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Abstract

We formulate the rudiments of a method for assessing the difficulty of dividing

a computational problem into "independent simpler parts.'" This work illustrates
measures of complexity which attempt to capture the distinction between "local"

~ and "global" computational problems. One such measure is the covering multi-
plicity, or average number of partial computations which take account of a given
piece of data. Another measure reflects the intuitive notion of a "highly inter-
connected" computational problem, for which subsets of the data cannot be
processed "in isolation." These ideas are applied in the setting of computational
geometry to show that the connectivity predicate has unbounded covering multi- o
plicity and is highly interconnected; and in the setting of numerical computations
to measure the complexity of evaluating polynomials and solving systems of
linear equations. : : : ' ’ ' '

‘This is a preprint of a paper to appear in The Journal of Theoretical Computer
Science. ‘ . : : :




Towards a Theory of Local and Giobal in Computation

' Harold Abelson

1. lntr.oduction K

o Many approaches to computatioh“alcomplexity' focus 1on"4iss'uesconcer-nlng therspeed of
E computatlon' How. many bas:c operatvons are required ta compute a given- functlon" How canb
.computatlon tlme be decreased by performmg Operahons in parallel rather than serlally?
'What are the ttme-space tradeolfs for a given class of algonthms" There is, however, another

_ kmd of complexlty This is the orgamzatlonal OF uructuml complexlty of processes realized

: 'vby large numbers of mterconnected elements Structural complexcty is ‘an lmportant concernA’

» in many of the dlffrcult areas to whlch computatlonal methods are ;ust begmnmg to be applled ;'
For example, in explonng computatlonal models for vusnon [G], one is struck by the fact thatf
rfor a contemporary dlgltal computer, the ratlo of .connections to components is about three,
whereas for the mammallan cortex it lies between 10 and 10, 000 A comparuson such as this
‘ raises a challenge for theoretlcal computer science: Is it pouxble to charactenze tho:e
Icomputanonal problems whose soluuon is mheremly better suited to a h:ghly mlerconnected
uructure than to a wcakly mtcrconnccted structure? 7 |

A snmlar issue arises in the study of dlstrlbuted computatton and computer net\-lvorks.‘

In thts settlng, an entlty such as a data base might be wndely dlstrlbuted among the nodes of a

network. Analyses of sortmg or searchmg the data base must be concerned not only with

'. elementary operatlons but also with mternodal commumcatlon Conslder, for example, solvmg
" a large system of lmear equatlons, where each column of the matrix resides at a dlfferent, .
. node. If the network |s far-—flung, the hme and cost of commumcahon could dominate ' the
‘.solution process, and arlthmetvc operatlons performed at mdw;dual nodes mlght be viewed

simply as overhead. In a case like thls, one would be con.cerned with mmimizing,vnot
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_ necessarily the number ofoperations, but rather thetotal amount of information which must
be shipped across the network. Wh‘at complexity measure is appropriate to thls' problem?
' Many of the issues in structural complexvty revolve around the notion of "local and

global" or parts and wholes.” Loosely speakmg, a computatlonal problem ls mherenlly locul |f

it can be dwtded mto small weakly lnteractlng modules A computational problem is mheremly ‘

- global lf any way of dtwdmg it mto pleces must entall substantlal mteractlon among the
pleces. Creatmg a useful theory of Iocal and global is of course a formidable task ‘and this
paper can be no more than an initial attempt. l mtroduce a measure, called the covcnng
mulnplzcuy. whsch reflects the orgamzatuonal complexuty of a problem in the sense hmted atr
above. Covermg multuplactty IS, roughly, the. number of mdependent parts of a process which
must take account of a glven plece of data.' In visual processmg thls mlght be, for example,
‘the average number of "low fevel” elements mfluenced by a given patch of the rettna The":
concept of covering multlpllcnty surely does not capture all of what mnght be meant by local )
band global in computatuon, but iti is at least a start 7
This mtroductlon contlnues wuth a review of the settmgt establlshed by Ml.nsky and

Papert [7] in thelr analysls of the perceptrOn We will make use of the same basic framework
although many of Mmsky and Papert"s techmques, relymg fundamentally on the lmearlty of the

‘ perceptron s decnston element are unsuntable in the present, more - general settmg Sect:on 2: v

of the paper begms the formal presentatvon, providing defmlttons both of covermg multlpllcuty- '

- ~and also another complexlty measure based on the udea of a "hlghly mterconnected" o

computatmn We fmd that computatlons whlch determme whether or not a geometrlc ftgure is’
'connected must exh|b|t arbltrarlly hlgh covermg multlphcfty, and must be hlghly
_.mterconnected thus prowdmg a justtflcatnon of Mmsky and Papert’s intuitive guess [7]

~"We chose [in studying perceptrons] to mvesttgate connectcdncn because
of a belief that this predlcate is nonlocal in 'some very deep sense.”

'Sectlon 3 turns from geometry to the computatlon of real-valued functlons and glves a
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necessary and sufticlent condition lor "computatlonal decomoosability" which is used to

'ldentlfy multivariate polynomlals whose evaluation requires arbltrarlly hlgh covermg
» multaplncrty We also dJscuss the matnx problem cnted above The concluslon notes some of
the many questlons whlch are left untouched in this mlhal treatment ot local and global

"complexlty ‘ S . ' o L

I.t; The Perceptron framewbrk

' Mmsky and Papert's theory begms wuth an |deaI|zed retma R whlch is simply a:

'collectlon ot n pomts Flgures on the retina are- subsets X cR  We can think of R as the =

squares in a two—dlmenslonal plane grid and arbltrary geometnc flgures as approxvmated by

: some collecllon of squares A predacata on R is 2 tunctcon f from flgures on R to {0 1} The :

aupport of fis the set of all pomts of R whtch affect the value of £, and the order of f is the,

size of support(f) A pcrceptron is a predlcate whvch has the form |
ﬂX)al'E af(X)>01

where f are predlcates and 8 a » “2' +v . are real numbers (We tollow Mmsky and Papert in

. usmg the notation I'some oondttlon'l to signify the predicate whose value is 1if the condmon is

true and 0 if the condlllon is false) The order of the perceptron is the maxtmum order of any

7 of the f Mmsky and Papert characterlze the comple)uty of geometnc preducates in terms of a

the order of the perceptrons whlch compute them. They demonstrate, for example, that the

»predlcate IXis connected'l has mfmue order, that |s, the order of any perceptron whlch )

computes connectlwty must become arbltrarrly large as the size of the retma becornes large
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1.2. Insufficiency of the perceptron analysis as a general theory of local and globat
The notion of order has considerable appeal as a characterization of "local versus

global"~ A low order'perceptron is local -- the partial predicates can make independent

computatlons based on’ small patches of lhe retma A hlgh order computatlon is global -

