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Abstract:
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The Problem

A goal of Artificial Intelligence is to construct an "advice taker" Mdvice Taker 5
program which can be told new knowledge and advised about how that knowledge may be
useful. One approach toward achieving this goal has been to use additive formalisms for
the representation of knowledge. Those formalisms derived from mathematical logic have
been the most popular. Unfortunately, the resulting systems are combinatorially explosive.
It is difficult to provide incremental guidance for problem solvers which use these additive
formalisms because of the unsolved question of how to describe knowledge about how to
profitably use other knowledge.Additive Knowledge

Substantial progress has been made in constructing expert problem solvers for
limited domains by abandoning the goal of incremental addition of knowledge. Experts
have usually been constructed as procedures whose control structure embodies both the
knowledge of the problem domain and how it is to be used. The "procedural embedding of
knowledge"Pr°%®Ures paradigm seems natural for capturing the knowledge of experts
because of the apparent coherence we observe in the behavior of a human expert who is
trying to solve a problem. For each specific problem he seems to be following a definite
procedure with discrete steps and conditionals. In fact, an expert will often report that his
behavior is controlled by a precompiled procedure. One difficulty with this theory is the
flexibility of the expert’s knowledge. If one poses a new problem, differing only slightly
from one which we have previously observed an expert solve, he will explain his new
solution as the result of executing a procedure differing in detail from the previous one. It
really seems that the procedure is created on the fly from a more flexible base of
knowledge. '

We believe that the procedural explanation is an artifact of the explanation
generator rather than a clue to the structure of the problem solving mechanism. The
apparently coherent behavior of the problem solver may be a consequence of the individual
behaviors of a set of relatively independent agents. "' As an example of coherent
behavior on the part of a problem solver constructed from incoherent knowledge sources,
we cite the operation of the EL electronics circuit analysis program.EL EL is constructed
from a set of independent demons, each implementing some facet of electrical laws applied
to particular device types. The nature of knowledge in the electrical domain is such that
the analysis of a particular circuit is highly constrained, and so the traces of performance
and explanations produced by EL are coherent. Like Simon’s ant, 5™ Am E], displays
complex and directed behaviors which are largely determined by the nature of the terrain,
that is, the circuit.

Our Approach

We here present a problem solving methodology by which the individual
behaviors of a set of independent rules are coordinated so as to exhibit coherent behavior.
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This methodology establishes a set of conventions for writing rules, and a set of features
which the rule interpreter must supply to support these conventions. Our rules operate on a
data base of facts. Each fact is constructed with a justification which describes how that
fact was deduced from antecedent facts.

The key to obtaining coherence is explicitly representing some of the knowledge
which is usually implicit in an expert system:

We explicitly represent the control state of the problem solver. For example, each goal
is asserted and justified in terms of other goals and facts. We distinguish various
kinds of goals for deduction and action to which different subsets of rules apply.
These explicit goals and their justifications are used in reasoning about the problem
solver’s actions and its reasons for decisions.Expliit Control

We explicitly represent as facts knowledge about how other facts are to be used. In’
traditional methods of representing knowledge the way a piece of knowledge is used is
implicit rather than something that can be reasoned about. In PLANNER, for
example, the use of a piece of knowledge is fixed at the time that the knowledge is
built into the problem solver, and it is not possible to later qualify the use of this
knowledge. One can specify a rule to be used as either a consequent or antecedent
theorem, but one can not later say "But don’t do that if ... is true." To allow the
expression of such statements some facts must be assertions about other facts.

We explicitly represent the reasons for belief in facts. Each fact has associated
justifications which describe reasons for believing that fact and how they depend on
beliefs in other facts and rules. A fact is believed if it has well-founded support in
terms of other facts and rules.Wel-Founded Support Tre cyyrrently active data base context
is defined by the set of primitive premises and assumptions in force.

The justifications can be used by both the user and the problem solver to gain
insight into the operation of the set of rules on a particular problem. One can perturb the
premises and examine the changed beliefs that result. This is precisely what is needed for
reasoning about hypothetical situations. One can extract information from the
justifications in the analysis of error conditions resuiting from incorrect assumptions. This
information can be used in dependency-directed backtracking®**!"*cki" tg pinpoint the
faulty assumptions and to limit future search.

The explicit data dependencies allow us to control the connection between control
decisions and the knowledge they are based on.S®P"*'®" We can separate the reasons for
belief in derived facts from the control decisions affecting their derivation when the facts
are independent of the control decisions. Anomalous dependencies are produced when this
separation is not made. In chronological backtrackingMro-PLANNER controf decisions are
confused with the logical grounds for belief in facts. This results in the loss of useful
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information when control decisions are changed.

