MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

Al Memo 421 September 1977

FAST ARITHMETIC IN MACLISP

by
Guy Lewis Steele Jr. *

- Abstract: . A
MacLISP provides a compiler which produces numerical code competitive
in speed with some FORTRAN implementations and yet compatible with the rest of
the MacLISP system. All numerical programs can be run under the MacLISP
interpreter. Additional declarations to the compiler specify type information
which allows the generation of optimized numerical code which generally does
not require the garbage collection of temporary numerical results. Array
accesses are almost as fast as in FORTRAN, and permit the use of dynamically
allocated arrays of varying dimensions. Here we discuss the implementation
decisions regarding user interface, data representations, and interfacing
- conventions which allow the generation of fast numerical LISP code.

This paper was presented at the MACSYMA Users Conference, Berkeley,
California, July 1977.

Keywords: numerical code, optimization, compilers, data representations,
dynamic allocation, LISP, MacLISP, FORTRAN

This report describes research done at the Laboratory for Computer Science
(formerly Project MAC) and at the Artificial Intelligence Laboratory of the
Massachusetts Institute of Technology. This work was supported, in part, by
the United States Energy Research and Development Administration under
Contract Number E(11-1)-3070 and by the National Aeronautics and Space
Administration under Grant NSG 1323. Support for the Artificial Intelligence
Laboratory's artificial intelligence research is provided in part by the
Advanced Research Projects Agency of the Department of Defense under Office of
Naval Research contract N00014-75-C-0643.

® NSF Fellow

Guy L. Steele Jr. . 1 Fast Arithmetic in MacLISP

Introduction

For several years now MacLISP has supported a compiler which produces
extremely good numerical code. Measurements made by Fateman indicate that the
generated code is competitive with FORTRAN. [Fateman] Expressing such
numerical code does not require the use of special numerical language embedded
within LISP, in the manner that some higher-level languages allow the user to
write machine code in the middle of a program. Rather, all numerical programs
are completely compatible with the MacLISP interpreter. The compiler
processes the interpreter definitions along with additional numerical
declarations. These declarations are not required; omitting them merely
results in slower compiled code. For convenience, special numeric functions
are provided which carry implicit declared type information (such as + and +$
for integer and floating point addition, as opposed to PLUS), but the user
need not use them to get optimized numerical code.

Changes to the MacLISP Language

The primary change to the MacLISP language, as seen by the user, was
the creation of numerical declarations for use by the compiler. A general
compiler declaration mechanism was already a part of the language, so adding
the numerical declarations was not difficult. This mechanism involves writing
a MacLISP expression beginning with the word DECLARE and followed by various
declarations. Declarations may be global or local. Global declarations are
written by themselves in a file, and affect all following functions; local
declarations are written within the text of a MacLISP function, and affect
only the scope of the construct they are written within.

The simplest new declarations are statements of the types of
variables. Recall that MacLISP has three basic numeric types: fixnum,
flonum, and bignum. These are (respectively) single-precision integers,
single-precision floating-point numbers, and arbitrary-precision integers.
Only the first two types can be operated on directly by hardware instructions,
and so they are the only types of interest to the compiler. An example of a
variable declaration:

(DECLARE (FIXNUM I J K) ;single-precision integers
"~ (FLONUM A B FOO ZAP) ;single-precision reals
(NOTYPE SNURF QUUX)) ;ho specific type

If a variable is always numeric but sometimes may hold bignums, it must be
declared NOTYPE. The default assumption is that a variable is NOTYPE (that
is, may contain any MacLISP data object); NOTYPE declarations are primarily
useful to undo previous numeric declarations. o

The types of the arguments and returned values of functions may be
similarly declared:

(DECLARE (FLONUM (CUBE-ROOT FLONUM)
(INTEGER-POWER-OF -REAL FLONUM FIXNUM))
(FIXNUM (FIBONACCI FIXNUM)
(LENGTH-OF-LIST NOTYPE))
(NOTYPE (BETWEEN-ZERO-AND-ONE-PREDICATE FLONUM)))

This declaration specifies that CUBE-ROOT takes a FLONUM argument and delivers

Guy L. Steele Jr. 2 Fast Arithmetic in MaclL1SP

a FLONUM result, that INTEGER-POWER-OF-REAL takes a FLONUM and a FIXNUM and
delivers a FLONUM, and so on. The types of the arguments could also be
specified by using a local declaration:

(DECLARE (FLONUM (CUBE-ROOT))) ;global declaration

(DEFUN CUBE-ROOT (X)
(DECLARE (FLONUM X)) ;local declaration
(EXPT X .333333333))

The result type must be specified by a global declaration, however, and
declaring the argument types globally also can help the compiler to produce
better code for functions which call the declared function.

