MASSACHUSETTS INSTITUTE OF TECHNOLOGY
© ARTIFICIAL INTELLIGENCE LABORATORY

Memo No. 435 January 1978

- AMORD
A DEDUCTIVE PROCEDURE SYSTEM

by

_ Johan de Kleer, Jon Doyle*,
Charles Rich, Guy L. Steele Jr.* , and Gerald Jay Sussman

A
N

'Abstract:

We have implemented an interpreter for a rule-based system, AMORD, based on
a non-chronological control structure and a system of automatically
maintained data-dependencies. The purpose of this paper is to serve as a
reference manual and as an implementation tutorial. We wish to illustrate:

{1} The discipline of explicit control and dependencies, '

{2} How to use AMORD, and : '

{3} One way to implement the mechanisms provided by AMORD. This paper is
organized into sections. The first section is a short "reference manual”
describing the major features of AMORD. Next, we present some examples
which illustrate the style of expression encouraged by AMORD. This style -
makes control information explicit in a rule-manipulable form, and depends
on an understanding of the use of non-chronological justifications for
program beliefs as a means for determining the current set of beliefs. The
third section is a brief description of the Truth Maintenance System
employed by AMORD for maintaining these justifications and program beliefs.
The fourth section presents a complete annotated interpreter for AMORD,

‘written in MacLISP.

:*Fannie and John Hertz Foundation Fellow

NSF Fellow

This report describes research done at the Artificial Intelligence Labora-
tory of the Massachusetts Institute of Technology. Support for the labora-
tory's artificial intelligence research was provided in part by the Ad-
vanced Research Projects Agency of the Department of Defense under Office
of Naval Research contract N0O0O014-75-C-0643 and in part by the National
Science Foundation under grant MCS77-04828.

de Kleer, Doyle, Rich, Steele & Sussman 2 RMORD

Acknowledgements:

We thank Drew McDermott, Richard Stallman and Carl Hewitt for
suggestions, ideas and comments used in this paper. Jon Doyle is supported
by a Fannie and John Hertz Foundation graduate fellowship. Guy Steele is
supported by a National Science Foundation graduate fellowship. This
research was conducted at the Artificial Intelligence Laboratory of the
Massachusetts Institute of Technology. Support for the Laboratory's
artificial intelligence research is provided in part by the Advanced
Research Projects Agency of the Department of Defense under Office of Naval
Research contract number N00014-75-C-0643.

- Contents:
The AMORD Reference Manual . 3
Some AMORD Examples ' ' ' 8
The Use of the TMS in AMORD 11
‘An Annotated Interpreter in LISP . 18
" Notes 46

References _ ‘ 47

e

R

de Klear, Doyle, Rich, Steele & Sussman 3 The RHORD Reference Manual

Section 1: The AMORD Reference Manual

_ AMORDMMORD 55 g system for writing problem solvers. AMORD encourages
a style of expression in which the logical relationships of the knowledge
and control structure of the problem solver are made explicit. A minimal
set of mechanisms is supplied by AMORD so that most of the knowledge that
must be formalized and the decisions that must be made in constructing a
problem solving program must, to a large degree, be made explicit in AMORD.
This makes AMORD is a vehicle for expressing the structure of problem
solvers. Once the problem solving structure has been formalized, the task
of transferral to programs in programming languages is straightforward.
The important aspect of AMORD is the discipline of explicit control it
enforces, rather than the specific language or syntax in which the control
knowledge is expressed. ' '

The basic mechanism of AMORD is the pattern-directed invocation of a
set of rules operating on an indexed data base of assertions. AMORD
features a simple syntax for rule invocation patterns, an unconstrained
format for assertions, unification semantics for the pattern-matcher, a
non-chronological control structure for rule invocations, and the use of a

~truth maintenance system“"s for determining the current set of believed

assertions. AMORD is implemented in MacL1sp MectiSP

The main components of AMORD are two discrimination networks, one for
storing assertions and one for storing rules, the TMS, the matcher, and the
queue. The TMS is a system for maintaining the logical grounds for belief
in assertions. The matcher is a syntactic unifier which has no
distinguished positions or keywords. The queue is a system whereby rules
are run on the appropriate assertions. The main loop of the AMORD
interpreter is to simply run the body of all rules on all currently
believed assertions whose patterns match the rules' patterns. This is done

.~ independent of the chronological order in which the assertions and rules

are entered into the data bases. When all rules have been run on all
matching facts, AMORD halts, awaiting further user input.

There are several special constructs in AMORD for expressing rules
and assertions. We will enumerate them here, accompanied by their syntax
and description. In these descriptions, expressions of the form "<...>"
denote meta-syntactic variables. :

ASSERT ==~ (ASSERT <PATTERN> <JUSTIFICATION>) :

This is the method for adding a new assertion (also called a "fact")
to the data base. Any variables in the arguments inherit their values from
the lexically surrounding text. Variables are denoted by atoms with a
colon prefix, as in ":F". Each.fact in the data base has an atomic
factname. Assertions which are variants of each other denote the same fact
in the data base, that is, are mapped to the same factname. The
justification is a list, whose interpretation is determined by the first
element of the list. If the first element is atomic and has a "proof-type"

de Kleer, Doyie, Rich, Steele & Sussman 4 - The AMORD Reference Manual

function associated with it, that function is applied to the justification
and assertion to construct the desired TMS justification. Otherwise,
belief in the assertion is justified by belief in all of the facts in the
rest of the justification. The addition of a new assertion to the data
base causes all rules with patterns matching the assertion to be run.

RLH,E == (RULE (<FRACTNRAME-VARIABLE> <PATTERN>) <BODY>)

This is the method for adding rules to the rule data base. A rule is
a procedure to be invoked by all assertions matching <pATTERN>. When a fact
whose pattern unifies with the rule pattern is ASSERTed, the set of AMORD
and LISP forms specified in the body of the rule are evaluated in the
environment specified by adding {1} the variable bindings derived from the
unification of the fact pattern and rule pattern to {2} the binding of the
fact's factname and the factname variable of the rule pattern and {3} the
bindings derived from the lexically surrounding (AMORD, not LISP) text ,Code!
The primary use of the factname variable is for use in specifying
Justifications in assertions made in the rule body. Rules are rum on all
matching facts. The order in which they are run is not specified, although
the interpreter of Section 4 can be observed to operate in a gquasi- depth—
first fashion.

ASSUME =~ (RSSUME <PATTERN> <JUSTIFICRTION>)

This is used to assert speculative hypotheses. that is, to assume a
truth "for the sake of argument". ‘'Here the <JustiFicaTiON> should specify
support for the need for assuming the <«PaTTERN> assertion. Assumptions are
made by justifying belief in the assumed assertion on the basis of a lack
of belief in the assumed assertion's negation. Thus, assumptions may be
discarded by justifying belief in the negation of the assumed assertion,
which invalidates the justification previously supporting belief in the
assumed fact. In particular, the dependency-directed backtracking
" mechanism of the TMS uses the information gained through analysis of the
reasons for contradictions to retract conflicting assumptions in this
manner. ‘

The followihg macros can be used to interface expressions manipulated
by the AMORD and LISP interpreters.

PDSVAL =-- (PDSVAL <FORMi>)

This.macro allows LISP code to access the AMORD value of «rorn>, that
is, the value of all variables prefixed by colons are substituted into the
returned form. '

PDSLET =-- (PDSLET ((<VARL> <VAL1>) ... (<VARN> <VALN>)) <BODY>)

" This macro enables the binding of a number of AMORD variables to
values expressed by LISP expressions. Note that the AMORD variables must
be prefixed by a colon. ' S

- PDSCLOSE =-- (PDSCLOSE <BODY>)
This macro allows the evaluation of AMORD forms from within LISP when

de Kleer, Doyle, Rich, Steele & Sussman 5 The ANORD Reference Manual

the LISP expression being evaluated is not lexically surrounded by an AMORD
expression. The forms in the body are evaluated in an empty AMORD
environment, that is, an environment in which no AMORD variables are bound.

CONSTANT -- (CONSTANT <OBJECT>) .
This LISP predicate determines whether an object contains any
references to AMORD variables.

The following are used to initialize and invoke the AMORD interpreter..

INIT -~ (NI A \ : o
This function initializes the data bases and various system
variables. !

RUN == (RUN) :

This function initiates the AMORD read-evaluate loop. Forms read in
this loop are closed in the empty environment and then evaluated. Unlike
the LISP read-evaluate-print loop, the results of the evaluation of forms
in this loop are not printed.

STOP -- (sT0P) .

This function when read by the AMORD read-evaluate loop causes the
loop to halt and return to LISP. AMORD can be invoked again without loss
of information by calling RUN, as above.

tA -~ 1A

This interrupt character (Control-A) performs the same function as
STOP above. If typed while AMORD is running, this character causes the
loop to halt at the next available point. The queues are left intact, so
tARUN) is a no-op. '

" The following functions the dependency structures and the data base.

WHY == (WHY <FACTNAME>)

This prints the current justification for belief in the specified
fact. ’ -

EXPLAIN -- (EXPLAIN <FACTNANE>)
This prints the complete proof of belief in the specified fact.

PROOFS -- (PROOFS <FACTNRHE>) .
This prints each of the currently valid justifications for belief in
the specified fact. '

INSPECT -~- (INSPECT ’<PATTERN>) .
This function prints all of the assertions with patterns matching the
given pattern. Each assertion is printed with its factname and, if it is
believed, its current justification. :

de Kleer, Doyle, Rich, Steele & Sussman 6 The RAMORD Reﬁrencu Hanual

There are ‘also a number of functions internal to the interpreter
which are useful in writing specialized functions. The TMS functions and
their use are described in Section 3. The most important are the following.

ASSERTION -- (RSSERTION *<PATTERN>)
Thls returns the factname of the fact with the designated pattern.

‘FACT STATEMENT =~ (FACT-STATEMENT <FACTNAME>)
This returns the pattern associated with the designated fact.

RETRACT == (RETRACT <FACTNAME>)

This removes all PREMISE type justifications possessed by the
supplied fact. .

There are several standard forms of justifications built inte A‘MORb.
These are for use in the justification field of ASSERT and ASSUME.

"PREMISE -- (PREMISE)
- Th1s justification supports belief independent of any other beliefs.

GIVEN == (GIVEN
A synonym for PREMISE.

CONDITIONAL-PROOF -~ (CONDITIONAL-PROOF <CONSEQUENT> <HYPOTHESES>)

This justification provides support if the current set of .
justifications for facts provide for belief in the consequent when all the
hypotheses are believed. Actually, this justification type has a somewhat
more complex capability and syntax which consistently extend the syntax and
function just described. The concepts involved in this extension are
described in Section 3, and the syntax is described in the annotated
implementation in Section 4.

"CP -- (CP <CONSEQUENT> <HYPOTHESES>)
A synonym for CONDITIONAL-PROOF.

CONTRADICTION -~ (comanmcnou <SUPPORT>)

This Just1f1cation declares the fact justified by this Ju‘,t1ficat10n
to be a contradiction. It supports belief in the justified fact if all the
facts mentioened in <SuPPORT> are believed. The declaration of the
contradiction will cause backtracking to be invoked whenever the justified
fact is believed. All contradictions must be explicitly declared. That
is, asserting facts which syntactically are negations of each other does
not automatically produce a contradiction.

