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 SUMMNARY: Marr S‘Poggib'(1976) recently desCribed a cooperative

algorithm thdat solves the correspondence problem for stereopsis. This
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random-dot stereograms are compared with the probabilistic analysis. A~
satisfactory mathematical analysis of the asymptotic behaviour of the
algorithm is possible for a suitable choice of the parameter values and
loading rules, and again the actual performance of the algorithm under
these conditions is compared with the theoretical predictions.

Finally, some problems raised by the analysis of this type of
"cooperative" algorithm are briefly discussed. » :
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1 Introduction

The extraction of stereo—disparity information from two images
depends upon establishing a correspondence between rhem. Inva recent
Varticle, Marr & Poggio (1976) analyzed the nature of the correspondence
'_computation and derived a. cooperative algorithm that implements it. |
Although several examples were given of the performance of the
~algorithm on random- dot stereograms Marr § Poggio 1976, figures 3- 6),
space did not permit a thorough analysis of the fixed points of the
algorithm, or of its convergence. In this article, we shall examine

these issues in detail.

1. 1 Computational structure of the correspondence problem:

v Marr & Poggio (1976) argued that the stereo problem may be reduced
to that of matching two primitive descriptions, one from each eye.

The) shoued that the central problem is to find a correspondence
between the left and right descriptions, that satisfies the two rules

(p. 284 and Marr, 1974)

(R1) Uniqueness: Each item from each image may be assigned at most one

disparity.

(n2) Continuity- Disparity varies smoothly almost everywhere. A
By constructing an explicit geometrical representation of these two

rules (figure lc), they were able to derive a cooperative algorithm
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1. Figure 1la éhows the explicit stfuc.’chre of the two ruleé R1 and R2

for the case of a one-dimensional image, and it also represents the
structure of a4 network for implementing the algorithm described by
equation 1.1.1, Solid lines represent "inhibitory" interactions, and
dotted lines represent "excitatory" ones. 1b gives the local structure
This algorithm may be extended to two-
dimensional images, in which case each node in the corresponding

network has the local structure shown in lc. (Marr & Poggio 1976 figure.
2). : , - .
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that implements them. If one thinks of figure la as a network, with a
cell atreéch_node, the uniqueness rule RI means that only one cell is
"on".along each.vertical or horizontal line (the line of sight from the
left énd rtght eyes); and the continuity rule R2 implies that solutions
(its asymptotxc states) tend to spread along the dotted diagonals
.(llnes of constant d1spar1ty) |

“In order to 1mp1ement these rules, each cell sends "1nh1b1tor)"
connect1ons to all other cells along the same vertical and horxzontal

lxnes, and exc1tatory connections along its diagonal. This gives the

. local network geometry shown in figure 1b. For a two-dimensional

image, -the only change needed is to make thebexcitatory neighborhood

o twh—dimensibnal@'which.gives the local geometry shown in figure lc, |
ﬂeticx.y:d;denote thehstate at timé t'of the'cell correspnndjng”to

coordinéte (x, hy) on-the left retina,‘matching position (x+d, y) on the

'right retina. Let S(xyd) denote its excitatory neighborhood (the d1sc :

~in figure 1c), and O(xyd) its inhibitory nelghborhood (the hor1zonta1

and vertical lines in figure 1c). The algorithm 1mp1emented by the |

nethork may’ be written (Marr & Poggio 1976, equation 2)

e R Bt S (0)
1.1.1 Cx,ysd °[ 2 Cx oyt sd? EZC y' O ysd

X',y',d'es(x,y,d) sy d EO( XY d)

where ¢ is a threshold function that takes values 0 or 1, vand e is an
"1nh1b1t10n" constant.
: This article is concerned with the properties of the algorithms

defined by equation 1.1.1 or, equivalently, with the behavior of the
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corresponding'networh (fig. 1). The two inputs to the algorithm or .

network, from which the initial state of the network is determined, are
usually two matrices whose entries consist of 0's and 1's. The second
matrix is constructed from the first by x-translations of regions of

it. As we shall discuss later the algorithm defined by equation 1.1.1

"has some analogles w1th games like "life".

