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ABSTRACT. There are many ways of programming an actuator or effector
for movement between th same two points, In the interest of efficiency it
is sometimes desirable to program that trajectory which requires the least
amount of energy. This paper considers the minimum energy movement for
a spring-like actuator abstracted from muscle mechanics and energetics. It
is proved that for this actuator a bang-coast-bang actuation pattern
minimizes the energy expenditure. For some parameter values this pattern
is modified by a singular arc at the first switching point. A surprising
limitation on the duration of coast is demonstrated. Some relaxations of the
restrictions underlying the spring model are shown to preserve the bang-
coast-bang solution.
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Though considerable effort has been expended in the study of the
human motor system, the execution of even simple movements is not wel!l
understood. One current theory holds that movements are memorized in terms

of final position [Bizzi et al.]l. The organism selects length-tension

 curves of agonist and antagonist by adjusting the innervation levels so

that the ihtérsection of those curves occurs at the desired position

* [Feldman].

~This process is illustrated by the hypothetical length-tension

- curves of agonist and antagonist muscles in figure 1. Suppose the sgafem

is currently at length Ly under innervation rates g, for the agonist and n,;

for the antagonist. If the innervation rate of the agonist is changed to

| g3, a differentvagonist Iength-tension curve is selected and the

equilibrium length shifts to L;. Assuming no delay in tension development

‘and ignoring velocity effects, the arrow in the figure indicates the

tension course. There is an isometric buildup of tension from Py to P,
followed by an .isotonic decay to P;, uhere the tension in agonistAbalances
the tension in antagonist. The final position theory maintains that the

position L; can be reached independent of starting position merely by

'setting rates n; and ga. This theory is interesting from a manipulation

vieuwpoint because it obviates the need for precise trajectory calculation.
Theré are many choices of agonist-antagonist length-tension curve

pairs that have L; as equilibrium position. One choice that could be

expecfed fo require less energy is ny and gy, which minimize the isometric

tensions. More generallg. it is conceivable that some complex séquence of

~ innervation rates In;,g} might require less energy than a scheme which
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Figure 1. The equilibrium point of the intersecting
length-tension curves of agonist (g labels) and
antagonist (n labels) shifts from LO to Ll when the

firing rate of the agonist is raised from gl to g3

and the antagonist rate remains at n..
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Figure 2. Length-tension curves from the cat soleus

muscle (Rack and Westbury).
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selectg the final length-tension curves immediately. The determinaton of

this optimal jnnervation pattern is the focus of this paper.

I. Muscle Mechanics

The investigated properties of muscle present a too complicated
view for analytic treatment. The plan in my research has been to simplify
the muscle mechanics until an analytic solution to the optimal eneégg
problem is possible, then to examine if the nature of.the solution is
changed by édding some of the excluded muscle properties. A ful 1-blown
formulation of the problem would require numerical methods for solution,
and I intend eventually to carry out this analysis.

The length-tension curves in figure 1 are themselves a
simplification of actual length-tension curves such as in figure 2. THe'
simplification.arises from extracting only the linear portions at short
lengths. There is some question as to what portion of the'length-tension
curves are used in actual movement. Some authors [Zierler, Hill 1978, Cook
h and Stark] maintain that the active portions occur near Ly, the length at
which there is maximum isometric tension and which Zierler also calls the
rest or natural length of muscle. Collins et al. [1975] on the other hand
report that the linear portions are used in eye movemeﬁt.

For the present ueyacéept the hgpoth?tipa] length-tension curves of
figure 1. The curves are also assumed parallel, as reporte& by Coflins et
al.; Rack and Westbury, however, report a decrease in slope uith firing
ratébfoh this linear portion (figure 2). The curves in figure 1 |ead to a

model| of muscle as a spring with variable zero setting. The slope K of the
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curves represents the spring constant, and the variable zero setting L,

corresponds to the selection of'firing rate. The force exerted by a muscle
is thus K(L-L,). |

An important simplification of muscle properties is to exclude the
series elastic component. We also exclude the parallel elastic component
‘and the active damping.

