MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

Memo No. 444 | : | August 1977

LISP Machine Progress Report

by the Lisp Machine Group

Alan Bawden
Richard Greenblatt
Jack Holloway
Thomas Knight
David Moon
Daniel Weinreb

ABSTRACT

This informal paper introduces the LISP Machine, describes the goals and current
status of the project, and explicates some of the key ideas. It covers the LISP
machine implementation, LISP as a system language, input/output, representation
of data, representation of programs, control structures, storage organization,
garbage collection, the editor, and the current status of the work.

This report describes research done at the Artificial Intelligence Laboratory of
the Massachusetts Institute of Technology. Support for the laboratory's
artificial intelligence research is provided in part by the Advanced Research
Projects Agency of the Department of Defense under Office of Naval Research
contract N00014-75-C-0643. '

LISP Machine ' N 2 ' Progress Report

INTRODUCTION:

The LISP Machine is a new computer system designed to provide a high
performancg and economical implementation of the LISP programming language.

' The LISP language is used widely in the artificial intelligence research
community, and is rapidly gaining adherents outside this group. Most serious
LISP usage has historically been on the DEC PDP-10 computer, and both "major"
implementations (InterLisp at BBN/XEROX and Maclisp at M.I.T.) were originally
done on the PDP-10. OQur persohal experience has largely been with the Maclisp
dialect of LISP, which was originally written in 1965.

- Over the years, dramatic changes have taken place in the Maclisp
implementation. At a certain point, however, modification and reimplementation
of a language on a given machine can no longer efficiently gloss over basic
problems in the architecture of the computer system. We, and many others,
believe this is now the case on the PDP-10 and similar time-shared computer
systems. \

Time sharing was introduced when it became apparent that computers are

~ easier tq use in an interactive fashion than in a batch system, and that during'

an interactive session a user typically uses only a small fraction of the
processor and memory available; often during much of the time his process is
idle or waiting, and so the computer can be multiplexed among many users while
giving each the impression that he is on his own machine.

' However, in the Lisp community there has been a strong trend towards
programs which are very highly interactive, very large, and use a good deal of
computer time; such programs include advanced editors and debuggers, the MACSYMA
system, and various programming assistants. When running programs such as these,
which spend very significant amounts of time supporting user interactions, time
sharing systems such as the PDP-10 run into increased d'ifficulties. Not only is
the processor inCapable of providing either reasonable throughput or adequate
response time for a reasonable number of users, but the competition for main
memory results in large amounts of time being spent swapping pages in and out (a
condition known as "thrashing"). Larger and larger processors and memory, and
more and more complex operating systems, are required, with more than
proportionally higher cost, and still the competition for memory remains a
bottleneck. The programs are sufficiently large, and the interactions
sufficiently frequent, that the usual time-sharing strategy of swapping the
program out of memory while waiting for the user to interact, then swapping it
back in when the user types something, cannot be successful because the swapping

LISP Machine 3 Progress Report

cannot happen fast enough. . :

v The Lisp Machine is a personal computer. Personal computing means that
the processor and main memory are not time-division multiplexed, instead each
person gets his own. The personal computation system consists of a pool of
processors, each with its own main memory, and its own disk for swapping. When a
user logs in, he is assigned a processor, and he has exclusive use of it for the
duration of the session. When he logs out, the processor is returned to the
pool, for the next person to use. This way, there is no competition from other
users for memory; the pages the user is frequently referring to remain in core,
and so swapping overhead is considerably reduced. Thus the Lisp Machine solves a
basic problem of time sharing Lisp systems.

The user also gets a much higher degree of service from a Lisp machine
than from a timesharing system, because he can use the full throughput capacity
of the processor and the disk. Although these are quite’ inexpensive compared to
those used in PDP-10 timesharing systems, they are comparable in speed. In fact,
since disk access times are mainly limited by physical considerations, it often
~turns out that the disk used in a personal computer system is less expensive
simply because of its smaller size, and has fully comparable throughput
charactistics to the larger disk used by a timesharing system.

In d single-user machine, there is no penalty for interactiveness, since
there are no competing users to steal a program's memory while it is waiting for
its user to type. Thus the Lisp machine system, unlike time sharing systems,
encourages highly interactive programs. It puts service to the user entirely
ahead of efficiency considerations. '

Another pf‘oblem with the PDP-10 Lisp implementations is the small address
space of the PDP-10 processor. Many Lisp systems, such as MACSYMA and Woods's
LUNAR program, have difficulty running in an 18-bit address space. This problem
is further combounded by the inefficiency of the information coding of compiled
Lisp code; compilers for the PDP-10 produce only a limited subset of the large
instruction set made available by the hardware, and usually make inefficient use
of the addressing modes and fields provided. It is possible to design much more
compact instruction sets for Lisp code. Future programs are likely to be quite a
bit bigger; intelligent systems with natural language front ends may well be
five or ten times the size of a PDP-10 address space.

The Lisp Machine has a 24 bit virtual address space and a compact
instruction set, described later in this paper. Thus much larger programs may be
used, without running into address space limitations. Since the instruction set
is designed specifically for the Lisp language, the compiler is much simpler than

LISP Machine 4 - Progress Report

"the PDP-10 compiler, providing faster and more reliable compilation.

The Lisp machine's compact size and simple hardware construction are
likely to make it more reliable than other machines, such as the PDP-10; the
prototype machine has had almost no hardware failures.

Much of the inspiration for the Lisp Machine project comes from the
pioneering research into personal computing and display-oriented systems done by
Xerox's Palo Alto Research Center. '

THE LISP MACHINE IMPLEMENTATION:

Each logged in user of the Lisp Machine system has a processor, a memory,
a keyboard, a display, and a means of getting to the shared resources.
Terminals, of course, are placed in offices and various rooms; ideally there
would be one in every office. The processors, however, are all kept off in a
machine room. Since they may need special énvironmental conditions, and often
make noise and take up space, they are not welcome office companions. The number
of processors is unrelated to the number of terminals, and may be smaller
depending on economic circumstance. '

The processor is implemented with a microprogrammed architecture. It is
called the CONS Machine, designed by Tom Knight [CONS].' CONS 1s a very
unspecialized machine with 32~bit data paths and 24-bit address paths. It has a
large microcode memory (16K of 48-bit words) to accommodate the large amount of
specialized microcode to support Lisp. It has hardware for extracting and
depositing arbitrary fields in 'arbitrary registers, which substitutes for the
specialized data paths found in conventional microprocessors. It does not have a
cache, but does have a "pdl buffer" (a memory with hardware push-down pointer)
which acts as a kind of cache for the stack, which is where most of the memory
references go in Lisp. |

Using a very unspeciaiized processor was found to be a good idea for
several reasons. For one thing, it is faster, less expensive, and easier to
debug. For another thing, it is much easier to microprogram, which allows us to
write and debug the large amounts of microcode required to support a
s}ophisticated Lisp system with high efficiency. It also makes feasible a
compiler which generates microcode, allowing users to microcompile some of their

LISP Machine : | 5 Progress Report

functions to increase performance.

