction

procedures to ensure convergence, the learning displayed by the controller does not rely on
- error data in any way. The selection of this.particular practice algorithm was made to
simulate, in a simple way, the short term behavior of humans when practicing. Levine has
prehminary data which suggest that a similar iteration method may be used by the cat when
learning to make an optimal jump [l | ' o

Origmally it was assumed that the details of the practice algorithm would have
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£

Trial No.  Joint 1 -  Joint 2 " Joint 3

o N~

Fig. 7 Seven consecutive trials from a typical practice session are shown. Each curve shows

the practice prototype, PR-1, and the attempted movement. At the beginning of each trial
e~ the manipulator is servoed to the correct starting position for the prototype. In-order to - v

avoid damage to the arm, most practice movements had to be terminated before completion.
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little effect on the performance of the system, but this turned out to be quite false. The
behavior of the translator depends on how many data are generated, how variabie they are,.

~ and to which regions of the memory they apply. The rules which govern the former two of

these factors are in direct conflict, at least for the simple algorithm used in this project. In
order to produce useful data the practice algorithm has to produce movements which vary
the output currents independently and by significant amounts. Once the practice algorithm
converges upon an acceptable set of accelerations, (‘acceptable’ means within the acceleration
limits; AL), the output currents are not changed for that section. Therefore, the same set of
output currents are produced repeatedly —- not good for calculating mechanical constants.

e - These acceleration limits (AL) do insure, however, that once the correct values for the

output currents are found, they are maintained so that subsequent sections can be practiced
and processed When the allowable error for a section is reduced, a larger variety of
movements is produced but those sections late in the movement rarely receive enough
attention to’ produce adequate measurement vectors. The ef fects of using AL = £50, 75, 90,

-and 115 are shown in Fig. 8.  Limits of AL=%75 provide a good tradeof f between vanety of

data and number of sections practnced

This limmng effect can be overcome to some degree by practicing the movement in
part& A simple servo program moves the arm to the correct initial conditions. for a pomt in
the middle of the movement, after which the practice program continues with a normal _
practxce movement. People are known to use such a strategy when they break a complicated
movement into parts during learning [5,23]. Fig. 9 shows how this procedure can

redistribute the effects of practice which would normally generate data primarily for the

initial sectxons of the practice movement (Fig. 9a). When the servo is used to start the
movement, sections in the middle of the movement also receive data (Figs. 9b, c, and d).

The choice of parameters has been described. In summary: Three manipulator jomts
are used for testing (N=3). Each dimension of the state space memory is divided into ten
intervals, resulting in 108 _hyperregions {M=10). Movements are processed in terms of 60
msec. sections and elght measurements are inverted at a time (N’ =8). When new data are
stored into the memory they receive a weight of one tenth, and old data receive a weight of
nine tenths (I=10). When the memory is accessed, data from the desired hyperregion and
from the first order neighbors are used in combination. The practice algorxthm has been

ad justed to generate moderately variable data while remammg near the prototype tra Jectory
(AL=£75).
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Fig. 8 Mani'pulating the practice algorithm’s acceleration limit affects the algorithrﬁ’s
effectiveness. Three measures are plotted vs. the value of this limit: ) Number of inverses
- computed for regions accessed directly by practiced prototype. (+) 2) Number of inverses

computed for neighbors of practice prototype. (triangles) 3) Number of prototype sections
for which data are provided. (squares) Acceleration limit is 275 for data in this report.
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- Fig. 9 The eff ect of changivng the starting section for a practice session are shown here.

For each histogram 250 practice trials were executed. At the start of each trial a servo
routine was used so that the movements could start with section: a)l, b)6, c)1l, d)16. The

histograms show how man

y usable measurement vectors were generated for each section of -

the practice prototype, PR-1. The solid bars indicate vectors which apply to sections in the -
prototype, while the open bars indicate vectors which apply to first order neighbors (see

text). o




Experimental FindingS K 22 ' ' - Marc Raibert

Methods
Prototypes o i ,
Prototypes are internal representations of ideal movements, They are used to specify
desired tra jectories to the tranislator in the production of test movements. ‘They are also
- Used as target movement during practice sessions. Each prototype, is produced in one of
three ways: R o ‘
* 1) The arm is moved manually by the experimenter white position and
velocities are recorded from each Joint, and accelerations are estimated.
2) A set of currents are selected by the experimenter and the arm is driven
by these currents during which time the positions and velocities are
~ measured, and accelerations are estimated. o
3) A set of acceleration tra Jectories are selected by the experimenter and
they are integrated to obtain position and velocity tra jectories.