_lndwudual partlal predlcates must access portlons of the retma Unfortunately, this
_charactenzatlon faols when we consuder structures more general than the perceptron ) |

A perceptron can be vrewed as a COmpOsttlon of functcons f= g(f,. fz, B ) where
é- is a predlcate on Boolean r-tuples. ln a perceptron, g must be a lmear threshold functlon

We would hke to consuder more general computatlonal schemes in whuch there are no

‘restnctrons on g Extendmg Mmsky and Papert’s results to this more general settung,

. however, raises many problems Constder thelr paradlgm result Connectwnty is not of flmte.

order This follows from an analysis whose main step is: Puruy, that i is, the predlcate

l'X contams an even number of points1

ls not of f|mte orden But thls can be true only in the lmear threshold context lf we omlt thls )

] restrlctlon, then the determmatron of parlty can be as. ?'localf' as we please: For any arbltrary
dtvlslon of the retma mto dlsjomt sets S let
f(X) =fxn S has even parlty'l

. Then X has even panty |f -and only if the product over all i of 2f (X) -lis. posltuve

To obtain a hold on what makes the above parlty computahon "local” and why we
suspect that any connectwnty computatlon must be "global” notice that for parlty the supports E
-are du)oznl - each point of the retma ls examined by only one partral predxcate  Moreover,

any division of the retina mto disjoint sets can serve as the partlal predlcate supports for

computing parity. L'et’s examine in this light a predicate which we might agree is "local,” the

' property of bemg locally convex, which can be be determmed by checking that X has

non—negatwe curvature at each of its. boundary pomts Even though this deter_mmataon is"
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"Iocal," it cannot be easily realized with dis}oint supports. Suppose, for example, that we
 divide the retina in two disjoint halves ‘and attempt to compute 'local convexity. Consider the
‘ shape in Flgure 1. Although it is not convex, the point of negatwe curvature Wl" be

undetected m either support But th!s is hardly a fundamental problem We merety need to

allow a but ot overlap as in Flgure 2 so that a tew pomts of the retina Ile in more than one

support and our local computatlon can proceed wnthout problem We suspect, though that no

such scmpte scheme can work for connectivity. In determmmg connectwuty, we -would guess, o '

points must in generalfbe accessed by many_parhal predrcates. Thrs provides motwatlon for _
our definition of covering multiplicity:
. The coverihg »m'utltiplicityvu’ is the ‘average number of partial predicates ’

~ which examine a given point on the retina.

a 2. Support structuros tor'goornotric predicates
| 21 Bastc defmmon: '. |
Definition 2.1.1. For any function of n vanables f(xl, e X ) the set R= {1, ..., n}is called
the reuna of f The :upporl of fis the smallest set S c R such that
| P iC TR ) f(yp ,y,._)

‘whenever x; = y; for all i €§.

Throughout Section 2, we shall assume that'the' functions concerned are Boolean functions-of
Booleen veriables; although later oln we shall also consider real-vatued fu’nvctions of real .

»variables. Note that if R is finite, then any fu_nction has a unique support.
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Definition 2.1.2. A support structure cn a retina R is a sequence of the form

H=(,..,S)

' A where S j c R. Note that the S : need not be distinct. 't'he number r is called the rank of H.
The order of H is the maximum over ) of tS .. For any ACR defme covH(ﬂ) to be the R

' numbevr ot supports of the structure whlch mtersect A

covg(A) = l{j: ANS; # ”’}".

The eo.)m;.g 'mqltiplicity of H is the average over R of the number of supports contctning a

u(H) = (1/n) Z; g covi{i})

Note 'tttat the sum over R of covt{i)) is precisely the r\umber of pairs (i, S ;) where i € S s

Therefore, if all the S have the same size k, then the covenng multlphcrty, the order, the .

rank and the size of the retina are related by p(II)n =-kr,

Definition 2.1.3 A support structure H = (S'i) is said to admit a funct.icn. A=x P - z,) if fcan

~ be represented in the form

f's’(fp-v's fr)

If fisa function from {0 I}R to {0, I}; ie, a "predicate on R," we might try to define .'

" the covering multrphcrty of f to be the minimum covermg mulhphclty of any support structure .
B whlch admits £ But this will not work, smce any predicate is ‘admitted by the multupllclty 1

'structure ({l}, {2},'. - {n}). Covermg multlphcrty, therefore, is not a.usefu| measure of

complexrty when consudermg structures cons:stmg of many smatl supports We wrll'

concentrate on the oppOsrte sutuatron, in whtch we attempt to keep the ranks of the structures
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bounded for targe retiﬁas by using larger and larger supports. Qhe example of this- kind pf
structure is the ffactional support structire, in which each support is some fixed fraction of

'th‘e eyntire retina:

Definition’ 2 l 4, Let M be a posmve mteger A support structure Hona retma R is. sald to be

a 1/M-fractional support structure if eac_h‘ support in H has size n/M.

.(lf M ‘dees not ,divide n evenly we suppose eat:h support to have size wttbiﬁ it/z of this

~ value))

ERp Strictly speaking, of eourse, a ptedicate f is defined only for a particular retina, so it

‘.makges‘vho formal sense to sbeak of "computing f on large retinas.” On the other hand, we can

think of pfoperties ‘like "parity'" and "connectedness" as defining entire families of predicates,

‘ one predvcate for each retma We can now defme the covering multuphcuty of such a predlcate o

(famnly) in the context of fractuonal supports

Defmltlon 2.1 5 For any predlcate f on R and posutwe mteger M we deflne u(f, M, R), the.

"covcnng muluplzcuy of f for I/M fracuonul :upporu to be the mmlmum n of any

) I/M -fractlonal support structure whlch admits f
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Definition 2.1.6. A predicate family f is said to have covering multiplicity at most B for all

fractiomil supports, p(f; frac) < B, if, for all M, u(f, M, R) is uniformly bounded by B on Iarge

- retinas. That is, for any M lhere should exist a bound ny such that u(f, M, R) < B for any

- retina R wlth IR| > "M 1 such a flmle value B exlsts, we say lhal f has fmue covenng -

muluphcuy for fmcuomxl supporu

© 2.2. Examples

: .To: illustrate the‘abo‘ve definitions, we compute the plovering mulliplicily for
I/M-fractional supports for the local eonvexity'predicate, usirlg the the eomputation outlined

m Section 1.2 We noled thal Iocal convexlty can be delermmed by exammlng each boundary _ ‘

_ pomt of the flgure m questlon, and lhal thls can be done wﬂh supports lhat do not overlap,

except for small mterfaces along lhe edges
Suppose that the retina is a square h units on a slde, n= h2 Usung supporls of order

n/M we divide R mto M strips, each stnp a rectangle of size h by h/M We must also asslgn

) additional partlal funcllons to examine the interfaces between lhe stnps (See F'cgure 3) Each

mterface is |tself a strlp of wrdth 2, and lhus one additional support (of order I:ZIM) can

~ contain h/2M interfaces (each of size 2’-) Since there are M-1 lnlerfaces in all we need_ 4'

2M(M I)Ih addlhonal mlerface supports.” So lhe entire struclure for local convexnty has
r= rank - s(strlps) + s(mlerface supports) -M+ 2M(M I)/l: o
 k=order = K2/M

 peke/n= 1+ AM-D/h = 1+ AM-D/Vn

- Thus we have shown
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Example 2.2.1. On a square retina R, predicate_ f=TXis tocatty convex] has
ulf, M, R < 1+ 2AM-D/Vn

Consequently, for any ¢ > 0, we have p(f; frac) < 1 + .