- The memory is typically 64k of core 6r semiconductor memory, and is
expandable to about 1 million words. The full virtual address space is ‘stored on
a 16 million word disk and paged into core (or semiconductor) memory as required.'
A given virtual address is always located at the same place on the disk. The
access time of the core memory is about 1 microsecond, and of the disk about 25
milliseconds. Additionally, there is an internal 1K buffer used for holding the
top of the stack (the PDL buffer) with a 200ns access time (see [CONS] for more
detail).

The display is a raster scan TV driven by a 1/4 Mbit memory, similar to
the TV display system now in use on the Artificial Intelligence Lab's PDP-10.
Characters are drawn entirely by software, and so any type or size of font can be
used, including variable width and several styles at the same time. One of the
advantages of having an unspecialized microinstruction processor such as CONS is
that one can implement a flexible terminal in software for less cost than an
inflexible, hardwired conventional terminal. The TV system is easily expanded to
support gray scale, high resolution, and color. This system has been shown to be

very useful for both character display and graphics.

The keyboard is the same type as is used on the Artificial Intelligence
Lab TV display system; it has several levels of control/shifting to facilitate
easy single-keystroke commands to programs such as the editor. The keyboard is
also equipped with a speaker for beeping, and a pointing device, usually a mouse
[MOUSE].

The shared resources are accessed through a 10 million bit/sec packet
switching network with completely distributed control. The shared resources are
to include a highly reliable file system implemented on a dedicated computer
equippéd with state of the art disks and tapes, specialized I/0 devices such as
high-quality hardcopy output, special-purpose processors, and connections to the

‘outside world (e.g. other computers in the building, and the ARPANET).

_ As in a time sharing system, the file system is shared between users.
Time sharing has pointed up many advantages of a shared file system, such as
common access to files, easy inter-user communication, centralized program
maintenance, centralized backup, etc. There are no personal disk packs to be
lost, dropped by users who are not competent as operators, or to be filled with
copies of old, superseded software.

LISP Machine ‘ 6 Progress Report

The complete LISP Machine, including processor, memory, disk, terminal,

~and connection to the shared file system, is packaged in a single 19* logic

cabinet, except for the disk which is free-standing. The complete machine would

be likely to cost about $80,000 if commercially produced. Since this is a

complete, fully-capable system (for one user at a time), it can substantially

lower the cost of entry by new organizations into serious Artificial Intelligence
work.

~ LISP AS A SYSTEM LANGUAGE:

In the software of the Lisp Machine system, code is written in only two
lang'uvages (or "levels"): Lisp, and CONS machine microcode. There is never any
reason to hand-code macrocode, since it corresponds so closely with Lisp;
anything one could write in macrocode could be more easily and clearly written in
the corresponding Lisp. The READ, EVAL, and PRINT functions are completely
written in Lisp, including their subfunctions (except that APPLY of compiled
functions is in micro-code). This illustrates the ability to write "system"
functions in Lisp.

In order to allow various low-level operations to be performed by Lisp
code, a set of "sub-primitive" functions exist. Their names by convention begin
with a "%", so as to point out that they are capable of performing unLispy
operations which may result in meaningless poin,ters'. These functions provide
"machine level" capabilities, such as performing byte-deposits into memory. The
compiler converts calls to these sub-primitives into single instructions rjather
than subroutine calls. Thus Lisp-coded low-level operations are just as
efficient as they would be in machine language on a conventional machine.

In addition to sub-primitives, the ability to do system programming in
Lisp depends on the Lisp machine's augmented array feature. There are several
types of arrays, one of which is used to implement character strings. This makes
it easy and efficient to manipulate strings either as a whole or character by
character. An array can have a "leader", which is a little vector of extra
information tacked on. The leader always contains Lisp objects while the array
often contains characters or small packed numbers. The 1eader4 facilititates the
" use of arrays to represent various kinds of abstract object types. The presence
‘in the language of both arrays and lists gives the programmer more control over
data representation.

LISP Machine ’ 7 Progress Report

A traditional weakness of Lisp has been that functions have to take a
fixed number of arguments. Various implementations have added kludges to allow
variable numbers of arguments; these, however, tend either to slow down the
function-calling mechanism, even when the feature is not used, or to force
peculiar programming styles. Lisp-machine Lisp allows functions to have optional
parameters with automatic user-controlled defaulting to an arbitrary expression
in the case where a corresponding argument is not supplied. It is also possible
to have a "rest" parameter, which is bound to a list of the arguments not bound
to previous parameters. This is frequently important to simplify system programs
and their interfaces.

A similar problem with Lisp function calling occurs when one wants to
return more than one value. Traditionally one either returns a list or stores
some of the values into global variables. In Lisp machine Lisp, there is a
multiple-value-return feature which allows multiple values to be returned without
going through either of the above subterfuges.

Lisp's functional orientation and encouragement of a programming style of
small modules and uniform data structuring is appropriate for good system
programming. The Lisp machine's micro-coded subroutine calling mechanism allows
it to also be efficient. .

Paging is handled entirely by the microcode, and is considered to be at a
very low level (lower level than any kind of schedulihg). Making the guts of the
virtual memory invisible to all Lisp code and most microcode helps keep things
simple. It would not be practical in a time sharing system, but in a one-user
machine it is reasonable to put paging at the lowest level and forget about it,
accepting the fact that sometimes the machine will be tied up waiting for the
disk and unable to run any Lisp code.

Micro-coded functions can be called by Lisp code by the usual Lisp
calling mechanism, and provision is made for micro-coded functions to call
macro-coded functions. Thus there is a uniform calling convention throughout the
entire system. This has the effect that uniform subroutine packages can be
written, (for example the TV package, or the EDITOR package) which can be called
by any other program. (A similar capability is provided by Multics, but not by
ITS nor TENEX). '

' Many of the capabilities which system programmers write over and over
again in an ad hoc way are built into the Lisp language, and are sufficiently
good in their Lisp-provided form that it usually is not necessary to waste time
worrying about how to implement better ones. These include symbol tables,
storage management, both fixed and flexible data structures, function-calling,

LISP Machine : _ ' 8 Progress Report

and an interactive user interface. :

Our experience has been that we can design, code, and debug new features
much faster in Lisp-machine programs than in PDP-10 programs, whether they are
written in assembler language or in traditional "higher-level® languages.

INPUT/OUTPUT:

Low level:

The Lisp Machine processor (CONS) has two busses used for accessing
external devices: the "XBUS", and the "UNIBUS". The XBUS is 32 bits wide, and
is used for the disk and for main memory. The UNIBUS is a standard PDP-11 16-bit
bus, used for various I1/0 devices. It allows commonly available PDP-11
compatible devices to be easily attached to the Lisp Machine. ,

Input/output software is essentially all written in Lisp; the only
functions provided by the microcode are %UNIBUS-READ and %XUNIBUS-WRITE, which
know the offset of the UNIBUS in physical address space, and refer to the
corresponding location. The only real reason to have these in microcode is to
avoid a timing error which can happen with some devices which have side effects
when read. It is Lisp programs, not special microcode, which know the location
and function of the registers in the keyboard, mouse, TV, and cable network
interfaces. This makes the low-level I/0 code just as flexible and easy to '
modify as the high level code.