3.

The resulting muscle model is presented in figure

The equation of motion for the spring system of figure 3 is:

mdi = - b dx + kg (xg=x) = Kp(x-x,) 1)
gtz dt |

Define a control variable X and a state variable U as below.

e I[Ix 1] [x] Lul [x]
X=0 1 « [ ] U=[ J =10 ]
[ %3] [ x]

[02] [Xn]

Setting the mass m = 1, the state variable representation of the spring
system is:

. L8 11 (8 8]
X = X o+ 1 U )
More dompactlg,
XeAX+BU (3)
- £(X,U, 1)

II. Muscle Energetics

The energy E expended during movement equals work plus heat. The

work W may be subdivided into conservative work performed on the mass m and




Figure 3.

where

....::4*

|

Simplified muscle model with equation of motion:

mX=-bx+ kg(xg—x) - kn(x-xn)
b = coefficient of passive damping
kg= spring constant of the agonist
kn= spring constant of the antagonist
m = mass

= position

E T
=}

variable zero setting for the agonist

variable zero setting for the antagonist
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nonconservative work performed on the viscous element. The isometric heat
Q; is given off ﬁn maintaining the muscle at a particular tension Py, The

rate of energy expenditure is thus

E = Po v (pouer) + a Py (maintenance heat rate)

= (xp + @) (kgluy-xy) + kylx)-up)) (%)

where v is velocity and a fs the maintenance heat coefficient. The tuo
force terms have been summed because each contributes to energy loss. We
have excluded the shortening heat because the actlve'damping Was aiso
excluded, and because there may be a theoretical relatiénship between the
tuo [Huxley, Caplanl. The transient characteristics of ﬁeat production

have also been excluded.

III. The Euler-Lagrange Equationé

The task nou is to find the time varying control U(t) that
minimizes the energy used in moving betueen tuo points in a fixed interval
of time. Let V represent the energy consumed in applying the control U to
giéld the trajectory X. The probiem of_minimiz}ng v is.readilg approached
‘bg techniques of modern control theory. The fundamental équations fhat the

optimal control U(t) must satisfy are derived from a theorem from the

cafculus;of variations. This theorem states that in ofder to find the n-
vector X(t) that minimizes V(X), where
4 |
V(X) = [ LIX, X, t) dt (5)

. {-°
subject to the constraint relations

g%t =8  iael,..ms<n 6)
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then X(t) satisfies the Euler equations

AL’ (X, X, t) - d_ 3L’ (X, X, t) = B i =1,.ee,n )
axi dt a;ti .
uhere
. . m .
L O,X, ) = LOGX,8) + 2 A (0g; (XX, ) | (8)
=1 .

and \;(t)’s are the ﬁultiplier functions [Schultz and Melsal.

Applying this theorem to the optimal control pfoblem. the state
equations * = f(X,U,t) represent the equality constraints. L represents
fhs'rate of change 6f energy é. The Hamiltonian H = L + fo represents
(8), uhere XT = [\ N\2J. By applying the Euler equation first for X and

then for U, it can be shoun that the minimizing U(t) satisfies the

following two Euler-lLagrange equations [Schultz and Melsal.

x - -"x ) (9)
Wy =@ f (10)

IV. The Minimum Principle

Because L is linear in the control U, there will not generally
exist a minimum energy solution. To obtain‘a realistic solution, ,
constraints must be placed on the control. The solution in this case will
lie on the constraint boundaries [Bryson and Hol. Constraints on U,
however, make it impossible to differentiate H with respect to U.

The minimum principle of Pontryagin makes it possible to proceed

from this point. Pontryagin showed that even if the control is

constrained, one still obtains a minimal solution bg finding the W =

u%(X,\,t) to minimize the Hamiltonian H, but by inspection rather than by
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differentiation. After finding the minimizing u’, one forms H =

H(X.u°.k.t) and then solves the following tuo equations [Schultz and

Nelsal.

| X = 30 a1
an | :
A=- o | (12)

aX

There are two natural constraints that fall on the control U.