In addition to the above justification types, the justification types
ASSUMPTION, INSTANCE and RULE are used internally by the interpreter in
making hypothetical assumptions, in making justifications based on
subsumption of one fact by another, and in justifying rules. These
Jjustification types should therefore be avoided by the user.

de Kleer, Doyle, Rich, Steele & Sussman 7 The ﬁHORD Reference Hanual

To use AMORD, simply incant at DDT (on MIT-AI):
: AMORD
or

AMORDtK,

which will load up the current version of AMORD and enter the LISP read-
evaluate-print loop. To enter the AMORD read-evaluate loop, evaluate the
form (RUN), which will begin interpretation. To escape to LISP, type 1tG,
or (STOP) or tA as described above. -

‘This con;ludes the AMORD reference ﬁanual.

de Kleer, Doyle, Rich, Steele & Sussman 8 Some AMORD Examples

Section 2: Some AMORD Examples

. The structure of AMORD encourages a certain style of rule-writing.
In order to compute anything, the control of the computational process must
be made explicit Exelicit Control ‘7he yse of explicit control requires careful
thought about making the correct justifications for belief in assertions.

This section presents a simple deductive system in AMORD to illustrate
these points.

The forward version of conjunction introduction can be implemented in
AMORD as the following rule:

(RULE (:F 3R)
(RULE (:G 3B) .
(RSSERT (AND :R :B) (&+ :F :6))))

This rule may be paraphrased as follows: the addition of a fact A with
facthame F into the data base results in the addition of a rule which takes
every fact 8 in the data base and asserts the conjunction of A and 8. Thus
if roo is asserted, so will be (AND FOO FOO), (AND FOO (AND FOO F0O)), (AND (AND FOO FOO)
Foo), etc. Note that the atom Axo is not a distinguished symbol.

Unfortunately, this rule is useless, as it generates piles of useless
assertions. To control these deductions, the above rule can be replaced by
the following rule which performs consequent reasoning about conjunctive
goals.

(RULE (:G (SHOH (AND :P :0)))
(RULE (:Cl :P}

(RULE (:C2 :Q)
* (ASSERT (AND :P :Q) (&+ :Cl :C2)))
P (RSSERT (SHOW :Q) ((BC &+) :6 :C1)))

(ASSERT (SHOW :P) ((BC &+) :6)))

In this rule the control statements (those of the form (sHow ...)} depend on
belief in the relevant controlled facts so that the existence of a subgoal

for the second conjunct of a conjunctive goal depends on the corresponding

solution to the first conjunct. At the same time, no controlled assertions
depend on control assertions, since the justification for a conjunction is
entirely in terms of the conjuncts, and does not involve the need for
deriving the conjunction. This means that the control over the derivation
of facts cannot affect the truth of the derived facts. The hierarchy of
nested, lexically scoped rules allows the specification of sequencing and
restriction information for deriving new assertions. For instance, an
alternative method of conjunctive subgoaling can be written as

de Kieer, Doyle, Rich, Stesle & Sussman 9 Soma AMORD Examples

(RULE (:G (SHOW (RND :P :Q)))
(RULE (:C1 :P)
(RULE (:C2 :Q)
(ASSERT (AND :P :Q) (&+ :Cl :C2))))
(RSSERT (SHOW :P) ((BC &+) :06))
(ASSERT (SHOW :@) ((BC &+) :6)))

This rule also only derives correct statements, but is not as tightly
controlled as the previous rule. In this case, both subgoals are asserted
immediately, although there is no reason to work on the second conjunct
unless the first conjunct has been solved. This form of the rule allows
more work to be done because possible mutual constraints between the
conjuncts due to shared variables are not exploited. That is, in the first
consequent rule, solutions to the first conjunct were used to specialize
the subgoals for the second conjunct, so that the constraints of the
solutions to the first are accounted for in the second subgoal. In the
second form of the rule much work might be done on solving each subgoal
independently, with the derivation of the conjunction performed by an
explicit matching of these derived results. This allows solutions to the
second subgoal to be derived which cannot match any solution to the first
subgoal.

Other Consequent rules for Modus Ponens, Negated Conjunction
Introduction, and Double Negation Introduction are similar in spirit to the
rule for Conjunction Introduction: : :

(RULE (:G (SHOW :Q))
(RULE (:1 (-> :P :0Q))
(RULE (:F :P)
_(ASSERT :Q (MP :1 :F)))
(ASSERT (SHOM :P) ((BC MP) :G :1))))

(RULE (:G (SHOW (NOT (AND :P :Q))))
(RULE (:T (NOT :P))
(RASSERT (NOT (AND :P :Q)) (-&+ :T)))
(RULE (:T (NOT :0))
(ASSERT (NOT (AND :P :Q)) (-&+ :TNHY
(RSSERT (SHOW (NOT :P)) ((BC -8+) 3G))
(RSSERT (SHOW (NOT :Q)) ((BC -8+) :6)))

(RULE (:G (SHOW (NOT (NOT :P))))
(RULE (:F :P))
(ASSERT (NOT (NOT :P)) (—-+ :F)))
(RSSERT (SHOW :P)- ((BC --+) :G)))

de Kleer, Doyle, Rich, Steaele & Sussman 10 Some RMORD Ethp?os

The following two rules implement a consequent oracle for testing the

equality of constants. Note the use of PDSVAL in allowing LISP access to
the value of AMORD variables.

(RULE (:Q (SHOW (= :A :B)))
(LET ((R (PDSVAL :R))
(8 (PDSVAL :8)))
(IF (CONSTANT R)
(IF (CONSTANT B)
(IF (EQUAL A B)
(ASSERT (= :A :B) (EQUALITY)))))))

(RULE (:Q (SHOW (NOT (= :A :B))))
" (LET ((R (PDSVAL :R))
(B (PDSVAL :B)))
(IF (CONSTANT R)
(IF (CONSTANT B)
(IF (EQUAL A B)
NIL
(RSSERT (NOT (= :A :B)) (EQUALITY)))))))

A final example is the use of assumptions to implement a default
series of alternative choices. The following expresses the knowledge that
traffic signals are either red, yellow or green.

(RULE (:T (TYPE :L TRAFFIC-SIGNAL))
(ASSUME (COLOR :L GREEN) (OPTIMISH :T))
(RULE (:NG (NOT (COLOR :L GREEN)))
(ASSUME (COLOR :L YELLOW) (HOPE-YET :T :NG))
(RULE (:NY (NOT (COLOR :L YELLOW))) :
(ASSERT (COLOR :L RED) (RRTS :T :NG :NY)))))

By using this rule, anything declared to be a traffic signal will be
- assumed to be green in color. If it is discovered (perhaps due to a
. contradiction) that the color is not green, the color will be assumed to be
yellow. If it is further discovered that the color is also not yellow, the
color is determined to be red. After creating a number of such traffic
signals, their colors can be determined by interrogating AMORD with

CINSPECT ' (COLOR :X :Y)) .

de Kleer, Doyle, kich, Steele & Sussman 11 The Use of the THS in RMORD

Section 3: The Use of the TMS.in AMORD

The Truth Maintenance System is an independent program for recording
information about program deductions. The THS uses a method for
representing knowledge about beliefs, called a non-monotonic dependency
system, to effect any updating of beliefs necessary upon the addition of
new information. :

The basic operation of the TMS is to attach a justification to a TMS-
node. A TMS-node can be linked with any component of program knowledge
which is to be connected with other components of program knowledge. In
AMORD, each fact and rule has an associated TMS-node. The TMS then .
decides, on the basis of the justifications attached to nodes, which
beliefs in the truth of nodes are supported by the recorded justifications.
A node is said to be in if there is an associated justification which
supports belief in the node. Otherwise, the node is said to be out. The
TMS informs AMORD whenever the belief status of a node changes, either from
in to out, or out to in.

There are several types of justifications supported by the TMS. The
basic form of a justification is one in which a node is justified if each
node in a set of other nodes is in. This type of justification represents
the typical form of a deduction, or in the special case in which the set of
other nodes is empty, a premise. A node may also be justified on the basis
of the conditional proof of one node relative to a set of other nodes. In
this, belief in the justified node is supported if the consequent node of
the conditional proof is in when each of the nodes in the set of hypotheses
is in. The remaining form of justification supports belief in a node if
each node in a given set of other nodes is out. This non-monotonic
justification allows the consistent representation and maintenance of
hypothetical assumptions. Using this latter form of justification, a fact
can be assumed to be true by justifying it on the basis of its negation
being out.

Each node which is in has a distinguished element of its set of
justifications. This distinguished justification is selected to support
belief in the node in terms of other nodes having well-founded support,
that is, non-circular proofs from ground hypotheses. A number of
dependency relations are determined from these justifications, such as the
set of nodes depending on a given node, or the nodes upon which a
particular node depends. :

~ Truth maintenance processing is required when new justifications
cause changes in previously existing beliefs. In such cases, the status of
all nodes depending on the nodes with changed beliefs must be redetermined.
The critical aspect of this processing is ensuring that all nodes judged to
be in are associated with well-founded support. Truth maintenance is
reminiscent of a generalized and incremental garbage collection. The first
step is to mark and collect all facts whose current belief state depends,

de Kieer, Doyle, Rich, Steele & Sussman . 12 - "~ The Use of ,thé THS in AMORD

via the previously recorded consequence dependencies, on the changed
beliefs. The second step is a combination sweep and depth first search
over these facts with the purpose of determining belief states based on
other facts with well-founded support. By distinguishing facts with well-
founded support from those without, all new beliefs determined in this pass
are guaranteed to be well-founded. The third step is necessary if the

second step does not determine belief states for all the involved facts. -

This step consists of a relaxation process of assuming some belief states
and proceeding, taking care that the assumed beliefs are consistent. This
step, at its conclusion, can guarantee that all beliefs have well-founded
support. The fourth step is a pass over all changed facts to check for
believed facts which are known to represent contradictions. Backtracking
is invoked on any such contradictions {(which may so invoke further truth
maintenance). The final step of truth maintenance is the notification of
the external systems of all changes in beliefs determined by the truth
maintenance system.

The TNS prbvides automatic dependency-directed backtracking whenever

nodes marked as contradictions are brought in. Dependency-directed

backtracking employs the recorded dependencies to locate precisely those
hypotheses relevant to the failure and uses the conditional proof mechanism
to summarize the cause of the contradiction in terms of these hypotheses.
Because the reasons for the failure are summarized in a form which 1is
independent of the hypotheses causing the failure, future occurrences of
similar failures are avoided. '

The TMS functions used in AMORD are as follows:

TMS-MAKE-DEPENDENCY-NODE -~ (TMS-MAKE-DEPENDENCY-NODE <EXTERNAL-NAHE>)

This function creates a new TMS-node with a given name. In AMORD,
the external names are just the atomic factnames used to represent facts
and rules. THMS-nodes are currently implemented using uninterned atomic
symbols.

- TMS-JUSTIFY =~ (TMS-JUSTIFY <NODE> <INSUPPORTERS> <OUTSUPPORTERS> <RRGUMENT>)

This function gives a TMS node a new justification, which is valid if
each of the nodes of the insupporters list is in, and each of the nodes of
the outsupporters list is out. The argument is an uninterpreted slot used
to record the external form of the justification, and is retrievable via
the TMS-ANTECEDENT-ARGUMENT function described below. ’

TMS-CP-JUSTIFY
== (TMS-CP-JUSTIFY <NODE> <CONSEQUENT> <INHYPOTHESES> <OUTHYPOTHESES> <ARGUMENT>)

This gives a TMS node a new justification which is valid if the
consequent node is believed when the inhypotheses are in and the out
hypotheses are out. As in TMS-JUSTIFY, the argument is an uninterpreted
record of the external form of the justification.

de Kleer, Doyle, Rich, Steele & Sussman 13 The Use of the THS in AMORD

TMS-PROCESS-CONTRADICTION
== (THS5-PROCESS-CONTRADICTION <NAME> <NODE> <TYPE> <CONTRADICTION-FUNCTION> 7
This declares a TMS node to represent a contradiction The name and
type are uninterpreted mnemonics provided by the ‘external system to be
printed out during backtracking. The contradiction-function, if supplied,
should be a LISP function to be called with the contradiction node as its
argument when the backtracker can find no backtrackable choicepoints

TMS-SUPPORT~-STATUS == (TMS-SUPPORT-STATUS <NODE>) , , -
This function returns the support-status, either 'IN or 'OUT, of a

node.