, There are also a couple of microcoded routines which speed up the drawing
of characters in the TV memory. These do not do anything which could not be done
in Lisp, but they are carefully hand-coded in microcode because we draw an awful
lot of characters. ’

High level:

' Hany programs perform simple stream-oriented (sequential characters) 1/0.
In order that these programs be kept device-independent, there is a standard
definition of a "stream": a stream is a functional object which takes one
required argument and one optional argument. The first argument is a symbol
which is a "command®" to the stream, such as "TYI", which means "input one
character, and return it" and "TYO", which means "output one character". The
character argument to the TYO command is passed in the second argument to the
stream. There are several other standard optional stream operations, for several

LISP Machine 9 Progress Report

purposes including higher efficiency. In addition particular devices can define
additional operations for their own purposes.

Streams can be used for 1/0 to files in the file system, strings inside
the Lisp Machine, the terminal, editor buffers, or anything else which is
naturally represented as sequential characters. :

- For 1/0 which is of necessity device-dependent, such as the sophisticated
operations performed on the TV by the editor, which include multiple blinkers and
random access to the screen, special packages of Lisp functions are provided, and
there is no attempt to be device-independent. (See documentation on the TV and
network packages).

In general, we feel no regret at abandoning device independence in
interactive programs which know they are using the display. The advantages to be
gained from sophisticated high-bandwidth display-based interaction far outweigh
the advantages of device-independence. This does mean that the Lisp machine is
really not usable from other than its own terminal; in particular, it cannot be
used remotely over the ARPANET. '

REPRESENTATION OF DATA:

A Lisp object in Maclisp or InterLisp is represented as an 18 bit
pointer, and the datatype of the object is determined from the pointer; each
page of memory can only contain objects of a single type. In the Lisp machine,
Lisp objects are represented by a 5 bit datatype field, and a 24 bit pointer.
(The Lisp machine virtual address space is 24 bits). There are a variety of
datatypes (most of the 32 possible codes are now in use), which have symbolic
names such as DTP-LIST, DTP-SYMBOL, DTP-FIXNUM, etc.

The Lisp machine data types are designed according to these criteria:
There should be a wide variety of useful and flexible data types. Some effort
should be made to increase the bit-efficiency of data representation, in order to
improve performance. The programmer should be able to exercise control over the
storage and representation of data, if he wishes. It must always be possible to
take an anonymous piece of data and discover its type; this facilitates storage
management. There should be as much type-checking and error-checking as feasible
in the systenm. ’ '

Symbols are stored as four consecutive words, each of which contains one
object. The words are termed the PRINT NAME cell, the VALUE cell, the FUNCTION

LISP Machine 10 Progress Report

cell, and the PROPERTY LIST cell. The PRINT NAME cell holds a string object,
which is the printed representation of the symbol. The PROPERTY LIST cell, of
course, contains. the property list, and the VALUE CELL contains the current value
of the symbol (it is a shallow-binding system). The FUNCTION cell’replaces the
task of the EXPR, SUBR, FEXPR, MACRO, etc. properties in Maclisp. When a form
such as (FOO ARGl ARG2) is evaluated, the object in F00's function cell is
applied to the arguments. A symbol objéct has datatype DTP-SYMBOL, and the
pointer is the address of these four words.

.Storage of list structure is somewhat more complicated. Normally a "list
object" has datatype DTP-LIST, and the pointer is the address of a two word
block; the first word contains the CAR, and the second the CDR of the node. _

However, note that since a Lisp object is only 29 bits (24 bits of
pointer and 5 bits of data-type), there are three remaining bits in each word.
Two of these bits are termed the CDR-CODE field, and are used to compress the
storage requirement of list structure. The four possible values of the CDR-CODE
field are given the symbolic names CDR-NORMAL, CDR-ERROR, CDR-NEXT, and CDR-NIL.
CDR-NORMAL indicates the two-word block described above. CDR-NEXT and CDR-NIL
are used to represent a list as a vector, taking only half as much storage as
- usual; only the CARs are stored. The CDR of each location is simply the next
location, except for the last, whose CDR is NIL. The primitive functions which

create lists (LIST, APPEND, etc.) create these compressed lists. If RPLACD is .

done on such a 1list, it is automatically changed back to the conventional
two-word representation, in a transparent way.

The idea is that in the first word of a list node the CAR is represented
by 29 bits,_and the CDR is represented by 2 bits. It is a compressed pointer
which can take on only 3 legal values: to the symbol NIL, to the next location
after the one it appears in, or indirect through the next location. CDR-ERROR is
used for words whose address should not ever be in a list object; in a "full
node®, the first word is CDR-NORMAL, and the second is CDR-ERROR. It is
important to note that the cdr-code portion of a word is used in a different way
from the data-type and pointer portion; it is a property of the memory cell
itself, not of the cell's contents. A "list object"™ which is represented in
compressed form still has data type DTP-LIST, but the cdr code of the word
addressed by 'its pointer field is CDR-NEXT or CDR-NIL rather than CDR-NORMAL.

Number objects may have any of three datatypes. "FIXNUMs", which are
24-bit signed integers, are represented by objects of datatype DTP-FIX, whose
"pointer" parts are actually the value of the number. Thus fixnums, unlike all
other objects, do not require any "CONS"ed storage for their representation.

LISP Machine 11 Progress Report

This speeds up arithmetic programs when the numbers they work with are reasonably
small. Other types of numbers, such as floating point, BIGNUMs (integers of
arbitrarily high precision), complex numbers, and so on, are represented by
objects of datatype DTP-EXTENDED-NUMBER which point to a block of storage
containing the details of the number. The microcode automaticaliy converts
~ between the different number representations as necessary, without the need for
explicit declarations on the programmer's part.

There is also a datatype DTP-PDL-NUMBER, which is almost the same as
DTP-EXTENDED-NUMBER. The difference is that pdl numbers can only exist in the
pdl buffer (a memory internal to the machine which holds the most recent stack
frames), and their blocks of storage are allocated in a special area. Whenever
an object is stored into memory, if it is a pdl number its block of storage is
copied, and an ordinary extended number is substituted. The idea of this is to
prevent intermediate numeric results from using up storage and causing increased
need for garbage collection. When the special pdl number area becomes fuli, all
pdl numbers can quickly be found by scanning the pdl buffer. Once they have been
copied out into 6rdinary numbers, the special area is guaranteed empty and can be
reclaimed, with no need to garbage collect nor to look at other parts of memory.
Note that these are not at all the same as pdl numbers in Maclisp; however, they
both exist for the same reason.