" As a second example, consider the predicate IXis a single; solid rectangiel. Thisrcanr

be computed by partial tunctions'whtch "count the corners of X." That is, a figure X isa single

» sohd rectangle if and only |f |ts boundary contams precnsely four "convex corners” (anure 4a),

no “concave corners” (Flg 4b) and no “double corners (Fig. 4c). Thls computatlon can be . '
7 ‘pertormed wuth almost the same support structure as used above, ie., by dlwdmg the retma
mto dtsjomt strlps together ‘with mterface stnps ot wudth 2. Thns tlme, however, we asstgn.

zhree partuat functtons, hence three supports, to each of the strups ln each support A the

three correspondmg partial functlons f r fz, f3 output 0 or 1 as follows:
LIfXnN A contams concave comers, double corners, or more than four convex
corners, then all f output l | |
2. Otherwise the three tunctuon's output the number (from 0 to 4, countmg in bmary) of
conilex_ corners of X N /!. 7 |

Using this informatio‘n, the function g can determine whether or not X is.a rectangle. The

covering multiplicity here is three times as g_r'eat as for local convexity: v

_Examplo 2. 22 lt f is the predlcate [Xis a slngle sohd rectangle'l then for any e > 0

p(!- frac) <3 +e.

“These examples |I|ustrate predlcates that can be computed wuth small covermg
multlplmty On the other hand, we fmd that no fixed bound on covermg multuphcnty can’

sufttce for computmg arbltrary predlcates on Iarge retmas
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Prooosition 2.23. Let M be a positive integer, and € a positive real number. Then any

I/M-frccuonal suppon structure H which admits all predlcalea on a reting R must havc

~pH)>(n - e)/M -

provided r is sufficiently lar'gc‘ with respect to M.

Proof. There are 22 predicates on a retina of size n. 'Consider, on the other hand, the number
of predlcates admltted by support structures of rank r and order k. For each of the r partlat'

' ‘_ predlcates f- there are ( ) ways of choosmg support(f ); and havmg selected a support )

. k : .
there are then 22 functlons f with that support In addltron, there are there are 22 ,

posslbvhttes for g So if the structure admits any tunctuon of n varlabies, ‘we must have

Ay

; Usmg the fact that ( ) < 2", ‘and takmg logarithms, gives

2"<m+2’+r2k

5 or, smce k - n/M and r= np/k Mu

2"<2M“+Mp(n+2"”’) l'.'l

2.3 n tghly mterconnectcd computauons
Covermg multlphuty is a measure of the gtobatness of a computahon, which can

provide meaningful results about families of suppo_rts. in which the order grows Iarge along

" with the size of the retina. For arbitr‘ary supports we can consider instead the question of

- how much 'intérconnect_ion" among elements of the retina.is required for a given computation.
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Dofmition 2.3 1. If H =( S,, ey S') is a support structure and A c R define Con"(/l) c R to
be the set 7 » '

Intuitively, imagine that H is "wired” by connecting together alltpairs. of elements in each

- support. Then Con(A) consists of all those points of R with “direct connections” to points of

o A By Way of analogy with 2. 2 3, we witl show that any com-putatior\él séhenrie which can 1‘.

'compute arbitrary Boolean functions must be ’hlghly interconnected” in the sense that, for any

Ac R either A must intersect many supports or else Con(A) must c0nta|n essenhally all of R.

FDefmmon 232 A famtly of support structures H on retmas R is said to be hlghly

» zmerconneczed if, given any posutwe mteger B and posttwe real number ¢, one has that |f nis

sufﬁcuently large with respect to B then for any subset A c R with IAI > en, either *

cov (4) > B or else lConH(H)l > (l-e)n. A predlcate_f is satd to be highly lmcrc_onnected if
any family of support structures which admits £ on iarg‘ev retinasb ‘must be highty

interconnected.

. Proposttlon 233. Any falmly of mpporl structures wluch admus arbitrery predxcales must be

~haghly lmerconnected Marc preczscly, xf Hisa support structure which admu: arbnrary

’ »predtcates on a retina R, lhen, for any ACR, euhcr cov H(/l) 2 IAI or el:e

|Con ”(/l)l >n- log z(cov H(/!))

This will follow from another simple tcounting argument:
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Lemma 23 .4. Cwon collections of Boolean vanables X=(xp... xg) and Y = (y,, cen ), let
t be any inlcgcr cuch that't <a and log gt <-b. "Then there exist functions £ XxY {01}
whlch cannot be repreaemed in the form

ﬂx Y) - J(f,(X), y' f‘(X)t Y)

| ,. Proof. Funchons EFXxY={o0, I} are equwaient to functions f' from X into {0, 1} ’ the set’

’of Boolean funchons from into {o, 1}, via the correspondence [f’(X)](Y) = f(X, Y)

Represenhng £ in the requ:red form i is equuvalenl to finding a factoruzahon o_f ™

S
&
x—f—éo Y

where F is a set of 1 Booiean variables; ®(X) = (f,(X),:. -+ £{X)) and [g’(f’)](f) = g(F.,Y).

‘To demonstrate that not all functions factor |;n this way, we'need only oonsider the :s:izes of
the sets mvolved An element of X can take on 28 possvble values, and there are 22 possuble e
values for an: element of {0, I}Y To construct a funchon F* which does not factor, flrst _'

S enumerate the e!ements of X

o , o v v,, 112,_...‘,‘0211
and the elements of {0, '.I}Y:’ S .

) E’oszr--' 522
There are two cases, dependmg on the relatwe sizes of a and b

1 It 22>a>¢ let f“(v)-E for i=1..,2% Then the |mage of f" contams 2" g

v dlshnct elements, so that f" cannot factor through F, which has S|ze 2' < 2%

b
2. 1f a> 26>, let !“(v ) -E for i=1. Then the image of f* contams 22

dustmct elements, so that f’ cannot factor through F whtch has size 2! < 22 a




lying in fewer than M supports:
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Preof of 23.3.For any Ac R deﬁne R(A) c R to be the set (R-Con(A)) U 4, i.e., delete from R

all variables which lie in 4Cbn(/!) but not in A. The inclusion of R(A) in R induces a surjection .