TMS-ANTECEDENT-SET -- (TMS-ANTECEDENT-SET <NODE>) «
This function returns the list of justifications of the node. In the
TMS, .each justification is called an antecedent of the node.

TMS-SUPPORTING-ANTECEDENT - (THS-SUPPORTING-ANTECEDENT <NODE>)
This function returns the current justification of the node.

TMS-ANTECEDENT - ARGUMENT -~ (TMS-ANTECEDENT-RRGUMENT <ANTECEDENT>)
" This function returns the external argument associated with the given
antecedent.

TMS~-ANTECEDENTS =-- (THS-ANTECEDENTS <NODE>)

This function returns the list of nodes determining well-founded
support for the given node. This list is extracted from the supporting-
antecedent if the node is in, and is empty if the node is out.

TMS-CONSEQUENCES =~ (THMS-CONSEQUENCES <NODE>)
This function returns the list of nodes whose list of antecedent
nodes mentlons the given node.

TMS-EXTERNAL-NAME == (TMS-EXTERNAL-NAME <NODE>)
This function returns the user-supplied name of a node.

TMS-IS-IN =~ (TMS-IS-IN <NODE>)
'This_ predicate is true iff the node is in.

TMS-IS-OUT‘-- (THS-1S-0UT <NODE>)
_This predicate is true iff the node is out.

TMS-RETRACT == (THS-RETRACT <NODE>)
This function will remove all premise-type justifications from the
set of justifications of the node.

TMS-PREMISES =-- (THMS-PREMISES <NODE>)
This function returns a list of the premises among the well founded
support of the node.

de Kleer, Doyle, Rich, Steele & Sussman 14 The Use of tha THS in AMORD

TMS-ASSUMPTIONS -- (THS-ASSUMPTIONS <NODE>)
This function returns a list of the assumptions among the well-
founded support of the node.

The TMS also generates new "facts" internally during backtracking.
These will therefore occur in explanations and antecedents of the nodes
requested and justified by the external systems. The internal facts
generated by the TMS are atoms with certain properties. The following
functions are provided to manipulate these internal facts.

- TMS-FACTP ~-- (Tns-r‘ncw <THING>)
This predicate is true iff the thing is an internal TMS fact.

TMS-FACT-NODE -- (TMS-FACT-NODE <FACT>)
: This function returns the TMS node associated with an internal fact.

TMS-FACT-STATEMENT -- (THS-FACT-STATEMENT <FACT>)

This function returns the symbolic statement of the meaning of an
internal fact. This statement refers to the external names of the other
facts, such as contradictions and assumptions, which were involved in the
making of the fact.

The following two functions are supplied for debugging purposes.

TMS=INIT == (THS-INIT)
This function clears the state of the TMS by resetting all internal
variables and clearing all properties and internings of TMS nodes.

TMS-INTERN =~ (THS-INTERN) v

" This function interns all TMS nodes currently in existence, and
causes the interning of all nodes generated in the future. Initially, the
~atomic symbols representing TMS nodes are not interned. o

Examples of the use' of the TMS facilities can be fguﬁnvd“ in the
following section, in which the functions implementing the various AMORD
proof-types are defined.

de Kieer, Doyle, Rich, Steele & Sussman 15 An Annctated ln!er;prolcr

Section 4: An Annotated Interpreter

Here we present an actual AMORD interpreter. The interpreter divides
into the following sections, which will be presented in this order.

AMORD form definitions
ASSERT and associated functions
RULE and associated functions
Proof-type definitions
The RUN interpreter (the main loop)
The TMS interface '
The Unification Matcher
The Discrimination-Net Data Base

Before presenting the interpreter itself, we describe some aspects of the
implementation.

The main loop of the interpreter is in the function RUN, which
examines the various queues (described below). RUN makes sure that all
rules are run on all facts whose patterns match the rule patterns. As an
efficiency measure, a rule is run on a fact only if both the rule and fact
are believed (in). After the possibilities for running rules on facts are
exhausted, RUN checks for programs (called "runlast” functions) which have
been specified for running at queue's end and runs each of these programs.
If these programs make new assertions or rules, the above loop is resumed.
Finally, ‘after finishing all of the above steps, RUN prints out a prompt
string and waits for new input from the user. ' '

Each rule and fact is represented by an atomic symbol. The
information used by AMORD is stored in a data structure ‘'kept as the value
of the atomic symbol. In these data structures are the TMS-nodes of the
rules and facts and the "stimulate-lists", which store matching facts and
rules (respectively) until they are queued up to be run.

In addition, rules and facts have other attached items. Facts have
their statement, and rules have their full trigger pattern (the list of the
factname variable and the trigger pattern proper). Rules are distinguished
from facts by their possession of an extra data structure containing the
uninstantiated rule body and the environment of AMORD variable bindings
derived from the lexically surrounding text.

The control of running rules on facts is mediated by an amorphous
mechanism called the queue. This mechanism has several components:
j {1} The trigger queue, *TQ*. This is a queue of rule-fact pairs
representing possible triggerings. This queue is maintained, in the global
variable *TQ%, as a CONS cell, the CAR of which points to the front of the
list of trigger pairs, and the CDR of which points to the last cell of this
list. This is done so that new pairs may be quickly added to the end of
the list of trigger pairs.

.de Kleer, Doyle, Rich, Steete & Sussman 16 fn Annotatad Interpreter

{2} The stimulate lists. Each rule and fact has a list, of facts and
rules respectively called its "stimulate-list". These facts and rules in
these lists are initially the items retrieved from the data base as
possibly matching the newly created rule or fact. The function STIMULATE,
called by the TMS when rules and facts come in, takes the stimulate-list of
the newly inned item, turns it into a list of pairs and adds these pairs to
the trigger queue. .

The queue mechanism operates as follows. When pairs come to the top
of the trigger queue, both the rule and the fact of the pair are checked to
see if they are in. If both are in, their unification is attempted. (The
matching done by the data base fetch routines only provides candidates for
the true unification match.) If they do not unify, the pair is discarded
from the queueing system: if they do, the rule body is evaluated in the
derived environment. Alternatively, if a pair is encountered on the
trigger queue with the rule (or fact) out, the fact (or rule) is placed on
the STIMULATE-LIST of the out rule (or fact). In this way {1} pairs are
not run until they become relevant, and {2} pairs are run at most once, for
subsequent innings of the rules or facts involved will keep adding the pair
to the trigger queue until the pair makes it to the top with both items in,
at which time the pair will run and leave the queue system.

In addition to the above trigger queue mechanism, two other
structures are part of the main RUN loop.

{1} The closure queue, *Q*. This is queue of arbitrary LISP forms to
be evaluated. The global variable *Q* contains this queue, in the form ‘of
a CONS whose CAR is the first cell of the list forming the queue, and whose
CDR is the last cell of this list. As in the trigger queue, this is done
so that new queue items can be added directly at the end of the queue,
rather than requiring a traversal through the entire queue for each new
addition. This queue is provided so that the user may post programs to be
executed. This is sometimes (although rarely) necessary, as the TMS makes
the restriction that the TMS cannot be invoked while a previous invocation
is still signalling changes in the statuses of facts.

{2} The runlast list, *RUNLAST*. This is a user maintained list,
initially empty, of LISP forms to be evaluated each time both *TQ* and *Q*
run out. At such time, each form in this list is evaluated. These forms
can either add new justifications to facts, add other programs to *Q* to be
run, or, by means of PDSCLOSE, evaluate further AMORD forms to cause
resumption of the main loop,of trigger queue interpretation.

The structure of justifications is as follows. Justifications must
be lists. If the first element of the list is either non-atomic, or lacks
a 'PROOF-TYPE property if atomic, the justification is interpreted as a
simple deductive justification in which the justified item will be in if
all the facts mentioned in the rest' of the justification are in. If the
first element of the justification is an atom with a 'PROOF-TYPE property,
the the value of that property must be a LISP function. This function is
called with the justification and justified item as arguments. This
function then has the responsibility for making the necessary THS

de Kleer, Doyte, Rich, Steele & Sussman 17 " fn Annotated Interpreter

 justifications, and may perform other operations if desired. Proof-type
functions which must evaluate AMORD forms should use the PDSCLOSE macro
described in Section 1. '

The interpreter uses several global variables as follows:

xQ* - The queue containing LISP forms to evaluate.

xTQ* - The trigger queue containing rule-fact pairs to close and run.

ENTRY - Contains the last *Q* form evaluated by RUN.
: *RUNLAST* - A list of LISP forms to be successively evaluated each time
the queue runs out. This list is initially NIL. - :

xSTOPFLAG* - If non-NIL, causes the RUN loop to halt after running the
current entry.

xSUBSTITUTION* - This variable is bound by TRY-RULE to the current AMORD
environment to be used in evaluating rule bodies.

xT-LIST* - This variable is bound by TRY-RULE to a list of the
triggering assertion and executing rule for use in justifying subrules.

xWALLP* - If non-NIL, causes new justifications of assertions to be
displayed. The default is T.

XRULE-WALLP* - If non-NIL and if *WALLP* is also non-NIL, causes new
justifications of rules to be displayed. The default is NIL. : ’

xDN - Contains the discrimination net.

‘%*GENSYM-COUNTER* - The counter used in generating rule and fact names,
numbers for standardizing expressions apart, and line numbers.

Here begins the code of the interpreter proper. Several macros are
used in this code, including the substituting-quote ", which returns the
next form, quoted but with the values of subforms preceded by , substituted
as elements of list structure, and with the values of subforms preceded by
@ spliced in as list segments. The macros DEFMAC, IF, and LET have the
obvious meanings, and are defined both during compilation and in the AMORD
runtime environment.

The first items are declarations for the MacLISP compiler.

(DECLARE (%EXPR TMS-CLOBBER-SIGNAL-RECALLING-FUNCTION THS-INIT

THS-MAKE-DEPENDENCY-NODE THS-NODE THS-NODES
TMS-JUSTIFY TMS-CP-JUSTIFY THS-PROCESS-CONTRADICTION
THS-RETRACT TMS-ASSUMPTIONS TMS-PREMISES TMS-ALL-CONSEQUENCES
THS-ALL-ANTECEDENTS TMS-RRE-OUT THS-ARE-IN TMS-1S-OUT THS-IS-IN
TMS-CONSEQUENCES TMS-EXTERNAL-NAME TMS-ANTECEDENTS THS-ANTECEDENT-SET
THS-SUPPORTING-ANTECEDENT THS-ANTECEDENT-ARGUMENT THS-SUPPORT-STATUS
TMS-FACT-NODE THS-FACT-STATEMENT THS-FACTP TIMESTANP)

(xFEXPR GCTHR)

(SPECIAL #WALLP% %RULE-HALLPx #STOPFLAG% »TQs Q= «ENTRY= sRUNLAST=

%GENSYM-COUNTER% «SUBSTITUTION% «T-LISTs))

de Kieer, Doyle, Rich, Steele & Sussman 18 An Annotated Interpreter

The following macros define the data structures representing rules
and assertions. None are defined following compilation. Functions are
provided instead.