_ ‘Each of these three methods produces position, velacity, and acceleration tra jectories
 for each of the joints. Method (1) has the advantage that it facilitates the generation of (-
complicated spatial patterns, which are diff icult to decompose into the sensory system’s 7
~ coordinates. It is also important because programming industrial robots often makes use of
“this method. Method (2) has the_advamage that the experimenter knows, a pribki. what set
of currents will produce the movement. This can be useful in conducting tests of
competence rather than performance. Methed (3) has the advantage that a set of protatype
movements can be generated which vary in carefully controlled ways (ég; starting position,
final position, maximum velocity, duration, etc.) Although all three techniques were used at
some point in this study, most of the prototypes used to generate the data included in this -
report were produced using method (3). '
Using method (3) a set of Seven protatypes were generated and used to test the
_controller’s performance. Among these there are two series graded in similarity. The
movements in one series share initial and final positions, but diffef in duration (and peak
velocity). The other series also shares initial position and duration, but the final position is
varied. These sets are used to assess the model's ability to generalize among movements,
Curves representing one of the prototypes are shown in Fig. 10.

Procedure : ,
During each practice session, the practice program, using one of the prototypes as a
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o F ig. 10 These curves represent the prototype used for practice in this report, PR L

generated using method (3). P- posmon, V-velocity, A-acceleration.

It was -
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goal movement, generates 100 practice movements. At the end of each of these 100-trial
blacks, the movements are proceiéed by the translator, creating data which describe the
mechanics of the manipulator. The seven prototypes are then used to plan test movements
using the tabular equations of motion and the data from the state Space memory. After the
test movements are executed measurements are made of the performance and competence of
the translator. These are used to construct learning curves which plot the values of a '
performance index as a function of experience. : ' '

Performance indices : ‘ e :
The behavior of the model is measured by applying perforrhancg indices to the test
_movements. Learning curves are created by plotting the values of one or another of these
indices against the number of practice movements made by the system at the time of the test.
Each index is applied to é_m error curve found by comparing the movement to the test
prototype. These error curves are only used for analysis and do not effect performance of
the system. The indices in use are: ; ; o
1) Root mean square position error - The mean square position error for
each joint and for all three joints is cumulated for the entire tra jectory.
The square roots of these values are reported. (RMS P) '
2) Final position error - The position error at the end of a specified time
interval is found for each Joint. The total position error is found by
taking the square root of the sum of Squares of the errors for each joint.
Since the join_tbcoordinates are not orthogorial, this total measure is not
equivalent to a resultant error in cartesian space. (RMS FP)
3) Root mean square acceleration error - Same as RMS P (1), but

N -~

. acceleration error is found. (RMS A) e

4) Root mean square velocity error - Same as RMS P but the velocity error
is found. (RMS V) '

Protot'ypes and movement plans have 1.2 sec. duration, but each performance index
used in this paper is only applied to the first 500 msec. of the test movement. This was done
for practical and theoretical reasons: :

1) Many movements made eaily_ in Ieérning must be stopped bef ore

completion to avoid damage to the manipulator. Therefore, they are
shorter than 1.2 sec. This argument does not apply to competence indices.

2) Most of the data p'roduced by the practice algorithm are only useful for
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planning the first half the test movements. (See Fig. 11) The extra
investment of time needed to generate practice data for all sections of a
prototype -seemed un justified. :

3) All available evidence indicates that open loop Asegments longer than 300

msec. are not necessary for good control and are not found in nature
[4,9,13,16].

Competence index

It is useful to distinguish between performance of the system and performance of the
manipulator under contro} of the system. The latter is measured by the performance indices
given above, while we feel the former should be assessed by a competence index. Drawing
this distinction between competence and performance allows us to ignore extraneous factors

- related to the production of movement not under the inf luence of the controller.

Furthermore, we can evaluate the controller’s behavior in terms of variables more closely
refated to its internal workmgs Of course, the only good controller is one which causes
production of quality limb movements, but our success in finding such models and
medifying existing ones is improved by measuring these internal variables in addition to v
terminal behavior. After all, do we want to casually reject a controlier which produces very
nearly the right control Jjust because the manipulator behaves poorly under that control? '
(This can occur, for instance, when the mechanics of the mampuiator include discontinuous -
non-linearities like stiction.) ) . »

One added feature of a competence rmeasure is that it can be used to evaluate the
entire 1.2 sec. duration of a movement while performance indices must be restricted. We feel
that the following index conveys information about the competence of the system to
generate motor plans while de-emphasxzmg the problems of production:

Root mean square motor current error - Same as RMS P but the motor -
current error is found. This index gives a measure of competence, but
can only be used when the currents which will reproduce the prototype
tra jectory are known. This is normally the case only for prototypes ,
generated from motor-current plans (see section on prototypes), but it was
' possxble to estimate the currents for the prototypes used here, (RMS MC)
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Fig. I - The measurement vectors produced by 3000 practice trials are shown distributed on

the sections of practice prototype PR-I. Note that most of the data apply to the first 10
sections. ‘ ' '
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Besults

Acquisition

- Figs. 12a and b show a series of test movements made durlng a Iearmng session, each
separated by 500 practice trials. The prototype which described the desired movement to the
translator is also shown. Each succeeding test movement is a better replica of the desired
movement than the previous one, and the last movement shown is very similar to the
prototype. Most of the remaining error after 3000 practice trials is caused by deviations
from the desired tra jectory of joint three. Stiction forces in this joint are especnally Iarge,

- and are thought to be responsible for the observed deviations.