The most important other data type is the array. Some problems are best
attacked using data structures organized in the list-processing style of Lisp,
and some are best attacked using the array-processing style of Fortran. The
complete programming system needs both. As mentioned above, Lisp Machine arrays
are augmented beyond traditional Lisp arrays in several ways. First of all, we
have the ordinary érrays of Lisp objects, with one or more dimensions. Compact
storage of positive integers, which may represent characters or other non-numeric
entities, is afforded by arrays of 1-bit, 2-bit, 4-bit, 8-bit, or 16-bit
elements. , _

For stringéprocessing, there are string-arrays, which are usually
one-dimensional and'have 8-bit characters as elements. At the microcode 1level
strings are treated the same as 8-bit arrays, however strings are treated
differently by READ; PRINT, EVAL, and many other system anﬂ user functions. For
example, they print out as a sequence of characters enclosed in quotes. The
characters in a character string can be accessed and modified with the same
array-referencing functions as one uses for any other type of array. Unlike
‘arrays in other Lisp systéms. Lisp machine arrays usually have only a single word

LISP Machine 12 Progress Report

of overhead, so the character strings are quite storage-efficient. ‘

There are a number of specialized types of arrays which are used to
implement other data types, such as stack groups, internal system tables, and,
most importantly, the refresh memory of the TV display as a two-dimensional array
of bits. ' '

An important additional feature of Lisp machine arrays is called rarray
leaders." A leader is a vector of Lisp objects, of user-specified size, which '
may be tacked on to an array. Leaders are a good place to remember miscellaneous
extra information associated with an array. Many data structures consist of a
combination of an array and a record (see below); the array contains a number of
objects all of the same conceptual type, while the record contains miscellaneous
items all of different conceptual types. By storing the record in the leader of
the array, the single conceptual data structure is represented by a single actual
object. Many data structures in Lisp-machine system programs work this way.

Another thing that leaders are used for is remembering the "current
length" of a partially-populated array. By convention, array leader element
number 0 is always used for this.

Many programs use data objects structured as "records®; that is, a
compound object consisting of a fixed number of named sub-objects. To facilitate
the use of records, the Lisp machine system includes a standard set of macros for
’defining, creating, and accessing record structures. The user can choose whether
the actual representation is to be a Lisp list, an array, or an array-leader.
Because this is done with macros, which translate record operations into the
lower-level operations of basic Lisp, no other part of the system needs to know
about records.

Since the reader and printer are written in Lisp and user-modifiable,
this record-structure feature could easily be expanded into a full-fledged
user-defined data type facility by modifying read and print to support input and’
output of record types.

Another data type is the "locative pointer.® This is an actual pointer
to a memory location, used by low-level system programs which need to deal with
the guts of data representation. Taking CAR or CDR of a locative gets the
contents of the pointed-to location, and RPLACA or RPLACD stores. It 1s‘poss1ble '
to LAMBDA-bind the location. Because of the tagged architecture and
highly-organized storage, it is possible to have a locative pbinter into the
middle of almost anything without causing trouble with the garbage collector. '

LISP Machine 13 Progress Report

REPRESENTATION OF PROGRAMS:

In the Lisp Machine there are three representations for programs.
Interpreted Lisp code is the slowest, but the easiest for programs to understand
and modify. It can be used for functions which are being debugged, for functions
which need to be understood by other functions, and for functions which are not
worth the bother of compiling. A few functions, notably EVAL, will not work
interpreted.

Compiled Lisp ("macrocode") is the main representation for programs.
This consists of instructions in a somewhat conventional machine-language, whose
unusual features will be described below. Unlike the case in many other Lisp
systems, macrocode programs still have full checking for unbound variables, data
type errors, wrong number of arguments to a function, and so forth, so it is not

necessary to resort to interpreted code just to get extra checking to detect

bugs. Often, after typing in a function to the editor, one skips the
interpretation step and requests the editor to call the compiler on it, which
only takes a few seconds since the compiler is always in the machine and only has
to be paged in. v

Compiled code on the Lisp Machine is stored inside objects called (for
historical reasons) Function Entry Frames (FEFs). For each function compiled,
one FEF is cfeated. and an object of type DTP-FEF-POINTER is stored in the
function cell of the symbol which is the name of the function. A FEF consists of
some header information, a description of the arguments accepted by the function,
pointers to external Lisp objects needed by the function (such as constants and
special variables), and the macrocode which implements the function.

The third form of program representation is microcode. The system
includes a good deal of hand-coded microcode which executes the macrocode
insfructions, implements the data types and the function-calling mechanism,
maintains the paged virtual memory, does storage allocation and garbage
collection, and performs similar systemic functions. The primitive operations on

‘the basic data types, that is, CAR and CDR for lists, arithmetic for numbers,

reference and store for arrays, etc. are implemented as microcode subroutines.
In addition, a number of commonly-used Lisp functions, for instance GET and ASSQ,
are hand-coded in microcode for speed. o

. In addition to this system-supplied microcode, there is a feature called
micro compilation. Because of the simplicity and generality of the CONS
microprocessor, it is feasible to write a compiler to compile user-written Lisp

functions directly into microcode, eliminating the overhead of fetching and

LISP Machine 14 Progress Report

interpreting macroinstructions. This can be used to boost performance by
microcompiling the most critical routines of a program. Because it is done by a
~compiler rather than a system programmer, this performance improvement is
available to everyone. The amount of speedup to be expected depends on the
operations used by the program; simple low-level operations such as data
transmission, byte extraction, integer arithmetic, and simple branching can
expect to benefit the most. Function calling, and operations which already spend
most of their time in microcode, such as ASSQ, will benefit the least. In the
best case one can achieve a factor of about 20. In the worst case, maybe no
speedup at all.

Since the amount of control memory is limited, only a small number of
microcompiled functions can be loaded in at one time. This means that programs
have to be characterized by spending most of their time in a small inner kernel
of functions in order to benefit from microcompilation; this is probably true of
most programs. There will be fairly hairy metering facilities for identifying
such critical functions. ' '

We do not yet have a microcompiler, but a prototype of one was written
and heavily used as part of the Lisp machine simulator. It compiles for the
PDP-10 rather than CONS, but uses similar techniques and a similar interface to
the built-in microcode.

In all three forms of program, the flexibility of function calling is
augmented with generalized LAMBDA-lists. In order to provide a more general and
flexible scheme to replace EXPRs vs. FEXPRs vs. LEXPRs, a syntax borrowed from
Muddle and Conniver is used in LAMBDA lists. In the general case, there are an
arbitrary number of REQUIRED parameters, followed by an arbitrary number of
OPTIONAL parameters, possibly followed by one REST parameter. When a function is
APPLIED to its arguments, first of all the required formal parameters are paired
off with arguments; if there are fewer arguments than required parameters, an
error condition is caused. Then, any remaining arguments are paired off with the
optional parameters; if there are more optional parameters than arguments
remaining, then the rest of the optional parameters are initialized in a
user-specified manner. The REST parameter is bound to a list, possibly NIL, of
all arguments remaining after all OPTIONAL parameters are bound. To avoid
CONSing, this list is actually stored on the pdl; this means that you have to be
careful how you use it, unfortunately. It is also possible to control which
arguments are evaluated and which are quoted.

Normally, such a complicated calling sequence would entail an

LISP Machine 15 Progress Report

‘unacceptable amount of overhead. Because this is all implemented by microcode,
and because the simple, common cases are special-cased, we can provide these
advanced features and still retain the efficiency needed in a practical system.