Arrays may also be declared globally to the compiler. MacLISP arrays
come in three types, which are essentially FIXNUM, FLONUM, and NOTYPE. (There

are other types also, but these do not concern us here.) The ARRAYX ..

declaration takes a subdeclaration specifying the array type; the
subdeclaration in turn specifies the names of arrays and their dimensions. An
example: .
-~ (DECLARE (ARRAY* (FIXNUM TUPLE 1 TABLE 2))

(FLONUM VECTOR 1 MATRIX 2)))

This declares TUPLE and VECTOR to be one-dimensional arrays, and TABLE and
MATRIX to be a two-dimensional arrays. (MacLISP arrays may have up to five
dimensions.) If the values of the dimensions are also known ahead of time, a
slightly different form may be used:

(DECLARE (ARRAY* (FIXNUM (TUPLE 43) (TABLE 3 5))
(FLONUM (VECTOR 3) (MATRIX ? 17))))

This declares TUPLE to be of length 43, TABLE to be 3 by 5, and MATRIX to have
17 columns and an unknown number of rows. Note that "?" can be used to
denote an unknown dimension value; even partial dimension information can
help the compiler to optimize array accesses.

The user can write arithmetic code using the traditional names PLUS,
DIFFERENCE, TIMES, and QUOTIENT; these functions work on any kinds of
numbers, even bignums, and admit mixed-mode arithmetic. In the presence of
type declarations, the compiler may be able to deduce that the arguments are
always flonums, for example, and produce hardware instructions for floating-
point arithmetic. The user can also use the FIXSW and FLOSW declarations to
tell the compiler that such "generic" arithmetic will always involve only
fixnums or only flonums.

As a convenience to the user, however, several versions of the common
arithmetic functions are provided:

generic fixnum only flonum only
PLUS + +3
DIFFERENCE - -3

TIMES x *$
QUOTIENT // /78
REMAINDER \

GCD W\

GREATERP > >

LESSP < <

Guy L. Steele Jr. - 3 Fast Arithmetic in MaclL ISP

EQUAL = =
EXPT ~ “$ (fixnum exponent)

(The division functions are written as "//" instead of "/" because "/" is a
MacLISP escape character.) The functions in the last two columns are
completely equivalent to those in the first column, except that they convey
additional type information about their arguments and results. (An exception
is that the fixnum-only functions do not check for overflow, so in a situation
where, for example, 100000000 and 100000000 were multiplied together, TIMES
would produce a bignum, whereas * would overflow and produce a not-very-
meaningful fixnum. The flonum-only functions do not check for overflow
either, whereas the generic functions give an error for overflow, and either
an error or zero for underflow.)

Changes to the MacLISP Implementation

In order that the arithmetic machine instructions might be used
directly on MacLISP numeric data objects, it was necessary to modify MacLISP
to use a uniform representation for fixnums and flonums. Before the fast-
arithmetic scheme was implemented, MacLISP, like many other LISP systems, used
two representations for single-precision integers. One represented the
integer as a pointer to a machine word containing the value, in the same
manner as floating-point numbers were represented. The other encoded the
value into the pointer itself, using pointer values which were otherwise
worthless because they pointed at code instead of data objects. The
motivation behind the earlier dual representation was to avoid allocating
storage for small integer values, which are frequently used. (InterLISP has
for several years "open-compiled" arithmetic functions as single machine
instructions. [Teitelman] Unfortunately, it still has a dual representation
for integers; as a result, before adding two numbers it must call a routine
which determines at run-time the representation of each number and converts
each into a full machine word representation. Compiled InterLISP code also
calls a similar routine for floating-point numbers, not because of multiple
representations, but in order to perform error-checking as completely as the
interpreter does. This run-time checking destroys any advantage gained by
open-compiling the arithmetic instructions.)