First, the spring cannot push. _
u - % 28 | - (13)
X -up2 8 (14)

Second, springs have a maximum tension that they can exert. MWithout this
constraint the solution would involve an infinite impulse. For the moment
T We aSSUMe'the maximum tension is constant and independent of length:
o o oup - xi < - (15)
X| = Uz € € | | (16)
where c; énd cp are constants. The case of maximum tension varying with

length is deferred until section XI.

V. A Bang-Coast-Bang Solution
: To facilitate inspection of the Hamiltonian, we expand H = AT + L
into three lines, the first depending on u;, the second on u,, and the
third on neither control. 7
| Hoe kelupx;) lasagihg) an
+ kn(kl-uz)(a+x2-kz)

+ Xy (x,-bx:)
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To minimize H with respect to u;, ue observe that if a+xp#\p > @ then H is
minimized when u;=x;. If a+xé¥kz < @ then H is minimized with uj=x;+c,.
Similarlg, ‘it can be shoun for up that when a+xp-A; < 8 the minimizing uz
lies at x)-cp; otherwise up is at x;. Combining these résults. one finds a

bahg-coast-ba'ng solution to the minimum energy for muscle movement.

Cass 1i My < -(aheg)
| Then u,-x,+c‘|. Up=Xg.
Case 20 Dol < latng)
Then uj=x;, up=x,.
Case 31 Az > (a+xp)

Then uj=x;, upz=x;-c.

VI. The Solution Equations
| Substitutihg the minimizing u® into H, one obtains three functions

corrresponding to the three cases.
Case 1: H = kyclasxathy) + xa(Aj=bAy)
Case 2: M0 = xy(\;-bAp)
Case 3: K0 = kycplanp-Ay) + xa(\-bAg)

The differential equation (11) and its solution becomes for the three

cases:
. [0 11 [ 8
X=[ I X+ 10 ]
(9 -b] [ ke )
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wg(t) = xpltg)e Pt L poqq - oIty (18)
b
xy (1) = x)(tg) + Lixy(ty) = xp(t)) + ke (t-to) | 19
' b ' b . :

uhere c=c; and k=k, for case 1; c=0 for case 2; énd_c-—cz and k=k, for
case 3. The time to represents the staﬁting time. The differential

eqdafion (12) and its solution are:

. [8 8] [ 81
A= Ia-0 1
[-1b] A [ ke )
Al(f) = A (tp) "(ZG)
A2(t) = Myltgre” Y blt-to)

+ Mltg)eke (1 - @ ) (21)
b .

where ¢ and k have the same meaning as above except cs+c, for case 3.

Since \;(t) is constant, it appears henceforth as Ay without a time

dependence.

VII. The Extremal Versus Bingular Solution

It is proven in appendix A that there are exactly three events in
the extremal bang-coast-bang solution: an acceleration period, a coast
period, and a deceleration period. No other cqﬁbination of bangs and
' coasts‘is minimizing. However, a nonextremal minimizing solutiob may arise
from a singular arc at the suitching points. The Hamiltonian (17) has the
curious property that if Ay=|a+x;| then the corresponding control may take
on angvvafue and still miniyize H. 1f a control can be found to maintain

)2-|a+x2|_for a finite time interval, then a non-extremal solution to
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energy minimizatlon might exist., This situation is called a singular arc
and arises from a performance index linear in control but guadratic in
state [(Bryson and Hol. To maintain Ap=|a+xy| for a finite time interval,

all time derivatives of the two suitchlngtcurves must be zero:

_ d“(bztg+xz) =0 n28 (22)
dt" .

d"(\s-g-x,) = @ n28 (23)
dt" :

Carrying through the analysis for a singular arc at the first suitching

point (22), the time varying force during the singular arc is:

Zb(t-tl) Zb(t-tl}

kglup=x;) = \; + ba + 3bxy(t)e + %(ba-m,) (e -1)  (26)
Unfortunately no sufficient condition haé yet been developed to
‘ test whether a singular arc is minimizing, and one must combare values of"
the performance index for specific parameter values for the singular arc
solution versus the extremal solution. Depending on the choi#e of \; the.
force (24) takes one of the three forms in figure 4.
| Of these forms only 4C has been found minimizing for some parametér
combinations. To search for such combinations, a set of parameters was
initially dedqced from Rack and Westbury (table I). The elapsed distance
x¢ and the élapsed time t; are variable and have been chosen as 8.2 cm and
8.4 sec respectively. The initial and final velocities are assumed zero.

For the extremal solution {bang,coast,bang! there result 8 nonlinear

equations in 8 unknouns from (18)-(21) and the initial conditions {i,;ta.




(b) (c)
A

kcl - kcl
0 . 0 : time
tl t2 tl t2

Figure 4.

The three possible forms for force in a singular
arc solution.
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Table I
k = 2 kg/cm
m= 8.2 kg (plausible value)
-b/m = 3.16/sec (chosen to give {=0.5)

c=1cm

o = 0.1 cm/sec (deduced from Woledge)
vFor the singular solution ibang,&C,coast.bang) 15 nonlinear equations in 15
\unknouns result from (18)-(24) and the initial conditions. The equations
were solved numerically by Newton-Raphson and gradient methods. Individual
parameters were varied and energies of movement computed from (5). Solving

(5), the energy for the extremal solution is
E = kc(8x|(t|)+8x|(t3)) + de(atﬁ-ata) ) i (25)

where t, is the suwitching time from acceleration to coast, tz is the time
at the end of deceleration, dt; is the duration of accelefétioh. ax; (ty) is
the distance moved during acceleration, and dx,(t3) is the distance moved

during deceleration. .For the singular solution, the energy is
, %
E = kc(3dx;(t;)+3x;(ty)) + kca(at,+at.)'+‘/(L'(u,—x,l(xz(t)+a) dt (26)
| | 4
uhere t; is the switching time from acceleration to the singular arc 4C, ts

 is the switching time from 4C to coast, and t; is the time at the end of
deceleration. The force kg(u;-x;) is given by (24), while the velocity

xa(t) is

xa(t) = xplt) a0 -t

201ty (27)

+ ba+), (
b
The energies for the extremal versus the singulér solution are

compared in tables Ila-g; the units are kg cm/kg ut. In table Ilc




Table Ila
k. Singular
7 impossible
8 8.66117
%10 8.6173
20 8.5640
38 8.5513
48 0.54554
50 . 8.56423
180 0.536
Table Ilc(b=1k)
k_ Singular
7 impossible
8 8.632026
%10 8.6173
14 8.6442
20 0.788
Table Ile
Lt Singular
- B8.35 impossible
8.36  8.76123
%x0.4 8.6173
8.45 8.512
8.5 8.444
8.6 8.358

Extremal

8.708
0.66106
8.6164
8.5627
8.5509
8.54552
8.5426
8.537

Extremal

0.664

8.632023

8.6164
0.6440
8.725

Extremal

0.814

0.76122

0.6164
8.511
0.445
8.369

F‘

Table IIb
b Singular
2.3 impossible
2.4 9.552036
2.6 8.5675

3.6  9.6020

x1 8.6173

4.0 0.7845

5.0 0.820

10.0 1.45

15.8  2.13248
15.557 impossible
Table I1d
- Singular
8.7 impossible
8.8 8.6612
x1.0 8.6173

2.0 8.5648

3.0 8.5513

4,0  8.54554
5.8 8.5627

6.0 8.5401

Table IIf(k=16, b=4)

Singular
impossible

8.0632
8.1925
8.6647
1.4636
2.0128
2.6878
impossible

R

. -
A WWN -
a

sosodoss
-3
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Extremal
0.545
0.552034
9.5674
8.6014
8.6164
8.7038

 9.82

1.51
2.13246
2.4 .

