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SECTION I ABSTRACT

This paper presents precise versions of some laws that must be: satisl‘ ied by computations involving
communicating parallel processes. ‘The laws take the form of stating plausible restrictions on the
~ histories of computations that are physically realizable. ‘The laws are very general in that they are
. obeyed by parallel processes executing on a time varying number of distributed physical processors. For

- example, some of the processors might be in'orbiting satellites. The laws are justified by appeal to-

- physical intuition and are to be regarded as falsifiable assertions about the kinds of computations that.
~ ‘occur in nature rather than as proved theorems in mathematics. The laws are intended to be used to -
~ analyze the mechanisms by which multiple processes can communicate to ‘work effectively together to
~ solve dif ficult problems : : ‘

" The laws presented in this paper are intended to be appiied to the design and analysis of systems
~ consisting of large numbers of physical processors. - The development of such systems is becoming
- economical because of rapid progress in the development of large scale integrated circuits. '

. We generalize the usual notion of the history of a computation asa sguenc e of events to the notion of "
a partial order of events. Partial orders of events seem better suited to-expressing the causality

~_involved in parallel computations than totally ordered sequences of evénts obtained by "considering all -

- shuffles” of the elementary steps of the various parallel processes [21,22]. The utility of partial orders is

~_demonstrated by using them to express our laws for distributed computation. These laws in turn can be

- . used to prove the usual induction rules for proving properties of procedures. They can also be used to '
 derive the continuity criterion for graphs of functions studied in the Scott-Strachey -model of
~ computation. The graph of a function is simply the set of all input output pairs for the function. We
- can prove that the graph of any physically realizable procedure p that behaves like a mathematical
' f unction is the limit of a continuous f uncttonal F such that :

groph(Pl = uKN r‘(m

In other words the graph of p is the limit of the n-fold oompositions oi‘ F with itself beginning with the |
- empty graph. - :
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SECTION II --- INTRODUCTION

In programming languages such as SIMULA-67 [17), SMALLTALK [18], and CLU [20], the emphasis
- has changed (compared to Algol-60) from that of procedures acting on passive data to that of active
data processing messages. The actor model is a formalization of these ideas that is independent of any
particular programming language. Instances of SIMULA and SMALLTALK classes and CLU clusters
are actors. However, actors have been designed to include the added effects of parallelism so that
instances of monitors[-iz 41], envelopes[43] and serializers[34] are also actors.

- The actor message passing theory can be used to model networks of communtcatmg processes which.,
may be as close together as on the same LSI chip oras far apart as on different planets. It can be used
to model processes which communicate via shared memory[12], packet-switched networks[lS 24].

4;_:"f“'ring-networks[231 boolean n-cube networks[ﬂ] or Batcher sorting nets[251

SECTION 95 ACTORS and EVENTS

The theory presented in this paper attempts to characterize the behavior of procedural ob jects called

actors [active ob jects] in parallel processing systems. Actors and events are the fundamental concepts in -

- the theory. Actors interact with each other through one actor sending a messenger to another actor
- called the target. The arrival of a messenger at a target is an event, and these events are the basic

‘steps in this model of computation. A key point in the actor-model of computation is that messengers

~ are themselves actors. The actor model is therefore an un-typed theory which is a generallzatron of the

e h-calculus of Church

~ Actors can be created by another actor as part of the second actor's behavior Indeed almost every

messenger is newly created before being sent to a target actor.

- Events mark the steps ln actor computations, they are the fundamental interactions of actor theory. .
Each event is instantaneous and indivisible taking no duration in time.  Every event E consists of the

T arrival of a messenge actor, called mssongor(El ata agge actor, called largel(E)

We will often use the notation
. E. [T (ww M]
to indicate that E has messenger M and target T. |

- The time of an event is' the arrival-of the messenger of the event rather than the sending of the
messenger because a messenger cannot affect the behavior of another actor until that actor receives it.
If the sender wishes a reply, an actor (called the continuation) to whom any reply should be sent should
~ also be carried by (as'a component of) the messenger :

Intuitively, the arrlval of the messenger M at the target T makes M’s information available to the target.
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for the purpose of activatmg addmonal events. The arrival of MatT does not in itself cause any
change to either MorT. ‘

For each event E we define acquaintancesg(T) and acquaintancesg(M) to be the vector of immediate

acquaintances of T and M, respectively. The immediate acquaintances of an actor x are the other actors

- x directly "knows about” at a given instant. The relation is asymmetric in the sense that it is possible
“for an actor x to know about an actor y without it being the case that y knows about x. An actor may or
~ may not "know about" itself; if it does, it can directly send itself messages!

Loyv of Finite Acqualnlancn° For all actors x and oyonis E such that x is the target or mescenger of 'E,A
the vector acquamiancess(x) has finite Ionzth :

" The above law states that an ob Ject can only be directly connected to finitely ‘many other ob jects

AN of the actors which are definable within the fambda calculus of Church have the property that their

- An irnportant example of an actor whose lmmedlate acqualntances change with time isa cell. A cell is

acquaintances cannot change with time; ie. if x is defined by a lambda expression, then for all events
E4 and Ej in which x is the target or messenger, it will be the case that '

Aaequainiancos’m(x) = acquaintancosEz(xl

" In order to implement interprocess communication between parallel processors it is necessary to use
actors whose vector of acquaintances changes over time. The purpose of this gager is to axiomatize the -
~ fundamental laws which govern the behavior of such actors. : _

- an actor which at any given time has exactly one immediate acquaintance—its contents. When the cell

is sent a messenger which consists of the message, "what is your contents?", and a continuation—another
actor which will receive the contents--the cell is guaranteed to deliver its contents to that continuation