The pointer encoding was removed from MacLISP for the fast-arithmetic
scheme, and all numbers are now uniformly encoded as pointers to full machine
words which contain the machine representations of the values. In order to
avoid allocating storage for frequently used small integers, there are several
hundred words of memory containing consecutive small integer values, and small
integers are created by making a pointer to one of these standard locations,
rather than allocating a new word for each use of a small integer. (MacLISP
does not allow the words used to contain numbers to be modified in the way
InterLISP allows using the SETN primitive [Teitelman], so there is no
difficulty in sharing such words. In fact, these small integer locations are
even shared among all the MacLISP processes in the time-sharing system by
making them read-only.) :

While arithmetic on bignums cannot be compiled as standard arithmetic
machine instructions, their representation has been chosen to permit sign
tests to be open-compiled. A bignum is a pointer to a word which has the sign
of the bignum in the sign bit (and in fact the entire left half), and a
pointer to a list of fixnums (which represent the magnitude) in the right
half. Thus all numbers are pointers to words which contain the sign of the

Guy L. Steele Jr. 4 Fast Arithmetic in MacLISP

number in the sign bit, and such functions as MINUSP can always be compiled as
single machine instructions.

’ In order to preserve the uniformity of the function-calling interface,
it was decided that all arguments to functions must be valid MacLISP data
objects. On the other hand, it is not desirable to have to "number cons" out
of free storage, with the garbage collection overhead that implies, in order
to pass numbers to functions. The solution used was to introduce two extra
pushdown lists (stacks) called the fixnum and flonum pdls. The storage in
these pdls appear to have fixnum or flonum data type, but they are allocated
as stacks rather than as garbage-collected heaps. These stacks can be used to
hold temporary numerical values and the values of PROG variables which have
been declared to be numeric, but they can also be used to allocate pseudo-data
objects compatible with MacLISP's standard number representation. A pointer
to a fixnum pdl location is indistinguishable from an ordinary fixnum for most
purposes; it is a pointer to a full machine word containing the numeric
value. A typical code sequence resulting from compiling (FOO (+ A 5)) is:

;assume accumulator 1 has the pointer value of A in it

MOVE 7,(1) ;get the machine word for A into accumulator 7
ADDI 7,5 ;add 5 to the machine word

PUSH FXP,7 ;push resulting word into fixnum pdl

MOVEI 1, (FXP) ;copy fxp pointer into argument accumulator 1
CALL 1,F00 ;call foo

SUB FXxp,(1,,1] ;remove pushed word from fixnum pdl

To the function FOO the pointer passed in accumulator 1 has the precise format
of a MacLISP integer: a pointer to a machine word containing the integer
value. Note that the value of the variable A may itself have been such a "pdl
“number®; the MOVE instruction would move the machine word value into
accumulator 7 whether it was a pdl number or an ordinary fixnum.

One of the difficulties of using stack-allocated numbers is that they
have a definite lifetime; on return from the function they are passed to,
they are de-allocated and no longer exist. By the time they are de-allocated,
there must be no more pointers to that word accessible to the user program, or
else subsequent references might see a wrong value because the pdl word was
re-allocated for some other purpose.

To overcome this difficulty the notion of safety was developed. A
copy of a pointer is safe if it can be guaranteed that the copy will become
inaccessible before what it points to is de-allocated if the pointer in fact
points to a pdl number. Alternatively, a use for a pointer is safe if that
use doesn't require a safe pointer. The fast-arithmetic compiler does some
complex analysis to determine what situations are safe. Some standard
conventions for safety:

[1] A pointer in a global (special) variable may have an indefinite lifetime,
and so putting a pointer in a global variable is unsafe. It follows that such
a variable may not contain a pointer to a pdl number, since we cannot
guarantee such a pointer to be safe. Consequently, any pointer actually
obtained from a global variable is safe.

[2] Consing a pointer into a 1ist cell (or using RPLACA to put a pointer into
an existing list call) is similarly unsafe. Pointers actually occurring in
list structure must therefore be guaranteed safe.

[3] It is not possible to return a pdl number as the value of a function,
because there would be no return to the code to de-allocate it. Therefore
returning a pointer from a function is unsafe, and all pointers actually
returned from functions are safe.

Guy L. Steele Jr. 5 ____Fast Arithmetic in MacLliSP

[4] Passing a pointer as an argument to a function is safe; therefore pdl
numbers (unsafe pointers) may be passed as arguments to functions. All
function arguments are thus potentially unsafe. They may be passed on down to
other called functions, but may not be returned or otherwise used as if they
were safe. , o

[5] Pdl numbers may be pointed to by ordinary compiled local variables. Such
local variables may or may not have unsafe values, depending on where the
values came from. The compiler must guarantee that when the value of a local
~ variable is used either the value is safe or the use is safe.