Extremal
0.708
8.6611
0.6164
8.5627

'0.5508

8.54551
8.5437

9.5487

" Extremal

8.0041
8.0634
8.1942
8.6681
1.4620
2.0072
2.6825
6.4598




~

PAGE 16

Table IIg(k=16, b=4)

a Singular Extremal
8.6 0.6112 - 0.6161
%x0.1 09.6647 0.6681
8.2 8.7974 B.7981
8.25 8.8833 8.8631
8.5 1.1983 _ 1.1882
1.0 1.8393 1.8382
1.7 2.748417 2.748411
1.8 impossible 2.8784

the parameters k and b are varied.simultaneouslg'but at a fixed damping
ratio of 8.5. In tables I1f-g the parameters k and b are respectively set

at 16 and 4 rather than at the table I values uhere the extremal solution

~is minimizing over the whole range of x; and @. The initial values from

table | are starred in table II. A singular solution becomes minimizing

with high values of k, b, c, and t;, and with low values of & and x;. As

the parameters cause the coast time to approach zero (higher b and xq,

lower k, c, and t¢), the singular and extremal solutions become identical
because the 4C poht)on vanishes.
For the extremal solution it is proved in appendix B that there is

an upper limit on the duration of coast. It is tempting to speculate that

for 1onger coast durations a singular solution becomes minimizing, but the

singular solution in table Il is not always minimizing under these

conditions. Perhaps a different combination of bangs, coasts, and singular

arcs would then be minimizing, but this remains an open question. Some

combinations can be proved impossible, such as {bang, 4C, coast, 4A-C,

bang} .
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VIII. Spring Model Relaxations: X Dependencies

A natural question is whether the minimum energg solution is
changed by incorporating a more realistic muscle model. For those
relaxations of the spring model involving onlg X dependgncies. the ansuer
is that the aolﬁtion remains bang-coast-bang. The reason is that the
Hamiltonian H remains linear in the control U, and the minimization of H
uith resbect to U éccure at fixed X. MWhether the solution also remains
accelération—boast-deceleration needs to be determined for eaéh case.

Relaxations of the sprihg mode!l involving X dependencies include

the following.

1. Position Limits on Tension
For real muscle the maximum isometric tension varies Wwith position
(figure 2), This makes c, and cz into functions of x;, but the controls

will still fall at the extremes wherever they are.

2. Velocity Limits on Tension

Actual muscle exhibits a hyperbolic force-velocity relation. I1f P,
is the isometric tension, then the maximum force P that can be produced for
a velocity v is [Hill 1938] (see figure 5):
P = Py - vi{Py+a) (28)

v+b’
The term (Pg+a)/(v+b’) can be éonsidehed'the coefficient of active damping.
The coefficient a has been determined as .25 Py; the force P then becomes

vPo-l.ZSva/(v+b’). The literature conflicts on the value of active damping

during lengthening. For qonsistencg uith the shortening heat (belou), it




P

Tension

Velocity

.

Tension

Figure 5. Tension dependence on velocity (Hill 1938).

/\i .

length

Figure 6. Hypothetical length~-tension curves with

the property that at any given length the slopes are

the same for all choices of u2.
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is assumed thé same as active’damping during shortening.

Associated with the active damping is an extra'heat expenditure
abnve«thé isometric heat due to shortening. This shortening heat rate is
Hill 1964]1: |

Qg = .16 Pov + .18 Pv | (29)
The isometric heat rate 6i remains aPy, but the power is nou Pv.
Substituting the sum of spring forces for the isometric tension Py and (28)
for P. the enefgg rate is:

L= (k,(ul-x,) + kn(UZ-Xl))‘a - 0.09)‘2 + 1.45b") - (38)
Xp+b’

'Similarlg it can be shou that the equation of motion is:

Xz = = b xg + (1 = 1.25x) lkglup-x;) = kylx;-up)) 31)
. . Xz+b'
When these terms are combined to form the Hamiltonian, the control is seen

to remain linear. Hence the solution is once again bang-coast-bang.