- (while also continuing to remember them). All this might be very boring if the contents of the cell were

constant. However, upon arrival of a messenger which has the message "update your contents to be x™

and a continuation, the cell is guaranteed to update its contents to be the actor x (whatever that may be)

‘and inform the continuation that the update has been performed. The behavior of cells will be

' ,axiomatized‘ later in this paper after we have presented enough of the actor model to make this

: - The targot(E) and the messenger () and their immedlate acquaintances will be called (immediate)'

possible.

participants of an event E. The immediate participants of an event are exactly those actors which can
be accessed without sending any messages. » -

plrticlpants(E) {llrgol(E), mossongor(E)} u lcquamhncosE(targot(E)) U acquamhncesE(mossonzor(E))

- Flmlo Iniorachon Law. For each event E, iho tmmdlalo parttctpants in E are flnllo

'I‘he above law, which is intended to capture the physical intuition that only finitely many ob jects can

7 interact in a single event, is an immedlate corollary of the Law of I-'mlte Acquaintances
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SECTION IV - »"PARTIAL ORDERINGS on EVENTS

In order to develop a useful model of parallel computation, we have found it desirable to generaiize the

usual notion of the history of a computation as a sequence of events. In this paper a history of a

. computation will be expressed as a partial order which records the causal and incidental relations
~ between events. The partial orders constrain the maximum amount of parallelism that can be used in

an implementation. Any two events which are unordered can be executed concurrently using separate

- processors. However, there is no requirement that an implementation do this. Events can be executed

in any time sequence that is consistent with the partial order.

Vi = ACTIVATION ORDERING

~ One important strict partial ordermg on events in the history of a computation is derived from how

events activate one another. Suppose an-actor xq receives a messenger my in an event E; and as a
result sends a messenger m, to another actor x,. Then the event Ep, which is the arrival of the

", messenger my at xp, is said to be activated by Ey. We call the transitive closure of this "activates”
- relation the activation ordering and if Ey precedes E, in this ordering then we write:

EI 960!') Ez

I general ~act=> i oniy a gartia ordering because an event E might activate several distinct events’
- »El,...,E thereby causmg a "fork : :

’IV i.a — Primitive Actors

' A simple example which iilustrates the use of ~act=> is a computation in whxch integers 3 and 4 are
.- added to produce 7. We suppose the existence of a primitive actor called + which takes in pairs oi‘

numbers and produces the sum. In this case + recelves a messenger of the following form:

: [request: [3 4], reply-to: c]

which soecif ies that the message in the recjuest is the argument tupie' [3 4] and the reply which is the

" sum should be sent to the continuation ¢ when it has been computed Thus the history of the

- computation contains two events:

la request event with target + and messenger that specif ies the numbers to be added and
an actor ¢ to which the sum should be sent;

2a repiy event with target ¢ and messenger that specifies the sum of the numbers. -

These two events are related as f oilows in the activation ordering
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[+ <o~ [reques‘t: [3 4), reply-to: ¢I] |

act

l
v

[c . [reply: 70

The activation ordering can be used to define the notion of a simple primitive actor as follows:

Dolinlﬁom An actor x will bo_said to be a slmple1 'primltive actor if whenever an event Eq of the torm

[x (v~ [request m, reply-to c]]

E : appurs ln the htsiory of a compuiaiton lhon there is & unique event Ez of the form

[c (o~ [reply: r]]
’ . 'eueh lh-t 51 -act-> Ez and there are no events E- such that 51 ~act=> E =act=> Ez

'Complaint processing can easily be incorporated into the scheme. The history that results from
dmde[3 0] which attempts to divide 3 by 0 is shown below e , :

[dwvdo (~~ [request [3 0], rcply-to c]]
| -

" act
|
: v
[c (ww [complamt [zero-dwule 3]ﬂ

. Since complaint processing does not have any ‘profound implications for the results in this paper, we‘
' will not say anything more about the matter

“The history of the computation of factorial[3) using an iterative implementatton ol‘ tactorial iliustrates
how the activation ordering can be used to illustrate properties of control structures. We will suppose

" that factorial knows about an actor called loop which is sent tuples of the form [index product] where the

initial index is 3 and the initial product is 1. Whenever loop receives a tuple [index producl], where index
is not 1, then it sends itself the tuple [(mdex -1) (mdex % product)].’

1: Later in this paper we mll see examples of primilwe actors such as fork and join pnmitwu which are not
imple. :
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[ factorial <v~ [reqnest: [3], reply-to: c1]

~act
Y S
[loop ¢~~ [request: [3 1], reply-to: 31|

act
|
~ Lloop <o [request: [2 3], reply-to: c]]
Cact -
e
L loop <~~ [request: [1 6], reply-to: 1

act
I
\

[c <- [reply‘ 6]]
. The actor loop is iterative because it only requires the amount of working store2 needed to store the

- index and product. Note that only one reply is sent to the continuation ¢ even though ¢ appears as the
- continuation in several request events. -

IV 1. b - Laws for the Activation Ordering

It is not possible for there to be an infinite number ‘of events ina chain3 of activation between two

given events in the activation ordering of the history of a computation This law implies the existence

~ of primitive actors. Stated more formally,

| A 'Law of Finite Aeiwehon Chains beiween two Evenis° It C is a chain of events in the activation orciering from -
El to Ez, thon C is finite. : ' o ‘ y S

" The laws of finite activation chains is intended to eliminate "Zeno machines™—i.e. machines which

B * compute infinitely fast. For example, consider a computer with your favorite instruction set which

~ executes its first instruction in 1 microsecond, its second in 1/2 microsecond, its third in 1/4 microsecond,
and so on. This machine not only could compute everything normally computable in less than 2

. 2: The careful treatment of the storage required for this example is given in [26].