: Suppose we wrote a function such as:

(DEFUN ZAP (A) (CONS A 'F00))

We are putting the argument A into a list cell (an unsafe use), but the
argument A is also (potentially) unsafe. In this situation the compiled code
- must create a safe copy of the unsafe pointer. The compiled code therefore
uses a routine PDLNMK ("pdl number make") which checks for a pdl number and
makes a copy by doing a number cons if necessary. That is, if the pointer
given to PDLNMK is already safe, it is returned as is; but if it is unsafe, a
safe copy is made with the same value. The compiled code for ZAP would look
like this: '

MOVEI 2, 'FO00 ;put constant "foo" in accumulator 2
JSP T,PDLNMK ;make sure accumulator 1 has a safe pointer
JCALL 2,CONS ;call CONS

- If A is not a pdl number, PDLNMK does nothing; but if it is, PDLNMK replaces
the pointer in accumulator 1 with a freshly allocated fixnum with the same
value as the pdl number. In this way a safe value will be passed to the CONS
function. (The convention about function arguments being potentially unsafe
has an exception in CONS, so that CONS.itself need not always perform PDLNMK
on its arguments. The compiler knows about this exception, and guarantees

that anyone who calls CONS will provide safe arguments. In practice,

arguments passed to CONS often can be guaranteed safe by compile-time

~ analysis, and it saves time not to have CONS use PDLNMK.)

Notice that one consequence of the use of PDLNMK is that two numbers

which are apparently EQ (i.e. the same pointer) may not be if the compiled
code has to make a copy. For example, consider this code:

(DEFUN LOSE (X)
(SETQ G X)
(EQ X G))

The result of the EQ test could be NIL, even though the global variable G
- apparently is assigned the same pointer as was passed to LOSE as an argument.
If an unsafe pointer is passed to LOSE, G will receive a safe copy of that
value, which will not be the same pointer, and so the EQ test will fail.
(This is another reason why MacLISP does not have a SETN primitive; since the
compiler can make copies of a number without warning, conceivably SETN might
modify one copy of a number but not the other, with anomalous results.)

Recall that one unsafe use of a pointer is returning it as the value
of a function. We would like for numeric code not to ever have to "number
cons", but we cannot return a pdl number from a function. The solution to
this dilemma is to allow numeric-valued functions to have two entry points.
- One is the standard MacLISP entry point, and is compatible with the standard

 Guy L. Steele Jr.) | ____Fast Arithmetic in MacLISP =

HacLISP calling sequence; calling the function there will produce a MaclLISP
pointer value, which will involve a number cons if the value is in fact
numeric. The other is a special entry point which is non-standard, and can
only be used by compiled code which knows that the called function is numeric-
valued. Entering a numeric function there will deliver a machine word in
~ accumulator 7 instead of the standard pointer in accumulator 1.

' In order to use this special calling sequence, both the called
.function and the calling function must be compiled with declarations
specifying that the called function is numeric-valued. The compiler will then
compile the called function to have two entry points, and the calling function
- to use the non-standard numeric entry point.

: - The entry points are actually implemented as two consecutive locations '
at the beginning of the function. The first is the standard entry point; it
~merely pushes the address of a special routine FIX1 (or FLOAT1, for a flonum-

valued function) onto the stack, and then falls into the non-standard entry
point. The function then always produces a machine number in accumulator 7.
- If the function is called at the numeric entry point, it will deliver its
value as a machine word. If called at the standard entry point, then on
delivering the machine word it will "return® to FIX1, which performs a “"number
~cons”™ on the machine word, producing a normal fixnum (or FLOAT1, which

produces a flonum), and then returns to the caller. ‘
As an example, here are two functions with. appropriate declarations:

" (DECLARE (FLONUN (DISC FLONUM FLONUN FLONUM)))

(DEFUN DISC (A B C)’
(-8 (*$BB)(*$4.0A C)))

(DEFUN QUAD (A B C)
(PROG (D)
(DECLARE (FLONUM D))
(SETQ D (DISC A B C))
(COND ((MINUSP D) (RETURN (ERROR)))
(T (RETURN (//8 (-8 (SQRT D) B)
(%8 A 2.0)))))))

The code produced would look like this

DISC PUSH P,[FLOATI] for normal entry, push address of FLOAT1
. MOVE 7,(2) ,numeric entry point; get machine word for B

FMPR 7,7 ;floating multiply B by itself v

~ Movsli 10,(4.0) ;get 4.0 in accumulator 10
FMPR 10,(1) ;floating multiply by A
FMPR 10,(3) ;floating multiply by C

_ FSBR 7,10 ;floating subtract ac 10 from ac 7
POPJ P, ;machine word result is in ac 7

'Notice that DISC does no number consing at all if called at the numeric entry
point. It does all arithmetic in the accumulators, and returns a machine word

as its result. The code is remarkably compact, of the kind one ordinarily o

expects from a FORTRAN compiler.