These same results are given in quatizative form by Fig. 13. The perf ormance index,
root mean square position error (RMS P), was evaluated for each test movement and plotted
against the number of practice trials processed by the system. The learning curve shows a
rapid initial lmprovement with subsequent asymptotic behavior. The learning curve shown

- in Fig. I4a presents a more dramatic example of acquisition. It was produced by testmg with

prototype PR-2, though the practice was the same as used above.

One apparently peculiar result is that a set of test movements may show that the FP
error and RMS P error are converging nlcely to small values while the RMS A error shows.
somewhat disorderly conduct. (See Fig. 14b). Although one might suppose that these two
measures are c]osely linked, some thought shows that a very small error in acceleration near
the beginning of a movement may result in a very large final position error. So the
;cceleration for one section near the beginning of a movement may contribute a great deal
to the final position error, and the acceleration for a section near the end may produce

- almost no effect on position error. On the other hand, there may be no change in

acceleratmn error, or perhaps even a net xmprovement whnle the final and RMS P errors

have become quite large. '
Fig. l4c shows that during the practice session the motor currents planned by the

translator approach those which are known to produce the desired movement. The

- competence index, (RMS MC), was used to produce this learning curve.

These figures provide substantiation for our basic claim; the state space model can

- acquire control of a limb-like mechanical device by processing data produced by movements
I of that device, thhout the use of error information

Generalization
~In addmon to learning to perform new movements when they are pracnced we have
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Fig. 12a Seven attempts to replicate prototype PR-1 are shown. Each is separated by 500
ﬁ practice trials and is plotted along with the desired trajectory. (Position tra Jectories.)
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CPRACTICE TRIALS (WUNDREDS) - O

_ Fig. 13 After every 100 practice trials a set of test movements are produced and the
performance indices are applied. This learning curve shows the performance index, RMS
FP plotted against trials of practice. These data also appear in Fig 12.

~ Fig. 14 (Next page) These leaming curves were produced by practicing PR-1, and testing
performance of PR-2. Two performance indices and the competence index were used. a)
RMS FP, performance. b) RMS A; Note the irregular, non-monotonic behavior. c) RMS
- MC, competence.
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claimed that the state space model will generalize from practiced movements to movements -
which have never been practiced, provided they are sufficiently similar. So far, this claim
has been difficult to verify convincingly. Both technical and substantive consideration have
contrlbuted to this situation. ' | .

Fig. 15a shows the learning. curves for a set of test movements. The movements in
this set were chosen to be graded in similarity to the practice prototype, PR-l. Each had the
same initial and final positions, but varied in duration. These curves show how ‘
performance was 'iniproved when PR-] was practiced, though the amount of improVement ,

~ for each prototype is variable. Fig. 18b shows the same data after normalization. Here, each

point on each curve gives the percent improvement up to that point in the learning session.
By a strict interpretation of the definition of generalization, these data qualify, but they are
peculiar in certain respects. Normally, we would expect a gradual deterioration in

performance as the test movements become more and more different from the practice

movement. Such a- systematic variation was not found among these performance curves.
Examination of learning curves for the competence index applied to these same data reveals
more orderly behavior. (See Fig. 15c) The highest level of competence after 3000 practice
trials was exhibited by the practice prototype, though the differences between prototypes was
fairly smali. _

* These differences, between performance and competence reveal the presence of
effects related to the learnability and replicability of individual movements. The lack of
large differences between pairs of protatypes for performance measures and competence
measures, indicates a poor choice of test movements. We postpone a more complete
discussion of these results to a later section of this report.

e Adaetation . o - e e v. et o B St S T g b _:;,, B e ot ,‘ e e

We claim that the model will adapt its motor commands to compensate for changes in
the mechanics of the manipulator or limb. Fig. 16 illustrates how the arm is modified to test
this property. In one case (Fig. 16a) we attach a .75 kg weight to link 3 of the arm to ‘
increase the moments of inertia for all links and the effect of gravity on links 2 and 3. In
the other case a sprmg, having a constant of 1.85 kg/m, is attached between link 2 and
ground. (Fig.16b) =

Our general fmdmg is that application of a mechanical load causes a temporary
disruptmn of motor control, but control is restored after practice with the new mechanical
situation. This result is demonstrated by the data shown in Fig. 17. These curves were
produced by establishing a 3000 practice trial baseline upon which the effects of
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Fig. 15 The effects of generalization are detarmined by examining learning curves for
movements different from the practiced prototype. a) These performance curves do not

vary systematically across prototypes. b) The data for each curve are normalized so that
percent improvement can be readily determined. Again, no systematic variations are
apparent. c) Learning curves for the competence index reveal a gradient of competence in
moving away from the practiced prototype.
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Inertial load E