This technique of using explicit control knowledge to guide a problem solver does
not resolve all difficuities, since it is often unclear as to what knowledge is usefully made
explicit. In the following we present examples of the use of explicit control knowledge in
constructing coherent behaviors from incoherent knowledge sources Contro! Vocabulary

Explicit Control Assertions

Suppose we know a few simple facts, which we can express in a bastard form of
predicate calculus:

(-> (human :x) (fallible :x))  Every human is failible!
(human Turing) Poor Turing.

If provided with a simple syntactic system with two derivation rules (which we
may interpret to be the con junction introduction and modus ponens rules of logic),

A (-> A B)
B A
(AND A B) B

then by application of these rules to the given facts we may derive the conclusion
(AND (fallible Turing) (human Turing)).
Since the rules are sound, we may believe this conclusion.

~ Several methods can be used to mechanically derive this conclusion. One scheme
(the British Museum Algorithm) is to make all possible derivations from the given facts
with the given rules of inference. These can be enumerated breadth-first. If the desired
conclusion is derivable, it will eventually appear and we can turn off our machine. -

The difficulty with this approach is the large number of deductions made which
are either irrelevant to the desired conclusion (they do not appear in its derivation) or
useless, producing an incoherent performance. For instance, in addition to the above,
con junction introduction will produce such wonders as:SUPpression

(AND (human Turing) (human Turing)) A
(AND (-> (human :y) (fallible :y)) (human Turing))

The literature of mechanical theorem-proving has concentrated on sophisticated
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deductive algorithms and powerful but general inference rules which limit the
combinatorial explosion. These combinatorial strategies are not sufficient to limit the
process enough to prevent computational catastrophe. Verily, as much knowledge is needed
to effectively use a fact as there is in the fact.

Consider the problem of controlling what deductions to make in the previous
example so that only relevant con juncts are derived. The derivation rules can be modified
to include in the antecedent a statement that the consequent is needed:

(SHOW (AND A B)) (SHOW B}
A (-> A B)
B A

(AND A B) B

Given these rules, only relevant conclusions are generated. The assertion (SHOW X) says
nothing about the truth or falsity of X, but rather indicates that X is a fact which should
be derived if possible. Since the "SHOW" rules only deduce new facts when interest in them
has been asserted, explicit derivation rules are needed to ensure that if interest in some fact -
is asserted, interest is also asserted in appropriate antecedents of it. This is how subgoals
are generated mplications

(SHOW (AND A B)) (SHOW (AND A B))
. A
(SHOW A) -
(SHOW B)
(SHOW B)
(-> A B)
(SHOW A)

With these rules the derivation process is constrained. To derive
(AND (fallible Turiing) (human Turing)),
interest must be first asserted: |
(SHOW (AND (fallible Turing) (human Turing))).

Application of the derivation rules now results in the following sequence of facts:
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(SHOW (fallible Turing))

(SHOW (human Turing))

(fallible Turing)

(AND (fallible Turing) (human Turing))

These are ébsolutely all the facts that can be derived, and no facts were derived which were
not relevant to the goal.

Explicit Data Dependencies

. This apparent coherence has been achieved by the manipulation of explicit
control assertions. The use of explicit control necessitates the use of explicit dependencies.
If the conclusions of a rule of inference uniformly depended on the antecedents of the rule
then SHOW rules would cause belief in their consequents to depend on the statement of
interest in them. That is wrong. If the truth of a statement depends on the truth of the
need for it, the statement loses support if interest in it is withdrawn. Even worse, if a
derived conclusion is inconsistent, one might accidently blame the deducer for his curiosity
instead of the faulty antecedent of the contradiction! The dependence of each new
conclusion on other beliefs must be made explicit so that the dependencies of control
assertions can be separated from the reasons for derived results. In the con junction
introduction rule, the truth of the conjunction depends only on the truth of the con juncts
but interest in the truth of the conjuncts propagates from interest in the truth of the
con junction.

We can depict the rules of inference for truth and control with the correct
dependency information as follows:

A B _. (SHOW (AND A B))

(SHOW B)

A (-> AB) J(SHUN B)

(SHOW A)

In this diagram, the target statement is derived if the source statements are known. Only
the solid arrows represent dependency links.
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The AMORD language
Primitives

To provide notation for expressing the explicit control and dependency structure
of the problem solving process, we have developed an antecedent reasoning system called
AMORD.MORD AMORD is a language for expressing pattern-invoked procedures, which
monitor a pattern-indexed data base, coupled with a system for automatic maintenance of
dependency information. The basic AMORD constructs are RULEs and ASSERTions.