8 A chain is a totally ordered seouen'ce of events
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o~ microseconds. but could also solve the “halting problem It could do this by simulating a normal
computer running on some input, and if the simulation were still running after 2 microseconds, it could
conclude that the simulated machine does not halt on that input

lntuitively each event can directly activate only a finite number of other events. The events directly

-activated by an event E are called immediate successors of E (under the activation ordering =act=»). The

immediate successor set of E in the ~act=) ordering, written mmoduie-succ.ac,.)(E), can be defined
' formally - :

lmmodlaie-succ_u,.>(E) {E1| E ~act=> El and -3 E, such that E -act-) Ez -act=> Eq}

Then we have the following law:

* Law of Finite lmmodialo Successors in the Activation Ordorlni_w”
For all events E, the set vmmodlalo-succ.“'_>(5) is finite.

We def ine immediate predecessors in the activation ordering in a manner similar to that used for'
immediate successors. We postulate that an event is either an initial event, in which case it has no
predecessors. or it is activated by a unique predecessor event. :

Law of Umquonoss of Immediate Predoeossors in the Activation Orderm;:
For all events E, lho set immediate- prod.ac,.>(E) has at most one element

This law is based on the physical intuition that two distinct events cannot both be the immediate cause
- of another event. This is because an event which immediately activates another event must have been -
the sender of the messenger for that second event. Thus each ‘event E has at most one activator? . |
' which if it exists will be denoted as activator(E). '

Note that the activation ordering analyzes the causality of the classical "fork-join" structure of parallel

- computations in an asymmetric manner. The reason is that the last event to arrive at the join is the one

which activates the remainder of the computation. Later in this paper we will introduce another partial

“-~_order on events [called the continuation. order] which treats “fork- join “control structures in a symmetric
fashion. ' :

4: 'l"his usage of the term “activator” is somewhat in conflict with the usage of the term in Greif and
Hewitt[40]. The usage here has the advantage that it is more firmly grounded in the physics of
. computation
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Iv2 — ARRIVAL ORDERINGS

| Intuitively, the activation ordering can be identified with "causality” in which each event is "caused” by

- its activator. However, the activation ordering is not enough to specify the actions of actors with

“side-effects”, such as cells. For this reason, we introduce the arrival ordering =arr->, for an actor x

whose behavior depends on the order of arrival of the messengers sent to x. The physical basis for

R ~ defining the order of arrival is a hardware device called an arbiter. Note that there are only a few

primitive actors such as cells and synchronization primitives whose behavior actually depends on the
order in which messengers arrive. :

Due to the totality of the order of arrival of messengers at an actor x (which will be discussed in more

~ detail below), the notion of a "local time” for x is well-defined. Therefore, when talking about a single N

actor, we can talk rigorously about the changes in its vector of acquaintances over time.

" IV.2a -— Laws for Arrival Orderings

el The-ar'rivai ordermg for each actor x is required to be a total ordering on all events which have x as
. their target. This policy is enforced by arbitration in actors such as synchronization primitives which
.need to observe the in order in which their messages arrive. v

‘ Arrivai Ordering Law° If El“EZ and targei(ElHargoi(Ez)zx,

: then oither 51 “arr=>y Ez or Ep =arr=> El :

This iaw says that the messenger of Eq arrives at x before the messenger of Ez or vice—versa

Note in connection with arrival orderings that there is no necessary relation between the arrivals of two

messengers at a target and the ordering of their activator events. Suppose that events Ey and E; have
- the same target x. Then, in general, the circumstance that Ey =arr->, E; does not imply that

Ey -act=> E, since Ey and E, might be distinct events of two asynchronous processes that both happen

~ . to send messengers to the same actor. Furthermore, the fact that activator(Ey) -act=> activator(E3) is no.

E Given an event 81 of the form [T (wow Mll and an event Ey of the t‘orm [T ¢~ le there are only a .

guarantee that Ey -arr->, Ey; ie. the messenger of E, might still arrive at the target actor before the-
messenger of 51 ‘ -

- finite number of events between these two events in the arrivai ordering -arr-)T Stated more formally:

Corollary: Law of Finite Chams between two Evenis in_an Arrival Ordermgz
- For all events Eq and E; such that iarget(El) = iargei(Ez) X,
- {ElEq -arr-) E -arr-) Ez} is finite. _

. This eliminates anomalous behavior like the foliowing a ceii receives the infinite sequence of "store”
- messages: [store: 1], [store: 1/2], [nore 1/4], [store: 1/8], etc. and then receiving a oontents? message.

What is it to reply? Zero? But zero was never explicitiy stored into the cell!
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The law of Finite Chains in the Arrival Ordering allows us to define immediate predecessors and

‘immediate successors for the arrival ordering in a manner similar to the one used for the activation

ordering. Since the Arrival Ordering Laws guarantee that the arrival ordering for each actor is total
over its domain, successors and predecessors are unique when they exist. If an event E has an
immediate predecessor in -orr-)h'z.“g) then it will be calied the precursor of E and will be denoted by

' procunor(E)

SECTION V o CREATION of ACTORS

Intuitiveiy the creation of an actor x must precede any use of x. In order to precisely state the above

_intuition as a law we must be more precise about when actors are created. For each actor x which is
created in the course of a computation we shaii require that there is a unique event creation(x) which

’“’"uused x to be created

Let ernted(E) be the set (possibly empty) of actors created by the event E~Le. the set of actors which
claim E as their creation event. Note that x is not a partrcipant in crniion(x) because x does not come

"~ into existence until after creatron(x) has occurred

Definition: crniod(E) = {x] croaiion(x)=E)

. The intuition that a single event can only create f imteiy many ob jects is formalized as f ollows:

Law of leie Creailon. For nch ovoni E, croaiod(E) is fimio

) - If an actor is created in the course of a computation, then prior to any given message which it
- receives, it could only have received finitely many messages

- Law of Fmiieiy Many Predecessors in iho Arnval Ordermg oi 3 Creaied Actor:
-=--" 1f an actor x is created in the course of a eompuiaiion and iargei(E) = x then

{E'I E’ =arr=>, E} is finite.