Fig. 16 Two methods of applying loads in order to disturb the manipulator’s behavior are

shown. a) A .19 kg. weight is attached to the third link of the manipulator. b) A 1.85 kg/m

spring is attached from the second link to ‘ground’. When movements start the spring is
stretched .83m and runs from coordinates (17,00,25) to (.02,7,1.20) in meters; see F ig. 2.

e
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Fig. 17 Adaptation to two types of load are shown. First, a 3000 trial baseline is established. -
After practice trial 3000 the load is applied and the time course of adaptation is recorded.
- 1=10. o S - T :
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 disturbances are assessed. The figure shows that both types of load cause a large increase
in error which is subsequently reduced. Although these results satisfy our minimal
expectations for adaptation, we experimented with mampulations designed to improve the
rate of adaptation ‘Two factors might be responsible for retardmg adaptation:

One factor arises because measurement vectors remain in the temporary buffer until
they are used in an inversion. Therefore, data generated during the period following
application of a mechanical disturbance are likely to resuit from eomp'utétions‘ based on

* combinations of measurements taken before and after application of the load. The
. constants abtained from these interim calculations may attain values which are quite
different from either pre- or post-adaptation values - they do not necessarily attain
intermediate values. Fig. 18 demonstrates this counter-intuitive effect.- )

Eight measurement vectors were recorded in each of two different states For each
state a different set of mechanical conditions prevailed. As the ratio of number-of-vectors-
from-state-A to number -from-B changes monotonically, the data produced by inversion
vary non-monotoniclly. If one were averaging data from two groups, however, the
transition would be monotonic. To assess the effects of these interim calculatxons, an
adaptation test was conducted in which all data from the temporary buffer were removed
when the load was applied. The ‘heavier dotted line in an 19 shows that this procedure
produces no clear improvement in rate of adaptation.

The rate of adaptation is also retarded when oid and new data are combmed in the
state space memory by averaging. This factor can be ad justed by reducing the value of /,
the averaging parameter discussed earlier. (See Fig. 6.) The results of such a manipulation
are shown by the curves in Figs. 20a and b.. Each successively smaller value of ! results in
more rapid adaptation to the mechanical disturbance imposed by the spring. While
" reduction of ! improves adaptation rate, it may reduce the system’s resistance to the ef fects
of noisy measurements. (Data presently available do not substantiate this point, but it is- |
strongly expected to be true based on our understanding of the model's operation.)

While reductions in ! decrease the effects of old state space memory data, they do not
eliminate them. An experiment was done in which all previous state space data were
eliminated at the time the load was applied. The temporary buffer was also zeroed. The
lightly dotted curve in Fig. 19 reveals an extrerhely rapid adaptation. Unfortunately, this
improvement in adaptation rate is accompanied by an initial loss of control. The level of
performance following application of the load was temporarily lower than that initially
achieved when the memories are left intact (solid curve in Fig. 19). A more severe loss of
control resulting from initialization of the memories is shown in Fig. 21.
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_ VECTOR MIX

Fig. 18 A demonstration of the deleterious effects of ‘mixing’ measurement vectors when

inverting. Two sets of vectors were used, (sets A and B), each consisting 'of 8 vectors

generated for a mechanical situation. ‘Nine inversions were performed where the vectors

contributing to each inversion were:(aj,ag,aga4asaga’ag), (aj,agas.a4,a5a6.a7,bg),

~ (aj,a2a3,a4,a5a6,b7,bg), . . . (b,bo,bs,bg,bsbg,b7,bg). The value plotted on the ordinate is
one element of the resulting ] matrix. B '

™M VIR

. PRACTICE TRIALS (HUNDREDS)

Fig. 19 Two manipulations were performed to improve the rate of adaptation. The solid

- - curve is reproduced from Fig. 17 for comparison (/=10, no memory manipulations). The

- heavy dotted curve was produced by removing all measurement vectors from the temporary
buffer when the load is applied. The light dotted line was produced by removing all data
from both the temporary and the state space memories. (PR-1); (See text) Ciosed circle

- indicates pre-adaptation level. - .
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Fig. 21 When the state space memory is mmalued in order to xmprove the adaptatxon rate,
a loss of control may insue. The solid line was produced with /=10 and no memory

mampulanons ! was not changed for the dotted curve, but the state space memory and the
temporary buffer were zeroed when the spring load was applied. Adaptation is made more

rapid, but only after an mitlal penod of poor performance. Closed circie mdxcates pre-
adaptanon level
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Discussion

. The acquisition and adaptation data presented above substantiate our basic claims:
A controller using an internal inverse dynamxc model can translate desired tra Jectories into
motor plans. The analysis of measurements made during practice movements makes

“translation possible and allows the controller to compensate for changes in- the dynamic '
properties of the mampulator Error correction and iteration are not necessary if the tabular

form of the equations of motion are used wi:h a state space memory.