(DECLARE (MACROS NIL)) ;TURN OFF MACRO RETENTION.
(DEFMAC GET-FRCT-STATEMENT (FACT) "(CARR (SYMEVAL ,FACT)))

(DEFUN FACT-STATEMENT (F)
(IF (THS-FRCTP F) (TMS-FACT-STRTEMENT F) (GET-FACT-STATEMENT F)))

(DEFMAC GET-RULE-PATTERN (RULE) "(CRAR (SYMEVAL ,RULE)))

(DEFHMRC RULEP (ITEH) "(CODR (SYMEVAL ,ITEM))) ‘ ;CHECKS FOR RULE PARTS
(ﬁEFHRC GET-THS-NODE (ITEM) "(CDAR (SYMEVAL ,ITEM)))

(DEFNMAC GET-STIMULATE-LIST (ITEM) "(CADR (SYMEVAL ,ITEM)))

(DEFHﬁC SET-STIMULATE-LIST (ITEM STIM-LIST)
" (RPLACA (COR (SYMEVAL ,ITEM)) ,STIN-LIST))

(DEFMAC GET-RULE-FUNCTION (RULE) "(CADDR (SYMEVAL ,RULE)))
(DEFMAC GET-RULE-SPECIALIZATION (RULE) "(CDDDR (SYMEVAL ,RULE)))

(DEFMAC MAKE-ASSERTION-STRUCTURE (EXP THS-N STIR-LIST)
" (CONS (CONS ,EXP ,TMS-N) (CONS ,STIM-LIST NIL)))

kDEFﬂRC MAKE-RULE-STRUCTURE (PAT THS-N STIM-LIST RULE-FUN SPEC)
" (CONS '(CONS ,PAT ,THS-N) (CONS. ,STIM-LIST (CONS ,RULE-FUN ,SPEC))))

(DECLARE (MACROS T)) s TURN ON MACRO RETENTION.

de Kieer, Doyle, Rich, Steele & Sussman 19 An Annotated Interpreter

AMORD FORM DEFINITIONS

All true AMORD forms like ASSERT and RULE must be evaluated in a LISP
environment in which the variables *SUBSTITUTION* and *T-LIST* are bound.
To achieve this, while making these variables invisible to the user, macros
are used which append the appropriate variable references to the calls to
the AMORD primitives.

Here is ASSERT, which takes an expression and a justification,
instantiates them with the current environment bindings, inserts the
expression into the data base, and then installs the justification as one
of the expression's justifications. The call to SUBSUME-CHECK serves to
add new justifications to the new fact or to other facts based on
subsumptions in their patterns.

(DEFMAC ASSERT (EXPRESSION JUSTIFICATION)
" (ASSERT-2 *,EXPRESSION *,JUSTIFICATION «SUBSTITUTIONs))

(DEFUN ASSERT-2 (EXPRESSION JUSTIFICATION ALIST)
(LET ((R .(ASSERTION (INSTANCE EXPRESSION ALIST))))
(INSTALL-JUST (INSTANCE JUSTIFICATION ALIST) A)
(SUBSUME-CHECK R))) ‘

The operation of ASSUME is somewhat more complicated than that of
ASSERT, as two facts are created in addition to the specified fact, as well
as one additional justification.

(DEFMAC ASSUME (EXPRESSION JUSTIFICATION)
" (ASSUME-2 *,EXPRESSION *,JUSTIFICATION %SUBSTITUTION%))

~ (DEFUN ASSUME-2 (EXPRESSION JUSTIFICATION ALIST)
(LET ((EXPRESSION (INSTANCE EXPRESSION ALIST)))
(LET ((R (RSSERTION EXPRESSION))
(AF (RSSERTION " (ASSUMED ,EXPRESSION)))
(N (RSSERTION
(IF (EQ (CAR EXPRESSION) ’NOT)
(CADR EXPRESSION)
" (NOT ,EXPRESSION)))))
(INSTALL-JUST (INSTANCE JUSTIFICATION ALIST) AF)
CINSTALL-JUST "(ASSUMPTION ,AF ,N) R)
(SUBSUME-CHECK R)
(SUBSUME-CHECK AF)
- (SUBSUME-CHECK N))))

de Kieer, Doyle, Rich, Steele & Sussman 20 fn Annotated Interpreter

ASSERTION is the function for creating new assertions. The data base
is checked to see if it contains a fact with a variant of the supplied
pattern. If so, that fact is returned, and otherwise a new fact is
generated and inserted into the data base in the appropriate bucket.

(DEFUN ASSERTION (EXPRESSION)
(LET ((B (BUCKET EXPRESSION NIL ’ﬂSSERTlON)))
(00 ((L (STUFF B) (COR L))
©»
CINULL L)
(LET ((NRME (GENS °F))) .
(SET NAME ,
(MRKE-RSSERT ION-STRUCTURE
EXPRESSION
(TNS-HAKE-DEPENDENCY-NODE NAMNE)
(FETCH EXPRESSION NIL *RULE)))
(INSERT-IN-BUCKET NAME B)
NAME))
(SETQ C (COMPARE EXPRESSION (GET-FACT-STATEMENT (CAR L))))
(AND C (EQ (CAR C) ’VARIANT) (RETURN (CAR L))))))

SUBSUME-CHECK performs the function of checking the data base for
facts whose patterns either subsume or are subsumed by the pattern of the
supplied fact. If any subsumptions are detected, new justifications are
added to support belief in the subsumed fact if the subsuming fact is
believed.

(DEFUN SUBSUME-CHECK (NAME)
(LET ((EXP (GET-FRCT-STATEMENT NAME)))
(DO ((CANDIDATES (FETCH EXP NIL ’RASSERTION) (COR CANDIOATES))
)
((NULL CANDIDRTES))
(COND ((EQ (CAR CANDIDATES) NAME))
((NULL (SETQ C (COMPARE EXP (GET-FACT-STATEMENT (CAR CANDIDATES))))))
{(EQ (CAR C) ’SUBSUMES) ‘ v
(INSTALL-JUST (LIST * INSTANCE NRME) (CRR CANDIDRTES)))
((EQ (CAR C) ’SUBSUMED)
(INSTALL-JUST (LIST ?INSTANCE (CAR CHNDIDRTES)) NAME))
(T (BREAK |SUBSUME-CHECK|))))))

de Kleer, Doyle, Rich, Steele & Sussman 21 fin Rnnotated Interpreter

The next function is not used in the interpreter, but provides a
useful service in writing AMORD rules and proof types. PRESENT takes as
its argument a full rule pattern of the form (<factname> <pattern>). It returns

a list of substitutions corresponding to all matching (subsumed by the
pattern) assertions existing in the data base.

(DEFUN PRESENT (PATTERN)
(DO ((CANDIDATES (FETCH (CRDR PATTERN) NIL 'ASSERTION) (COR CANDIDRTES))
(ANS NIL)
).
((NULL CANDIDATES) ANS)
(AND (SETQ C (COMPRRE (CRDR PATTERN) (GET-FACT-STATEMENT (CAR CRNDIDRTES))))
(MEMQ (CAR C) ’ (SUBSUMES VARIANT))
(SETQ ANS (CONS (CONS (CONS (CRR PRTTERN) (CAR CANDIDRTES)) (CADR C))
: ANS))))

INSPECT applies PRESENT to a useful task. It prints all assertions
matching the supplied pattern, in order of ascending factname.

(DEFUN INSPECT (PATTERN)
(SETQ PATTERN "((/: #FACTNAMEx . 8) ,PATTERN))
(MAPC * (LAMBDA (SUB)
(LET ((I (INSTANCE PRTTERN SUB)))
(COND ((IS-IN (CAR 1))
(PRINT D)
(PRIN! (RRGUMENT (CAR 1))))
(T (PRINT I
(PRINC * | (OUTI D)D)
(SORT (PRESENT PATTERN) *INSPECT-SORT))
* DONE) '

"~ (DEFUN INSPECT-SORT (X Y)
(FACT-NAME-ALPHAGREATERP (CDAR X) (CDAR Y)))

RULE-PRESENT is like PRESENT but for rules.

(DEFUN RULE-PRESENT (PATTERN)
(DO ((CANDIDATES (FETCH PATTERN NIL ’RULE) (COR CANDIDATES))
(ANS NIL) :

()

((NULL CANDIDATES) ANS)

(AND (SETQ C (COMPARE PATTERN (CADR (GET-RULE-PATTERN (CAR CRNDIDRTES)))))
(MEMG (CAR €) * (SUBSUMES VARIANT))
(SETQ ANS (CONS (CONS (CAR CANDIDATES) (CADR C))

. ANSII) ’

de Kieer, Doyle, Rich, Steeie & Sussman 22 ' An Annotated Interprater

INSPECT-RULES is like INSPECT but for rules. This pretty-prints the
complete rule definitions, so prepare for a lof of output.

(DEFUN INSPECT-RULES (PATTERN)
(LET ((L (SORT (RULE-PRESENT PATTERN) ®INSPECT-RULES-SORT)))
(MAPC * (LAMBDA (SUB))
(LET ((I (LIST (CAR SUB) :
(INSTANCE (LIST ’RULE :
(GET-RULE-PATTERN (CAR SUB))
(GET-RULE-FUNCTION (CAR SUB)))
(COR SUB)))))
(COND ((IS-IN (CAR D))
(SPRINTER I) :
(PRINT (ARGUMENT (CAR I)))
(TERPRD)
(TERPRI))
(T (SPRINTER I)
(PRINT ? (OUT))
(TERPRI)
(TERPRIN)))
L)) o
' DONE)

(DEFUN INSPECT-RULES-SORT (X Y)
(FACT-NAME-ALPHAGREATERP (CAR X) (CAR Y)))

Rules have justifications just like facts, but unlike facts, rules
are used in no justifications (other than in justifying their subrules).
Rules are really operational entities, which should be allowed to function
only if the facts leading to their creation (via other rules forming its
lexical environment) are believed. This is the purpose of the =*T-LIST®
mechanism seen below in the functions for defining new rules.

(DEFMAC RULE (PATTERN . BODY)
"(RULE-2 ’,PATTERN ’,BODY *SUBSTITUTION:x #T-LIST%))

(DEFUN RULE-2 (PATTERN RULE-FUNCTION ALIST T-LIST)
(LET ((B (BUCKET (CRDR PATTERN) ALIST ’RULE))
(RNRME (GENS' ’R)))
(SET RNAME
(MAKE-RULE-STRUCTURE
‘PATTERN
(THS-MAKE-DEPENDENCY-NODE RNAME)
(FETCH (CADR PATTERN) ALIST *ASSERTION)
RULE-FUNCTION
ALIST))
(INSERT-IN-BUCKET RNANWE B)
(INSTALL-JUST "(RULE . ,T-LIST) RNRHE)))

de Kieer, Doyle, Rich, Steele & Sussman 23 An Annotated Interpreter

TRY-RULE takes a possible triggering pair, consisting of a rule and a
fact. The pattern of the fact is compared with the pattern of the rule.
If these two patterns unify, then the body of the rule is evaluated in the

environment produced by adding the bindings derived from the unification to
the environment in which the rule is run.