{0 I}R - {0, ,}R(H) Set ¢ = cov(A), X to be the variables in A, and Y to be.the n-|Con(A))|

l . varlables in R(A)-A Then any preducate on R whlch is admltted by H mduces a predccate on’

R(A) of_ the form g(fI(X), fz(X), . f‘(X), Y) Now. apply 234. O

In the case. of 1/M-fractional supports, the following combmatonal argument shows

.lhat mterconnectedness |mpI|es hcgh covering multvphcrty

'LOm-ma 235. If H i:ian.y farnﬂy of highfy {merconncclcd lilM-fractironcl su'pport structures
V then llm" »eo p(H) 2 M. Consequemly, a h;ghly uuerconnecwd predzcace cannot have fmue

'—muluplzcuy for all fracuonal supporn

L Proof. First note that if 4 c R with cov(/]) < M-l then lCon(A)l < nM-D/M. So if the family
of support structures is h;ghly mlerconnected we can select any number ¢ and be ‘sure that

" for R Iarge enough we have cov(/l) < M- 1 implies |4} < en.

- For any ofrthe retmas Rvm the family, let R M be the subset of R eonsisi_ing of points ‘

Ry = liek: cov({i}) < M}

. ‘Note, in parhcular, that R' consrsts of all pomts with covermg mulhphcnty 0 .

. Then » - - pn= xtER‘ cov((z}) +. x:eR R‘ cov({t})
But S E EieRMcov({l}) 2Ryl - 1Ryl
and R ' EieR-RMcov({i}) > M(n-|Ry)
‘Therefore,' we hav.e o pn 2 Mn - (M-DIRyl - IR,

or . XM-M-DRym-GRYw M
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If o C {S } is some coliection of the supports in Il define R to be the subset of R
V consisting of those points which are contained in only those supports which he in o

-{lER‘t¢SofOFSj¢U}

o .Conslder now the umon of the R over all sets 4 of M 1 parhal preducates Thcs “union is o o »

precisely the subset of R conscshng of pom!s i for whtch cov({x}) < M 1. That is,

s Ry 'UIUI-M-IRnr @
If ris the rank of H then the number of sets o contammg precrsely M 1 supports is equal to
the bmormal coefhcrent ( M- 1) Notice that for a given o, cov(R ) cannot be greater than
el Thus, accordmg to the remark noted at the begmmng of (he proof, we have IR |<enon
o large retmas.whenever lcl = M-1. Equahon (2) therefore lmphes that

. IRyl < (M ) e
K Combmmg this wrth |R,l <en and equahon (1) ylelds
| | p>M—(Mne(M_,)

Smce the order of His equal to n/M, we have that r = pM Subshtutmg this into the a.bovev

. ineQuallty and using the fact that (M M,) < 2BM. -gives ) » :

| | p>M—e[(Ml)2“M+I] - | @

Now, glven any 6 >0, choose e small en0ugh s0 that e[ (M- I)ZM +l ] < 6 and consvder

retinas with n large enough so that (3) holds. Suppose, for n this |arge, we had u < M~6

Then mM M M-D2#M 17 < 8, and » |
u+ e (M- 1)2#‘”+1]<,.+6<M 5+6<M

:whlch would contraduct (3). Therefore we must have p > M—6 o
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2.4. Interconnectedness of the Connectivil} Predicate

: Theofem 2A4.1. The predicate X is connected] is highly imercoﬁnected.

‘The pfdof arises as a generalization of the simple observ‘atibn that connectivity cannot be
admif‘ed by a support structure'of fank 2in .which the retina is .partiﬁ'oned into disjoint '
halves, as can be seen n’nmedcately by considering the connechvuty of the figures formed by B
the vanous combmahons S; U T shown in thure 5.  This construction has been generallzed |
by Papert [9] to show that, if we allow only those structures in which no support intersects

* both the left and nght halves of lhe retma, then the rank requ'red for determmmg "

' connectlvnty must grow arbltrarlly iarge on Iarge retmas .

Proposition 2.4.2. Suppose H is a family of support stru,cture;' which admits rx' t;_s connected,
- and that no su.j:po)’! in H 'imc‘ri:ecu both the left and ﬁéht halves of the rétim;. Then, as n

increases, the rank of H must grow at least as rapidly as vn.

- Proof. Consider the famvily ;)f figures illustrated in Figure 6, eagh consistiﬁg of a »squbare, with m
horizontal lines méetihg the sides of the square. at contact points x 1,'.. . ,gm’ .yp‘-; * Y
Each pair of Booleavnv m-tuples X = (x'i,‘. . , xm) and Y - ("'I; e y";) givesf a figure F(X, Y) ;

| and it is easy to see thati oné‘o.f these ﬁg_ufes is co-nngcted:if and only if each hprizbn_t;l line
is cbnneéted to the Vsqua're, eifhér on the left o-r on the right. rln _o‘therv words, F (X,VIY) is
'connect.ed if ana only if XVY (Rgcall,tﬁ;at XVY, "X or ¥, me_a.ns th_at_ for each i we have |
%;Vy; .)  | '_ | | o

 Let f I - fa. be those paﬂial predicates whbse‘support lies in .the left hélf of the

" retina. 'l;hén, for any figure F = F(X, Y), the a-tuple fL(F) - (f‘(F), e fa(F)) depends only. A




' Figure 5

A simple rank two structure cannot détect'connectivity
for the figures Si"Tj




X4 K—‘ﬁ‘ of Y1
X5 fo of ¥,
& b— dy
-X4 lo A{N,k
‘ 5 L o S’s
*s for —of Y6

Figure 6

Connectivity figures for Proposition 2.4.2
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on the m-tuple X, i.e, fL(F(X,' YN = fL(XS. We claim, therefore, that'a _>_ m. For, if not, then
there are two oislinot m-tuples X‘ and Xz wit.h 'fL(XI) - fL(Xz). But then, for any m-tupie- .
¥, we have F(X,, Y) is connected if ano only .if F(X,, Y)is oonnecled. On the other hand, |
‘ taking Y =~X 1 and noting that Fkx ,,*X ,) is conhected, shows that w_e mu_st A',,“,?Y?,sz"'x r
' 'Similarly, taklng};- ~X2 gl;es X IV~X > Therefore X 1 = Xg, and so a 2 m. Final}ly, observe
‘ that on a retina of size n, we can choose the numbe_f of .horizontal‘ st_rios to be proportional to

V. U

The next step in the proof of 241 is to extend the above construchon so that ’the o

v. contact pomts x and y; can be dlstnbuted throughout the rehna

."Lomma 2 4 3 For any ;mcger m lhcre is a constant K(m) such that ifH udmxu connectwuy on

' ‘a retina R and A c R with |4] > K\/n, then either cov(A) > m or else ICon(A)l > R K\/n.