" The above law is used in the next section to guarantee that our axiom which characterizes the behavior

of a cell is well defined. The law guarantees that the process of repeatedly taking the precursor of an

event with target t will find the creation event for t in a finite number of steps.
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SECTION VI --- CELLS

VI - Axiom for Cells

The axiom for cells has two parts: involving their creation and use which can be stated as follows:

- Creation: There is a simple primitive actor, called create-cell, such that
whenever it is sent a tuple of the form [i], it creates an actor s which is a new
storage cell with initial contents the actor i. More formally, for each event E4

of the form Ey: [create-cell ¢v~ [request: [i], reply-to: ¢]J there is a unique

simple primitive actor .and Eq = activator(Ey). Furthermore created(Ey) = {s}

which says that the only actor created by the event Ej is the storage cell s.

Thus each storage cell that is returned by create-cell differs from all previously

created cells. The storage cell s always has exactly one acquaintance which is

< initially i. If E is an event which has s as its target, we will use the notation
o eonienlsE(s) to denote this acquaintance at the time of the event E.

Use: A storage cell s can only be sent messages of the form [comenu?] which
‘ requests the “current” contents and [update x] whlch updates the contents to be ‘
N _ :

: » 'The contents of s when it receives one of these messages in an event E can be' :
L axiomatized using the arrival ordering fors as f ollows.

. eontentsE(s) = :
if Ehasa preeursor in the amval ordenng for s
“then .
- if precursor(E) is of the form [s (vw [requm [update x}, reply-to ]] .
. then x . s

else contonlspncu,.so,,(g)(s)
B else i whu:h is the actor sent to crnte-cell to create §

IfE 'is an event of the 'form [e (ow [requen [comcnu?] reply-to: c]] then there
is a unique event E' of the form E: [c Com [reply: eontentsE(s)]] such that
E = activator(E'). , .

event Ep of the form Ep: [c¢ ¢~ [reply: s]] such that s is a newly created,,.,___,,., -
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vi2 — Busy Waiting

Busy waiting is the kind of waiting used in some multi-processing systems. In this kind of waiting, the
contents of a cell is continually checked and, if it is unchanged, the processor branches back to check it

again. This kind of waiting is used when one processor cannot depend upon another to "wake it up”

the arrival orderings of cells.

~ For example suppose that a new storage cell ¢ is created whose initial contents are 0. Furthermore

~loop: if contents(s) =0

suppose that the contents of s are updated exactly once by a process which sends s the message
[update: 1]. Now another process might busy wait until the contents ot‘ the cell ¢ change to 1 by

-executing a procedure of the following form:

then goto loop
else ..proceed...

- The property of Finite Chains between Events in the arrival ordering for s, guarantees that the code

..proceed.. will eventually be executed since otherwise there would be an infinite number of “contents?

' messages before the [updme 1] message in the arrival ordering of s.

The use of the arrival ordering in the actor model of computation seerns to help overcome one of the

~ major limitations of other theories of the semantics of communicating parallel processes based on the
~ Scott-Strachey model of computation [56] The Scott-Strachey model is a deep mathematical study of -
- functions that are minimal fixed points of “continuous” functionals. As currently developed the

~ Scott-Strachey model seems to be a special case of the actor model in that it only deals with actors which

‘behave like mathematical functions to the exclusion of actors such as cells and synchronization

primitives whose behavior depends on the arrival orderlng of messages sent to the actor ’

S CROTION VII -— LAWS of LOCALITY.

We would like to formahze the ‘physical intuition that computat:on is Tocal and there can be no action s

. at a distance™. The laws of Iocaltty presented in this section are intended to capture these intultlons

The initial acquamtances of an actor area subset of the partlcipants in its creatron event and the actors X o

"~ created by its creanon event:

. The acquaintances of an actor can increase over its previous acquaintances only by the acquaintances of

Initial Acquemhnces Law: If an actor z is the target of.'an event E
~ such that E is the first event in the arrival ordering of z then,
acquamtancesg(z) c parhcrpants(crnhon(z)) U ereaied(creatlon(z))

the messengers which it receives and the actors which it creates.
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Precursor Acguainhncos Law: If an actor z is the targoi of anevent E
‘such that E has a precursor in the arrival ordering of z then, o
_ ncqu'ainiancosE(z) c porticipants(procursor(E)) ) cruiod(procursor(E))

An actor x can only be the target or messenger in an event E if x is newly created or is an immediate

- participant in activator(E).