New facts can be inserted into the data base with
(ASSERT <pattern> <justification>),

where any variables in the arguments inherit their values from the lexically surrounding
text, and <justification> is a specification of the reason for belief in the fact specified
by <pattern>. The justification is constructed from {I} an arbitrary (possibly composite)
name denoting the justification type (often the name of a rule), and {2} the factnames of
the assertions on which the belief depends. Variables are denoted by atoms with a ™"
prefix. Each factV*®™® has a unique factname.

A rule is a pattern-invoked procedure, whose syntax is:
(RULE (<factname> <pattern>) <body>),

where <factname> is a variable which will be bound to the factname of any fact which
unifiesU" with <patterns, and <body> is a set of AMORD forms to be evaluated in the
environment specified by adding the variable bindings derived from the unification and
the binding of <factname> to those derived from the lexical environment of the rule. The
primary use of <factname> is in specifying justifications for ASSERTs in the body. Rules
are run on all matching facts "

Sometimes it is necessary to assume a truth "for the sake of argument”. Such a

- hypothetical fact is used when we wish to investigate its consequences. Perhaps it is
independently justifiable, but it is also possible that it is inconsistent with other beliefs and
will be ruled out by,a contradiction. We construct such a hypothetical assertion using
ASSUME:

(ASSUME <pét tern> <justification>)

Here <justification> provides support for the need for the assumption, not the assumed
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fact. If the assumed fact is contradicted and removed by backtracking, the negation of the
assumed fact is asserted and supported by the reasons underlying the contradiction.No8°d

Examples

The forward version of con junction introduction is implemented in AMORD as
the following rule: '

(Rule (:f :a)
(Rule (:g :b)
(Assert (AND :a :b) (&+ :f :g))))

To paraphrase this rule, the addition of a fact f with pattern a into the data-base resuits in
the addition of a rule which checks every fact g in the data-base and asserts the

con junction of a and the pattern b of g. Thus if A is asserted, so will be (AND A A), (AND
A (AND A A)), (AND (AND A A) A), etc. Note that the atom AND is not a distinguished
symbol.

To control these deductions, the above rule can be replaced by the following rule
which effects consequent reasoning about con junctive goals.

(Rule (:g (SHOW (AND :p :q)))
(Rule (:cl :p)
(Rule (:¢2 :q)
(Assert (AND :p :q) (8&+ :cl :¢2)))
(Assert (SHOW :q) ({(BC &+) :g :cl)))
(Assert (SHOW :p) ((BC &+) :g)))

In this rule the control statements (SHOWs) depend on belief in the relevant controlled facts
so that the existence of a subgoal for the second conjunct of a conjunctive goal depends on
the solution for the first conjunct. At the same time, no controlled facts depend on control
facts, since the justification for a con junction is entirely in terms of the con juncts, and not
on the need for deriving the conjunction. This means that the control over the derivation
of facts cannot affect the truth of the derived facts. Moreover, the hierarchy of nested,
lexically scoped rules allows the specification of sequencing and restriction information. For
instance, the above rule could have been written as

(Rule (:g (SHOW (AND :p :q)))
(Rule (:cl :p)
(Rule (:¢2 :q)
(Assert (AND :p :q) (&+ :cl :c2))))
(Assert (SHOW :p) ((BC &+) :g))
(Assert (SHOW :q) ((BC &+) :g)))
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This form of the rule would also only derive correct statements, but would not be as tightly
controlled as the previous rule. In this case, both subgoals are asserted immediately,
although there is no reason to work on the second con junct unless the first con junct has
been solved. This form of the rule allows more work to be done in that the possible mutual
constraints of the conjuncts on each other due to shared variables is not accounted for.
That is, in the first form of the rule, solutions to the first conjunct were used to specialize
the subgoals for the second con junct, so that the constraints of the solutions to the first are
accounted for in the second subgoal. In the second form of the rule much work might be
done on solving each subgoal independently, with the derivation of the con junction
performed by an explicit matching of these derived results. This allows solutions to the
second subgoal to be derived which cannot match any solution to the first subgoal.