The plan of the paper is as follows' Section 2 describes the

load1ng rules, which determine the initial state from the input

-stereograms, and also defines thé algorithm precisely The relations

between the fixed polnts of the algorithm and the states that satisfy

the two condxtlons R1 and R2 are then dlscussed (section 3) A

’probabil1st1c approach to the convergence of the algorlthm is outllned

in sectron 4, Actual computer simulations of the algorithm are
compared with the probabilistic analysis, and the range of parameter
values'that yield a "nlce" convergence is discussed. Some special

situations are also analyzed (section'5). A suitable (and restrictive)

.choxce of the parameter values in eq 1. 1. 1 allows a satzsfactory

mathematlcal analys1s of the algorzthm. section 6 is devoted to such

“an approach. F1nally, we briefly d1scuss the mathemat1cal problems

- raised by the_analys1s of,thzs type of "cooperative" algorlthm.
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2 The algorithm

2.1 Loading conditions

Let the posxtions on the left and right retinas be denoted by L
and n " respectively. These arrays take the values 0, indicating the
absence of a feature, or 1, indicating thevnresence. The initial
'condition of the network, for stereogram L, R is given by

o . : .
2.1-1 CX.y'.d & Lx'y.o Rx+d'y

within the appropriate range d of disparity.  A 71" o - f o

2.2 rh'e'a’z'g'orithm'_ | | |
| The relation between states at times t and t+1, is given by the

recurrence relation eq 1. 1 1, where ¢ is a sigmoid function in general,
and here is taken to be the threshold function
2.2.1  o(u)s1 if u > 6,

| = 0 otherwise.
¢ is a constant, known as the "inhibition constant". The number of
disparity layers d we shall denote by D, and we shall let N be the
A diameter of the exc1tatory neighborhood S(x,y, d). In the example shown
‘in figure 2, M =5, and the total number of cells.in an exc1tatory
neighborhood 1s 13, The number less the cell itself is 12, which we

shall denote by E. The number of cells in an inhibitory neighborhood Lk
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2. The.excita'tory neighborhood (figure 1c) used in our impleméntation
has a diameter of 5, and contains 13 cells. The central cell, marked
by a square, receives at most 12 excitatory inputs »fro‘m its neighbours.
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of a given cell is 20 - 2, excluding the cell itself.

- 2.8 Paraﬁeter,ualues aﬁd some fGCtS-

‘ : Tﬁé péfameter valueslchosen for our original algorithm1 (Marr &
Poggio, 1976) were E = 12; D=7 €=2, 0 = 4,vwith thclexcitatory
.neighborﬁood shown in fig.'z._ Among'othér'constraints; these parameter

values wefeAchosen to satisfy the following conditions:

2.3.1 in the absence of inhibition and-of a contribution from the term

_ C0, straight'1ine'borders should fill in as-shoWn'in fig; 3a. This is

true when 8 < 4.

2.3.2ﬂ's;raight'liﬁe~borderS‘betWéén two ”filled-in" planes at

different disparities should not grow, This requires that 4 - 2¢ < 6.

2.3.3 with the particular values chosen: ‘

-e'a pattern-of five‘connected points is the smailest‘configuration
that canAsurvive (see fig., 3b). It will not grow ﬁnless one other
point is'added,(e.g. at P in fig..Bb). |

-- the sharpest convexify capable of surviving against one inhibition,
wifh the help of a:contribution'from C0”i$ a fight-angle. Fig. 3c |
shows that the conditidn is 6 -¢28. )

- a convex‘or'flat’border cannot grow against'one’inhibifion;'it can
grow dnly into scattered actiﬁe_cellé.

Q-Iihe least concave patterns capable of growing under two inhibitioné

ARSI
—
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3. The total excitatory contribution for various configurations of
"on" cells. The excitatory neighborhood (figure 2) is shown with open
circles, except for the central cell which is indicated by a square
because it makes no contribution to the total excitation. With a
§ ‘ threshold of 4.0; 3a shows that a flat border will grow in the absence
~ of inhibition, 3b exhibits the smallest stable configuration, 3c the
‘ sharpest stable convexity, and 3d & e show concavities that fill in.
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are shown'in figs. 3d & e. They f111 in by one or two cells and then

are no longer concave enough to gTOW. under two inhibitions.

3 Invariant states and the matchirlg rules

The matchlng rules for stereopsis that were glven in the

1ntroduct10n take the following form for the algorithm dlscussed here'

(1) Uniqueness: Each item from each image may be assigned at most one

disparity value.

(2) Continuity Dlsparlty does not change almost everywhere.
Comment‘ R2 has now taken ‘a slightly different form This is‘beceuse
dlsparlty takes only dxscrete value in this algorithm. Images ’

: contalnrng smoothly varying disparitxes may be handled by a modxfled

version of .the algorithm, which will be discussed in section 5.
We now show that the states in which these two rules are obeyed

are for all practical purposes invariant, i.e. they are fixed points of

eq. 1.1.1, and once achieved, do not change in subsequent iterations..