Aeiivaior Acquamiances Law: For sach event E which is not an initial event
target(E) € participants(activator(E)) U created(activator(E))
messenger(E) ¢ participants(activator (E)) U croaiod(oeiivaior(E))

s'Eo'rmN VIII - COMBINED ORDERING

"To make sense out of the activation and arrival orderings, and to relate them to a notion of time we

R introduce the precede relation Taad™

_ ~ Definition: ==> is a binary relatron on events which is the transitive closure of the ‘union of thev
o activation ordermg -act=> and the arrival orderings =arr=>, for every actor X. :

In order for - to function as a notion of precedence, we require that the activatron and arrival

i orderings be consistent. This is guaranteed by the Law of Strict Causality for actor systems which
- states that there are no cycles allowed in causal chains; ie. it is never the case that there is an event E in

the history of an actor system which precedes itself. Stated more formaily the law of causality is that _ ’

o the combined ordering is also a strict partial ordering

Law oi Sinci Causalify. For no ovoni E doos E--)E

B '_ Suppose that we have events in a computation described as follows:

- El [X ('“' m1]
« E3:[y woema]
Eq: [x <o~ m4] 7

Eg =act=> Ep serrival of my at x causes the arrival of "‘2 at y

| ) ~arr=> E3 smp arrives at y before my :
. E3 -act=> E4 sarrival of my at y causes the amval of 1 mg atx

E4 -arr=>, EI ;m4 arrives at x before my

‘The Law of Strict Causality states that the history of the computation given above is physically ,

impossible to realize even though it is locally reasonable in the sense that any proper subset of the
orderings can be realized. The above exampie of an impossible computation is due to Guy Steele.

Now we can define immediate predecessors and successors of an event E under - Note that an event
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[t (wm m] has at most two immediate predecessors in the relation --> one of which is the activator of
the event and the other is the precursor of the event.

We would like to formalize the intuition, that between any two events which are causally related, ‘that

- there are only finitely many events in a causal chain that connects the events. This intuition is
' f ormalized in the following law: '

l.lw of Finite Chains between ovenic in ihe Combined Orc:iown;"'i :
There are no mfmuto chams of events boiwun iwo ovents in the strict plriui ordering ==>.

We can use the combined ordering == to express an important Iaw about created actors.

Law of Crniuon before Use:
~~ If an actor x is created in the cource of 8 ‘computation and E is an event wuih target x then
cruiion(x) -=>E :

, VIIII - NESTED ACTIVITIES

'Since one of the aims of actor theory is to study patterns of passing messages we must identify severai

- common patterns. The two most common types of messengers are requests and replies to requests. A
* request has two acquaintances: the request message itself, and a continuation actor which is to receive

~the reply. A reply to a request consists of a message sent to the continuation; this reply usually contains

" an answer to the request but may contain a compiaint or excuse for why an answer is not f orthcoming

We define the nested activity correspondmg to a request event RQ in a computation to be the set of

events which follow RQ in the combined order but precede any reply RP to the request. More formally,
let E-=) denote the set of events which follow E (inciudlng E itself) and --}_E denote the set of events .

which precede E (including E) in the computatlon Then

| aciwniy(RQ) = Q--z n U{--ZRP | RP is roply to RQ}

Activities embody the notion of the nestmg of actmties that is produced by conventional programming | _
languages, since we only include those events in an activity which contribute to a reply to that request. .

Note that if no reply is ever made to the request RQ in the computation, then the activity oorresponding
._to RQ is incomplete and therefore vacuous.

If we iet concurroni activities be those whose request events are unordered then concurrent activities may

~ overlap—ie. share some events. However, this can only happen if the activities involve some shared
- -actor which is called upon by both; if two concurrent activities involve only "pure” actors which by

5 Thls law is a strict generalization of the Law of Finite Chains between events in the Activation Ordering, thob

Law- of Finite Chains beiween events in each Arrival Ordering, and the Law of Strict Causality. We conjecture

that the Law of Finite Chains between events in the Combined Ordering can be proved using the Laws of

Localtty» If this conjecture is established ihonwo would no longer need it as an an independent law.
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definition have no arrival ordering and can be freely copied to avoid arbitration bottlenecks, then

_ activities are properly nested meamng that two activities are either dis pint, or one is a subset of the
- other.

The notion of activities allows one to vary the level of detail in using actors to model a real system. Let
us define a primitive activity as the activity of a request which activates exactly one immediate reply,
with no events intervening. Thus, a primitive activity always consists of exactly two events. A crude
model for a system might represent an actor as primitive, i.e. one whose receipt events are all primitive.

~ However, at a finer level of detail, one might model the internal workings of the actor as an activity in
- whicha group of "sub-actors participate :

The notion of nested activ:ties can be used to help explicate several of the various notions of " process
that have been used in computer science. In particular it can be used to define an ordering on events
that is important to defining the semantics of programming languages for parallel processing. This

- new ordering is the continuation order and will be denoted by -cont=). The continuation ordering is

important because it captures the usual operating system notion of "process” in terms of partial orders

. ~on events. Later in this paper we will show how to use the continuation ordering to provide a precise
- characterization of the relatlonshlp between the Scott-Strachey model and the actor message-passing.
= model . -

Doftmtlon. If E and E' are ovents then E -com-) E' if

L1 Thon is some activity a such that E, Eeéa
2: E - E’

Note that each event has only finitely many predecessors and finitely many immediate successors in the'A

- - continuation ordering beatuse =cont=> is a sub-ordering of ==>.

IX. — Fork-Join Behavior

'In programming Ianguages for parallel processmg, it is quite common to provide pnmmves by which. ,
- processing can "fork” creating more parallelism which can later join together. Parallel evaluation of the

arguments of a procedure provides'a good example of fork-join behavior. All fork-join primitives have

- basically the same structure. Consider for example, the behavior of a procedure f which computes

| -(xz +y%) given arguments x and y. Below are the two possible histories for an activnty of t which-

produces these results where ==> is used for the combined ordering:
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S - Eygs Lt <o~ [request: [x y],'rep'ly-m: 31 |
" [ .
————————— act-- - act -—
o | - |
 Ept [ % <v~ [request: [x x], reply-to: 11 ~ Egt [# <~ [request: [y y], reply-to: c,]]
| | o o | | |
act o ] act
| . - ‘ } |
L \J o , v
543 [el (v~ [reply: x2]] ) ’ » o Es% [cz (ww [reply: yzn
I ' o -act
l N
v v : _
Eg: [+ <v~ [request: [x2 y2], reply-to: 1 |
N
act
v