Other consequent rules for Modus Ponens, Negated Con junction Introduction,
and Double Negation Introduction are similar in spirit to the rule for Con junction
Introduction: '

(Rule (:g (SHOW :q))
(Rule (:i (-> :p :q))
(Rule (:f :p)
(Assert :q (MP :i :f)))
(Assert (SHOW :p)} ((BC MP) :g :i))))

(Rule (:g (SHOW (NOT (AND :p :q))))
(Ruie (:t (NOT :p))
(Assert (NOT (AND :p :q)) (-8+ :t)))
(Rule (st (NOT :q))
(Assert (NOT (AND :p :q)) (-8+ :t)))
(Assert (SHOW (NOT :p)) ((BC -8&+) :g))
(Assert (SHOW (NOT :q)) ((BC -&+) :g)))

(Rule (:g (SHOW (NOT (NOT :p))))
(Rule (:f :p)
(Assert (NOT (NOT :p)) (--+ :£)))
(Assert (SHOW :p) ((BC --+) :g)))

The BLOCKS World

We will discuss problem solving in the blocks world as an example of our
methodology. First, we formalize the domain with a set of logical axioms which express a
McCarthy-Hayes situational calculus.5"*"" We use the syntax (TRUE <statement>
<situation>) to state that the indicated statement holds in the indicated situation. TRUE is
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a syntactic convenience. We could just as well add an extra argument to each of the
predicates of the domain. For example, the following axiom expresses the fact that in the
situation arrived at after a PUTON operation the block which moved is on the block it was
put on.

(Assert (-> (AND (TRUE (CLEARTOP :x) :s)
(TRUE (SPACE-FOR :x :y) :s))
(TRUE (ON :x :y) ((PUTON :x :y) . :8)))
(Premise))

More axioms are needed for the blocks world. Blocks not moved by a PUTON
remain on their former support:

(Assert (-> (AND (TRUE (ON :a :b) :s) (NOT (= :a :x)))
(TRUE (ON :a :b) ((PUTON :x :y) . :8)))
(Premise)).

. A block is said to be CLEARTOP if no other block is ON it. We assume for simplicity that

only one block can be ON another, and introduce statements of CLEARTOP for blocks made
clear by PUTON:

(Assert (-> (AND (TRUE (ON :x :b) :s)
(AND (NOT (= :b Table)) (NOT (= :y :b))))
(TRUE (CLEARTOP :b) ((PUTON :x sy} . :s)))
(Premise)).

If a block is CLEARTOP, it remains so after any action which does not place another block ON
it.

(Assert (-> (AND (TRUE (CLEARTOP :b) :s) (NOT (= ty :b)))
(TRUE (CLEARTOP :b) ((PUTON :x :y) . :8)))

(Premise))

A block can be ON only one other block.

(Assert (-> (AND (TRUE (ON :x :z) :s8) (NOT (= :z :y)))
(NOT (TRUE (ON :x :y) :8)))
(Premise))

The definition of CLEARTOP is:
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(Assert (-> (TRUE (ON :x :y) :s)
(NOT (TRUE (CLEARTOP :y) :8)))
(Premise)).

If a block is CLEARTGOP, it has SPACE-FOR any other block.

{(Assert (-> (TRUE (CLEARTOP :x) :s)
(TRUE (SPACE-FOR :y :x) :s))
(Premise))

If a block is not CLEARTOP, it does not have SPACE-FOR anything more. This assumes only
one block can be ON another. ’

(Assert (-> (AND (NOT (TRUE (CLEARTOP :x) :s)) (NOT (= :x Table)))
' (NOT (TRUE (SPACE-FOR :y :x)} :s8}))
(Premise))

The table alw'ays has SPACE-FOR everything.
(Assert (TRUE (SPACE-FOR ix Table) 1s) (Premise))
We set up an initial state of the system by adding situation-specific axioms.

(Assert (TRUE (ON C A) INIT) (Premise))

(Assert (TRUE (ON A Table) INIT) (Premise))
(Assert (TRUE (ON B Tabie) INIT) (Premise))
(Assert (TRUE (CLEARTOP C) INIT) (Premise))
(Assert (TRUE (CLEARTOP B) INIT) (Premise))

Problem Solver Strategies

There are a number of strategies for using this description of this blocks world
for problem solving. Consider the problem of finding a sequence of actions (PUTONs)
which transforms the initial situation into a situation in which block ‘A is ON block B. Such
a sequence may be derived from a constructive proof of the statement (EXISTS (S) (TRUE
(ON A B) S)) from the initial situation Construction ‘

One strategy is to derive all possible consequences of the axioms using the logical
rules of inference without SHOW restrictions. If the goal state is a possible future of the
initial state, then a solution sequence will eventually be generated. This forward chaining
strategy generates piles of irrelevant states which, although accessible from the initial state,
are not on any solution path to the goal state.
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A dual strategy is backward chaining. This can be accomplished using the SHOW
rules described previously to generate all possible pasts of the goal state. Although all the
states so generated are relevant to the goal, most of these are inaccessible from the initial
Situation. ubgoal Filters