3.1 Configurations that satisfy the matching rules are invariant

The continuity and uniqueness conditions mean that, for each value




-

r‘y :

4., The solid lines indicate solution planes (cf figdre 1&). Lines of

'sight'PQR, PQ; intersect solution planes at only one point P, except

possibly near the (rare) disparity boundaries like A. Thus
configurations that obey rule R!f are invariant.
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of y, a cross-section of the network has the appearance_shownrin figure
4 (the continuity condition also requires that the active segment-has
éome extension in the y direction). That is, the "on" cells in the
network form extended segments like that shown‘as AB (continuity), and
mogt lines of sight (e.g. PQL,'PQR) intersect only one of these
:,extehded segﬁents (uniquéness). Some lines of éight”(e.g. to D) may
intersect two blanes: this occurs onl? at the (rare) bouhdaries.at
which disparity changes. The physical situdtion.ié that one surface is
6bscuringithe othérQ ‘ | | |

We show now that these COnfigurations'are invariant if fhe'

_ parameter values are appropriate;

(i) vlﬁterior'points like P are certainly invariént if

: | o (t)ﬁh o
3.1.1 DY Cx',y':d 2 0
xf,y',d' e S(x,y,d)

"if P is interior in both x and y.-

(i1) Eq. 8.1.1 implies that boundary points like A (fig. 4) on a
straight boundary (in the x-yiplane)bwill not grow into the interior of
an existing segment at another disparity,provided that |

- 3.1.2 f.v E/2+1 - 2 < §

Concave pieces of boundaries can in principle grow, but not much for




..

5. The two possible stable edges for flat boundaries. Depending on
the initial conditions, edges can occur that are defined by the line -
where cells begin receiving one (A) or two (B) inhibitions from the
other surface. '
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two reasons.A Firstly, boundaries cannot be everywhere concave, and
secondly, with our particular excitatory neighborhood and parameter
valueS»(see figs. 3d & e) the amount a concave border can £ill in is
limited to at nost two elements; Fig. 5 shows the two possible stable

edges for flat boundaries.

- 3.2 WNot alz.invariantvconfigurations sattsfy the matching rutes

Strictly speaking; the converse result to that'of the last section
is not true; A .counter- example to the uniqueness condition that is
stable w1th our parameters appears in figure 6. Interior po1nts of a
plane, wholly surrounded by other points in the same sheet, can survive
'1nh1b1t10n from two other cells and so can boundary points where the
'boundary is straxght. In flgure 6b, poxnts of these two types are the
“‘onl) ones_that occur. A counter—example to the cont1nuity condltlon
appears in figure 7;-and lt is left as an exercise to shou that this
: pattern'is lnvarlant. In practxce, neither of - these confxgurat1ons can
actually develop from a random- dot stereogram.

When the input consists of two stereograms portraying a single
}surface, the probabillstic analysis of the next section shows that with
vh1gh probabzlxty, the solutions will in fact obey the uniqueness
condltlon. v v

| I'f the 1nput stereograns portray a transparent surface in front of
another surface, the algor1thm with our parameter values will usually
fail to represent the 1nput accurately, tending instead to develop a

-:olutxon that obeys the two conditions and conslsts of a mosaic of




6. A stable geometrical configuration that violates the uniqueness -
condition (6a).- The central square consists of two planes, one at
disparity 2 and one at disparity 0. This configuration is a stable
state of the algorithm, in the sense that if it is loaded directly into
the network, an invariant configuration is quickly reached in which
both planes are represented. Figure 6b demonstrates this. The
stereogram is marked Left and Right, and 5 iterations of the algorithm
are shown. If the network is loaded in the usual way, however, the
algorithm develops a solution that is a mosaic of patches from the two
levels (6c). :







MEF UG Tap X A
i s
g -




H [4 )

.{,»'_. . _{.}“v:s 4.""
}s.

'
e ( 3
;.-".:v"«...c I
;.- f'\-q. M Alv:

&.-o'.-. ~}"‘x!’;"<~

oo s




Cooperative computation k Marr, Palm & Po:

‘patches from the two levels (fig., 6¢). With the pdrameters we chose,

there éeens to be no convenient and precise'definitionvof the stability
of configurations that forces the uniquenes; and continuity of A
solutions. " For instance, eren it "one requires in addition to
invariance some kind of spattal stabtlztyz, the counter example of flg.

6 cannot be ~avoided, although a reasonable "spatial stability"

: cond1t1on would exclude the counter- -example of fig. 7.