E7: [c (ww {reply' (xz + )'2)]]

o Note that in the history given above that Eg “act=> Eg whereas in the history given be|ow that
E"act")Es v

o Ei: Lt ¢on [request: {x Y} eoply-te: el '

.mme-act —mememm-act--
- Egt [t <~~ [request: [x x], reply-to: cI]] . - Eg [ * <v~ [request: [y y), reply-to: c2]]
~act . o ' ' ' act
- Egt [c1 (v [reply: x2]] : - . : Eg: [c2 <~ [reply: yzl]
| I |
_V ' \ o -
Eg: [ + <~~ [request: [)(2 y’2], reply-to: c]]
act
Y

Ey: [c (o [feply: 2 + yz)]] |
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~ We shall say that Eq is a fork event and that Eg is a join event. In the above computation it will
necessarily be the case that Eq =act=> Eg since this is the only way that Eg can be activated. Therefore it
“will be the case that either E4 =act=> Eg or Eg =act=> Eg. The continuation ordering -cont-> enables us
to present the history of the computation without having to be concerned as to which of the above
~ possibilities actually occured. Using the continuation ordering the symmetry of the above fork-join
- computation is demonstrated by the fact that the continuation ordering is the same for both of the
- . above histories: - - ' ’ '

Eq: [t <~ [request: [x y], reply-to: ¢}

o m———— cont -cont '
- v | ' A : : : v
. Egt [[% <~v~ [request: [x x], reply-to: ¢4]] ~ Egs [% <o~ [request: [y y), reply-to: c31]
cont e e | »Q. - cont
E4: [cg <~~ [reply: x2]] o e ’ ~ E5: [cg <v~ [reply: )'2]]
) --cont- - - -cont
v o v -
E6: [+ <~~ [request: [x2 y2], reply-to: c]]
 cont
1
v

B Lc <o [reply: (Xz + Yz)]]

- IX.2 — Synchronization Between Processes

" The behavior of semaphores provides a simple example to illustrate the relationship between the
~activation and continuation orderings. Suppose that s is a newly created semaphore whose capacity
- (count) is initially 0 so that the first attempt to perform a P operation will wait until a V operation is-
- performed on the semaphore. In order to model the behavior of semaphores using message passing, we
- will suppose that P and V operations are implemented by sending [P:] and [V:] requests respectively.
Suppose that EP is the first event in the arrival ordering of s in' which s receives a [P:] request and Ey

Is the next event in which s receives a [V:] request. The activation and continuation relations between
- these events is shown below: o C _ S
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Ept [s ¢~ [reque:t: [P:], reply-to: cl]]

cont _
E: [e1 (v~ [reply; ]] 4 N ¢-act- : Eyt s <o~ [request: [V:], reply-to: czn
| | cont
l
v

[cz (o [reply' ]]

" Note that E,, == E since E,, ~act-> E but it is not the case that E, =cont-> E because there is no activity in =~ |

: they are both elements

SECTION X -—- PROCEDURES

o Xl — Behavior of Procedures

In this section we would like to characterize the behaviors of actors which behave like procedures. In o
- order to do thls we would llke to use the notion of an activitz v '

: To make our discusslon more concrete we will consider the behavlor of an tmplementation ot‘ the‘
Flbonaccl function det‘med as follows: : : v

(flb n) s
G o
(n=1)then 1 .
- (h=2)theny -
(n>2) rhen ((hb (n=1)) + (fib (n 2))))

S _The following history is a partial order ot‘ some of the events that might result f rom evaluating (hb 4) |
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Eg: Lfib <v~ [request: [4], reply-to: c]]

.
—————————— cont--=m-m-- cont-----
B . | o |
. . - |
7 S A ,
“Ept L fib <~~ [request: [3], reply-to: °1]] 53. [fib (ot [raqueu [2], reply-to: e2]]
T a | |
e . cont ' A . o ~cont B v ’
E‘. [cl (- [rcply' 2]] o . : Eg: [°2 (~w [reply: 1]]_
B cont - _ cont
N N |
v ' v
E5 [+ (v [requen [2 1], reply-to: c]]

: E7. [c (~~ [reply' 3]]

_ We will use the notation {Ip <= m) ==> yl} to partially describe an activity which starts wlth an event of

the form [p (vw [requeu m, reply-w ¢JJ and fmishes with an event of the form [c <~ [reply: y13.

- All of the events shown in the above dlagram are contained in one actwity (which we will name a) of |
- fib whose starting event is Ey and whose finishing event is E;. Thus the activity a is of the form
{I(fib <= [4]) ==> 3]}. The diagram above shows two sub-activities of a whxch we will all ﬂ and 7 such_ .

- that the followmg relationshxps hold.

B: {Itfib <= 3) == 2|} st =g, | "ﬁhish(a);e.