We will now discuss some of the issues in the design of the macrocode
instruction set. Each macroinstruction is 16 bits long; they are stored two per
word. The instructions work in a stack-oriented machine. The stack is formatted -
into frames; each frame contains a bunch of arguments, a bunch of local variable
value slots, a push-down stack for intermediate results, and a header which gives
the function which owns the frame, links this frame to previous frames, remembers
the program counter and flags when this frame is not executing, and may contain
"additional information" used for certain esoteric purposes. Originally this was
intended to be a spaghetti stack, but the invention of closures and stack-groups
(see the control-structure 'section), combined with the extreme complexity of
spaghetti stacks, made us decide to use a simple linear stack. The current ffame
is always held in the pdl buffer, so accesses to arguments and local variables do
not require memory references, and do not have to make checks related to the
garbage collector, which improves performance. Usually several other frames will
also be in the pdl buffer. | :

The macro instruction set is bit-compact. The stack organization and
Lisp's division of programs into small, separate functions means that address
fields can be small. The use of tagged data types, powerful generic operations,
and easily-called microcoded functions makes a single 16-bit macro instruction do
~ the work of several instructions on a conventional machine such as a PDP-10.

The primitive operations which are the instructions which the compiler
generates are higher-level than the instructions of a conventional machine. They
all do data type checks; this provides more run-time error checking than in
Maclisp, which increases reliability. But it also eliminates much of the need to
make declarations in order to get efficient code. Since a data type check is
~being made, the "primitive" operations can dynamically decide which specific
routine is to be called. This means that they are all "generic®", that is, they
work for all data types where they make sense.

The operations which are regarded as most important, and hence are
‘easiest for macrocode to do, are data transmission, function calling, conditional
testing, and simple operations on primitive types, that is, CAR, CDR, CADR, CDDR,
RPLACA, and RPLACD, plus the usual arithmetic operations and comparisons. More
complex operations are generally done by "miscellaneous" instructions, which call
microcoded subroutines, passing arguments on the temporary-results stack.

There are three mai’n'kinds of addressing in macrocode. First, there is

LISP Machine 16 Progress Report

implicit addressing of the top of the stack. This is the usual way that operands
get from one instruction to the next.

Second, there is the source field (this is sometimes used to store
results, but I will call it a source anyway). The source can address any of the
following: Up to 64 arguments to the current function. Up to 64 local variables
of the current function. The last result, popped off the stack. One of several
commonly-used constants (e.g. NIL) stored in a system-wide constants area. A
constant stored in the FEF of this function. A value cell or a function cell of
a symbol. referenced by means of an invisible pointer in the FEF; this mode is
used to reference special variables and to call other functions.

Third, there is the destination field, which specifies what to do with
the result of the instruction. The possibilities are: Ignore it, except set the
“indicators used by conditional branches. Push it on the stack. Pass it as an
argument. Return it as the value of this function. Cons up a list.

There are five types of macroinstructions, which will be described.
First, there are the data transmission instructions, which take the source and
MOVE it to the ‘destination, optionally taking CAR, CDR, CAAR, CADR, CDAR, or CDDR
in the process. Because of theb powerful operations that can be specified in the .
destination, these instructions also serve as argument-passing, function-exiting,
and list-making instructions.

Next we have the function calling instructions. The simpler of the two
is CALLO, call with no arguments. It calls the function indicated by its source,
and when that function returns, the result is stored in the destination. The
microcode takes care of identifying what type of function is being called,
invoking it in the appropriate way, and saving the state of the current function.
It traps to the interpreter if the called function is not compiled.

- The more complex function call occurs when there are arguments to be
passed. The way it works is as follows. First, a CALL ihstruction is executed.
The source operand is the function to be called. The beginnings of a new stack
frame are constructed at the end of the current frame, and the function to be
called is remembered. The destination of the CALL instruction specifies where
the result of the function will be placed, and it is saved for later use when the
function returns. Next, instructions are executed to compute the arguments and
store them into the destination NEXT-ARGUMENT. This causes them to be added to
the new stack frame. When the last argument is computed, it is stored into the
destination LAST-ARGUMENT, which stores it in the new stack frame and then
activates the call. The function to be called is analyzed, and the arguments are
bound to the formal parameters (usually the arguments are already in the correct

LISP Machine 17 Progress‘Report

slots of the new stack frame). Because the computation of the arguments is
introduced by a CALL instruction, it is easy to find out where the arguments are
and how many there are. The new stack frame becomes current and that function
begins execution. When it returns, the saved destination of the CALL instruction
is retrieved and the result is stored. Note that by using a destination of
NEXT-ARGUMENT or LAST-ARGUMENT function calls may be nested. By using a
destination of RETURN the result of one function may become the result of its.
caller. '

The third class of macro instructions consists of a number of common
operations on primitive data types. These instructions do not have an explicit
destination, in order to save bits, but implicitly push their result (if any)
ohto the stack. This sometimes necessitates the generation of an extra MOVE
instruction to put the result where it was really wanted. These instructions
include: Operations to store results from the pdl into the "source®. The basic
arithmetic and bitwise boolean operations. Comparison operations, including EQ
and arithmetic comparison, which set the indicators for use by conditional
branches. Instructions which set the "source" operand to NIL or zero. Iteration
instructions which change the "source" operand using CDR, CDDR, 1+, or 1- (add or
subtract one). Binding -instructions which lambda-bind the "source" operand, then
optionally set it to NIL or to a value popped off the stack. And, finally, an -
instruction to push its effective address on the stack, as a locative hointer.

The fourth class of macro instructions are the branches, which serve
mainly for compiling COND. Branches contain a self-relative address which is
transferred to if a specified condition is satisfied. There are two indicators,
which tell if the last result was NIL, and if it was an atom, and the state of
- these indicators can be branched on; there is also an unconditional branch, of
course. For branches more than 256 half-words away, there is a double-length
long-branch instruction. An interesting fact is that there are not really any
indicators; it turns out to be faster just to save the last result in its
- entirety, and compare it against NIL or whatever when that is needed by a branch
instruction. It only has to be saved from one instruction to the immediately
following one.

The fifth class of macro instructions is the "miscellaneous function."
This selects one of 512 microcoded functions to be called, with arguments taken
from results previously pushed on the‘stack. A destination is specified to
receive the result of the function. In addition to commonly-used functions such
as GET, CONS, CDDDDR, REMAINDER, and ASSQ, miscellaneous functions include
sub-primitives (discussed above), and instructions which are not as commonly used

LISP Machine v 18 Progress Report

as the first four classes, including operations such as array-accessing, consing
up lists, un-lambda-binding, special funny types of function calling, etc.

The way consing-up of lists works is that one first does a miscellaneous
function saying "make a list N long". One then executes N instructions with
destination NEXT-LIST to supply the elements of the list. After the Nth such
instruction, the list-object magically appears on the top of the stack. This
saves having to make a call to the function LIST with a variable number of
arguments. ‘ ‘ |

Another type of "instruction set" used with macrocode is the Argument
Description List, which is executed by a different microcoded interpreter at the
time a function is entered. The ADL contains one entry for each argument which
the function expects to be passed, and for each auxiliary variable. It contains
all relevant information about the argument: whether it is required, optional,
or rest, how to initialize it if it is not provided, whether it is local or
special, datatype checking information, and so on. Sometimes the ADL can be
dispensed with if the "fast argument option" can be used instead; this helps
save time and memory for small, simple functions. The fast-argument option is
used when the optional arguments and local variables are all to be initialized to
NIL, there are not too many of them, there is no data-type checking, and the
usage of special variables is not too complicated. The selection of the
fast-argument option, if appropriate, is automatically made by the system, so the
user need not be concerned with it. The details can be found in the FORMAT
document.