Ceneralization -

The tests used to demonstrate generalization were not so successf ul. Indeed
practicing one movement facilitated performance of others, but we expected a gradual
deterioration of performance as the test movements became more and more different from
the practice movement. Along the two dimensions tested, performance did not vary
systematically. (See Fig.15)

Perhaps we need to clarify why we are unhappy with results which indicate that the

‘controller does not generalize poorly among dissimilar movements. Af ter all, we are looking

for efficient solutions for learning, and a controller which perfarms well with little practice
is desirable. There are two very general principles which govern such solutions. A
controller should: ' '
l) Maximize the use of available data by provxdmg access to them -
‘Whenever possible.
2) Mi inimize the misuse of data by restricting access to them whenever ~
necessary. ’ ‘ ,
Since the dynamic behavior of the manipulétor varies smoothly throughdut state space, data
generated for one region of the state space memory can be made available when plannmg
movements through other, nearby parts of the space. But this ‘sharing’ of data cannot go
too far or the state dependent variations in mechanical properttes will lead to the generatlon
of very poor tra jectories. ‘
Each of these principles should induce a generahzanon gradient in the controller s

behavior. The first because inappropriate use of available data will produce bad
- trajectories. The second because unavailability of data will produce bad tra jectories. For

these reasons our data must show a gradient in performance in order to verify our analysis

’
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of generalization. - , :

Factors closely related to these principles may be held responsible for the lack of
observed regularity. One such factor caused each tra jectory to be replicated with roughly
equal precision. (Eg. replication of prototype PR-3 was as good as PR-1) Since the range
of movements chosen for the tests was relatively small, none were suf f iciently different from | _
the practice movement to involve substantially changed mechanical behavior. Nor were
much data required from unfilled regions of the state space-memory. This problem may be
solved by selecting test movements which spen a larger range of movement space.

Another factor, related to the individual characteristics of certain tra Jjectories, caused
some to be replicated much more faithfully than the practice movement. (Eg. replication of
prototype PR-2 was better than PR-1) A mcvement may be easier or harder to replicate for
a number of reasons. It may have fewer low velocity components, require more data from
the memory, bear a particular relationship to the practice aigorithm, etc.

Experiments carefully designed to elhmnate both of these probiems are proposed in
(sl - | :

“The amount of generahzatlon exhibited by the controller is largely determined by the
range of the neighborhood function and the map that determines the discretization of the
state space memory. But these parameters should be chosen with some knowledge of the
behavior of the manipulator. That does not mean that a naive controlier must have a
priori knowledge of correct values for these parameters, but optimum choices must be

~ postponed until some experience with the plant variables is gained. This issue has not

received systematic attention here. The neighborhood function and state space memory map

- were chosen and ad justed to give good pérfcnrmance It is my opinion, however, that simple
“mechanisms exist which will perform these selections automatically. Furthermore, such

automatic selection could design memory maps and neighborhood functions which
compensate for the rate at which the limbs properties vary with state.

Another diff nculty in studying generalization is the lack of a good general
classification scheme for movement. Asa consequence, the concept of ‘similar movements’,
necessary for a precise study of generalization, is not well developed. Each pair of
movements can be easily classified if we are wmmg to limit our consideration to a particular

_ model or theory. but the results are often qunte unappeahng (See, for example, table 1.)

Distributed vs. massed trials
In a normal practice session, measurements vectors from temporally ad jacent practzce

: trtals are often similar The begmning of a pracnce block, however, is unlikely to include
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vectors similar to those at the end of the previous block. Since the invertibility index
screens and combines sets of linearly depehdent vectors, one would expect more inverses to _
be found, (morevl_earning), near the beginning of a practice block than elsewhere. Taking
this factor into account, ane might expect mare learning when 100 practice trials are broken
down into 5 blocks of 20, than when they are practited in one large block. This is
reminiscent of behavior observed in humans and other animals: Learrﬁng is more efficient
when trials are distributed in time than when long sessions of practice are employed -
[4,5,21,29]. | | o ' -

A use for error data . _ » »
' - It was shown that the rate of adaptation to mechanical disturbance was incrgased
when outdated data were removed f'rom the memory. (Fig. 19) Unlike reducing the value
of {, however, this manipulation requires information indicative of the data’s obsolescence.
That information was provided by the experimenter for the tests described above, buta -
control system could provide those data for itself in a number of ways. For instance’
someday, high-level processes might visually ascertain that a coil shape ob ject was now'
connected between arm and ceﬂing. Using its d‘ata‘base it could determine that such a
device was probably a spring and would probably change the mechanical properties of the
limb. .. A'lternatively, a simple mechanism which merely examines error data could quickly
determine a loss of control. o - ,
It is interesting to postulate a system that uses error data to determine that something
went wrong, andbmeasurement data to find out what went wrong. The vexpected behavior
of such a system, rapid adapiation when error information is provided and moderately
rapid adaptation when it is absent, is in agreement with experiments from the psychological
~literature [16]. This combination of feedback and feedforward may prove to be a powerful
concept for future models of adaptation.’ -