If one could exclude s1gn1f1cant overlaps ‘between surfaces'lying‘
at different dispéritiee,‘rt appears that one can deriVe the continuity
conoitioné for invariant configurations. The argument is based here on
the notion of a'nole3, and shows by straightforward geometry that holes »
are not invariant. | - '7 - ;

In one dimension (in which the network cons1sts only of the part
shoxn in f1g la) the problem of this section becomes easier.
ApparentlyY the only way of reducing the 2-dimensxona1 problem to a

satisfactory state is by changing the parameter values (see section 6)}

4 Probabilistio analysis of the algorithm

We have been unable to obtain general results about the

convergenee'of this type of algorithm. Standard approaches -- e.g.

Liapunov-type methods and the usual fixed point theorems -- apparently

~fail in this situation for reasons that we shall mention in'the :

discussion.
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7. A stable geometrical configuration that violates the continuity
condition. At each of two disparity values, the "on" cells form.a
checkerboard pattern, but they are arranged in-such a way that neither
level can f£ill in, because of inhibition from the other.




—

—~)

Cooperative computation 20 Marr,'Palm & Poggio

The probabilistic analysis given here, although not completely
satxsfactory, nevertheless provides useful information about the

algorithm's convergence for random-dot stereograms. Strlctly speaklng

its applxcat1on 15 restricted to inputs w1th a random structure.

The idea behind our analys1s is that the cells in the network can
be divided into populatlons on which the exc1tatory and inhibitory
'inferences are statistically homogeneous (cf Marr 1971). Our analysis
is very specific to the algorlthm of eq. 1 1.1, because the way in
wh1ch ‘the cells are divided into populatlons depends critically on the

geometry of the algorithm and on our g prtori knowledge of its

invariant state.

4.1 Assumptions and notation
The algorlthm has the structure shown in fig. 1 and the network xs

loaded from the 1nput as specif1ed by eq 2 1 1. We shall assume that

the 1nputs have the following propertles.

411 the 1's in each image occur randomly w1th probab111ty v, and the

autocorrelatlon of each 1nput sequence (for any glven ¥) is a Kronecker
d.

4.1. 2 rhe 1nput admlts a unlque solution surface that is large enough

to neglect boundary effects.
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Condition 4.1.2 means that the left input is equal to the right one,

modulo x-translation. Condition 4,1.i implies that in the initial

state of the network C,‘the density of 1's on the solution laver equels

v, and elseWhere it is v2.  We subdivide the cells into five

populations, by classify1ng them in two ways:

(D) accordlng to whether or not they are a "on" in the initial state

Coy and

- i) accordlng to the number of active 1nputs from the images. '

We. draw both the populat1ons 0 and 1 from cells that lie on the

solution layer; populat1on 0 is deflned to receive no active inputs

from the 1mage, and population 1 rece1ves two. Notice that there are

r‘no cells in. the solution layer that recelve exactly one active input.

The other three populatlons that we def1ne refer to cellsvthat 11e
off the solut1on layer, pOpulatlon 11 receives two active inputs from
the 1mage, populatlon 10 recelves one, populatxon 00 recelves none,
The-flve populatlons (0, 1, 11, 10, 00) are exclusive and exhaustlve.

Ve denote by po(t), py(t), etc. the probability that a cell in the
reSpective pOpulation is "on" at time t. The goal of our analysis is

to expless the values of the pﬂ(t) in terms of p"(t -1) for the various

,poyulatlons m. This allows us to examxne the convergence numer1ca11y

and we say that a solution is achieved at time T when
po(t) = bj(t) 5 1. aNd. |
Poo(t) = p10(t) = p11(t) = 0, foreveryt2T.

The c11t1ca1 assumptlon here is that the quantxty pw(t) completely

' descrlbes the structure of actlve cells in the respective populatlon:




~

Cooperative computation . 22 Marr, Palm & Poggio

w. This assumption is true for the initial iteration and only '

approximate thereafter. We shall discuss this point at the end of the

~section. -

4.2 Formulae B
The state of a cell (x,y,d) at time (t+1) depends upon the number

of active cells in its exc1tatory S(x,y,d) and. inhibitory o(x,y,d)

-neighborhoods at time t.

If we denote the populations to which the cell belongs by w, (x

running through the five populations 0, 1, 00, 11,_01), let us define:

€ (r) to be the probability that exactly r cells are "on" in the

exc1tatory neighborhood S(x v, d) at time t and

1.(r) to be thé probability that:exa;tly r cells are "on" in the

inhibitory neighborhood 0(x,y,d) at time t.
It is convenieht to introduce some further quantities:

v qs(t) is the probability that a given cell on the "solution" plane

is active at. time t

7w(t) is the probability that a given cell elsewhere in the network

is active.
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g_(t) is the probability that a given cell is active in the

inhibitbry neighborhood of a cell in the population 0.