Proof Let R‘ c R be the subset of R cons1stmg of all pomts whtch do not lie ‘w1thm distance
2m of the boundary of R Choose pomts Xpyeoo lymg in 4 such that (1) each x;

: ) contamed in RI (2) For i # J» x and x; do not lie within the same honzontal row of R and,
moreover, the horizontal rows contaming ¥; and x; are at least six squares apart (See Fugure ]
7) Notice that we can do this so Iong as |A] is greater than IR I‘ plus the size of 6m honzontal .
stnps, iLe, IAI > M\’n Next choose points Ypoon ¥y in R-Con(A) such that (1) each Yj lies
inR 1 (2) the hornzontai row contammg any y; hes at least 6 umts from the row contammg any
Y (f # k) or any x ‘ We can do thls s0 long as |R Con(A)I > 18m\/n. To prove the Lemma we
“show that these x’s and ¥'s can be used as contacts in a famlly of flgures equuvalent to the
flgures of 2. 4 2. This wnll imply at once that cov(/l) > m.

We construct the figures as follows: Begm by renumbering the x’s from top to bottom,




Figure 7

Choosing the points X, in Lemma 2.4.3




in the boundary of RI' connect the bottom wure of each x; to the tOp wnre of x.

Local and Global in Computation -- September 20, 1977 -- 17

ie., so'that x; is above x; for i<j. Next arrange each x; to be a rontact point for three

3.

horizontal "wires" as shown in Figure 8. Extend each of these wires on the left to meet the

boundary of R‘ ‘Now do the same thing for the y's, only this time working to the right. Next,

i+

: stmnlarly for the ¥'s. Connect the top wires for.x, and yp and the bottom wires for xm and

Y Fmalty, make: a connection "around the bottom of R" to join the mlddte wire of x; to the v

o mtddte wtre of the correspondmg yi, -as follows' for (x » y') work in the boundary of R for

. ("2'72)’ in the strip 3 units in from the boundary, and so on. These latter connectcons aII Iue

m R-R r and so do not mtertere with the prewous wires. (The fmal figure is" illustrated in

Flgure 9 for the case m = 3) As in 2.4.2, these are connected if and only if Xvy. 0O

» Proot of 2.4.1. Given M and ¢, let K be the constant K(M#t)v given by Lemma 2.4.3, and choose. v
" R large enough so that Kvn < en. Then, if |4] > en and [Con(A)| < (1-e)h , we have that |4| and

|R-Con(/l)l are both greater than Kvn. Hence cov(A) 2 M+l by 243 wh|ch shows that the

computatton is highly mterconnected D

2.5 Covcrmg mulnpbcny of the connoctwuy prcdxcau -

Applymg Lemma 235 to Theorem 241 we see |mmedlately that connecttwty, unhke 7

. the "local" predlcates for Iocal conve)uty and FX is asmgle solid rectangle't dlscussed in

_ Sectlon 2.2, does not have fm:te coverlng mulhphclty over all fractional supports. In

partlcular, I/M-tracttonal support schemes whtch compute connectwoty on large retmas must

"~ have fim p_ 2 M. But connectivity, we expect should be "even more gtobal" than that --

n=»co

more like computing arbitrary Boolean functions, where, for any fixed M, we have

‘ ;limn et = by 2.23. Indeed, the same reasoning as in 2.4.2 shows that this must be true in

connectivity computations, and that g must grow as rapidly as vn, so long. as we. assume that

and ' ‘;



g anm...ﬂ R L o PPt 7 ‘mY Ty
AT NP N e P ) .

Figure 8

' Details of the contact x,

in Lemma 2}4.3

1




Y1[f

Fiéure 9 -

Connectivity figure for Lemma 2.4.3
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'the supports of the partial predicates are disjoint. ln this section we show that connectivity

has unbounded covering mulhphcrty for I/M—tractlonal supports, even if the supports are

allowed to overiap. We shall not, however, consider the case of arbltrary overlap Rather, we

restrict attention to schemes in which the supports overlap regularly accordmg to the

- following prescription:
Detlmtron 251 Let R be a square retina which is parhtloned mto D square blocks of equal
. slze Then a d/D-regular support structure is a structure in thCh each support consusts of

._ some hxed nurnber d<D of these blocks.

" Note that this is a special case of d/D-fractionaI supports. Supports may overlap, but they -

must overlap regularly -- two mtersectmg supports must necessarily have an entrre block in

'common, We remark also that although we phrase our results here only for square retmas,'

the same sort of thmgs wull be true for all famlhes of retmas with a sufficiently large
"interior,” i.e., tor sequ_ences_ of r.etmas R in whrch the penmeter of R grows no faster than

VIRl

' Theorem 25.2. For any family of d/D—regulor support slmctur‘es' which computes connectivity,

' the covering multiplicity must satisfy lim _, u = ©.

The proof 'uses the switching network construction to transiate the problern of deterrnining

'connectlwty into that of cornputmg an arbitrary Boolean function. 'Recall [7] that if

X-(x,, e X ) is a set of Booalean varlables, and 5 X - {0,1} is a predtcate, then a swuchmg

‘mxtwork for f is glven by a function F which assoccates to each Boolean a-tuple a trgure on a

retina R such that F(xl, N xa) is ,connected if and only if f(xsl, . xa) = 1. We can
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construcl such a network by writing f.in conjunchve normal lorm and translalmg the Boolean
'expressnon mto a network, interpreting comuncllon as series couplmg and disjunction as
A parallel couplmg. For example, the preducale ‘ .

f(xj, g xs') - 'falleasl 2 of l'he variables are equal to 11
has conjunclwe normal form ‘

(xIVxZsz) /\(~x1Vx2Vx3)/\(xIV~x2Vx3)/\(lex2V~x3)

g .and the corresponding network is shown in Fugure lO. The flgure is mterpr_eled as follows:

" are filled in and the squares

, when the varsable x is equal to l the squares marked " x'

marked ~xi are lefl empty Conversely. ‘when ’i = 0, the squares marked " ~x‘ are hlled in’
and the squares marked " z‘ are left emply These squares are the called the contacts of the

: ‘nelwork. . | | |

| “Notice lhat a lunchon of -a. varlables can have al mosl 02" terms in its conjunctlvev
' , normal form, and hence a network wuth lhls many contacls can reahze any Boolean funchon of 'v
| a vanables Thns is the sense in which compulallons for determmmg connechvtty must also be '

able to cOmpule arbltrary Boolean functions. The pr.oof of 25.2 now resls on the following:

Lemma 2.5.3. Suppose we have D sets of Boolean variables
| Xp={zpp-. ,5,,,,), ""'XD'(”DI" ,sz).
Cons;der su.pporc struckure: of order dm in which each support consists: of some collecuon of -
d <D of the X Then for any fzxed values of d and D, and any bound B, we can choose -m‘
' large enougb s0 that there are Boolean funcuons of the X’s wluch cannot be compuwd by .~ '

struo'tures' of thu type havmg covering multiplicity y < B.