CONTROL STRUCTURES:

Function calling. Function calling is, of course, the basic main control
structure in Lisp. As mentioned above, Lisp machine function Caliing is made
fast through the use of microcode and augmented with optional arguments, rest
arguments, multiple return values. and optional type-checking of arguments.

CATCH and THROW. CATCH and THROW are a Maclisp control structure which
will be mentioned here since they may be new to some people. CATCH is a way of
markihg a particular point in the stack of recursive function invocations. THROW
causes control to be unwound to the matching CATCH, automatically returning
through the intervening function calls. They are used mainly for handling errors
and unusual conditions. They are also useful for getting out of a hairy piece of

~ LISP Machine 19 Progress Report

code when it has discovered what value it wants to return; this applies
particularly to nested loops.

Closures. The LISP machine contains a data-type called "closure® which
is used to implement "full funarging”. By turning a function into a closure, it
becomes possible to pass it as an argument with no worry about naming conflicts,
and to return it as a value with exactly the minimum necessary amount of binding
environment being retained, solving the classical "funarg problem". Closures are
implemented in such a way that when they are not used the highly speed— and
storage-efficient shallow binding variable scheme operates at full efficiency,
and when they are used things are slowed down only slightly. The way one creates
a closure is with a form such as:

(CLOSURE '(FOO-PARAM FOO-STATE)
(FUNCTION FOO-BAR))

The function could also be written directly in place as a
LAMBDA-expression, instead of referring to the externally defined F00-BAR. The
variablesv FOO-PARAM and FOO-STATE are those variables which are used free by
FOO-BAR and are intended to be "closed". ‘That is, these are the variables whose

binding environment is to be fixed to that in effect at the time the closure is

created. The explicit declaration of which variables are to be closed allows the
implementation to have high efficiency, since it does not need to save the whole
~ variable-binding environment, almost all of which is useless. It also allows the
programmer to explicitly choose for each variable whether it is to be dynamically
bound (at the point of call) or statically bound (at the point of creation of the
closure), a choice which is not conveniently available in other languages. In
addition the program is clearer because the intended effect of the closure is
made manifest by listing the variables to be affected.

Here is an example, in which the closure feature is used to solve a
problem presented in "LAMBDA - The Ultimate Imperative™ [LAMBDA]. The problem is
to write a function called GENERATE-SQRT-OF-GIVEN-EXTRA-TOLERANCE, which is to
take one argument, which is the factor by which the tolerance is to be increased,
and return a function which takes square roots with that much more tolerance than
usual, whatever "usual® is later defined to be. You are given a function 'SQRT
which makes a free reference to EPSILON, which is the tolerance it demands of the
trial solution. The reason this example presents difficulties to various
languages is that the variable EPSILON must be bound at the point of call (i.e.

LISP Machine 20 Progress Report

dynamically scoped), while the variable FACTOR must be bound at the point of
creation of the function (i.e. lexically scoped). Thus the programmer must have
explicit control over how the variables are bound. '

(DEFUN GENERATE-SQRT-OF-GIVEN-EXTRA-TOLERANCE (FACTOR)
(CLOSURE '(FACTOR)
(FUNCTION
(LAMBDA (X)
((LAMBDA (EPSILON) (SQRT X))
(* EPSILON FACTOR))))))

The function, when called, rebinds EPSILON to FACTOR times its current value,
then calls SQRT. The value of FACTOR used is that in effect when the closure was
created, i.e. the argument to GENERATE-SQRT-OF-GIVEN-EXTRA-TOLERANCE.

The way closures are implemented is as follows. For each variable to be
closed an "external value cell" is created, which is a CONSed up free-storage
cell which contains the variable's value when it is at that level of binding.
Because this cell is CONSed up, it can be retained as long as necessary, just
like ayny’ other data, and unlike cells in a stack. Because it is a cell, if the
variable is SETQed the new value is seen by all the closures that should see it.
The association between the symbol which is the name of the variable and this
value cell is of the shallow-binding type, for efficiency; an invisible pointer
(see the storage organization section) in the normal (internal) value cell
supplies the éonnection, eliminating the overhead of searching stack frames or
a-lists. If at the time the closure is created an external value cell already
exists for a variable, that one is used instead of creating a new one. Thus all v
closures at the same "level of binding® use the same value cell, which is the
desired semantics.

The CLOSURE function returns an object of type DTP-CLOSURE, which
contains the function to be called and, for each variable closed over, locative
pointers to its internal and external value cells.

When a closure is invoked as a function, the variables mentioned in the
closure are bound to invisible pointers to their external value cells; this puts
these variables into the proper binding environment. The function contained in
the closure is then invoked in the normal way. When the variables happen to be
referred to, the invisible pointers are automatically followed to the external
value cells. If one of the closed variables is then bound by some other

LISP Machine 21 Progress Report

function, the external value cell pointer is saved away on the binding stack,
like any saved variable value, and the variable reverts to normal nonclosed
status. When the closed function returns, the bindings of the closed variables
are restored just like any other variables bound by the function.

, Note the economy of mechanism. Almost all of the system is completely
unaffected by and unaware of the existence of closures; the invisible pointer
mechanism takes care of things. The retainable binding environments are
allocated through the standard CONS operation. The switching of variables
between normal and "closed" status is done through the standard binding
operation. The operations used by a closed function to access the closed
variables are the same as those used to access ordinary variables; closures are
called in the same way as ordinary functions. Closures work just as well in the
interpreter as in the compiler. An important thing to note is the minimality of
CONSing in closures. When a closure is created, some CONSing is done; external
value cells and the closure-object itself must be created, but there is no extra
"overhead". When a closure is called, no CONSing happens.

One thing to note is that in the compiler closed variables have to be
declared "special". This is a general feature of the Maclisp and Lisp machine
~compilers, that by default variables are local, which means that they are
lexically bound, only available to the function in which they are bound, and
implemented not with atomic symbols, but simply as slots in the stack. Variables
that are declared special are implemented with shallow-bound atomic symbols,
identical to variables in the interpreter, and have available either dynamic
binding or closure binding. They are somewhat less efficient since it takes two
memory references to access them and several to bind them.

Stack groups. The stack group is a type of Lisp object useful for
implementation of certain advanced control structures such as coroutines,
asynchronous processes, and generators. A stack group is similar to a process
(or fork or job or task or control-point) in a time-sharing system; it contains
such state information as the "regular" and "special® (binding) PDLs and various
internal registers. At all times there is one stack group running on the
machine.

Control may be passed between stack groups in several ways (not all of
which exist yet on our prototype machine). A stack-group may be called like a
. function; when it wants to return it can do a %STACK-GROUP-RETURN which is
different from an ordinary function return in that the state of the stack group
remains unchanged; the next time it is called it picks up from where it left

LISP Machine 22 ~ Progress Report

off. This is good for generator-like applications; each time
%STACK-GROUP-RETURN is done, a value is emitted from the generator, and as a
side-effect execution is suspended until the next time the generator is called

%STACK-GROUP-RETURN is analogous to the ADIEU construct in CONNIVER.