Refinement planning is the strategy of decomposing the dprob!em into the
sequential attainment of intermediate "islands” or subproblems.**"®® Both forward and
backward chaining are special cases of this strategy, in which the islands proposed are
derived by finding states separated from the initial or goal states by the application of a
single operator. The more general use is to propose subproblems which are not necessarily
immediately accessible from the initial or goal states, but which, if solved, enormously
restrict the size of the remaining subproblems. These intermediate subgoals are produced
at the risk of being either irrelevant to the goal or impossible to achieve from the initial
state, and so must be suggested by "methods” which "know" reasonable decompositions of a
domain-specific nature.figherSpaceBC -

Several additional constraints influence the selection of problem solver strategies.
Many operator sequences have no net effect (they are composite "no-ops”). A problem
solver which fails to recognize that these sequences produce no change of state will loop
unless its search is globally breadth-first. In addition, it will waste effort deriving solutions
to problems isomorphic to ones it has already solved. To solve this problem, it is important
to represent the properties of situations in such a way that two situations which are
identical with respect to some purpose can be recognized as such.

Implementation of a RefinementQPlanning Problem Solver

The principal difficulty of solving problems in worlds which can have arbitrarily
many states is that any simple deduction mechanism will explore all of them. Our problem
solver limits the potential combinatorial explosion by having domain specific rules which
control the introduction of new states. The problem solver also contains rules which are
domain independent, of which Modus Ponens and Con junction Introduction are examples.
These SHOW rules will only be invoked for questions which concern an existing state. They
are not allowed to generate new or hypothetical states.

The statement (GOAL <condition> <situation>) is asserted when we want
<condi tion> to be achieved in some situation which is a successor of <situation>. The
following rule is triggered by this assertion and controls the solution process. When the
goal is satisfied this rule will assert (SATISFIED (GOAL <condition> <situation>)
<neu-situation>) where <neu-situation> is the name of the situation where
<condi tion> now holds. The subrule first checks whether the goal is already true. It
asserts (TRUE? <condition> <situations) (asking the question, "Is <condi tion> true or
false in <situation>?") and sets up two rules which wait for the answer. A convention of
our rules is that an answer is guaranteed. Processing the goal will continue when the
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answer (YES or NO) is asserted. If the condition is not true in the current situation, planning
proceeds by asserting (ACHIEVE <condition> <situation> <goal>), where <goal> is
the fact name of the goal. The ACHIEVE facts trigger the relevant methods for achievement
of the goal condition. These methods may introduce new situations and perform actions.

If a method thinks that it has succeeded in producing a successor state of the given
situation in which the goal condition is true it asserts (ACHIEVED? <goal> <new-
situation>), where <new-situation> is the situation in which <goal> is thought to be
satisfied. The goal rule then checks this suggestion with TRUE? and makes the SATISFIED
assertion if successful. If the method is in error, the bug manifestation is noted in a BUG
assertion. This is marked as a contradiction and causes backtracking. A more sophisticated
problem solver would at this point enter a debugging strategy. The justification of the
contradiction can be traced. This information is helpful in diagnosing the fault and
constructing a patch to the domain specific methods.

(Rule (:g (GOAL :c :s))
(Assert (TRUE? :c :8) (Goal-true? :g))
(Rule (:q (TRUE? :c :s))
(Rule (:t (YES :g))
(Assert (SATISFIED (GOAL :c :s) :s)
(Goal-immed-satisfied :g :t)))
(Rule (st (NO :q))
(Assert (ACHIEVE :c :s :g) (Goal-unsatisfied :g :t))
(Rule (:u (ACHIEVED? :g¢ :sl))
(Assert (TRUE? :c :sl) (Did-it-succeed? :g st :w))
(Rule (:gq2 (TRUE? :c :s1))
(Rule (:f (YES :q2))
(Assert (SATISFIED (GOAL :c :s) :sl)
‘ (Win :g :£)))
(Rule (:f (NO :g2))
(Assert (BUG :g :w :f)
(Contradiction :w :f))))))))