C oy {ifibe=2)-> 1 0 startly)=E3 finieh('y)-Es »_

The activity ) has events which are not shown in the above diagram Some of these events are shown'

in the dlagram below
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- Ep: [ fib <v~ [request: [3], reply-to: c1]]

|
_ A
| =m===—m---gONtss=s-soe —oooe———cONt-----
o . o : |
. o o I
Eg: L fib <~~ [request: [2], reply-to: c3]]‘ Eg: L fib ¢~ [request: [1), reply-to: C4]]
cont » ’ ) cont
o | o |
S _v, 1 S t,,,v,,,_.v_,, I
E10: [c3 <~ [reply: 111 v : N ' - Eqqt [c4 (v~ [reply: 1]]
s==e=ecONt-e-- ' _ cont
e
- N
Eygt [+ <v~ [request: [1 1, reply-to: cyI]
| _‘conf N
-
- Egt [cl (v~ [reply' '2]]
‘Thus we see that B in turn has sub-actlvlties v and ) such that
P e, PRET I hartly) = Eg  finishly) = Eqg
8" {l(flb <= [1]) -=> 1|} ' start(&') = Eg fmtsh(&') Ell B

Notice that both # and -y both satxsfy the partxal descriptlon {I(ﬂb <= [2]) ==> 1]} even though they are '
distinct activities which share no events in common. Uniquely identifying activities has the same -

~ problems as uniquely identxfying ob jects and events: no finite local description ! will serve as a unique
identif ication. :
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An actor f will be said to behave like a procedure if the following conditions hold for all the hlstorles'
- of f: _ :

" 1: Al of the messengers of events in the history are sither requests or replies.
2 -Thoro is at most one reply ovonl'Evlo ‘rany glvon continuation actor in a history of {. Furthermore
such an event must be an element of the activity of a request event of the form ‘
[.. <v~ [request: .., reply-t0: ¢]] and every such request ovonl must be an element of
prodocossors.ac,_>(E) - '
3 Tho aclwuhos of f are properly nested. IE. for any two activities of il ',',, the case that either

“one oclwuty is a propor ‘subset of lho other or the two activities are disjoint.

X2 — Limits of Gontinuous Functionals

The actor model of computation is based on axlomatizxng the causal and incndental relatnons among, ’
computational events. The Scott-Strachey model of computation is based on the mathematical analysis
- of continuous function spaces. Superficially these two models might seem to have little in common. In
this section we will analyze the relationship between these models of computation. Our main result is -

~ _that if an actor behaves like a mathematical function then it is the limit of a continuous functional in’

the sense of Scott. This result follows from the law that each event has only finitely many immediate
‘successors in the continuation ordenng and the law of finite chains between two events in the :
continuation ordering : :

~ Once again we will make the discussion concrete by considering the behavior of an implementation of
the Fibonaccl f unctlon defined by the following procedure- S

(flb n) =
- (if ‘ :
(n=1) then 1
(n=2)then 1
(n>2) then {(fib (n 1)) + (fib (n 2)))) -

Doflnihon Supposo f behaves like a mathematical funcllon and that <x y>¢f and (x' y’)(f
Then <x’ y*> will be said to be an immediate f~descendant of <x y» if
there i is some history of f which has events Ej and Ep of the lorm '
Eq: L <v~ [request: x, reply-to: ..]] N
- Ept [t <o~ [request: X', reply-to: .13 '
- such that Ey ==> E7 and it is not the case that lhoro is an ovonl E of lho form
_ E: [f <v~ [request: .., reply-to: . 1 -
- such that El =cont=> E =cont=> EZ

A ‘For example @ 1) is an immedlate lub-descendant of (3 2.
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Dohmiion' Suppose that <x y>¢f
immodlaie-doscendants,((x ) = {«& yhH| «' y'> is an immediate f-descendant of (x y>}

~ immediate-descendantsy; (<1 1>) = : {}

~ Dofiniiton: G is 2 sei of mpui-ouipui pairs ihon e

- input-output pairs in G. For example we have the following results for our impiementation of the

‘ immediate-descendants;, (<2 1)) = {}

immodlato-descendanisf,b(a D)={K1 1< 1)}
immodlato-doscondanishb(<5 5)= {3 2> (4 3}

Lemma: If f behaves like a mathematicai function and x y)(i then mmodnio-doscendanis,((x y>) is finite.

Proof. Follows from the Law of Fimtely Many Immediate Successors in the Activation Ordering

D,(G) = {(x y)l <X y>€i and |mmodlaie-doscendanis,(<x y>) c G}
Intuitively Dy(G) is the set of all input-output pairs of f that can be computed immediately from the

fibonacci f unction

: o,,b(m = {1 D@ b}

Dripti<t 1> @ D = (<1 1> <2 1 @ 2y
Dripli<t 1> <2 1> 0 D)) = {1 1> @ 1> B D)

i _Df.b“<3 DABP={ADRLED}

Clearly

i.omme- If f behaves like a mathematical f unction, then D¢ is a continuous f unctlonal

Proof~ From its dei‘xmtnon Dy is clearly monotonic. We will use N to denote the natural numbers [i.e. the -
non-negative integersl. Suppose that {X;l i€N} is a chain of sets of ordered pairs so that X; ¢ X,u To
prove that D, s continuous we shall prove that '

o(N Df‘x’ = Df‘UieN xi)

‘ UieN D,(x,) DylUien Xi) -
by the monotonicity of Df To prove the set inclusion the other way around suppose ‘

(X,Y) € Df(U'(N X‘)

It f ollows from the dei‘ inition of Dy that <x,y>€i and

mmodteie-doscendanis*((x.y)) c UieN X-

' Therefore there exists a natural number n such that mmedcaio-dcscondanis,((x,y)) c X“ since the -

immediate f—descendants of <x,y> are finite. Thus <x,y>€D,(Xn) and
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'<x.y> ¢ Uien Dy;)

Definition: ‘A sequence <x; y;> such that each < ypél will be said to be a descending f-chain if each 7 o

ey Yi+1> is an immediate f-descendant of <x; yp.
| Example: The following are vdescendmg fib-chains

" [<6 8> <4 3) <3.2> <1 1))

| <7 13> <5 5> 3 2> <2 D]

) Lcmml' If <x y)(l then there are only f mitely many descending f-chains begining with « Y.