This lemma follows at once fromr 2.2.3. Moreover, l:y examining the proof of_ 2.'2'.3,, we see that

m would have to grow large with the the same order as m. O




e .‘.". o L e Figure 10

_.._;._.,"'Switching network for SRR i j-v..gv"‘ e

o

(xl« x2v x3) A »fn/xlv x2v x3) A(vxl\} ~X2Y x3) A (xlv szfv.xa)
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Proof of 2.5.2. Construct in R a switching network that can realize any f'unetion of Dm

variables, such that the contacts corresponding to the variables in the ith set X- all Iie within

: the zth block Then any regular support structure whlch admlls connectlwty on R must also
~admit arbltrary Boolean functlons as in 253 As R becomes large we can choose larger and

larger »values for m. Therefore u must also increase without bound. 0O

Remarks The above ‘proof shows that pu must grow al least as rapldly as log n. Thls'

‘ logarlthmlc factor arises from the use of the general swltchmg network to reallze arbttrary ‘
v Boolean functlons It is natural to ask if there is a bound more in keepmg W|th the ~/ n growthv

' ‘observed for disjoint supports. : Also, is there some way» to ellmmate the regular_lty .

aésumption, and so establish 2.5.2 for varbitrary l/M ~fractional supports? What is the 'order'of ;

growth in this case?

3. Local and global in roal-yalued computations .

The techniques presented above for,a‘nalyzlng Boolean functions -are also applicable to

the study of real—valued functlons The ‘”retina“ in thl’sV settlng is an index set for n real -

vanables (x,, R 1 ) and the support of a functlon £R o lR consists ol‘ all mdlces i such

that f depends on x,. Thls extenslon to the real-valued domam is analogous to Uesakas'

‘3

'extenswn of Mmsky and Papert's work to lhe theory of analog perceptrons [10], [1 1] The -
e E analog perceptron formulatton, however, deals only with functions of the form.
f(x,, e X n = b o+ where each f is a funchon ol (hOpel‘ully) fewer than n of the x's. In
"keeping with the comments in Sectlon 1.2, we fmdA that thls lmearlty re_qmrement is too

'restrletiye to serve as a basis for a general study of structuralcornplexity. For example, the

function
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‘ mult: (x,,. . x")-» x " x,

cannot Be written as a sum of functions f; of fewer than n of the x’s [10] and is therefore

"global"from the perceptron point of view; but allowing multiplicaiion, rather than merely

(zl; “en in) as supports for the £ .('i'his is exac(lybanalogqus to the comments on the parity
predicate in Section 1.2) | ..

o ln the secfioﬁs belbw we shall.work in the category of real-vaiued differentiable

- fuﬁctibﬁs. From this: poiﬁt of view we 'analyzé; in ‘Secti06‘3.2,_the‘ covering multiplic'itiy'

o necéséary cqmpute arbitrary polynqm'ials. _serc‘tion 33 applie; the same ideas to computing the

determinant of a matrix apd.solving- systenié of> l'i_near.quiatribns. All of thes_e resqlts are Ba;§d ‘

" on a theorem on functional decomposition proved in Section 3.1

31 The Décoim‘position Theorem
| F'ollowing the f"ra_mewor’k of. 'Seclior_\ 2 we will say that a sﬁpport vstructur.e Sy - o S",)'
admits dkfferenziabty a function f: R" » R AiAf_f can be "repr.ese.ntedv in the',fbrn{‘
. Af - 5(fl' ee oy fr) where sqpport(fi) C Si an&' g; f’, - fr are differentiable. We will also
consider- situations in which £ is defi,n.e‘d only locally in some neighbort{ood U c R" in which
' ca#e we require that g gnd the fi be locally defined. To in_vestigate conditions unde} which -
‘t4h’is caﬁ be done, cohsider .'first a simple kind iof support st}uctﬁre in .whi‘chr N;e variables V’i

are partitioned into two'disjoint‘..séts X -(x,,.;;,_xa) and ¥ =(x, .., %,) Let Diff_(X) i
denote the é|g_ebra of real-valued di'fferentiable fuﬁctions of the vari_ables in X. For any
£ R® -+ R let A(X, f) denote the module generated ‘over Diff(X) by the a functions

3ffdx), . . 4 ¥ffox,

surﬁmatioh, at the “"output stage™ would enable us to compute.mult using any partition _of_ the '
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: 'v 3.1.1..‘Decomposilion .Theorom. If fUCR® x R':"“ SRisa differemioble‘fu'nction which can
‘be represented as

| XYY = 00, £00,T) |

V ‘where g IR"*(" -a) , IR aml f IR'x - R, i= I - r are dtffercnuable. then the module A(X, f)

ha: rank at moal r lhroughouc U Convcnely, lf f is commuomly differentiable, and A(X, f)

has rank at most r, then there i ‘u an open subset V c U on which f can be so represented.

Proof leferenhatmg the equahon f g(f 1, " fr’ Y) with respect to any x; € X gives
K | =X (bg/bf ) (of /2% R
_Each fj, and therefore eaoh of /bxi, lies in lef(X) Hence df/ox; lles in the module.
o generated over lef(X) by the r functqons 33/2.?’5 Smce ihls is true for all x, we have that all o
of A(X f) is oontained within fhrs modtjle ahd is therefore of rank at most r
7 To. show that the condition is also sufftcnent begm by choosmg any p - (px, py) € U‘
and r+1 sets of parhcular values Y‘, . Y 1 for lhe vartab!es Y such that the pairs (px, py) -
~all lie in U, and consuder the funchons f(X) f(X Y) We claim thet for any values Y the h
: matrux R ‘
S llbf/ax Il,.; i ,'.-+1;Aj-1,'...,a
‘has rank at most r |

To prove thls, plck any r+I columns, say, for notatlonal sumphcnty, columns 1 through

o r+1 Accordmg to the hypothesvs on AL, f) we have

bf(X Y)/bx - z (X) (bf(x Y)/bx :)

] , T ¢r+l oJ
where the ¢r+ 1 J(X) are funchons of X alone. Thus we can subshtute any Y; for Y in the -
;above equahon to get o A |

/o5, = T; el X @ffexp)

Since the Pral ](X) are mdependent of i this shows that
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((r+1)sl column of malnx) Z qp',” J(X) ()lh column of malnx)
which proves the claim.