 QUAD: PUSH P,1 ;save A, B, and C on the stack"
PUSH P, 2 ' + to preserve them across the
PUSH'P.s ; call to DISC

Guy L. Steele Jr. 7 Fast Arithmetic in MaclLISP

NCALL 3,DISC ;call DISC with the same arguments

PUSH FLP,7 ;push the result onto flonum pdl
JUMPGE 7,G0003 ;jump if value non-negative
MOVEI T,0

CALL 16,ERROR ;call the ERROR routine

JRST G0005 ;go to GOOO5

G0003: MOVEI 1,(FLP) ;get a pointer into flonum pdl
NCALL 1,SQRT ;call SQRT with that pointer
FSBR 7,8-1(P) ;floating subtract machine value of B
MOVE 10,@-2(P) ;fetch machine word value of A
FSC 10,1 ;multiply by 2.0 (using "floating scale®)
FDVR 7,10 ;divide ac 7 by ac 10
JSP T,FLCONS ;perform a flonum cons
G0005: sSuB P,[3,,3] ;clean up the stacks
SuB FLp,[1,,1]
POPJ P, ;return pointer value in accumulator 1

There are several points to note about QUAD:

(1) It was not declared to be numeric-valued. As a result, when returning a
number it must do a number cons. Moreover, it does not have a numeric entry
point.

(2) Because DISC was declared to be numeric-valued, QUAD uses NCALL instead
of CALL to invoke it; NCALL enters at the numeric entry point. The result of
DISC is expected in accumulator 7. Since QUAD needs to use this result to
pass to SQRT, it makes a pdl number out of this machine word. In this way
function values can be made into pdl numbers after all -- but by the caller
rather than the called function. ,
(3) As an aside, the compiler makes some other neat optimizations. It uses a
JUMPGE instruction for MINUSP, because the value to be tested is in an
accumulator anyway. It takes advantage of the address arithmetic of the PDP-
10 to fetch machine words pointed to by pointers on the stack in one
instruction. It knows how to use several accumulators for arithmetic, and to
arrange for the result to end up in the correct accumulator. It expresses the
multiplication by 2.0 as a "floating scale" instruction, which is faster than
the multiplication instruction if one operand is a floating-point power of
two.

The representation of arrays in MacLISP was carefully redesigned to
allow fast access to them by compiled code, again taking advantage of the
powerful address arithmetic of the PDP-10. There are essentially two kinds of
arrays: s-expression arrays, whose components may be any safe pointers, and
numeric arrays, whose components must be all fixnum machine words or all
flonum machine words. A

The MacLISP ARRAY data type is a pointer to a double word (the
"special array pointer") which in turn points to the array data. The reason
for this is that the pointer must point to a fixed place (as all MacLISP
pointers must), but the actual array data may have to be shifted around by the
garbage collector to accommodate new storage requests, because arrays are not
of a uniform size. When the garbage collector moves the array data, it
updates the the contents of the special array pointer, but the special array
pointer itself may remain in a fixed place.

In exchange for the flexibility of dynamically allocated arrays,
however, one pays the price of always accessing the array data indirectly
through the special array pointer. This cost is alleviated by taking
advantage of addressing arithmetic. The second word of each special array
pointer points to the array data, which is arranged linearly in row-major

Guy L. Steeledr. 8 _ Fast Arithmetic in MacLISP

order; this second word furthermore specifies indexing by accumulator 7.