To check whether a statement is true in a situation the SHOW mechanism is used.
The assertion of (GOAL <condition> <situation>) requests <condition> to be true in
some successor state of <situation>. The statement <condi tion> must be relative to a
situational variable because it is checked in two (potentially) different situations in the GOAL
rule above. In order to test whether this statement is true or false this variable must be
bound to the particular situation being considered. The condition of a GOAL assertion must
be of the form (L <variable> <predicate>), ("L" abbreviates "LAMBDA") where
<predicate> is a predicate form with an open situational variable <variable>. The
unification of the trigger pattern of TRUE? with the assertion (TRUE? <condition>
<situation>) has the effect of binding the particular situation <situation> being
considered with the situational variable <variable> used in <predicate>. By lambda-
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abstracting the goal condition, we eliminate the explicit mention of any particular. situation
in the goal description. "Equivalent” goals are variants, and so will be identified by the
AMORD interpreter Favivelent Goals

(Rule (:g (TRUE? (L :s :p) :8))
(Rule (:f :p)
(Assert (YES :g) (Return :g :f)))
(Rute (:f (NOT :p))
(Assert (NO :g) (Return :g :f)))
(Assert (SHOW :p) (Try-positive :g))
(Assert (SHOW (NOT :p)) (Try-negative :g)))

If the goal is a con junction of conditions, the fallowing rule is triggered. Some
con junctive goals can be achieved by achieving each con junct separately. This is called a
LINEAR-PLAN. Sometimes the con juncts can be achieved in one order but not in the other
order.PC8G A conjunctive goal cannot always be decomposed in this way.A"™™Us [ the case
of such a non-linear problem, our rule fails.

(Rule (:f (ACHIEVE (L :s (AND :cl :c2)) :sl :purpose))
(Assume (LINEAR-PLAN :f} (First-order :f))
(Rule (:p (LINEAR-PLAN :f))
(Assume (STATED-ORDER :p) (Conjunct-order :p))
(Rule (:0 (STATED-ORDER :p))
(Assert (ORDERED-PLAN :s :cl :c2 :sl :purpose) (Try :0)))
(Rule (:0 (NOT (STATED-ORDER :p))) '
(Assert (ORDERED-PLAN :s :c2 :cl :sl :purpose) (Try :0))))
(Rule (:p (NOT (LINEAR-PLAN :f)))
; This problem solver has no clever ideas about this case.
(Assert (FAIL :p) (Contradiction :p})))

The next rule refines a con junctive goal as an ordered linear plan. It produces
the subgoal of finding an "island" in which the first conjunct is true. If the first subgoal
can be satisfied, it then establishes the subgoal of satisfying the second conjunct in a
successor of this island. If the second subgoal can be satisfied the resulting state is
proposed as a solution to the conjunctive goal. The goal rule which triggered this method
is resumed by the statement (ACHIEVED? <purpose> <new-situation>) which tests
(using TRUE?) the original goal condition in <neu-situation>. If this method is wrong,
the GOAL rule will fail.
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(Rule (:f (ORDERED-PLAN :s :cl :c2 :sl :purpose))
(Assert (GOAL (L :s :cl) :sl) (Subgoal-1 :f))
(Ruie (:satl (SATISFIED (GOAL (L :s :cl) :sl) :82))
(Assert (GOAL (L :s :c2) :82) (Subgoal-2 :f :satl))
(Rule (:sat2 (SATISFIED (GOAL (L :s :c2) :s2) :83))
(Assert (ACHIEVED? :purpose :83) (Win? :f :satl :sat2)))))

Methods redundantly incorporate knowledge included in the axioms. They
embody the domain specific heuristics for constructing effective subgoals. The following
rule suggests that to achieve (ON A B) one should first achieve a situation which A has a
cleartop and B has space for A. From this situation, we can immediately (PUTON A B)
producing a situation in which the goal is achieved. This method is the only rule which
creates new situations. ‘

(Rule (:f (ACHIEVE (L :s (TRUE (ON :a :b) :8)) :sl :purpose))
(Assert (GOAL (L :x (AND (TRUE (CLEARTOP :a) :x)
(TRUE (SPACE-FOR :a :b) :x)))
:8l)
(Prerequisite-for-PUTON :f))
(Ruie (:sat (SATISFIED
(GOAL (L :x (AND (TRUE (CLEARTOP :a) :x)
(TRUE (SPACE-FOR :a :b) :x)))
1s8l)
182}}
(Assert (ACHIEVED? :purpose ((PUTON :a :b) . :s2))
(Record-PUTON-purpose : f :sat)}))

The following rules describe methods for achieving each predicate of the domain
and its negation. To achieve NOT-ON, move the offending ob ject to the table.