Now to complete the proof of the theorem, choose YI’ . Yr+1 to maximize the rank

of Ilbfi/bx Il Denohng this maximum rank by m, m < r by the clalm W|thoul loss of , ‘ _

: generahly we may assume that lhe hrst m rows of the malnx are lmearly mdependent.

Consider now lhe function
- CRU-R™ g
' . where o o _
o FOLY) = (U V), £00 0 Fp 0, 7)
By chonce of the Y P Yr+ 1 ‘we have that the rank ol F is at- most m+n-a. Therefore the

funchons descrlbmg the |mage of F are funchonally dependenl [11 (Thls is where one needs :

- . that f is continuously diflerentiable.) Moreover, the set of points at which the f',' Y

have maximal rank forms an open set’ V cU, and at any such point p = (PX’ py) € V we can

' apply the lmpllc:l Funchon Theorem to solve the funchonal dependence relahon for f(X Y),,

e, there exists a continuously dlflerenllable function g defmed ina nelghborhood of px such

 that

X, Y) = gf XY, £ (0, V) O
Note: In the case r-l this theorem reduces to a result of Leontief '[4]. N

To relate 3.1.1 to the framework of Secllon 2, we defme Drﬂ(B) for any B c {I n}

to be lhe algebra of dlfferenhable funchons in all the varlables (. )' eB"
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Coroliary 3.1.2. Suppose H is a support structure which admits differemt;ably the functioﬁ

f:R"> R and 4 c {1,..., n}. Then among !hc a derivatives (bf/bx )‘ e A ot most covg(A) o

. are lmearly mdcpendem over Diff(Con "(A))

Proof Proceed just as above, notmg that, for anyie€eA
offox; = T (3al2f ) /a,p
where the rsum.matibﬁ rangeé over j € Cov({;}); and that for any such j

| " j/2x; € Diff(Con((ih) c Diff(Con(A). O

3.2. Polynomial evaluation _

~We now apply the »res'u..lts ofvé.l‘ to p'rové, tﬁat support strucfures which admit

arb'itrary‘ polynomials musf be highly—linterconnecte'd, and o'fvinfiv‘wite cbyering multiplicity for’

fraction_al s;upports:

Proposition 3.2.1. If'H is o spport siructure which admits differentiably the polynomial

-P(t,,...xm. ‘J ]'

the entire mdcx set {1, ..., n)

, Prpof. Suppose that there is 's‘ome index i not contained in Con(4). By renumbering AthAe x’s we

may assume that this in&ex is n, and that A= {1, .., |A4]}. (This renumbering does not change

P, whtch is symmetrlc in the x .) Then lef(Con(A)) c lef(z', - x_~ i). Moréovér

P,‘?l" ")'zu J‘. - E all +z"‘"z1’1”t

- r n + z ,‘n le#’l n ." modulo lef(x', .oy z"_l) o -

¥ and so, takmg the derivative with respect to xy {k#n) gives A

oPfoxy = 3 %+ nx ™! “modulo Diff(x), ..., %, _))

) =3, 7 then for any A C {L,.. ., n), either covid) > |A] or else Con(A) is”
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As the reader can verify, this equation implies that the module generated by (aP/axk)kE a

contams the {A] elements % rnz, A xnml, which are linearly independent over

lef(xl, cen xn-l) and hence over lef(Con(H)). Therefore, by 312 we have cov([l) 21Aa. 0O.

Corollary 3 2 2 Any famlly of supporl nmclurez wlnch dnfferennably admus arburary

~ polynomials must be hxghly mterconnected Conscqucmly in any family of such structures

o unh 1 /M-frccuonal supporu the covermg muluphcuy :uusfnes iMoo M _>_ M.

© This follows at once from 3.2.1 and 235. O

3.3 Matn'ees.aml linedr equaliout

We turn next from the computahon of arbltrary poiynomcals to consider the specmc‘

‘ polynomlal whlch expresses the determinant of a matrix in terms of the matnx elements The . -

rehna here us an mdex set of n real varlables (x“, c Xy, ) whoch we view as a matrlx
X = le H The function det: (x )-» det(X) is-a polynomla| of degree n. Expanding det by the
ith row. shows that

(2/x; ;) det = x'l

' where Xij is the cofactor of x. ij itself. a determmanl of order n-1.

Lemma 3 3'1" Let § i (s'l, <8 ) be ony collecnon of n of the vanables % (Ti:at u, each £ ‘
. repremnu some x; ) Let Xk be the cofaclor of 5y Then the cofactort XI - o X"_ are

'-Imearly mdepemlem over Diff(s, - " s,).

Proof. By perrﬁuting the rows‘ and columns of X and reordering the 3;’s we ‘rhay' assume that

s 1'- xp) The cofactors X',._. .,AXk are sums of monomials of degree n-1. The key to the




- diagonal elements of X. If so we can take the monomial & to be, e.g. X23X34 o X
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Lemma is the claim that, in the expanslon of X! there is at least one monomual which does not

contam any of the x’s lymg in S.

To prove this clalm we note that, since xM s itself a determmant of order n-1, the

rnonomtals a in the expansnon for X“ are lhe products a=ay.. ca, where «; lies ln the

Jjth column of X and no two o ; j ’s lie in the same row. So we must show that there is at least

- one such set of aj s, none of whach lie in S Let <; be the number of elements of S lymg m )

. the ]lh column of X By permuting the columns, we may assume that c I>°2> 2:: There

are two cases to consider:

Case I c;> L We want to choose . “2 from the second column There are n-I-c2 possnble '

. chouces L|kewuse, in chooslng as from the thlrd column, and not lymg in the same row as

“2' there are n-2-c3 choices. In general there are n-() I)-cj chorces tor « j‘ We need to

know then, that

'n>c S i=%.m R '—'_,.(4)

in order to be sure that there are chovces possmle at each step But Ec . = 1 and o

°l>°2> ... 2¢, SO that € < n/] Also, if c, > 1 we can be sure that c; - 0 for j > n/2 So

 we need only venfy (4) for j<n:

c +(1 1) < (n/1)+(1 1) - [(J'")(J I)/)]+n <n
Therefore we can construct a as reqmred

Case 2: c, =1 In thls case each column of X contains one element of S. Now, if‘ some row

" contains more than one element of § we can prove the result by applymg Case 1to the

.

'transpose of X (whlch has the same determmant as X) Otherwnse, if each row and column

’ contams one element of §, we may permute rows and columns SO that the ’k are preclsely the

This proves lhe claim.