: ,'_ . ; |6C information
special array pointer header code - array data
type bits| - dimension 1
i (7) ‘ dimension 2

' dimension n
_sTelement 0

element 1

- . |element (D1%.. *Dn) 1]

Compiled code can access a numeric array datum by calculating the linear
- subscript value in accumulator 7 and then using an indirect fetch through the
second word of the special array pointer for the array. The linear subscript
value 1s of course calculated as v '

(«.. (J1*D2+J2)*D3+J3...)%Dn+dn

where the Ni are the dimensions of the array and the Ji are the actual
subscripts. For example, suppose that accumulator 1 contains a pointer to a 3

by 5 by 13 fixnum array, and that accumulators 2, 3, and 4 contain fixnum

subscripts for that array. Then to fetch the desired datum this code would be
used- R

MOVE 7,(2) fetch first subscript into ac 7

IMULT 7,5 ,.multiply by 5 (second dimension)
~ ADD 7,(3) ;add in second subscript

IMULT 7,13 ;multiply by 13 (third dimension)

ADD 7,(4) ;add in third subscript

MOVE 7,e1(1) ;fetch indirect through special array pointer

If the number of dimensions of the array has been declared to the compiler but
not the values of the dimensions, the compiler arranges to fetch the dimension
- values at run time. This is easy because the array is arranged so that
negative subscript values fetch the dimension information. (The LISP user is
not supposed to use this fact, but only compiled code.) The same example for
a three dimensional array of arbitrary dimensions might look like this:

HOVE 10,(2) ‘ ;fetch first subscript into ac 10

MOVNI 7,2 ;put -2 into ac 7

IMUL 10,@1(1) ;multiply by second dimension
ADD 7,(3) ;add in second subscript

MOVNI 7,1 sput -1 into ac 7

IMUL 10,@€1(1) ;multiply by third dimension
ADD 10,(4) ;add in third subscript

MOVE 7,10 ;move into ac 7 for subscripting

MOVE 7 @1(1) ,fetcb indirect through special array pointer i '

The code is a little longer than before, but will work for any three-.
dimensional array. In general the compiler tries to minimize subscript

Guy L. Steele Jr. 9 Fast Arithmetic in MaclLISP

computations. If the exact dimensions are declared, or if some of the
subscripts are constant, the compiler will do part or all of the subscript
calculations at compile time.

For s-expression arrays, the pointer data are stored two per word,
with elements having even linear subscripts in the left half of a word and the
succeeding odd subscripted elements in the right half of the word. The
compiler must generate code to test the parity of the linear subscript and
fetch the correct half-word. Suppose that a pointer to a one-dimensional
array is in accumulator 1, and a fixnum subscript is in accumulator 2. Then
the following code would be generated:

MOVE 7,(2) ;fetch subscript into ac 7
ROT 7,-1 ;divide by 2, putting remainder bit in sign
JUMPL 7,G0006 ;jump if linear subscript was odd
HLRZ 3,@1(1) ;fetch pointer from left half
JRST G0007 ; jump to G00O7
GO006: HRRZ 3,@1(1) ;fetch pointer from right half
G0007: ...

If the compiler can determine at compile time that the linear subscript will
always be odd or always even, it will simplify the code and omit the JUMPL,
JRST, and the unused halfword fetch.

Summary

MacLISP supports the compilation of numerical programs into code
comparable to that produced by a FORTRAN compiler while maintaining complete
compatibility with the rest of the MacLISP system. All numeric code will run
in the MacLISP interpreter; additional information may be given to the
compiler in the form of declarations to help it generate the best possible
code. If such declarations are omitted, the worst that happens is that the
code runs slower.

Compatibility with non-numeric functions was achieved by the judicious
choice of a uniform representation for LISP numbers combined with a compatible
stack-allocated representation for temporary numeric values passed between
functions. The use of stack allocation reduces the need for garbage
collection of numbers, while the uniformity of representation eliminates the
need for most run-time representation checks. One exception to this is that
the use of stack-allocated numbers must be restricted; this difficulty is
kept in check by maintaining a careful interface between safe and unsafe uses,
and analyzing the safety of pointers as much as possible at compile time.

While numeric functions and non-numeric functions may call each other
freely, a special interface is provided for one numeric function to call
another in such a way as to avoid number consing.

Arrays are stored in such a way that they may be dynamically allocated -
and yet accessed quickly by compiled code. This is aided by the rich address
arithmetic provided by the PDP-10.

The philosophy behind the implementation is that the generality of
LISP and the speed of optimized numeric code are not incompatible. All that
is needed is a well-chosen, uniform representation for data objects suitable
for use by hardware instructions, combined with a willingness to handle
important special cases cleverly in the compiler.

Guy L. Sfécie Jr. 10 Fast Arﬂhmetic in MaclLISP

References

[Fateman] Féteman, Richard J. "Reply to an Editorial.® SIGSAM Bulletin 25
- (March 1973), 9-11.

[Teitelman] Teitelman, Warren. InterLISP Reference Manual. Revised edition.
: Xerox Palo Alto Research Center (Palo Alto, 1975).