: Proof. Follows from the fact that there are only finitely many events between two events of the form
[f (v [request x, reply-to: ¢]] and [c <~~ [reply: yI] in the continuation ordering.

o Dohmhom If <x y>€l then hmghl(f,(x y)l will be defined as the maximum length of the descending
l—chams beginnmg with <x y>. : : : :

,L.mm.‘ If <x y>¢f then <x y)(D,""ghw'“ Y>)({}l where Df" is the n-fold composition of D, -with itself

- Thoorem. If an actor { behaves like a mathematical function then Dy is a continuous functional in the |
sense of Scott and fis the limit of Df ie. -

graph(l) = U,(N Df @

. where graph(l) is the set of input-output pairs of It immediately follows that graph(l) is the minimal "
~ fixed point of D, since _

: graph(f) = Df(greph(l))
_ Conversely, if 1 is the limit of a continuous functional then the method used above can be used to
- construct a history for each request to f such that the histories are consistent and each history has the

- property that each event has only finitely many immediate successors and f mitely many predecessors in
the continuation ordering. v :

The above theorem makes precise the physical basis for beheving that the graph of every physically |

- realizable mathematical function is the limit of a continuous functional: the Law of Finitely Many

‘Immediate Successors and the Law of Finite Chains between two Events in the Continuation Ordering.
As currently developed the Scott-Strachey theory does not account for the the properties of the arrival -
orderings of actors such as synchronization primitives and shared data bases. An interesting topic that

_is left open for future research is how the Scott-Strachey theory can be extended in a natural way to
'- encompass the physml constraints imposed by the arrival orderings of actors.
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SECTION XI — FUTURE WORK

When we first began our investigation into message-passing system we developed the intuitively
appealing idea of "actors™ as agents which communicate by passing messages. This intuitive notion
proved to be too naive a basis for precise technical work in the same way that the intuitive notion of a

“set” as a collection of ob jects proved to be too naive a basis in mathematics. The solution has been the
development of the axioms in this paper which are intended to serve as the first step in developing -

axioms which capture the intuitive notion of actors as agents which communicate by sending and
receiving messages :

: -There remains a great deal of work to be done in the development of the theory presented in this
paper. The "completeness” of the axioms presented here needs to be intensively studied to determine if
they can be significantly ‘strengthened

A mathematical characterization of the models which satisfy the axioms needs to be developed The

characterization should include a description of a standard model obtained by a constructive method for

_enumerating all the computation histories of a system that satisfy the axioms in this paper. The
~ development of such a constructive model will prove the consistency of the axioms in this paper as well
. as providing a standard model in which the axioms can be interpreted. :

 We would like to apply the semantic theory developed in this paper in several directions The
“semantics of programming languages for multi-processing problem solving languages such as KRL,

. OWL, PLASMA, SIMULA, SMALLTALK, AMORD, and the quantificational calculus need to be

rigorously developed.- In this way we hope to be able to make preuse technical contributions to the

o "declarative—procedural controversy

There are a number of questions concerned wnth how efficiently actor systems can be implemented on

~ networks of machines. In terms of the physical transport of information there are several ways in
- which an event can be implemented. The information in the messenger can be physically transported to

the target; the target can be transported to the messenger, or the two can rendezvous at some other
location. Under differing circumstances any one of the above possibilities might be more efficient. For.

example if the target is a small function which makes use of a large number of the extended
acquaintances of the messenger then it is probably more efficient to transport the target to the

- messenger. On the other hand if the target is a large data base which is searched according to the .
. directions of a small query in the messenger, then it is probably more efficient to transport the -
messenger to the target. Research is needed to develop dynamic mechanisms for deciding what
information to transport for computations that are physically distributed on a network of machines.

B Hopef ully some general mechanisms can be developed which, in practice, yield acceptable efficiency.
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' SECTION XII --- CONCLUSION

“In this paper we have presented some laws that must be obeyed by the computations‘ of communicating
~ parallel processes. The theory is based on axiomatizing the causal and incidental relations between
computational events where each event consists of sending a message. An important advantage of the

" actor message-passing model is that specifications for actors can be expressed directly in terms of the
- . events involving those actors. Our approach is different from the more usual one which is to postulate

the existence and "fairness” of some underlying global "scheduler” [21] or “oracle” [22]. Partial orders
provide a means for concentrating on the causal relations among event as opposed to time relationships
that result from some arbitrary interieavmg

The development of histories in the actor model of computation as partial orders of events as a

generalization of the previous development as sequences of events has proven to be very fruitful. The

partial orders -act-», =arr=>, for each actor x, =cont=3, and ==, are all physically well grounded in the

" _ sense that if two events are observed to be related in a certain way in some observation frame then they

will be observed to be related in the same way in all observation frames. Each of these different

o orderings serves its own purpose in the model. The following table summarizes the partial orders

' which we have introduced to describe the histories of computations

o cact=> . o activation - eausaiity between events
o =arrdy . arrival " local time of arrival of messages sent to x
== - combined " general notion of one event preeedmg anothor

B -com-> ’ ) coniinuation 'p nested aciwmes

: Partiai orders of histories have been used to develop specificatlon and proof techniques for moduiar'
synchronization primitives [32,34] The machinery of partial orders of events provides the semantic
glue needed to relate the specif ications and implementations of communicatmg parailel processes

o This paper has traced some of the important reiationships between the actor message-passing model of
computation and classical denotational, semantics. It has been proved that every actor which behaves
- like a mathematical function is the limit of a continuous functional. This result provides a physical
basis for the treatment of continuity in the Scott-Strachey theory of computation. The actor
message-passing model has important applications for the semantics of communicating parallel processes
- which will be explored in subsequent papers v
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