(Rule (:f (ACHIEVE (L :x (NOT (TRUE (ON :a :b) :x))) :sl :purpose))
(Assert (ACHIEVE (L :u (TRUE (ON :a Table) :u)) :sl :purpose)
(Get-rid-of :f)))

To make space on something, achieve NOT-ON for all offending ob jects.
(Rule (:f (ACHIEVE (L :s (TRUE (SPACE-FOR :a :y) :s)) :sl :purpose))
(Rule (:o (TRUE (ON :x :y) :sl)) o
(Assert (ACHIEVE (L :u (NOT (TRUE (ON :x :y) :u))) :sl :purpose)

{Make-space-for :f 3:0))))

To clear a block, achieve NOT-ON for all other blocks on it.
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(Rule (:f (ACHIEVE (L :s (TRUE (CLEARTOP :y) :s)) :sl :purpose})
(Rule (:o0 (TRUE (ON :x :y) :sl1))
‘(Assert (ACHIEVE (L :u (NOT (TRUE (ON :x :y) :u))) :sl :purpose)
(Make-CLEARTOP :f :0))))

The methods introduce some incompleteness that was not present in the original
axioms. In return the problem solver always halts by running out of further rules to run.
The main reason the specific methods could be used successfully is that the deductions are
explicitly controlled by control assertions (GOAL, ACHIEVE, ACHIEVED?, TRUE?).

Conclusions

Many kinds of combinatorial explosions can be avoided by a problem solver that
thinks about what it is trying to do. In order to be able to meditate on its goals, actions and
reasons for belief, these must be explicitly represented in a form manipulable by the
deductive process. In fact, this "internal” control domain is a problem domain formalized
using assertions and rules just like an "external” domain. How can we use assertions about
control states to effectively control the deductive process?

The key to this problem is a set of conventions by which the explicit control
assertions are used to restrict the application of sound but otherwise explosive rules. These
conventions are supported by a vocabulary of control concepts and a set of systemic
features. The applicability of a rule can be restricted by embedding it in a rule having a
pattern which matches a control assertion as an entrance condition. The rule language
allows the variables bound by matching the control assertions to further restrict the
embedded rule. But we want the conclusions of sound rules to depend only on their correct
antecedents and not on the control assertions used to restrict their derivation. This is

- necessary to enable fruitful deliberations about the reasons for belief in an assertion. The

system must provide means for describing the reasons for belief in an assertion and means
for referring to an ob ject of belief.

Sometimes it is necessary to make assumptions - to accept beliefs that may later

be discovered false. Conclusions of rules which operate with incomplete knowledge must

depend upon the control assumptions made. Accurate dependencies allow precise
assignment of responsibility for incorrect beliefs. This is necessary for efficient search and -
perturbation analysis.
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Notes

Advice Taker
The term "Advice Taker" originates with McCarthy [1968].

Additive Knowledge , :

Is it possible to have an additive system in which knowledge about other
knowledge can be expressed? Sometimes advice may be negative. For example, the process
of sorting a list may be defined as finding a permutation of the list which is ordered. An
obvious procedure derived from this definition is that of enumerating the permutations of
the list and testing each for order. If better methods become known, we will want to give
the advice that this method stinks. How can this be an additive piece of knowledge?
Perhaps a way to make such knowledge additive is to formalize the "state of mind” of the
problem solver, and let such advice change its state of mind.

Procedures

: The "Procedural Embedding of Knowledge" is the philosophy popularized by
Winograd [1972] and Hewitt [1972, 1975] that knowledge can be most profitably represented
as computer programs.

Coherence ,

In Human Problem Solving [Newell and Simon 1972], the apparently coherent
behavior of human sub jects is also explained in terms of a set of relatively independent
agents (formalized as productions). Minsky [1977] proposes a structure for human behavior
in terms of a "society of agents".

EL :
EL is a set of rules for electrical circuit analysis which embodies the method of
propagation of constraints. [Sussman and Stallman 1975] EL is implemented in ARS.
(Staliman and Sussman 1976]

Simon’s Ant
Simon [1969] points out that apparently complex behavior can result from simple
procedures operating in a complex but constraining domain.

Explicit Control

Production System devotees have tended to approach the problem of control
through the architecture of the machine supporting the problem solver. Most of these
studies are concerned with devices like production ordering, recency criteria for working
memory elements, and priority measures on productions and memory elements. [Hayes-Roth
and Lesser 1977, McDermott and Forgy 1976]

Drew McDermott’s [1976] NASL interpreter explicitly records control assertions in
guiding an electronic circuit design program. His system also records some dependency
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information, but does so in an automatic fashion rather than explicitly. Other uses of
explicit representations of the problem solver control state are used in NOAH [Sacerdoti
1975) and MYCIN [Davis 1976). Production System problem solvers (such as GPSR
[Rychner 1976]) necessarily record goals explicitly in working memory, but only as an
implementation of standard consequent reasoning, rather than as a mechanism for careful
control.