3. Sgring_Cénstgnt Variations with Position

One way of bringing the simplified length-tension curves of figure
1 closer to those of figure 2 is illustrated in figure 6. The spring
constant k, varies with position, but at any given position the constant k,
is the same fbr all controls uz. Under these conditions the solution

remains bang-coast-bang.

4. Parg]lél and Series Elastic Elements

The incorporation of these elements into the model is depicted in
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figure 7. Since>the parallel elastic element depends only on position, it
does not change the solution. The series elastic elements.and the active
springs may be replaced with equivalent springs with constants
k,‘;k,k,/(k,+k,) and k,' =kpke/ (kytke) .  This modification also has no effect

.on the solution.

IX. Spring Model Relaxations: U 'Dependencies ,

In figure 2 tﬁe spring constant k, is seen to vary With firfng rate
at éng fixed position. The linear portions of these length-tensioh curves
when extehded seem to intersect atia common point (figure 8). In this
circumstance the spring constant k, is To/(uz-xg). The uy terﬁs of the
Hamiltonian H Secome:

CH = Ty (xg-up) (@+xp=7,)
Ugy-Xo

= Tola+xa=Ag) (x)-x%5-1) (32)
Uz=%p
If a+xz-Az > @ then H' is minimized at up=x;; otherwise uy=x;-co. That is
to say, the solution for up is exactly the same as in section V. A similar
analysis holds for u;. Thus the minimizing pattern is also bang-coast—

bang.




Figure 7. An expanded muscle model incorporating series

elastic elements ks and a parallel elastic eleméﬁéﬂkp.

A
a
¢}
-
1)
c
o}
B
L b
XO length
—TO

Figure 8. The length-tension curves of Rack and Westbury
when extended meet at a point. The dependence of kn on u2

can be characterized by TO/(uZ—xO).
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Appendlx A

| In this apbendix it is shoun there are only two bangs and one coast
in the extfemal solution: one acceleration, followed by one coast périod.
terminated by ohe deceleration, No other combinations of coasté and bangs
are possible. To demonstrate this is the only possible combination, it is
necéssarg to examine the suitching curves and their time derivatives.

The first lemma shous that oncé the control has passed from
acceleration to coast, then the control éannot return to another
acceleration but must proceed to deceleration. The second lemma shous thét
once deceleration has started, the deceleration must continue until the end
of the movement. This proves that the acceleration-coast-deceleration
combination is the dnlg possible one. In the follouwing it is presumed fhat
the'mpvement starts with acceleration in the positive x; direction. Hence

all velocities are positive.

Lemma 1: After acceleration, the gllde périod cannot double back to
another acceleration.

Proof: The proof of this lemma proceeds by examining the time derivative
of the acceleration-coast switching curve (hencefarth referred to as the
slope of the suitching curve). The slope of this ﬁurve is initially
positive at the traneitfon from acceleration to coast. In order for

~ another acceleratiqn to follow the cﬁast period, this slope must become
negative, leading to a contradictiqn; | »

| vAt the first suitching time t; the acceleration-coast switching

curve is zero.
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Nalt) +a+xlt)) =8 B 13Y
 After the acceleration period, the coast equations are:
() = Apttpe ) Ly - 21N, (A2)
xalt) = = Qglt))+a)e 2l (A3)
Thue
Mo (8 +aena (1) = Apltpe” 80, + e ot -, (A4)
+a- O\it)+ale -blt-t))
The slope of this suitching curve is:
1 i, (0anp) + bt +mre B . (s)
- At t=t,, the slope of the suitching curve is:
e v : : : :
2bA,(t,) -\ +ha > B | (AB)

- One can shou this quantity cannot be less than zero. Next, suppose the
 coast doubles back to another acceleration. At some point the slope must

go throdgh zero. This time t is found from (AS) as:

N e >1 AN

A-bAa(t))
Case 1: A;-bAa(t)) > 8.
VThen Az2(t)) +a>8, contradicting (A1),
Case 2: A;-bAp(t;) < 8.
Crossmultiplying (A7) and collecting ternms,
2bla(t;) -\ +ba<B, contradicting (AB).
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Thus after acceleration, the coast period must eventually arrive at iheb

“deceleration switching point.