(DEFUN TRY-RULE (RNAME ANRME)
(LET ((S (UNIFY (CADR (GET-RULE-PATTERN RNAME))
(GET-FRACT-STATEMENT ANRNE)

(GET-RULE-SPECIALIZATION RNANE))))
(IF S

(LET ((xSUBSTITUTIONx

“((, (CAR (GET-RULE-PATTERN RNAME)) . ,ANRME) . , (CAR S)))
(+T-L1ST%

" (,ANAME ,RNAME)))
(MAPC *EVAL (GET-RULE-FUNCTION RNAME))))))

de Kleer, Doyle, Rich, Steele & Sussman 24 . An Rnnotated Interpreter

PROOF-TYPES AND JUSTIFICATIONS

INSTALL-JUST takes a justification and a fact (or rule). If the
justification has an associated proof-type, the proof-type function is
called with the justification and fact as arguments. Otherwise, SUPPORT is
called to add the justification to the set of justifications of the fact.
If the new justification causes the fact to be newly believed, the fact and
its justification may be displayed.

(DEFUN INSTALL-JUST (JUSTIFICATION FACT)
" (LET ((OLDSTATUS (SUPPORT-STATUS FACT)))
(IF (SYMBOLP (CAR JUSTIFICATION))
(LET ((G (GET (CAR JUSTIFICATION) *PROOF-TYPE)))
(IF G (FUNCALL G JUSTIFICATION FACT) (SUPPORT JUSTIFICATION FACT)))
(SUPPORT JUSTIFICATION FACT))
(AND #HALLPx
(COND ((RULEP FACT)
(COND ((AND #RULE-WALLP#
(EQ OLDSTATUS ’OUT)
(EQ (SUPPORT-STATUS FACT) *IN))
(PRINT ’DEFINING)
(PRINI FACT)
(PRINC *|]
(SPRINTER (INSTANCE (LIST ’RULE
(GET-RULE-PRTTERN FACT)
(GET-RULE-FUNCTION FACT))
(GET-RULE-SPECIALIZATION FACT)))
(PRINC *|)
(PRIN1 JUSTIFICATION)
(TERPRI)
(TERPRI))))
((AND (EQ OLDSTATUS ’0UT)
(EQ (SUPPORT-STATUS FACT) *IN))
(PRINT *ASSERTING)
© (PRINL FACT)
(PRINC | |)
(PRIN1 (GET-FACT-STATEMENT FACT))
(PRINC *|)
(PRINL JUSTIFICATION))))))

(SETQ =WALLPx T)
(SETQ *RULE-HALLPz NIL)

de Kleer, Doyle, Rich, Stesle & Sussman 25 fin Annotated Interpreter

SUPPORT performs the standard task of justification, which interprets
all elements of the supplied justification (except the first, which is

"mnemonic) to be factnames which collectively justify belief in the supplied

fact.

(DEFUN SUPPORT (JUSTIFICATION FACT)
(THS-JUSTIFY (THS-NODE FACT)
(TMS-NODES (COR JUSTIFICATION))
NIL ‘
JUSTIFICATION))

PREMISE justifies the fact with a eternally valid justification.

(DEFUN PREMISE (JUSTIFICATION FACT)
(THS-JUSTIFY (THS-NODE FACT) NIL NIL JUSTIFICATION)))

(PUTPROP *'PREMISE ’PREMISE ’PROGF-TYPE)

(PUTPROP *GIVEN ’PREMISE ’PROOF-TYPE)

CONDITIONAL-PROOF interprets the second element of the justification
as the consequent of the conditional proof, the third element as the list
of in hypotheses of the conditional proof, and the fourth element as the
list of out hypotheses of the conditional proof.

(DEFUN CONDITIONAL-PROOF (JUSTIFICATION FACT)
(TMS-CP-JUSTIFY (TMS-NODE FACT)
(TMS-NODE (CROR JUSTIFICATION))
(TMS-NODES (CRDDR JUSTIFICATION))
(THS-NODES (CADDDR JUSTIFICATION))
JUSTIFICATION))

(PUTPROP *CP *CONDITIONAL-PROOF *PROOF-TYPE)
(PUTPROP ’CONDITIONAL-PROOF ’CONDITIONAL-PROOF *PROOF-TYPE)

ASSUMPTION interprets the second element of the justification as a
factname designating the reason for making the assumption, and the third
element as a factname designating a negation of the belief to be assumed.
Thus the supplied fact will be believed whenever the reason fact is in, and
the negation fact is out.

(DEFUN ASSUMPTION (JUSTIFICATION FACT)
(THS-JUSTIFY (THS-NODE FACT)
(LIST (TMS-NODE (CRDR JUST!FICRTION)))
(LIST (THS-NODE (CADDR JUSTIFICATION))) .
JUSTIFICATION))

(PUTPROP *ASSUMPTION *ASSUMPTION ’'PROOF-TYPE)

de Kleer, Doyle, Rich, Stesle & Sussman 26 An Annotated Interpreter

CONTRADICTION first supports belief in the supplied fact and then
declares to the TMS that the fact is a contradiction.

(DEFUN CONTRADICTION (JUSTIFICATION FACT)
(SUPPORT JUSTIFICATION FACT)
(THS-PROCESS-CONTRADICTION FACT (TMS-NODE FACT) (GET-FACT-STATEMENT FACT) NIL))

(PUTPROP ’*CONTRADICTION ’CONTRADICTION ’PROOF-TYPE)

de Kieer, Doyle, Rich, Steele & Sussman 27 An Rnnolatoa Interpreter

~
THE RUN INTERPRETER
‘ The following three macros hide references td the variables
SUBSTITUTION and *T-LIST*, allowing LISP and AMORD code to be mixed.
(DEFMAC PDSVAL (ID) "(INSTANCE ’,I1D &SUBSTITUTION#))
(DEFMAC PDSLET (VARS . BODY)
" "(LET ((sSUBSTITUTION=
, (D0 ((A *%SUBSTITUTION:
"(CONS (CONS ’, (CAAR VL) , (CADAR VL)) ,A))
(VL VARS' (COR VL)))
((NULL VL) AN
€BODY))
(DEFMAC PDSCLOSE BODY "(LET ((sSUBSTITUTIONs NIL) (sT-LISTs NIL)) eBODY))
RUN has four loops in one. First the trigger queue is triéd, then
the main queue, then the runlast functions, and finally the reader is
invoked. - The loop is halted on any iteration if *STOPFLAG* is non-NIL.

s (DEFUN RUN O
: ' (PROG (R F)
(SETQ #STOPFLAG* NIL)
LOOP (COND («STOPFLAG% (RETURN ’STOPPED))
' ((CAR #TQ%)
(SETA R (CRAAR £TQ%))
(SETQ F (CDAAR TQ#))
(RPLACA =TQx (CDAR #TQ%))
(IF (IS-IN F)
(IF (IS-IN R)
(TRY-RULE R F)
(SET-STIMULATE-LIST R (CONS F (GET-STINULRTE-LIST R))))
(SET-STIMULATE-LIST F (CONS R (GET-STIMULATE-LIST F))))
(GO LOOP)) :
((CAR Q%)
(SETQ sENTRY: (CAAR #Q%))
(RPLACA #0% (CDAR .#Qs))
(EVAL #ENTRY%)
(GO LOGP)))
(D0 ((RL #*RUNLAST% (COR RL)))
((NULL RL))
(EVAL (CAR RL)))
(AND (OR (CAR &TQ%) (CAR Q%)) (GO LOOP))
(SETQ *GENSYM-COUNTER# (+ #GENSYN-COUNTERs 1))
(PRINT GENSYM-COUNTER#)
(PRINC *|>> |)
2 . (ENQUEUE (LIST "(PDSCLOSE , (READ))))
(GO LOOP)))

de Kleer, Doyle, Rich, Stesle & Sussman 28 o fin Annotatad Interpreter

The following implement the RUN ioop controllers. : .
(DEFUN AMORD-RUN-INTERRUPT (X Y) (SETQ #STOPFLAG T) RUN-INTERRUPTED)
(SSTATUS TTYINT */1A *ANORD-RUN-INTERRUPT)
(DEFUN STOP O (SETQ #STOPFLAGs T))

ENQUEUE augments *Q* with a list of new forms.

(DEFUN ENQUEUE (ACTIONS)
(IF ACTIONS
(LET ((L (LAST ACTIONS)))
(COND ((CAR Q%)

(RPLACD (CDR #0#) ACTIONS)

(RPLACD Q% L))

(T (RPLACA %0 ACTIONS)
(RPLACD Q% L))))))

STIMULATE is the function called by the TMS on any fact or rule which
changes status from out to in. When such a status change takes place, all
items on the stimulate list are used to add new pairs to the trigger queue.
DESTIMULATE is the complementary function called when assert1ons or rules
go from in to out. It is ignored by AMORD.

(DEFUN STIMULATE (NRME)
(LET ((ACTIONS (IF (RULEP NRME)
(MAPCAR ’ (LAMBDA (F) (CONS NAME F)) (GET-STINULRTE—LIST NAHE))
(MAPCAR * (LANBDA (R) (CONS R NAME)) (GET-STIMULATE-LIST NANE)))))
(SET-STIMULATE-LIST NRME NIL)
(IF ACTIONS
(LET ((L (LAST ACTIONS)))
(COND ((CAR »TQx)
(RPLACD (CDR %TQ%) RCTIONS)
(RPLRCD %T0x L))
(T (RPLACA *TQx ACTIONS)
(RPLRCD %Ta= L))

(DEFUN DESTINMULATE (NAME) NIL) .

de Kieer, Doyle, Rich, Steele & Sussman 29 An Annotated Interpreter

INIT performs several functions. It initializes the discrimination net,
the TMS, and the global variables of the AMORD system. It also attempts -
(by a somewhat less than elegant method) to rid the system of all
assertions and rules previously created.

(DEFUN INIT O
(DBINIT)
(THS-INIT)
(SETQ #Qs (CONS NIL NIL)) ;CAR IS FIRST CELL OF QUEVE, COR IS LAST CELL
(SETQ #TQx (CONS NIL NIL))
(SETQ *RUNLAST% NIL)
(SETQ *ENTRY# NIL)
(SETQ *STOPFLAG# NIL)
(COND ((AND (BOUNDP #GENSYM-COUNTER+)
(NUMBERP #GENSYH-COUNTER#)))
(T (SETQ %GENSYN-COUNTER# 8)))
((LAMBDA (BASE #NOPOINT)
(DECLARE (SPECIAL BASE sNOPOINT))
(00 ((I'1 U+ 1)
)
((> 1 *GENSYN-COUNTER=))
(SETQ A (READLIST (CONS 'F (CONS '~ (EXPLODE I)))))
(HAKUNBOUND R)
(SETPLIST A NIL)
(REHOB A) ‘
(SETQ A (READLIST (CONS 'R (CONS ’- (EXPLODE 1)))))
(MAKUNBOUND R)
(SETPLIST A NIL) .
(REMOB R)))
8. M
(GCTWR) :
(SETQ *GENSYN-COUNTER% ©)
7 INITIALIZED)

de Kieer, Doyle, Rich, Steele & Sussman - 30 An Annotated Interpreter

_ Variables are represented by semi-lists of three elements, in the
form ¢/: <var> . <number>) The first element is the atom ":", the second is
the variable name, and the third is a number used to standardize the

variable name apart. The following functions should be used to test for
them.

(DEFUN VRRIRBLE (X) (EQ (CAR X) */:))

- CONSTANT tests whether an S-expression contains any variables.

(DEFUN CONSTANT (X)
(COND ((ATOM X) (NOT (EQ X ’/:)))
((CONSTANT (CAR X)) (CONSTANT (COR X))))))
\ v
GENS generates a new atomic symbol with a supplied prefix and a
suffix of the form "-nnn".