Well-Founded Support

Means for effectively maintaining a well-founded justification for each believed
fact have been investigated by Doyle [1977). His system TMS (Truth Maintenance System)
has been incorporated in our design of AMORD.

Backtracking
Dependency-Directed Backtracking is a technique for careful backtracking which
was introduced by Staliman and Sussman [1976] in the context of electrical circuit analysis.

Separation :

Hayes [1973], Kowalski [1974], and Pratt [1977] have advocated the separation of
problem solving knowledge into "competence” and "performance” components. We feel that
this is the wrong distinction to make, as the competence knowledge must necessarily be
replicated in the performance knowledge. Our proposed methodology requires these forms
of knowledge to be integrated for efficient control, but separated by explicitly recorded
dependencies. ‘

Micro-PLANNER :

Micro-PLANNER ([Sussman, Winograd, and Charniak 1970] was a language
based on Hewitt’s [1972] PLANNER which had a pervasive system of chronological
backtracking.

Control Vocabulary '

McDermott [1977] argues that it is the vocabulary used in explicit (production-like)
control that is important, not the specific machine architecture. See also the detailed
vocabularies he [McDermott 1976] and Sacerdoti [1975] develop for talking about tasks and
actions.

Suppression

Of course, redundant con juncts can be suppressed by building the semantics of
con junction into the problem solver. This just puts off the problem as non-primitive
relations can also explode in this fashion. Resolution [Robinson 1965] and associated
combinatorial strategies are domain independent techniques for suppressing some
combinatorial explosions while maintaining completeness.
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Implications

It is sometimes necessary to derive an implication as a subgoal, as in a conditional
proof in natural deduction. In this example we have not provided for such subgoals. The
details of conditional proof in the context of a truth maintenance system are described by
Doyle [1977].

AMORD

, A Miracle of Rare Device, a name taken from S. T. Coleridge’s Kubla Khan.
AMORD has been implemented in SCHEME [Sussman and Steele 1975}, a lexically-scoped
dialect of LISP with tail recursion.

Variants :
In AMORD, facts are indexed so that variant statements of a fact are identified.
If a fact is derived in different ways, it is justified by each of the various derivations.
These multiple justifications are useful if a derivation is later withdrawn. [Stallman and
Sussman 1976, Doyle 1977]

Unifies

Our matcher is based on the unification algorithm used in resolution, but ignores
the restrictions of first order logic. In particular, there are no distinguished symbols or
positions.

Order
The AMORD language does not specify the order in which rules are executed.
The order is irrelevant to the discussion in the text.

Nogood ,

A summary of the reasons for a contradiction which are independent of a
particular set of assumptions is used in ARS [Stallman and Sussman 1976] to restrict future
choices. Doyle (1977] extended and clarified this notion and its relationship to the logical
notion of conditional proof.

Situations

- The situational calculus formalizations of changing world was introduced by
McCarthy [1968], and further developed by McCarthy and Hayes [1969]. This technique is
closely related to the methods of modal logic. [Kripke 1963] '

Construction

Green’s [1969]) method of constructive proof did not take into account the initial
situation. For example, one should state the goal: (EXISTS (S) (AND (FUTURE INIT S)
(TRUE (ON A B) S))) where FUTURE is defined according to the operators that are
applicable.
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Subgoal Filters y
Some impossible subgoals can be pruned by using an external semantic filter.
Gelernter's [1963] Geometry Machine uses an analytic geometry diagram for this purpose.

Islands

- The concept of refinement planning with islands was introduced by Minsky
(1963].
HigherSpaceBC

Refinement planning might be viewed from the GPS [Ernst and Newell 1969] and
ABSTRIPS [Sacerdoti 1974] perspective as backward chaining in a higher level space
which controls the activities in the action sequence space.

Equivalent Goals

We mean equivalences relative to situational variables. There are other types of
equivalences which are not caught by this technique, such as that between the goals (AND A
B) and (AND B A).

PCBG

One way in which a solution of a conjunction by a linear plan may be incorrect is
the Prerequisite-Clobbers-Brother-Goal bug discussed by Sussman [1974, 1975). This bug
may be fixed by reordering the plan. Other related bugs in the world of fixed-instruction
turtle programs are discussed by Goldstein [1974].

Anomalous :

Allen Brown [Sussman 1975] discovered that it is impossible to use a linear plan to
construct (AND (ON A B) (ON B C)) if the initial situation contains (ON C A). Tate
[1974], Sacerdoti [1975], and Warren [1974] have proposed several solutions to this problem.
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