@,(t) is the probability that a given cell is active in the

inhibitory neighborhood of a cell in the popuiation 1.

Then:.

4.2.1 qg(t) po(t).(1 f v) + :p1(t).v

Cay(t) = pgp(t).(1-w)2 ¢ py(t).20(1 - v) + pyy(t).?
a(t) = pp(t).(1-w) + pog(t) . v |
S @u(t) = py(t)w o+ prp(t).(1 - )

writing  B(n, fi m) = Cp.f7(1 - £I™R,  where ,C, is the binomial

 coefficient, we have immediately,A

L]

4.2.2 ei(r) ' eo(r) s B(r, Vz(t)i E)

B(r, q,(t); 20 - 2)

U}

i1(r)1
B(r, q_(t); 20 - 2)

‘;io(r)

egg(r) = ego(r) = ego(r) = B(r, qu(t): E)

The remaining i, are more difficult to obtain, since the'inhibrtory

contributions to célls lying off the solution plane come fromfcells
lying on the solution plane and from celis~1ying off the solution

~plane, and fhese‘two~popu1ations obey different statistics. In fact
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4.2.3 i11(l‘)

pg(t)1P.B(r - 2, qu(t); 20 - 4) +
*2py(t).(1 - py(t)).B(r - 1, q,(t); 2D - 4) +
+[1 - pg(t)]2.B(r, q,(t); 20 - 4)

iéo(’) [po(t)]2.B(r - 2, q_(t); 2D - 4) +

+ 2po(t) (1 - py(t)).B(r - 1, ‘I-(t): 20 - 4) +
1 - py(t) )2, B(r, q_(t); 20 - 4)

The finallcase iio is especially awkward, because along one of the
1nh1b1tory lines the probabxlity of a cell being "on" is q, and along
e the other d1agona1 it is q.. |
4‘.“2.4 lgp(r) = 2 {pi(t)B(k'.- 1, ch(t):'ﬂ -2) +
(1= pyCt))BCk, Qu(t); D - 2)} -
{Po(t) B(r-k+1 0.(t): D -2) +
(1 = pp(t)IB(r-k, a_(t): D - 2)}

We now need to relate the pw(t+1)'and the pw(t) in terms of the'ew

™ For- each cell population we know the distributxons of incomlng

end_
o1
: excxtat1on and 1nh1b1tion, and we know that a ce11 w111 be on whenever

' the excitations exceed the inhlbitions by at least 0. Hence

B t .t
4.2.6 b_ = 2 e (n) - i (m)
o T n=g8toE K T

m=0 to 2D-2

™ | E n »emr..e_rr




’A’having densxties of from 0.5 to 0. 05. Table 1 gives the statistics
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where 6y ~60-1 form=-1, 7= 11
b, < 0 otherwise
I1f the input term‘Cg'y,d of eq. 1.1.1 is neglected, 0y = 8 for all =.

The equations 4.2.5 are too complex to be solved'analytically.

_\umerical solutions were however obtained for various values of the

parameters and some of the results are given in table 1 and figure 8.

4.3 Range of parameter values and compartson with actual runs

Figure 8 exhibits the performance of the algorithm for stereograms

O
i
¥

. that were measured from these runs, and also the parameters predicted

b) the probabilistic theory. The values obtained from the theory match

those from the algorithm quite well for the first iteration, but except

_ for the case p = 0 05, they diverge quite rapidly thereafter, and even

this case diverges by the third iteration.

We have already noted the main reason for the discrepancy The
assumption that the statistical structure of various populations is
purely random (inside each population and between populations) holds
exactly for the first iteration but only approximately thereafter,.
because'the operator of fig. 1c has a lOCal structure~which'can
preserve local clusters of active. cells. There are two ways in which
this affects our probabilistic description for the second and

subsequent iterations. The first is that clusters are more stable than SR
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8. The stereograms (Left, Right) and iterations tabulated in‘tablfe 1.
Stereogram densities are 50% (8a), 25% (8b), 10% (8c) and 5% (8d).
Parameters are as shown in table 1. '
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rs forming o

the solution layer will in certain circumstances change the rate of

‘convergence predicted by the randomness assumptiony 

Thé difficulties arise where clusters form off the solution iayer.
These will again tehd'to be more stable than.our analysis assumes, but
their effectvacts against cbnvergence. However, we sh&l%férgpe'thét;:
the probability 6f largev"wrong“ clusters is small for mésﬁ patﬁerﬁsf
In fact, the typical value of the prbbability thaf a wfong cell‘is "on"

after the first iteration lies around 0.1. The probability (after the

" first iteration) of a self-supporting 3 x 3 cluster at a given

:; position in a wrong iayer,(assgming that the clustervwas abscnt‘in‘the
i initial sﬁate and atcepting fhe oversimpiified assumption of randomness
fﬁi_after the first iteration)'is about.10'9, and hence lessbtﬁan 16'4 that

- one exists off the solution plane somewﬁgre in the network.