Control can simply be passed explicitly from one stack group to another,
coroutine-style. Alternatively, there can be a scheduler stack-group which
invokes other stack groups when their requested scheduling conditions are
satisfied. ‘

Interrupts cause control of the machine to be transferred to an
interrupt-handler stack group. Essentially this is a forced stack group call
like those calls described above. Similarly, when the microcode detects an error
the current stack group is suspended and control is passed to an error-handling
stack group. The state of the stack group that got the error is left exactly as
it was when the error occurred, undisturbed by any error-handling operations.
This facilitates error analysis and recovery.

When the machine is started, an “initial® stack group becomes the current
stack group, and is forced to call the first function of Lisp.

Note that the same scheduler-driven stack-group switching mechanism can
be used both for user programs which want to do parallel computations, and for

system programming purposes such as the handling of network servers and
| peripheral handlers.
~ Each stack group has a call-state and a calling-stack-group variable,
which are used in maintaining the relations between stack groups. A stack group
also has some option flags controlling whether the system tries to keep different
stack groups' binding environments distinct by undoing the special variable
bindings of the stack group being left and redoing the bindings of the stack
group being entered. |

Stack groups are created with the function MAKE-STACK-GROUP, which takes
one main argument, the "name" of the stack group. This is used only for
debugging, and can be any mnemonic symbol. It returns the stack group, i.é., a
Lisp object with data type DTP-STACK-GROUP. Optionally the sizes of the pdls may
be specified.

The function STACK-GROUP-PRESET is used to initialize the state of a
stack group: the first argument is the stack group, the second is a function to
be called when the stack group is invoked, and the rest are arguments to that
function. Both PDLs are made embty. The stack group is set to the
AVWAITING-INITIAL-CALL state. When it is activated, the specified function will
find that it has been called with the specified arguments. If it should return

LISP Machine _ 23 Progress Report '

in the normal way, (i.e. the stack group "returns off the top", the stack group
will enter a "used up" state and control will revert to the calling stack group.
Normally, the specified function will use XSTACK-GROUP-RETURN several times;
otherwise it might as well have been called directly rather than in a stack
group.

One important difference between stack groups and other means proposed to
implement similar features is that the stack Qroup scheme involves no loss of
efficiency in normal computation. In fact, the compiler, the interpreter, and
even the runtime function-calling mechanism are completely unaware of the
existance of stack groups.

STORAGE ORGANIZATION:

Incremental Garbage Collection. The Lisp machine willvuse a real-time,
incremental, compacting garbage collector. Real-time means that CONS (or related
‘functions) never delay Lisp execution for more than a small, bounded amount of
time. A

_ This is very important in a machine with a large address space, where a
traditional garbage collection could bring everything to a halt for several
minutes. The garbage collector is incremental, i.e. garbage collection is
interleaved with execution of the user's program; every time you call CONS the
garbage collection proceeds for a few steps. Copying can also be triggered by a
memory reference which fetches a pointer to data which has not yet been copied.
The garbage collector compactifies in order to improve the paging
characteristics. v '

The basic algorithm is described in a paper by Henry Baker [GC]. We have
not implemented it yet, but design is proceeding and most of the necessary
changes to the microcode have already been made. It is much simpler than
previous methods of incremental garbage collection in that only one process is
needed; this avoids interlocking and synchronization problems, which are often
very difficult to debug.

Areas. Storage in the Lisp machine is divided into "areas." Each area
contains related objects, of any type. Since unlike PDP-10 Lisps we do not
encode the data type in the address, we are free to use the address to encode the
area. Areas are intended to give the user control over the paging behavior of

LISP Machine 24 Progress Report

his program, among other things. By putting related data together, locality can
be greatly increased. Whenever a new object is created, for instance with CONS,
the area to be used can optionally be specified. There is a default Working
Storage area which collects those objects which the user has not chosen to
control explicitly.

Areas also give the user a handle to control the garbage collector. Some
areas can be declared to be "static", which means that they change slowly and the
garbage collector should not attempt to reclaim any space in them. This can
eliminate a lot of useless copying. All pointers out of a static area can be
collected into an "exit vector", eliminating any need for the garbage collector
to look at that area. As an important example, an English-language dictionary
can be kept inside the Lisp without adversely affecting the speed of garbage
collection. A "static"™ area can be explicitly garbage-collected at infrequent
intervals when it is believed that that might be worthwhile.

Each area can potentially have a different storage discipline, a
‘different paging algorithm, and even a different data representation. The
microcode will dispatch on an attribute of the area at the appropriate times.
The structure of the machine makes the performance cost of these features
negligible; information about areas is stored in extra bits in the memory
mapping hardware where it can be qﬁickly dispatched on by the microcode. These
dispatches usually have to be done anyway to make the garbage collector work, and
to implement invisible pointers.

Invisible Pointers. An invisible pointer is similar to an indirect
‘address word on a conventional computer except the indirection is specified in
the data instead of in‘the instruction. A reference to a memory location
containing an invisible pointer is automatically altered to use the location
pointed to by the invisible pointer. The term "invisible" refers to the fact
that the presence of such pointers is not visible to most of the system, since
they are handled by the lowest-level memory-referencing operations. The
invisible pointer feature does not slow anything down too much, because it is
part of the data type checking that is done anyway (this is one of the benefits
of a tagged architecture). A number of advanced features of the Lisp machine
depend upon invisible pointers for their efficient implementation.

Closures use invisible pointers to connect internal value cells to
external value cells. This allows the variable binding scheme to be altered from
normal shallow binding to allocated-value-cell shallow binding when closures are
being used, without altering the normal operation of the machine when closures

- LISP Machine 25 Progress Report

are not being used. At the same time the slow-down when closures are used
amounts to only 2 microseconds per closed-variable reference, the time needed to
detect and follow the invisible pointer.

Invisible pointers are necessary to the operation of the cdr-coded
compressed list scheme. If an RPLACD is done to a compressed list, the list can
no longer be represented in the compressed form. It is necessary to allocate a
full 2-word cons node and use that in its place. But, it is also necessary to
preserve the identity (with respect to EQ) of the list. This is done by storing
an invisible pointer in the original location of the compressed list, pointing to
the uncompressed copy. Then the list is still represented by its original
location, preserving EQ-ness, but the CAR and CDR operations follow the invisible |
pointer to the new location and find the proper car and cdr.

This is a special case of the more general use of invisible pointers for
*forwarding" references from an old representation of an object to a new one..
For instance, there is a function to increase the size of an array. If it cannot
do it in place, it makes a new copy and leaves behind an invisible pointer.

The exit-vector feature uses invisible pointers. One may set up an area
to have the property that all references from inside that area to objects in
other areas are collected into a single exit-vector. A location which would
normally contain such a reference instead contains an invisible pointer to the
appropriate slot in the exit'vector. Operations on this area all work as before,
except for a slight slow-down caused by the invisible pointer following. It is
also desirable to have automatic checking to prevent the creation of new outside
references; when an attempt is made to store an outside object into this area
execution can trap to a routine which creates a new exit vector entry if
necessary and stores an invisible pointer instead. The reason for exit vectors
is to speed up garbage collection by eliminating the need to swap in all of the
pages of the area in order to find and relocate all its references to outside
objects.