Lemma 2: The movement is locked in deceleration until the end.

Proof: It will be shown that if deceleration ever suitches to coast, then

the slope of the coast-deceleration suitching curve requires an immediate
return to deceleration. Hence the movement is locked in deceleration until
the end. _

Suppose there is a time ts‘uhen deceleration suitches to coast. At
this point the coast-deceleration suitching curve is zero.

x:(ts)-a-xz(ta) -0 ’ (A8)

The coast suitching curve Ap(t)-a-x,(t) is

b(t-ta)

Ap(tg)e e 0" ) g et (A9)
b
The slope of (A9) is:
1118 (1, kg1 Ay) + brgltgle 1) (A10)

At timé fs the slope (A18) is bkg(ta)-x,+bxz(t3). This is positive since

: xz(f3)>a. xa(t3)>8, and \;<@ (lemma 3). This means that deceleration would |
- bounce off the anst boundary and immediately continue the deceleratfon.
Furthermore, since the slope is positive, the deceleration would not

fmmediatelg suitch back to coasting, causing chattering.
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Lemma 3: A\, < 8.
Proof: At the second switching point t; we have

Az (tg)-a-xp(t;) = 8 (A11)
From (A2) and (A3), this becomes

Ap(tpel ), %1(1-e°“2't')) “a+ Oltpeme it é (ai2)
Rearrangihg.
| hu-.e'““z't") TR TP s U | PR L L) A13)
b o :
~ From (Al) and (A3l we find an expression for \p(t).
Mlt) = - a - g‘g_,,u-a'”“"“’_) (AL6)
qustifuting into (A13),
n ettt 5d:_Lu_o-u(t,-to))(ebuz-t,)ﬂ-mtg-'t,)”- A1)
i " + a(1+eb(t2-t')) |
Thus
R I T s Y I T T T TP A ML TR T )
BTt

Sinte the numerator is positive and the denominator is negative, \; is

negative,

Taken together, these lemmas show that acceleration.passes through coast to

deceleration. There is no possible variation in this scheme. It is also

possible to show the movement cannot start by coasting followed by

acceleration.
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Appendix B
A surprising limitation on the value of t;-t,, the duration of the

coasting time, has been found. The switching curve during acceleration is:

Ao (t) +ainy(t) = x,uo)e"“'t°’+ L|+k,c|(1-eb(t-t°)) +a (1)
‘ b
b keey(1-s )
b
The slope of this switching curve iss
e 1400 (o, (tg) Ay=kgey) + kyeyo B! (82)
At the first suitching time t;, the euitchlng function (B1) is zero.
Rearranging (Bl1) for t=t,,
&P 1t17t) (o tg) - uskeel)) = - Qutke)) - @ - key1-e Pty (@3)
b b b
Substituting (B3) into (B2), the slope at t; is:
- 20 e L be | (B4)
. Substituting for \; from (Al6),
keey (g O tt)y o Bl _bltets)y o (85)
Llt-ty)
Since slope(t;)>0 and since the denominator is positive, so is the
numerator.
keer (1-e 2 17Y0)) g, P M t)_Bltmti)y o o (86)
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- - ~-t;)
Because 2+e blt, t')-eb(tz 4 is a decreasing function of t,, at some
; : , blty-t)
point (B6) becomes zero. Solving then for e (.2 ",

-b(t,-t) -b(t,-tg)

ba + ﬂ/ (ba+kec) (1-e N2 o+1 (87)

D2 4 (k,cy(l-e

ke (1-e 2117t

- As tp increases, t; will decrease. However, t; does not decrease enough to

 offset the effect of the t; increase. I1f a=8, (B7) reduces to

Sl Ly 2 - (87a)

Strangely, in this circumstance t,-t, depends only on b,
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