(DEFUN GENS (E) e
" (READLIST (NCONC (EXPLODE E)
: (LIST *-)
((LAMBOA (BASE =NOPOINT) sRAVOID SCREWS DUE TO BASE CHANGES
(DECLARE (SPECIAL BASE %NOPOINT))
(EXPLODE (SETQ #GENSYM-COUNTER=%

(+ =GENSYN-COUNTER% 1))))
8. TN

The variable designator ":" is a read macro which generates the
standard variable-structure described above. Because items read in see a
constant value for *GENSYM-COUNTER%, variable references in an expression

(such as two occurrences of ":x") appear as similar structures (such as
"y ox . 120%). ‘ :

(DEFUN COLON-READ () (CONS */: (CONS (READ) »GENSYM-COUNTER®)))

(SETSYNTRX */: *HACRO ’COLON-READ)

de Kleer, Doyle, kich, Steele & Sussman ' 31 _ An Annotated Interpreter

THE TMS INTERFACE

~ WHY presents the immediate justification for the current belief in a
‘fact. Note that if the fact is not believed, the list of failing
justifications is printed. PROOFS prints all of the justifications
possesed by an assertion. EXPLAIN collects up all facts among the support
of the supplied fact, sorts them by the suffix of their factname, and
prints them one per line along with their current justifications.

(DEFUN HHY (NAME)

(PRINT NAME)

(PRIN1 (FACT-STRTEMENT NAME))

(PRINC *| |
(IF (IS-IN NAME)
: (PRIN1 (RARGUMENT NAME))

(PRINL (CONS *0UT
(MAPCAR *ARGUMENT (ANTECEDENT-SET NANE)))))

© *QED)

(DEFUN PROOFS (FACT)
" (TERPRI) (PRINC *|PROOFS OF |) (PRINL FACT) (PRINC ’| = |) (PRINL (FACT-STATEMENT FACT))
(PRINC *| (|) (PRIN1 (SUPPORT-STATUS FACT)) (PRINC ’[) {)
(MAPC * (LAMBDA (A) (PRINT (THS-ANTECEDENT-ARGUMENT R)))
(TMS-ANTECEDENT-SET (TMS-NODE FACT)))
'QED)

(DEFUN EXPLRIN (FACT)
(TERPRI) (PRINC ’|PROOF OF {) (PRINL FACT) (PRINC ’| = |) (PRINL (FACT-STATEHENT FACT))
(PRINC *| (}) (PRIN1 (SUPPORT-STATUS FACT)) (PRINC '{) |) (PRIN1 (RRGUMENT FACT))
(PFL. (FOUNDATIONS FACT))
'QED)

The following functions do the dirty work for functions like EXPLAIN.

. (DEFUN PFL (FL)
(MAPC ’ (LAMBDA (F)

(PRINT F)
(PRINC *| = |}
(PRINL (FACT-STATEMENT F))
(PRINC *| (]) (PRIN1 (SUPPORT-STATUS F)) (PRINC *|) |)

~ (PRIN1 (RRGUMENT F)))

(SORT (APPEND FL NIL) 'FACT-NAME-ALPHAGREATERP)))

(DEFUN FRCT-NAME-ALPHAGREATERP (F G)
(GREATERP (GENS-NUMBER-EXTRACT F) (GENS-NUMBER-EXTRACT G)))

(DEFUN GENS-NUMBER-EXTRACT (X) ,
(DO ((E (COR (MEMQ ’- (EXPLODE X))) (COR (MEMQ ’- E))))
((NOT (MEMQ ’- E)) (RERDLISY E))))

de Kleer, Doyle, Rich, Steele & Sussman 32 . fn Annotated Interpreter

TMS-NODE returns the TMS node associated with a rule or fact. The
error check is useful, in that a frequent mistake is to specify a
justification with a constant in the support by forgetting to prefix a
variable name with a colon.
(DEFUN THS-NODE (F)
(IF (SYMBOLP F)
(LET ((N (COND ((BOUNDP F) (GET-TMS-NODE F))
((THS-FACTP F) (THS-FACT-NODE F))))) _
(OR N (ERROR ’ |BAD RRGUMENT TO THS-NODE| F *MRNG-TYPE-RRG)))
(ERROR * |BAD ARGUMENT TO THS-NODE| F *URNG-TYPE-ARG)))
(DEFUN TMS-NODES- (L) (MAPCAR *THS-NODE L))
The following serve to interface the TMS to AMORD.
(DEFUN SUPPORT-STATUS (FACT) (THS-SUPPORT-STATUS (THS-NODE FACT)))
(DEFUN ARGUMENT (FACT) (TMS-ANTECEDENT-ARGUHENT (THS-SUPPORTING-ANTECEDENT (THS-NODE FACT))))
(DEFUN ANTECEDENT-SET (FACT) (TMS-ANTECEDENT-SET (THS-NODE FACT)))
(DEFUN SUPPORTING~RNTECEDENT (FACT) (THS-SUPPORTING-ANTECEDENT (THS-NODE FACT)))

" (DEFUN ANTECEDENTS (FACT)
(MAPCAR * THS-EXTERNAL-NRHE (TMS-ANTECEDENTS (TMS-NODE FACT))))

(DEFUN. CONSEQUENCES (FRCT)
(MAPCAR * TMS-EXTERNAL-NAME (THMS-CONSEQUENCES (TMS-NODE FACT))))

(DEFUN IS;IN (FACT) (TMS-IS-IN (TMS-NODE FACT)))
(DE?UN 1S-0UT (FACT) (THS-IS-OUT (THMS-NODE FACT)))
(DEFUN RRE-IN (FACTS) (THS-ARE-IN (IHS-NdDES FACTS)))
(DEFJN éRE-OUT (FRCTS) (TMS-ARE-OUT (TMS-NODES FACTS)))

(DEFUN FOUNDATIONS (FACT)
© (MAPCAR * THS-EXTERNAL-NAME (THS-ALL-ANTECEDENTS (TMS-NODE FRCT))))

(DEFUN REPERCUSSIONS (FRCT)_
: (HAPCAR *THS-EXTERNAL-NAME (THS-ALL-CONSEQUENCES (THS-NODE FARCT))))

(DEFUN PREMISES (NRME) (MAPCAR "THMS-EXTERNAL-NAME (THS-PREWISES (THS-NODE NAHE))))
(DEFUN RSSUMPTIONS (NAME) (MAPCAR *THS-EXTERNAL-NAME (THS-RSSUMPTIONS (TMS-NODE NAME))))

(DEFUN RETRACT (NRME) (THS-RETRACT (THS-NODE NAHE)))

de Kleer, Doyle, Rich, Steele & Sussman 33 v fin Annotated Interpreter

THE UNIFICATION MATCHER

UNIFY takes two expressions and a substitution as input. It returns
either a list whose first element is a substitution which yields the most
general common unifier of the expressions, relative to the given
substitution, if they can be unified, or NIL if they cannot be unified.
UNIFY has subroutines for the matching loop, for binding matched variables
to values, and for checking for free variable occurrences to avoid
erroneous variable capture.

(DEFUN UNIFY (A B S)
((LAMBDA (S) (AND S (LIST $)))
(UNIFY-HATCH A B (OR S * (NIL))))

(DEFUN UNIFY-MATCH (R B S)
(COND ((EQ A B) S)
((ATOM A)
(AND (NOT (ATOM B)) (VARIABLE B) (UNIFY-VARSET B R S)))
(C(VARIABLE A)
(UNIFY-VARSET R B S))
((ATOM B) NIL)
((VARIABLE B) (UNIFY-VARSET B A $))
(T
((LANBDA (S)
(AND S (UNIFY-MATCH (COR R) (CDR B) §)))
(UNIFY-MRTCH (CAR A) (CAR B) 5)))))

(DEFUN UNIFY-VARSET (VAR NEWVAL §)
(COND ((EQUAL VAR NEWVAL) S)
(T ((LAMBDA (VCELL)
(COND (VCELL (UNIFY-MATCH (COR VCELL) NEHVAL S))
((UNIFY-FREEFOR VAR NEWVAL S)
(CONS (CONS VAR NEHVAL) $))))
(RSSOC VAR S)N))

(DECLARE (SPECIAL #COR-VAR% %Ex))

(DEFUN UNIFY-FREEFOR (VAR EXP %E%)
(LET ((«COR-VAR% (COR VAR)))
(UNIFY-FREEFOR-LOOP EXP)))

(DEFUN UNIFY-FREEFOR-LOOP (E)
(COND ((ATOM ED)
((VARIABLE E)
(AND (NOT (EQ (COR E) %CDR-VAR%))
(UNIFY-FREEFOR-LOOP (COR (RSSOC E 2E%)))))
(T (AND (UNIFY-FREEFOR-LOOP (CAR E))
(UNIFY-FREEFOR-LOOP (COR E))))))

(DECLARE (UNSPECIAL %CDR-VARx %Ex))

de Kleer, Dogle; Rich, Steele & Sussman 34 An Annotated Interpreteor

INSTANCE tékes a pattern and a substitution and returns an expression

formed by substituting the substitutions into the pattern and standardizing
all variables apart,Bover-Moore

(DECLARE (SPECIAL #SUB% sNEHSUB%))

(DEFUN INSTANCE (EXP %SUB%) o
(LET ((+NEWSUB% NIL)) (INSTANCE-LOOP EXP)))

(DEFUN INSTANCE-LOOP (E)
(COND ((RTOM E) E)
((VARIABLE E)
 (LET ((VCELL (RSSOC E #NEHSUB%)))
(COND (VCELL (COR VCELL))
{T (SETQ VCELL (RSSOC E «S5UB%))
(COND (VCELL {CDRR (SEVQ =NEWSUBx%

(CONS
(CONS E (INSTANCE-LOOP (COR VCELL)))
*NEHSUB%))))
(T (CDAR :

(SETQ

*NENSUB %

(CONS

" (CONS E (INSTANCE-VGENS (COR E)))
*NEWSUB#)))))))))

(T (CONS (INSTANCE-LOOP (CAR E))
(INSTANCE-LOGP (COR E})))))

(DECLARE (UNSPECIAL #*SUB# %NEWSUB%))
(DEFUN INSTRNCE—VﬁENS (VNAME)

(CONS */: (CONS (CAR VNRME}
(SETQ +GENSYM-COUNTER% (+ 2GENSYN-COUNTERx 1)))))

de Kleer, Doyle, Rich, Steele & Sussman 35 fin Annotated Interpreter

.

COMPARE takes two expressions, A and B, as input. If B is a variant
of A it returns (VARIANT «<substitutions). If A subsumes B it returns (SuBsUMES
<substitutions) . If B subsumes A it returns (SUBSUMED <substitution>) . Otherwise it
returns NIL. At any point in the comparison, the state of the comparator
may be that either a variant is still possible, or that only either a
subsumes or subsumption is possible. These three cases produce the three
subroutines of COMPARE.