The translator and optimal control , v

The theory of optimal control describes how tra Jectories may be chosen to satisfy a
set of movement constraints, while minimizing a cost function for a particular mechanical
system [4]. The constraints might specify, for example, initial and final positions and

execution time, while the cost function provides penaities for, say, errors in position, time of

arrival, and expenditure of energy (the last of which is minimized by humans during at

least one motor activity (19]). ' '
We have supposed that the functions of motor control are divided into: High-level
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processes which plan tra JECIOX’IES without consxdermg the mechanics of the motor apparatus,
and low-level mechanisms which translate these tra Jectories into commands understood by
the limb.- Since the optimization process generates tra Jectories, one is inclined to include it
with the high-level mechanisms mentioned. When variables related to the manipulator
enter the cost function, however, as they do when energy is conserved, the optimization
process threatens the presumed dichotomy between high- and low-level functions. In order
to optimize energy consumption, the process which generates tra jectories must know which

motor commands will be required for production and that is the business of the low- Ievel

translator. :

* This apparent merging of high- and low-level functions is avoided if the _'
optimization process gets its information about energy costs, not from the translator, but
from another source which remembers the measured costs associated with previous

’ movements

A fair test of the model?

The ranges of certain variables have to be limited to satisf y technical considerations.
For instance, all velocities have to be below & maximum. When very large velocities are.
allowed the current/force relatlonship for the DC motors is no longer valid. This restriction
is especxally annoying, because some of the more important propemes of the control system
are most clearly exhibited at high velocities. ‘For obvious reasons, the value of M, the state
space quantizing factor, also has to be restrlcted thereby reducmg the attainable precxsnon of
control. : : :

Many combinations of the model's parameters are ‘possible. Limited time resources
forced us to choose relatively few combinaticns for experimental mvestlgatlon In most
cases the experimenter was guided by his intuition derived from previous experience, and

~ the results were satxsfactory We have no way of knowing, however, what pockets of -

unusual or revealing behavior may have gone undetected. :

In spite of these difficulties, I feel that the tests presented- here are representatwe of
the model s abilities and power. From a research point of view, these drawbacks are
compensated in a rather direct way by the degree to which each of the model’s variables and

' parameters are avaxlable for exammatlon and mampulanon
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' Next generation Vstate space model

In the course of developing and testmg this model a number of 1deas emerged which
were not included in the implementation pre;ented above. Some were available at the outset
but were not used in order to keep things siriple. Others presented themselves after the
experimenter became mare familiar with the system’s operation. Since they might be
valuable for future work in this field, this section presents a brief list of these ideas with
some discussion of their motivation. Most of them are not well developed and no plans
exist for their xmplementauon or test. - '

Insurinz the command-f orce relationship

Earlier it was pointed out that there are restrictions on the allowable relanonshnps
between the command issued by the controllér and the net force or torque applied to the
Joint. The Scheinman manipulator used in these tests is powered by DC torque motors.

They have the characteristic that, neglecting friction, the torque produced is proportional to

the current through the motor at all speeds These motors are driven by servo amplifiers -
which insure, for a certain range of inputs and velocities, that the current through the o C
motor is proportional ta the voltage applied to the amplifier. Since the amplifiers only have

a finite voltage swing (+28v) and the motors produce a back emf when in motion, the

amplifiers are not always able to drive the dasired current. In order to check for this

condition the actual voltages across the motors was monitored at all times. Whenever these

values approached 28 volts durmg a measurﬂment, that measurement. was ignored- because

the amplifier might have been saturated anc. applied an unknown force.

A more systematic treatment of this problem could be developed if sensors were used :
to measure the actual force delivered by the actuator. Then the force measurement, rather - — -
than the command, could be stored with the resulting acceleration measurement. - ’

Measurements of actual force delivered would automatically ad just for any saturation effects
in the actuator. On the other hand, the translator would only determine the force to apply
to a joint, rather than command - another piece of hardware would have to convert the
desired force into a command which produced that force. But that one dimensional
problem, involving data for only one joint, is easxly solved. This type of arrangement would
also have the advantage that changes in properties of the actuators which occur quickly,

~ such as f atigue or warm-up, need not effect performance of the translator.
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 Practice improves practice

In the present implementation, each practice session is totally lndependent from every
other practice session. Each session starts about the same, and often includes a number of

~ wild tra Jectories that are very different from the desired movement. Therefore, although

much of the data generated might be useful at some future time, or for replication of some
other movement, they are useless for the task at hand - learning to replicate the desired
tra Jjectory. ’

In man, on the other hand, experience influences practice. The sophisticated mover
does not necessarily flail his limbs around each time he wishes to learn a new movement.