The macrocode instruction set relies.on invisible pointers in order to
access the value cells of "special® (non-local) variables and the function cells
of functions to be called.

Certain system variables stored in the microcode scratchpad memory are
~ made available to Lisp programs by linking the value cells of appropriately-named
Lisp symbols to the scratchpad memory locations with invisible pointers. This
makes it possible not only to read and write these variables, but also to
lambda~bind them. In a similar fashion, invisible pointers could be used to 1link
two symbols' value cells together, in the fashion of MicroPlanner but with much

LISP Machine ' 26 Progresszeport

greater efficiency.

THE EDITOR:

The Lisp machine system includes an advanced real-time display oriented
editor, which is written completely in Lisp. The design of this editor drew
heavily on our experience with the EMACS editor (and its predecessors) on the
PDP-10. The high-speed display and fast response time of the Lisp machine are
crucial to the success of the editor. ,

The TV display is used to show a section of the text buffer currently

‘being edited. When the user types a normal printing character on the keyboard,
that character is inserted into his buffer, and the display of the buffer is
updated; you see the text as you type it in. When using an editor, most of the
user's time is spent in typing in text; therefore, this is made as easy as
possible. Editing operations other than the insertion of single characters are
invoked by control-keys, i.e. by depressing the CONTROL and/or META shift keys,
along with a single character. For example, the command to move the current
location for typein in the buffer (the "point") backward is Control-B (B is
mnemonic for Backward); the command to move to the next line is Control~N.
There are many more advanced commands, which know how to interpret the text as
words or as the printed representation of Lisp data structure; Meta-F moves
forward over an English word, and Control-Meta-F moves forward over a Lisp
expression (an atom or a list). :

‘ The real-time display-oriented type of editor is much easier to use than
traditional text editors, because you can always see exactly what you are' doing.
A new user can sit right down and type in text. However, this does not mean that
there can be no sophisticated commands and macros. Very powerful operations are
provided in the Lisp machine editor. Self-documentation features exist to allow
the user to ask what a particular key does before trying it, and to ask what keys
contain a given word in their description. Users can write additional commands,
in Lisp, and add them to the editor's command tables. ; ‘

The editor knows how much a line should be indented in a Lisp program in
order to reflect the level of syntactic nesting. When typing in Lisp code, one
uses the Linefeed key after typing in a line to move to the next line and
automatically indent it by the right amount. This serves the additional purpose
of instantly pointing out errors in numbers of parentheses. .

LISP Machine 27 Progress Report

The editor can be used as a front end to the Lisp top level loop. This
provides what can be thought of as very sophisticated rubout processing. When
the user is satisfied that the form as typed is correct, he can activate it,
allowing Lisp to read in the form and evaluate it. When Lisp prints out the
result, it is inserted into the buffer at the right place. Simple commands are
available to fetch earlier inputs, for possible editing and reactivation.

In addition to commands from the keyboard, the mouse can be used to point
to parts of the buffer, and to give simple editing commands. The use of mice for
text editing was originated at SRI, and has been refined and extended at
XEROX-PARC.

The character-string representation of each function in a program being
worked on is stored in its own editor buffer. One normally modifies functions by
editing the character-string form, then typing a single-character command to read
it into Lisp, replacing the old function. Compilation can optionally be
requested. The advantage of operating on the character form, rather than
directly on the list structure, is that comments and the user's chosen formatting
of the code are preserved; in addition, the editor is easier to use because it
operates on what you see on the display. There are commands to store sets of
buffers into files, and to get them back again.

The editor has the capability to edit and display text in multiple fonts,
and many other features too numerous to mention here.

CURRENT STATUS (August 1977)

The original prototype CONS machine was designed and built somewhat more
than two years ago. It had no memory and no I1/0 capability, and remained pretty
much on the back burner while software was developed with a simulator on the
PDP-10 (the simulator executed the Lisp machine macro instruction set, a function
now performed by CONS microcode.) Microprogramming got under way a little over a
year ago, and in the beginning of 1977 the machine got memory, a disk, and a
terminal.

We now have an almost-complete system running on the prototype machine.
The major remaining "holes"™ are the lack of a garbage collector and the presence
of only the most primitive error handling. Also, floating-point and big-integer
numbers and microcompilation have been put off until the next machine. The
system includes almost all the functions of Maclisp, and quite a few new ones.

LISP Machine ' 28 Progress Report

The machine is able to page off of its disk, accept input from the keyboard and
the mouse, display on the TV, and do I/0 to files on the PDP-10. The display
editor is cbmpletely working, and the compiler runs on the machine, so the system
is quite usable for typing in, editing, compiling, and debugging Lisp functions.

As a demonstration of the system, and a test of its capabili’tie's, two
large programs have been brought over from the PDP-10. William Woods's LUNAR
English-language data-base query system was converted from InterLisp to Maclisp,
thence to Lisp machine Lisp. On the Lisp machine it runs approximately 3 times
as fast as in Maclisp on the KA-10, which in turn is 2 to 4 times as fast as in
InterLisp. Note that the Lisp machine time is elapsed real time, while the
PDP-10 times are virtual run times as given by the operating system and do not
include the delays due to timesharing.

Most of the Macsyma symbolic algebraic system has been converted to the
Lisp machine; nearly all the source files were simply compiled without any
modifications. Most of Macsyma works except for some things that require
bignums. The preliminary speed is the same as on the KA-10, but a number of
things have not been optimally converted. (This speed measurement is, again,
elapsed time on the Lisp machine version versus reported run time on the KA-10
‘time sharing system. Thus, paging and scheduling overhead in the KA-10 case are
not counted in this measurement.) o

LUNAR (including the dictionary) and Macsyma can reside tdgether in the
Lisp machine with plenty of room left over; either program alone will not
entirely fit in a PDP-10 address space. '

The CONS machine is currently being redesigned, and a new machine will be
built soon, replacing our present prototype. The new machine will have larger
sizes for certain internal memories, will incorporate newer technology, will have
greatly improved packaging, and will be faster. It will fit entirely in one
cabinet and will be designed for ease of construction and servicing. In late
1977 and early 1978 we plan to build seven additional machines and install them
at the MIT AI Lab. During the fall of 1977 we plan to finish the software,b
bringing it to a point where users can be put on the system. User experience
with the Lisp machine during 1978 should result in improvement and cleaning up of
the software and documentation, and should give us a good idea of the real
performance to be expected from the machine. At that time we will be able to
start thinking about ways to make Lisp machines available to the outside world.

Lt

LISP Machine 29 Progfess Report

REFERENCES:

CONS: Steele, Guy L. "Cons", not yet published. This is a revision of
Working paper 80, CONS by Tom Knight ‘

GC: Baker, Henry, "List Processing in Real Time on a Serial Computer",
Working Paper 139

LAMBDA: Steele, Guy L. "LAMBDA - The Ultimate Imperative", Artificial
Intelligence

Memo 353

MOUSE: See extensive publications by Englebart and group at SRI.