(DECLARE (SPECIAL #TYPE%))

(DEFUN COMPARE (R B)
(LET ((«TYPE%x ’VARIANT))
(LET ((S (COMPARE-VARIANT-MATCH A 8 * (NIL))))
(AND S (LIST =TYPE= S)))))

(DEFUN COMPARE-VARIANT-MATCH (R B §)
(COND ((EQ R B) §) ‘
((RTOM R) (SETQ #TYPEx ’SUBSUNED) (COMPARE-SUBSUMED-MATCH A B S))
((VARIABLE R)
(COND ((RND (NOT (RTOM B)) (VARIABLE B))
(LET ((VCELL (RSSOC A $)))
(COND (VCELL
(COND ((EQUAL (CDR VCELL) B) S)
(T (SETQ #TYPEs ’SUBSUNED)
(COMPRRE-SUBSUMED-HATCH A B §))))
((RASSOC B S) _
(COMPARE-SUBSUHES-MATCH R B §))
(T (CONS (CONS A B) $))))) :
(T (SETQ %TYPEx ’SUBSUMES) (COMPARE-SUBSUMES-MATCH R B $))))
((ATOM B) NIL)
((VARIABLE B)
(SETQ %*TYPEx ’SUBSUMED)
(COMPARE-SUBSUMED-MATCH A B S))
((SETQ S (COMPARE-VARIANT-MATCH (CAR R) (CAR B) S))
(COMPARE-VARIANT-HATCH (COR A) (COR B) $))))

(DECLARE (UNSPECIAL %TYPEx))

(DEFUN COMPRRE-SUBSUMES-MATCH (A B S)
(COND ((EQ A B) S)
((ATOM A) NIL)
((VARIABLE R)
(LET ((VCELL (RSSOC A S))) A
(COND (VCELL (AND (EQUAL (COR VCELL) B) S))
(T (CONS (CONS A 8) $)))))
((ATOM B) NIL)
((SETQ S (COMPARE-SUBSUMES-MATCH (CAR R) (CAR B) S))
(COMPARE-SUBSUMES-MATCH (COR A) (COR B) $))))

de Kieer, Doyle, Rich; Steele & Sussman 36 An Rnnotated Interpreter

(DEFUN COMPARE-SUBSUMED-MATCH (A B S) -
' (COND ((EQ A B) S)
((ATOM B) NIL)
((VARIABLE B)
(LET ((VCELL (RASSOC B $)))
(COND (VCELL (AND (EQUAL (CAR VCELL) R) S))
(T (CONS (CONS A B) $)))))
((ATOM A) NIL)
((SETQ S (COMPARE-SUBSUMED-MATCH (CAR A) (CAR B) §))
(COMPARE-SUBSUMES-HATCH (COR A) (COR B) $))))

RASSOC is something of an inverse ASSOC, which searches an
association list for an association whose CDR matches the supplied key.

(DEFUN RASSOC (KEY ALIST)
(D0 (L ALIST (COR L))) ((NULL L) NIL)
(COND ((EQUAL KEY (CDAR L)) (RETURN (CAR L))))))

de Kieer, Doyle, Rich, Steele & Sussman 37 An Annotated Interpreter

THE DISCRIMINATION NETWORK

The following functions implement a discrimination net data base.
Ignoring the use of the hash table for the moment, let us first understand
how a discrimination network is built. Consider the problem of classifying
the S-expression @ ® . © D . Although internally, this expression is a
tree, its structure can be expressed as a string of tokenas (as for PRINTing
_ it). In this case, the stream of tokens used to discriminate is: :

+DOUNx R *DOUN% B +UP% C D =UPs NIL
A related expression, R B0 D), translates into:
+DOMN2 A «DOWN% B C sUPx NIL D sUPx NIL

GiVen these two'exbressioné; we would construct a discrimination net with
the following structure: ‘

¢ D wvPk ML

e
°-

woPX
Dok A »Down G

(&
*am vre D wolx NIL

| 2am ——

" Given any expression, we extend the discrimination network, if necessary,
and return, the bucket represented by the appropriate leaf of the
discrimination network. '

A variable may'appear in any position of an expression to be indexed.
Each node of the discrimination network contains a special pointer to the
subindex for token streams beginning with a variable.

An interesting complexity in this system is that many structures
share the same discrimination subnetworks. We assume the user will use
lists to represent logic-like terms. These denote the semantic objects
being dealt with. It thus makes sense that EQUAL or VARIANT terms be
uniquely represented in the network. This is accomplished by
discriminating every non-atomic term from the top of the network and then
using the resulting bucket as the token for that term in every stream
containing that term. ‘ :

) ..l NTL
W T T
&
ADOWNK A TOKENR D *UP% NI

8

U? ” NIL ‘vk-\—(:: TQKENi)

c XxUPw NI

L .
£ ~(= TOKEND

de Kleer, Doyle, Rich, Stesle & Sussman 38 : An Annotated Interpreter

This causes a painful problem: There is now a token for every term, not
Jjust. every atom. Furthermore, every such token must appear in the top-
level node of the network. This makes it unfeasible to use a simple ASSOC
of one of these tokens on a part of the node to do a dispatch. Here we
introduce a 2-key hash-table to do our associations. Given a token and a
discrimination-node, we hash-retrieve an a-list. An element of this a-list
" beginning with our keys has the required subindex. To introduce further
-possible bugs, we bubble the association forward in the hash- entry Donald Duck

There are several global variables in the discrimination net data
base. *DN* contains the discrimination net proper, and *HASH-ARRAY*
contains the hash table that the discrimination net indexes. *HASH-ARRAY-
SIZE* is the size of the hash array, and *DOWN%, *UP*, and *NUMBER* are
special tokens used to represent the special types of tokens that construct
items entered into the net.

(DECLBRE (SPECIHL «DNe 2DOWN:x #UP% sNUMBER: sHASH-ARRAY# 2HASH-ARRAY-SIZE%))

DBINIT init;alizes a supplied variable to contain an empty data base.

a

(DEFUN DBINIT O
(SETQ %DONNx (LIST °+DOWNs))
(SETQ =UPs (LIST ’xUP%))
(SETQ *NUMBERx (LIST ’%NUMBER%))
(SETQ #HASH-ARRAY-SIZEx 1821.)
[(%ARRAY *xHASH-ARRAYx T xHASH-ARRAY-SIZEs)
(SETO =ONz (LIST NIL)))

STUFF retrieves the list of items from a data base bucket.
(DEFUN srurr (BUCKET) (coa BUCKET))
INSERT IN- BUCKET does what it says.

(DEFUN INSERT-iN-BUCKET (ITEM BUCKET)
(RPLACD BUCKET (CONS ITEM (COR BUCKET))))

‘ BUCKET returns the bucket of items from a data base corresponding to
the supplied expression and substitution, extending the network if
necessary to create the bucket for the new expression.

(DEFUN BUCKET (EXPRESSION ALIST TYPE)
" (LET ((B (SUB-BUCKET EXPRESSION ALIST sDN#)))
(OR (HASH-GET TYPE B)
(LET C(NEWIND (LIST B)))
(HASH-PUT NEWIND TYPE)
NEHIND))))

de Kleer, Doyle, Rich, Steele & Sussman 39 fin Annotated Interpreter

SUB-BUCKET does the dirty work for BUCKET by producing the
discrimination net token that BUCKET will use to index into the hash-table.
The main loop of the program is either to distriminate a list, or to
discriminate a thing representing a term -- that is, an atom or a list
which is not a sublist of the pattern being indexed. The process of
discrimination is termed "walking a path". Variables are not distinguished
from each other when discriminating a pattern. If the token being
discriminated on is a variable, the unique variable sub-index of the
discrimination net node is retrieved and followed. If' the token is not a
variable, it must be looked up in the table of tokens known at this node.
If the token does not exist in the table yet, it is added. The table is
maintained in the same hash-table as is used for indexing the buckets.
This means that the bubbling of the hash-table entries is constantly
rearranging the structure of the discrimination net in accordance with
those paths that are followed most frequently. ’

de Kleer, Doyle, Rich, Steale & Sussman 40 - An Annotated Interpreter

(DECLARE (SPECIAL #ALIST%x xINDEX2))

(DEFUN SUB-BUCKET (EXPRESSION #ALIST= =INDEX%)
- (SB-HALK-THING EXPRESSION =INDEX#)) ' |

(DEFUN SB-WALK-LIST (FRAGMENT SUBINDEX)
(COND ((ATOM FRAGHENT)
(SB-GET-SUBINDEX (IF (NUMBERP FRAGHENT)
NUMBER %
FRAGHENT)
(SB-GET-SUBINDEX %UPs SUBINDEX)))
((VARIABLE FRAGMENT)
(LET ((VCELL (RSSOC FRAGMENT #ALIST#)))
~UIF VCELL
(SB-WALK-LIST (COR VCELL) SUBINDEX)
(SB-GET-VAR IABLE-SUB INDEX
" (SB-GET-SUBINDEX #UPx SUBINDEX)))))
(T (SB-WALK-LIST (COR FRAGHENT)
(SB-HALK-THING (CAR FRAGMENT) SUBINDEX)))))

(DEFUN SB-HALK-THING (FRAGHENT SUBINDEX)
(COND ((ATOM FRRGMENT) ' ‘ ‘
(SB-GET-SUBINDEX (IF {(NUMBERP FRAGMENT) sNUMBERs FRAGMENT) SUBINDEX))
((VARIABLE FRAGMENT)
(LET ((VCELL (ASSOC FRAGMENT #ALIST#)))
(IF VCELL
(SB-HALK-THING (CDR VCELL) SUBINDEX)
(SB-GET-VARIABLE-SUBINDEX SUBINDEX))))
(T (SB-GET-SUBINDEX
(SB-HALK-LIST (COR FRAGMENT) ,
(SB-HRALK-THING (CAR FRAGMENT) %INDEXs))
(SB-GET-SUBINDEX =DOWNs SUBINDEX)))))

(DECLARE (UNSPECIAL *RLISTx %INDEXx))

(DEFUN SB-GET-SUBINDEX (THING IND)
(LET ((A (HASH-GET IND THING)))
- (IF A (COR A)
(LET C((NEHIND (LIST THING NIL)))
(HASH-PUT NEWIND IND)
(RPLACD IND (CONS NEWIND (COR IND)))
(COR NEWIRDI)))

(DEFUNISB-GET—VHﬁIRBLE-SUBINDEX (IND)
(OR (CAR IND) (CAR (RPLARCR IND (LIST NILYD)

de Kleer, Doyle, Rich, Steele & Sussman 41 fin Annotated Interpreter

FETCH returns a list of items from a data base which are candidates
for unification with the supplied pattern relative to the supplied
substitution. In previous versions of this program, FETCH returned a
stream which would generate the elements of this list one-by-one. This
increased the complexity of the program considerably. The stream version
was abandoned due to estimates that the simple list-producing version was
more efficient in a system like AMORD, which tries to run every assertion
on every rule. FETCH calls on SUB-FETCH to produce a list of indicies into-
the hash-table corresponding to the list of all tokens in the net which are .
candidates for matching the supplied pattern. The contents of these
buckets are then unioned together and returned.