" On the contrary, he may begin by executing a reasonably good approximation to his goal on

the very first try. After some practice he will be doing something very close to the desired
response, and each attempt at that level may be rich in measurements usable by the learmng
mechanism, : :

' This type of regeneratlve effect (practice-learning-better practice»more

| learning-etc.) could be quite important for future studies. In order to make use of this’

approach, the practice algorithm must use the translator's expertize when planmng

'movements

Decaying vectors

During the normal course of an organism’s development, the mechanical properties
of a limb will change in a number of ways. As new measurement data arrive describing
these new properties, the translator’s equations of motion will change. But thereisa
potentxal problem which impairs the translator’s ability to adapt, and even allows for wildly
deviant performance during the adaptation period.

/At any given time there are usually a number of vectors stored in the temporary
buf fer awaiting the amval of others, at whizh time inversion takes place. Each of these
vectors may have been generated during dif “erent mechanical conditions, if the mechanical

.'propertxes of the system are changing rapidly or measurement data are being generated

slowly. If a single inverse computation includes vectors generated during changing
mechanical conditions, the resulting state space data are not likely to be reiiable. (See Fig.
18.) Even when the transition from old to new data is smooth, this effect tends to prolong

'the amount of time and practice needed to completely change the controls.

The translator described here does not know when its vectors are no longer
apphcable, though performance measures could be used to help obtain such information.

- Another solution is based on the notion of a decaymg memory. If old measurement data are
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removed from the temporary buffer, or given reduced weights, there will be a reduction in -
the range of measurement dates found contnbuting to any one inversion. Of course, the
same sort of temporal decay could also be applied to data in the state space memory

- Observe that I am advocating a decay of weight, not a decay of value.

An interesting result comes from considering the consequences of applymg a

partlcular decay function to the state space memory. Suppose, first of all, that ali data decay
- exponentially. During any time interval new, old, and intermediate data are all reduced by

the same fraction. When data do not enter the memory, all weights are reduced, but the
relationships among wexghts are the same and behavior’ remains unchanged Ifan
exponential with a growing time-constant is used, (see Fig. 22), new data will decay f aster .
than old, and the system will tend to return to previously used values. Of course, the time-

- constant need not be continuously growing. An exponential decay function with a piecewise

constant time-constants, (eg. short plus long term memory, see Flg 22b) would also give a
temporary large weight to recent data.
Now let us consider the f ollowmg as: A large amount of data have been collected

- and stored. The mechanical properties of a limb are artificially manipulated and a practice
- period is permitted. If memory weights decay exponentially, the level of performance at any

time after the adaptation period, but before new data are generated, should be the same as
that found 1mmedxate|y after the adaptation period. A decay function which uses a growing
time constant, however, shauld result in an initial improvement in perf. ormance, followed by
a gradual return to pre-adaptation levels.

Hamilton and Bossom (8], and Choe and ‘Welch [4] conducted pnsm adaptauon
experiments under these circumstances. Hamilton and Bossom suggest that their findings

" argue for a distinction between the mechanisms responsible for initial acquisition and those

for adaptation. Their results, however, are consistent with the alternative notion of a
variable time-constant memory. '

Smaller state space memories :

’ The worst drawback of the controller presented here is the size of the state space
memory The size of the memory increases as a power of the number of state variables; two
for each degree of freedom, M2, For a few degrees of freedom this number is managably
large, but soon reaches unreasonable proportions, even for the renowned capacity of the
central nervous system. (By some analyses the human arm and hand have a total of 35
degrees of freedom.) There are, however, a number of ways in which the memories
required for each limb or manipulator can be kept to practical sizes.

Lo
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Fig. 22 Examples of decay functions with variable time-constants. Examples of two classes

of such functions are shown a) Continuously varying time-constants: 7=-1, r=-t"5, and

7=-t75; b) Piecewise constant time-constant: r={-2, 0<t<.75; -5, .75<t}. A combination of
e R short and long term memory falls into this second class. . '
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If hash codmg is used, the controller can capitalize on the tradeoff between size of
memory, and the number of different types of movement learnable at one time. If few
movements are to be learned, the number of different state space hyperregxons involved will
be small compared to all the possibilities. A hashing algonthm maps these few hyperreglons
from the very large state space into the available memory. In general, this techmque does
not reduce the dimensionality of the problem, and may not be adequate. Albus [2] employs
hashing methods’ inan xmplementation of a version of Marr’s model for cerebellar function
(141 '

A review of the terms entering the equations of motion f or a manipulator reveals
that, except for the Coriolis force, each is a function of the position state vector or the

- Velocity state vector, but not both. (See Eq. 1 in the Appendix.) Gravitational forces and

moments of inertia are dependent only on the posxtion vector, while friction is prlmanly a
function of velocxty Since Coriolis forces are typically small, one mlght propose the use of
two memories; one with N positional dimensions and one with N velocity dimensions.
Development of this approach .could lead to practical control apphcatxons, especxaﬂy if used
‘together with hashing techniques. . :