A'clustcr.of this size may survive permanently, because every
élement in it has at least 6 celis in its excitatory neighborhood, and
this is enough-to resist 1 inhibition). The probability of this or

something larger afising by chance is so small that if it occurs it is

likely to be a consequence of the particular image. In fact, some

small. "wrong" patches do sbmetimes occur (inspect Marr §& Poggio 1976

.fig.v5d) but such instances can usually be traced to an accidental
! Corrélation_in the image. Inbthis sense, extended patches aré
“correct" solution feéions;_ -
| The seﬁond effect that leads td discrepancies betweén the theofy -

*ﬁ_and the behavior of'the‘algorithm is also a side-effect of clustering,

3.
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since as well as being stable, the clusters tend to concentrate "on"

' cells more than the randomness assumption would predict.' For example,

at 1terat10n -2 of the case v = 0.25 (fig. 8b), although the overall

density of ones on the solution plane is about 0. 39, it is far from

-true that each cell can expect to find 0. 39E nop cells in its

excitatory neighborhood. Cells in the filled in regions have almost

“all their neighbors'oh, whereas those in the interstices have none,.
' Cohvergehce is achievedrby a growth outwards that fills in the blank

_regions, -but although it is steady, it is necessarily slower than the

theory predxcts.

b Obserﬁatibns

6.1 There is’a wide_latitude in the range of parameters for which the

netwofk converges. Table 2 shows firstly the wide range in stereogram °
dehsity v that is tolerated by our parameteré (with fixed 6), and
secondly, for’aufixed value of y (v = 0.5) gives some idea of the range

of the other parameter .values fbr which_the'network will converge.

~Note that in the implémentatioh described’by Marr S Poggio (1976), the

threshold was not fixed, but was determined‘by the density of on"

' cells in the network. This allowed solutlon to the matching prpblemi

over a very wide rangehof dot denslties.-

5.2 Let us define the probability that a cell on the solution layer is




TABLE 2. The algorithm of eq. 1.1.1 converges for a wide range df control
parameters. Tables 2a, b show convergence for v = 0.5 and v = 0.1 with
the same parameters. Table 2c shows convergence for an entirely different

set of parameters.

2a. v=05,E=12,D=7,E=2,06 = 3.0
Iteration Py Py Po P Poo Pio Py
1 50 15 .98 026 61 0 0
2 57 13 15 997 0 0 .54
3 69 039  .995 39 16 0 0
4 97 007 .935 1.0 0 0 .029
5 1.0 0 1.0 1.0, 0 0 0
2. v=01,E=12,D=7,E=2,6=3.0
Iteration  p, Py Po Pt Poo Pip Pn
1 B 0 1 .106 0 0 0
2 17 0 14 .39 0 0 0
3 35 0 .32 62 0 00
4 .86 0. .85 .9 0 0 0
5 1.0 0 .00 1.0 0 0 0
2c.v=0.5E=2,D=7,E=0.5,0=1.0
Iteration  p.  p Po - Pq Poo Pio P17
1 40 .11 .75 .058 .43 0 .010
2 55 .23 .11 .99 .004 O .90
3 .45 .083 .78 a1 .32 0o  .006
4 .59 .20 .20 .99 .003 0 .80
5 .51 .063 .82 .20 .24 0 .009
6 .65 .17 .32 .99  .003 0 .66
7 .62 .042 .87 .3 .15 .001  .014
8 76N .54 .97 .002 0 .43
9 .82 .021 .94 71 .053 - .002  .026
10 .94 .027 .88  .995 O 0 11
N 995  .009  .996  .995 .00l 0 .03
12 1.0 .004 - 1.0 1.0 0 0o .014
13 1.0 .002 1.0 _ 1.0 0 0 .007
14 0 .003

1.0. 0 . 1.0 1.0 0
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"on" at time t to be
Pr(t) = v.pg(t) + (1 -)py(t)

and the pfobability that a celi off the solution layer is on at time t

as

S py(t) = Vz.pij(t) + (1 - vIpgp(t) + (1 -v2)py,.

In a successful run, p, converges to 1 and-pw to 0. With our

particular parameters, convergehce‘is monotonic if it occurs. This is

‘not true, however, for the_individuél quantities py, pg, Pyg. Pyp. Poos

neither is it true of‘pr and p, for all values of the parameters (see

table 2).