(DEFUN FETCH (PATTERN ALIST TYPE)
(D0 ((L (SUB-FETCH PATTERN ALIST 20Nz} (COR L))
(ANS ’
NIL
(RPPEND (CDR (HRSH-GET TYPE (CAR L)))
ANS)))
((NULL L) RNS))

The complexity of SUB-FETCH derives from the treatment of variables,
which can occur in both the fetch patterns and in the stored expressions.
Variables in the fetch pattern must match only well-formed subexpressions.
But expressions are recursively defined sequences of tokens; hence the
parenthesis grammar must be counted out. We also allow terminal segments
(for example @ . :x)) in both patterns and stored expressions. This leads
to a case analysis because the initial conditions of the counting argument
have to be considered. But all of this analysis serves only to select out
those buckets which contain the candidates for the match. Throughout the
program, all collected buckets are unioned together (via APPEND, since each
‘item is in a unique bucket), and the resulting list passed back. '

' Like SUB-BUCKET, SUB-FETCH must walk down the pattern different ways
as the item being discriminated is a list or a term-thing. The sub-index
retrieval for non-variable tokens is much like that of SUB-BUCKET. The
true complexity arises in discriminating variable tokens, since there can
be many sub-indicies matching the variable, and the paths corresponding to
each of these must be followed. There are two sets of paths to be followed

from a variable token, corresponding to the variable matching lists or
things. .

de Kleer, Doyle, Rich, Steele & Sussman 42 An Annotated Interpreter

(DECLARE (SPECIAL #ALISTx «INDEX%))

(DEFUN SUB-FETCH (PATTERN sALIST% INDEX2)
(SF-HALK-THING PATTERN (LIST %INDEX%)))

(DEFUN SF-HALK-LIST (FRAGMENT SUBINDICES)
(COND ((ATOM FRAGMENT)
(SF-GET-ATON-SUBINDICES FRAGMENT
(SF-GET-SUBINDICES #UP= SUBINDICES)))
((VARIABLE FRAGMENT) '
(LET ((VCELL (RSSOC FRAGMENT #ALIST)))
(IF VCELL (SF-HALK-LIST (CDR VCELL) SUBINDICES)
(SF-GET-VRRIABLE-LIST SUBINDICES))))
(T (NCONC (SF-WALK-LIST (COR FRAGHENT)
(SF-HRLK-THING (CAR FRAGHENT) SUBINDICES))
(SF-NEXTV (SF-GET-SUBINDICES %UP+ SUBINDICES))))))

(DEFUN SF-WALK-THING (FRAGHMENT SUBINDICES)
(COND ((ATOM FRAGMENT)
(SF-GET-ATOM-SUBINDICES FRAGMENT SUBINDICES))
((VARIABLE FRAGMENT)
(LET ((VCELL (ASSOC FRAGMENT #ALIST#)))
(IF VCELL (SF-HALK-THING (COR VCELL) SUBINBICES)
(SF-GET-VARIABLE~THING SUBINDICES))))
(T (DG ((TOKEN-LIST
(SF-WALK-LIST (CDR FRAGMENT)
(SF-HALK-THING (CAR FRAGHMENT)
(LIST #INDEX%)))
(COR TOKEN-LIST))
(DOUN-INDICES (SF-GET-SUBINDICES *DOUN# SUBINDICES))
(ANS
(SF-NEXTV SUBINDICES)
(NCONC (SF~GET SUBINDICES (CAR TOKEN-LIST)
DONN-INDICES)
ANS)) '
((NULL TOKEN-LIST) ANS)))))

(DECLARE (UNSPECIAL #ALIST# %INDEXz))
(DECLARE (SPECIAL *THING))

(DEFUN SF-GET-SUBINDICES (xTHING% INDICES)
(SF-GET-SUBINDICES1 INDICES))

(DEFUN SF-GET-SUBINDICESL (INDICES)
(AND INDICES
(LET ((A (HASH-GET (CAR INDICES) =THING#)))
(F A
(CONS (COR R) (SF-GET-SUBINDICESI (COR INDICES)))
(SF-GET-SUBINDICES1 (COR INDICES))))))

de Kleer, Doyle, Rich, Steele & Sussman 43 An Annotated Interpreter

(DEFUN SF-GET-ATOM-SUBINDICES (TNG INDICES)
(LET ((xTHING= (IF (NUMBERP TNG) NUMBERx TNG)))
(SF-GET-ATON-SUBINDICESL INDICES)))

(DEFUN SF-GET-ATOM-SUBINDICES1 (INDICES)
(AND INDICES
(LET ((R (HASH-GET (CAR INDICES) =THING%)))
(COND (A (IF (CRAR INDICES)
(CONS (COR A)
(CONS (CARR INDICES)
(SF-GET-RTON-SUBINDICESL (COR INDICES))))
(CONS (COR R) (SF-GET-ATOM-SUBINDICESL (COR INDICES)))))
((CARR INDICES)
(CONS (CARR INDICES)
(SF-GET-ATON-SUBINDICESL (CDR INDICES))))
(T (SF-GET-ATOM-SUBINDICES1 (COR INDICES)))))))

(DECLARE (UNSPECIAL #THING#))

(DEFUN SF-NEXTV (INDICES)
(COND ((NULL INDICES) NIL)
((CAAR INDICES) -
(CONS (CAAR INDICES) (SF-NEXTV (COR INDICES))))
(T (SF-NEXTV (COR INDICES)))))

(DECLARE (SPECIAL xANS#))

(DEFUN SF-GET-VARIABLE-LIST (INDICES)
(PROG (#ANS%)
(MAPC *SF-GVL INDICES)
(RETURN #ANS%)))

(DEFUN SF-GVL (D)
(HAPC ’ (LAMBDA (ASUB)
(COND ((EQ (CAR ASUB) #UPs%)
(MAPC * (LAMBDA (AS) (SETQ #ANS# (CONS (COR RS) #ANSs)))
(CODR ASUB)))
(AND (CADR ASUB) (SETQ #ANSs (CONS (CADR ASUB) #ANSs))))
((EQ (CAR ASUB) *DOWN=x)
(MAPC * (LAMBDA (RS) (SF-GVL (COR RS))) (CODR ASUB))
(RND (CADR RSUB) (SF-GVL (CADR ASUB))))

(T (SF-GVL (COR ASUB)))))
(COR 1))

(AND (CAR I) (SF-GVL (CAR 1))))

(DECLARE (UNSPECIAL #ANS%))

de Kleer, Doyle, Rich, Steele & Sussman 44 An Annotated Interpreter

(DEFUN SF-GET-VARIABLE-THING (INDICES)
(PROG (ANS)
(MAPC ’ (LANBDA (I)
(HAPC * (LAMBDA (ASUB)
(COND ((EQ (CRR ASUB) =xUP%) NIL)
((EQ (CAR ASUB) «DOHNs)
(MAPC ’ (LAMBDA (RS)
(SETQ ANS (CONS (CDR AS)
ANS)))
(CODR ASUB))

(IF (CADR ASUB)

(SETQ ANS (CONS (CADR ASUB) RNS))))

(T (SETQ ANS (CONS (CDR ASUB) ANS)))))
(COR I})

(IF (CAR. I) (SETQ ANS (CONS (CAR I) ANS))))
INDICES)

(RETURN ANS)))

The following functions implement the hash table for associations used in
making the token dispatch step of the discrimination more efficient.

(DECLARE (FIXNUM %HASH-ARRAY-SIZE# (HASH-NUMBER NOTYPE NOTYPE) NUM)
(ARRAY%: (NOTYPE (xHASH-ARRAY% ?))))

HASH-GET retrieves a specified thing from the hash table of the
supplied data base.

(DEFUN HASH-GET (INDEX THING)
(COR (2-BSSG INDEX THING

(+HASH-ARRAY% (HASH-NUMBER INDEX THING)))))

HASH-PUT inserts a new thing into the hash table of the given data
base. . .

(DEFUN HASH-PUT (NEWINDEX INDEX)
((LAMBDA (NUM)
(STORE (xHASH-ARRAYx NUM)
(CONS (CONS INDEX NEWINDEX)

~ («HASH-ARRAYz NUM))))
(HASH-NUMBER INDEX (CAR NEWINDEX)?)))

de Kleer, Doyle, Rich, Steele & Sussman 45 _ An Annotated Interpreter

This is the ubiquitous number computer.

(DEFUN HRSH-NUMBER (KEY1 KEY2)
(\ (BOOLE 6 (MAKNUM KEYL) (MAKNUM KEY2)) ; XOR
~ *HASH-ARRARY-SIZE#))

2-BSSQ searches an association list for an association of the pairing
of the supplied two keys, and for efficiency [Rivest 1976], bubbles the
association one step towards the front of the association list.

_ (DEFUN 2-BSSQ (K1 K2 L)

" (PROG (L1 L2)
(COND ((NULL L) (RETURN NIL))
((AND (EQ K1 (CARR L)) (EQ K2 (CADAR L)))
(RETURN (CAR L))
(SETQA L2 L) '
LP (SETQ L1 (COR L2))
(COND ((NULL L1) (RETURN NIL)) i
((AND (EQ K1 (CAAR L1)) (EQ K2 (CADAR L))
(RPLACA L2
(PROGZ NIL (CAR L1)
(RPLACA L1 (CAR L2))))
(RETURN (CAR L2))))
(SETQ L2 (COR L1))
(COND ((NULL L2) (RETURN NIL)) .
' ((AND (EQ K1 (CAAR L2)) (EQ K2 (CRDAR L2)))
(RPLACA L1
(PROG2 NIL (CAR L2)
(RPLACA L2 (CAR LIND)
(RETURN (CAR L1M)))
(GO LP)))

ThiS concludes the listing of the interpreter.

de‘ Kieer, Doyle, Rich,. Steele & Sussman 46 : . Notes

Notes

AMORD

A M1rac1e of Rare Device, a name taken (by Doyle)‘from S. . T.
Coleridge's poem Kubla Khan.

Donald Duck

If you think the structure of our discrimination network is devious,
you should see the previous version, which generates candidates
incrementally. But even that program doesn't hold a candle to Drew
McDermott's Donald Duck discrimination network!

Expllcit Control '

A more detailed discussion of the technique of explicit control
encouraged by AMORD can be found in [de Kleer, Doyle, Steele and Sussman
1977]. :

Godel . o
Self-referential facts cannot be recognized, as the order in which

rule environments are constructed precludes rules with patterns like «F
(CRETIN :F)). ‘

Boxer -Moore

‘ Doyle and Sussman experimented with the use of the Boyer-Moore
structure sharing implementation of assertions. In benchmark tests it was
found that (in the current implementation) the average rule consumed some
20 words less than the average assertion. Since the only real difference
is that rules share structure, while each assertion has its own instance of
its pattern, this led to hopes of space saving by moving to a more
efficient representation. Unfortunately, calculations showed that this
more complicated scheme would not result in very significant space savings.
In addltlon, its implementation seems to entail a very significant amount
of computation in a system like AMORD, in which new assertions must be
checked against the data base for subsumptions. While the routines for
unification and instancing are simple to write and execute efficiently, the
comparison routines seem to be much more complicated and very much less
efficient. Our experience with the Boyer-Moore representation should be
compared with that of McDermott [1977].

MacLISP
‘MacLISP [Moon 1974] is a powerful dialect of LISP develcped by the
MIT Artificial Intelligence Laboratory.

™S . v
The Truth Maintenance System is a program developed by Doyle
[1978a,b]. Section 3 summarizes its function and use.

de Kieer, Doyle, Rich, Stesle & Sussman 47 References

References

[de Kleer, Doyle, Steele and Sussman 1977]
Johan de Kleer, Jon Doyle, Guy L. Steele Jr., and Gerald Jay Sussman,
"Explicit Control of Reasoning," MIT AI Lab, Memo 427, June 1977.

[Doyle 1978a]

Jon Doyle, "Truth Maintenance Systems for Problem Solving,™ MIT AI Lab TR-
419, January 1978. :

[Doyle 1978b]

Jon Doyle, "A Glimpse of Truth Maintenance," MIT Al Lab Memo 461, February
1978.

[McDermott 1977]

Drew Vincent McDermott, "Flexibility and Efficiency in a Computer Program
for Designing Circuits," MIT AI Lab TR-402, June 1977.

[Moon 1974]

David A. Moon, "MacLISP Reference Manual,” MIT Project Mac, Revision O,
April 1974.

[Rivest 1976]

Ronald Rivest, "On Self -Organizing Sequential Search Heuristics," CACM 19,
#2, (February 1976), pp. 63-67.

[Sussman and Stallman 1975]

‘Gerald Jay Sussman and Richard Matthew Stallman, "Heuristic Techniques in
Computer-Aided Circuit Analysis," /EEE Transactions on Circuits and
Systems, Vol. CAS-22, No. 11, November 1975, pp. 857-865.