Under certain circumstances a controller that uses one memory with dxmensnonahty
2N can be replaced by two controllers, each of which employs a memory with fewer than 2N
dimensions. This can be done whenever the mechanical properties of the plant may be
- decomposed into non-interacting subsections, or when the interactions are constrained to a
few degrees of freedom. Then each controllzr will have state variables which represent the
net influence of coupling with the other mechanical c component. One could imagine the use"
of this type of arrangement in controiling the interactions between the trunk of the body
- and each limb. Suppose that each of two limbs had 4 degrees of freedom, and the trunk

- had another 3. Further suppose that all the coupling at each shoulder could be represented S

in terms of 3 degrees of freedom. If the entire system were controlled from one memory it
would require 2(4+4+3)=22 dimensions. If three separate controllers were used, however, 3
memories would be required, of dxrrension 14, 14, and b8

An_improved version |
: The following formulation incorporares a number of improvements into the design
of the controller, while maintaining its desxrnble properties. The ma jor differences in this
new formulation are: ‘
1) The state space memory and temporary buffer are combmed
2) Hyperregxons are no longer discretz entities.
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3) Each measurement vector is labelled with its time of generation.
4) The neighborhood function, applicd before inversion rather than after,
- gives each measurement vector a weight determined by its distance from
the desired state. The age of the measurement also contributes to its
weight. |
| ~ 5) During movement planning the generalized inverse is used to invert a_"
measurement vectors found in the neighborhood of the desired state.

function. When data are taken from the memory they are weighted as a function of their
distance from the desired state. The neighborhood function can be continuous and the
broader it is the more the data in the memory are shared in the production of different
movements. A sharper function enables better replication of movements which travel
through non-linear portions of the movement space. Since each measurement vector carries

. .information about its age, the advantages of a decaying memory can be realized.

‘An invertibility index would no longer be needed because each use of the generalized
inverse yields an optimal estimate of the constants of mechanieal description in the mean
square error sense. The procedure described in this paper, averaging optimal estimates, is
only sdb-optlmal The proposed new method is truly optimal in that each computation of

the mechanical constants relies on the maximum possible number of measurements — all
' those present

Conclusions

A computer and manipulator were usad to implement a model for motor control, and
transformation of. the model into a working system verifies the model’s explicitness. A
discussion of the considerations which contributed to the selection of parameters for the
implementation was pfesented. A number of parametric variations received experimental
attention, though the space of all possible parametric combinations could not be expiored. It
is felt, however; that the results are representative of what can be expected- from the state
space controller. , |

Experlments were performed which demonstrated the controller'’s abnhty to |mprove '

its control vis-a-vis a set of test movements by practicing one movement of the set.
Rudxmentary exampies of generalizatlon were presented though more extensive

This arrangement allnws'forma;wsinipler, less ad hoc specification of the nei“gﬁhbbi'h‘dod' R
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TN

éxperxmentatxon in this area is needed. :
A number of improvements to the model were proposed and dxscussed They
‘included: s : ’
1) Employment of a subsxdxary controller which maintams the command-
force relationship for each actuator.
2) The use of a more powerful practice algorithm
3) Inclusion of a decay f actor in operation -of the controlier’s mémOry.
74) Methods for reducing the size of the state space memory.
5) Elimination of the discrete nature of the memory. :
For those readers who are concerned with understanding man, the contents of this
paper may supply no direct information. W hope, however, that examination and testing
of these models will lead to the development of 1ntellectual tools with which such direct
- inf ormatlon may be sought
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A ppendix from [I5] with revisions. -

Eq. | Equations of motlph: :
Tpn - G(6) - B(@) - Clod) = (94

where: - ‘
T4y, is the motor torque vector
"G is the gravitational torque vector -
B is the frictional torque vector
C is the coriolis torque vector
J is the moment of inertia matrix : :
@, ¢, and ¢ are the position, velocity, and acceleration vectors.

Egr . 2 Equations of motion for a given state:

'Tm.GG-Bﬂ.Ca.ﬁ;Ja'&. .

where; 7 A N
F o8 is the vectored function F(¢.$) evaluated at p=a, ¢=f.
Eg. 3 Equation 2-simpliﬂed further:
Tm=lgé+ Kaﬁ
where: - , )
Kaﬂ =Gy Bﬁ -vcaﬂ.




Experimental Findings | ‘ o 54‘.. , ) o Marc Raibert

" Eq. 4 One dimensional inversion equation (N-lﬁ"
k=t ot ’3 |
l_' 61}‘52 1
j= 5ot
@792
where: : . :
k, j, and t are one dimensional versions of K, J, and T.
Eq. 5 The inversion equatidns (dropping the af sﬁbscripts):
‘ N T
KaTyy L2 ]’_°av
I- Tg
-where:

1_"' [Tli TQE'-. '!TN]-[TNHETN#L"ETNJ]

- Eq.6 Torque-command constraint:
t = a(d,p)u + bl.$)

where: .
"t is the force applied to the tendon
u is the motor command , _ o
a(¢,¢) and b(¢,) are state dependznt constants. -