5.3 VWe have aiready seen fhat the sharpest local corner capable of

resisting 1 inhibitory input is about 90° or more, hence thin, sharp
regions will tend to be rounded off locally (see Marr § Poggio 19706 _

fig. 5c). The exact shape of the input pattern is preserved oﬁly up to -

.this limit.

5.4 MNinimum size vs. disparity
A natural consequence of the structuré of the algorithm is that
the minimhm'resolvable area of dvsmall pattern against a background

increases with disparity (see Marr &APoggio 1976, fig. 0). Ve give an
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9. The ﬁinimum’reSOIVable‘area of a small pattern against a background
increases with disparity. To prevent the background from filling in

- completely, the:length of the patch in the x-direction must be at least

d + 2 (9a). 9b shows the circles of diameters 3, 5 and 7 used in
figure 6 of Marr § Poggio 1976.
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estimate of theidependence of minimum patch size on disparity
difference. Consider a section for some fixed y of the network (fig.
9). Assume that the patch and background regions are filled 1n The
cond1t10n for growth at a p01nt (x, y, d) under 1 inhibltxon is that

the number of "on" cells in an excltatory ne1ghborhood should be not

~less than § + ¢ - Co = & or 6, depending on the initial conditions.

From f1g 3 we see that flat or convex regions will not grow whereas

- concave reglons w111. Hence our small patch w111 not tend to grow,

whereas the background will spread until stopped by two 1nh1b1tlons

We see from f1g 9a that to prevent the background from f1111ng in

: completely (whxch would subsequently destroy the patch because convex

. borders cannot survive two 1nh1b1t10ns), the length of the patch in the

x dlrectlon must be at least d + 2, Th1s condltion must hold for at

- least three adJacent lines allgned in the v direction. P1g 6 of Marr

& Poggxo (1976) 1llustrates the approx1mate va11d1ty of this relatlon

Fig. 9b shows the slzes of c1rc1es of d1ameter 3, 5 and 7 used 1n the

1nput for that figure. These precise patterns do not necessarxly

emerge in the appropriate layer of the network because of the random

'nature of the borders. . The circle of'dlameter 3 contains no 3 x 3

subset and therefore does not survive at any disparities. The c1rcle

_of dlameter 5 contains one 3 x 3 ‘square and survives as- expected at

o dxsparlt)_l, it also survxves, apparently accxdentally, at disparity 2,

but not at disparity 3. The circle of diameter 7 contains one 5 x 5
square and thus survives at disparity 3.

A trivial consequence of'this analysis is that horizontal stripes




Cooperative computation 37 ' ’ Marr, Palm § Poggio

(parallel to the'x‘axis) are in general more stable than vertical ones
(parallel to the y axis). The minimum thickness for horizontal stripes
is about 3 and is independent of disparity whereas the minimum

thickness for vertical stripes is about d + 2 (see fig. 10).

.58.6 Uncorrelated areas ‘

If there ex1sts a sufflciently large area in the input where there

is no correlation between the two images, the. network will detect it
(see figs. 5 and 6 of Science). After the first iteration (with our

" parameter values and v évOAS) only a few cells remain "on" in the o

uncorrelated region, but provided the region is sufficiently large they
-,uill receive no 1nh1b1tion from the surrounding more organized layers.-

'_ Hence those cells that are on may act as germs for small regions that

have become stable by the time the surround encroaches upon them, e.g.

fig. 5d of Marr & Poggio (1976).~ Relatively small (<< d) uncorrelated

~areas probably have to: develop stable platelets to survive (see f1g 6d

| of Marr & Poggio 1976), and large uncorrelated areas decompose into a
random mosaic of stable platelets (see figure 11). '
Uncorrelated dreas can be recognized as such during the read-out
| from the network, when the 1's that appear in the solution found by the
" network are used to establish an explicit correspondence between the

two images.

5.6 Extension to images in which disparity‘uaries continuously

The algorithm-of eq. 1.1.1 with the loading rules of eq. 2.1.1 can

B
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10. Thin vertical and horizontal stripes of various disparities. The
left and right stereograms are shown with the stable network solution
to them. The stereograms are 100 by 100, and consist of stipes with
the following coordinates (x or y), thicknesses s and disparities d:

10a : . 10b o - 10c

x S d Y S d v s d
15 2 -1 15 2 -1 15 2 +1
30 3 -1 ’ - 30 3 -1 30 3 +1
45 3 -2 45 2 -2 45 2 +2
60 4 -2 60 3 -2 - 60 3 +2
75 4 -3 75 2 =3 _ 75 2 +3
90 5 -3 90 3 -3 90 3 +3
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11. The central bénd is uncorrelated. flt decbmposes
mosaic of patches, each of which is eventually stable.