Now to complete the proof of Athe leinrna, let F = Ditt(sy, . . ., ) and eupoose that the

n,n-lxn—l,l' o
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X"‘ were linearly dependent over F, ie.,
Ekf,‘X =0 "wherefkeF
Now let .3 be the monomial in X’ whose exustence is assured by .the above clavm, and set

X I, a+ﬂ We would then have -

-n
polynomral rmg F[t P t 2 ]. The constructlon of o guarantees that, as an element of thls

rmg, has degree n-I Atso, the terms on the nght side of (5) have degree at most n-1

- Moreover, none of these terms can be equal to a, since a monomial in the expansnon of the

cofactor of an element of a matrix- cannot also he in the expanslon of a cofactor of a dlfferentv

etement of the matnx Therefore equatlon (5) is |mposs|ble a

As a consequence we deduce a theorem about the dtstrtbuted computatlon of
determmants‘ Suppose we have an an matrix X, whose entnes we partition into n sets S of "

order n. (The S can be the rows, columns, vnxvn submatrices or whatever) Consider

. computmg det(X) by frrst evaluatmg separate " preprocessmg functrons f of the S and then

combmmg the results of the f by some functron 2 We find that computmg a determmant isa -

worst case for thls kmd of dlstnbuted computatcon' -

_Thoorem 3 3.2. Let Ii =(S ’, . S Ybea :upport stru.cture for funcuons of n? variables where. :

" the S are pairwise dujouu and of size n. If H dlfferennably admits the determmam_ -

funcuon, then cov(S ) > n for cll J

Proot Since the S are dlsmmt we have Con(S )= S - and the theorent fotlows imrnediately ’

-«from331and312 a

f,a--f,a z,‘_z o F Xk : S’

Let l,, . .7., t 2 be those xij which do not lie in § and regard (5) as an equatlon in the
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In other words, no maller what "local" compulalions we make based on the n elements of each

’ S ‘we still must transmit n numbers to be combmed by g. From the communication pomt of

’ vcew, there is no poml in domg any local computallons at all We may as well lransrmt the n o

o elements of S to g dlreclly,

' As a fmal appllcatton of these |deas, conSlder the problem of solvmg an nxn system of,

lmear equahons Xy=b based on dwldmg lhe malrlx X into columns That is to say, each of

the elements’ yj should be compuled by a structure in which each support can mlersect at

most one column of X (and we’ll also allow each parhal funchon to access any enlry of b) -As

' wnth delermmants, thls turns out to be a worst case: the mformahon needed from each '

' columneof X cannol be transmllled by fewer than n dlfferenllable funclcons_: -

Theorem 333. Le: b bea f;xed non-zero n-vector, and let yJ(X) be the )-ch emry of tbe'
7 soluuon to the system of linear equauons Xy= b. Suppose that H is a support uruc:urel

. wluch d:ffcrenuab_ly admits yj, and that each support in H is cpntalned within a nngle.

" column of X. Then, for the j-th column Xj'of X, we have cov(Xj) 2n

_ Proof Let b’X denote the augmented matrix” in whlch the jth column of Xis replaced by b

' By Cramer’s Rule, yj= IbJXVle Hence, for any element x;,

By /Ry = 1/IXVF [ uxuxawxvax,,‘) (1B X X@IXI/2x5) ]

For any 1, if b is non-zero, lhere ere malnces X for which |X] r‘ 0 and IbJXI y‘ 0 So conslder.

» ‘ the elements in the Jjth column of X, ie., lake 1 = k in the above equallon Slnce lblxl does

not mvolve the varnable % blb’Xl/ax =0 and so

byjlbx - (IbJX|/|X|2) lel/bx =1 (Ib’Xl/lezlxu

But by Lemma 3.3.1 the x x2i . x™ are llnearly mdependenl over Divff(z,j, e X )

nj
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Hence the mult'iples of these polynomials by lij|/|X|2 are also linearly independent.

Coroliary 3.1.2 therefore implies that cov(Xj) 2n O

3.4 Relations with Hilbert's l’lth problem . _

“ The precedmg perspectwe on the complexﬂy of functions ;s related torlnveshgahons
' growmg out of Hilbert’s:13th problem, which concerns the possublhty of representmg funchons_
.of several varaables as superposmons of funchons of a- smaller number of vanables (For a
~survey see [5].)‘ Notable among these is the result due to l_(olmogorov. and Arnol’d_ [3] that
, any cor'\'tinuo;js function can always be expreséed as a superpostion of coﬁfihuous funcfions of'A
two variables. On the other hand, it is known that this cannot be done if the funchons in the
i decomposmon are requlred to sahsfy differentiability constramts This quahta_hve dlffere_nce'
between differentiable and non—differentiable ;iecompositions suggests‘ther'e is no
t stralghtforward extenslon of the techmques of- the prevnous sectlons to ‘allow for

.'non-dlfferenhable parhal funchons




"~ vague notions as "giobal,
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4, Conclusion; Questions for further research

This paper has suggested precise computational formulations whlch' interpret such

lﬂ LJ

gestalt™ or "the difficulty of dividing a computation into

~independent slmpler parts The goal is to develop meanmgful measures ol c0mplexlty whrch

- reflect only how the pleces of a cOmputatlon are mterrelated and are mdependent of the
.specrflc operatlons performed by each plece Hopefully, such an effort could lead to a umtled

' perspectwe for dlscusslng problems of “parts and wholes in computatlonal geometry, in

‘ numerlcal computatlon, in dlstrlbuted dala processmg, and perhaps even in artlflcral'

intelligence and cogmtlve theory as mdlcated in [8]

The theory is still at an embryomc stage, and the reader wvll no doubt rec0gmze' _t

numerous ways in whlch the above results can be |mproved What can one say about the

order of growth of covermg multlplmty tor connectwlty or other geometrlc predlcates" Are

there general techniques for establushmg lower bounds for the covermg multlplnclty of specuflc' '
Boolean functlons? The Decomposmon Theorem of Section 31 is a dlfferentlable analogue of»

results of Ashenhurst on "dlSjomt decompositions” in swrtchmg theory [2] Can this be -

extended to- more general dec°mposltlons? We have only hmted at applications to the study R

»of dlstnbuted data bases. Developmg covering multiplicity crlterla in this context is surely a

major area left untouched by the present mvesllgatlon Other extensions of the theory could -

- deal with "continuous retmas, in which the subsets § c R become measures defined on the

plane, and the predlcates f become functlons on the Hnlbert space of ~measures. It is also
lmportant to develop alternative measures of “local and global” complexuty and contrast these
with covermg multtphctty For example, there should be a whole spectrum of,v

mterconnectedness running trom non—overlappmg support structures to the hlghly

_interconnected structures defmed in Section 23 and one should be able to measure prec:sely

- the mtrmslc lnterconnectedness requnred for computing a functlon Certainly, much remams -
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to be done in this area.
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