into a random
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deal only with images having discrete disparity values. The disparity
in natural inages commonly varies continuously. There are two
approaches to this'problem. One is to incorporate the representation
of continuous valnes directly inio the algorithnm, and the other is to
use the same algorithm, but with special rules for loading it and for
1nterpreting its final state, » N |

The f1rst approach would clearly lead to a considerably different
algorxthm, perhaps more along the lines of the networks studied by
Wilson ﬁ Cowan.(1973), (see also H. .R. Wilson 1977). Such an algorithm
could notvbe treated within the framework of this article.

The <econd approach does not require any changes in the analysxs '
of the algorithm itself One could,,for exampe, define the loading
condltxons as follows? . | ;

Let A be the dlsparxty attached to a possible correspondence

becween.ltems 1nrthe left and rlghtbimages.f For integral d,

5.6.1 1f d-9<A <d+y, load the cell corresponding to d1spar1ty

level d in the network

 For surfaces whose‘disparity'does not oscillate too much or too

densely{ the value 9 = 0.5 will lead to satisfactory results. The

~final state of the network establishes a correspondence between items

in the left and right images, but their associated disparity is read

not from the network (i.e. d) out directly from the input (i.e. A).

'Confusions nay of course arise in the correspondence established by the
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network if the value of d spans the disparity.range too coarselj.

In order to deal with surfaees,thet are less well-behaved, one canv
incorporate some hysteresis into the loading rules. The loading
process then consists of the following steps:

. 5.6.2 Load cells according to 6.6.1 withg = 0.3 (sé}),

5.6 3 Moving across the image (x, y) ln e spatially’orderedv#ay, if
p0551b1e match (x y. A) was not loaded by 6.6.2, adopt the follow1ng
procedure' - ‘ A
Let d7 = lntegral part of A, d* 1+d°. Exanmine (x y) _
:nelghborhoods of - (x y, d7) and of (x, y, d*) in the network as it | ,»;;4
is loaded S0 far. Asslgn the current match ‘to that d whose
neighborhood conta1ns more loaded cells, if one of them does. Else

_load this poxnt according to §. 6 1 with9 = 0.5,
Thls process-wlll load most images in satisfactory way, and the
‘read- out procedure is similar to that of the previous case.'
6 A_(xrtathematicall'y tractable version of the algorithm
A suitable choice of the parameter values and of the loading'rules:

of the algorithm allows a complete mathematlcal analysis of 1ts -

es)mptotlc behavior. In this section we introduce thls "strlct" —1
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Version_of the algorithm and we characterize rigorously its properties.
The actual performance of this version of the algorithm for various
random dot stereograms will be then compared with the original

algorithm.

6;1 Loading~conditions

The initial state €% of the network is loaded from the stéreoérams
L, R in a way similar to the previous case but according to éq;‘6.1.1
(insﬁqad 6f”eq.12.1.1).'

,‘ o -
6';'1*1 Cx.y;d - _Lx.y°Rx+d,u

where 1.1=0.0 =1, 1.0 =0.1 =0,

This loading rule can be'easily'extehded'tq'cases in which more than

two features are preéent.' It is enough to define
6.1.2  fi.f; =8

_ where fi‘andrjj. (i # j) are two different features. The case when
only two features are present clearly poses the hardest matching
problem. We shall later compare this loading rule with the origihal

~eq. 2.1.1 and discuss their'relative merits for real images.
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6.2 The algorithm

The relation betwen states at times t and t+1 is given by (compare

eq. 1.1;1)

. t+1 - _ . : t i
6.2.2 'CX,y;d‘ - O{TTlf[ z C yl d' » H] € Z C ’y d.
h ~ Ly! d'eS(X,y d) o x',y' ?d gO(x,y d)

where H is a number thaturepresents the "saturation" value for the

excitation.

6.3 Ch01ce of parameter values
In this case the loadxng rules lead, for random dot stereograms ' St

klth two features, to a density of 1 for the "on" cells on the -

' _ "correct" dlagonal segments and, correspondingly, to a density of

v + (1 - u)2 for the "on" cells on the "wrong" d1agona1 segments (v is
"the densxty of 1's in the input images). Whenbv = 0.5, the density of
the wrong cells is also 0. 5, fdr smeller or larger v the density is

: h1gher. The 1dee behind this approach is to choose paraeeter Values
for'the‘first iteration that "kill" most 6f the “wrohg" cells (and of
coerse some of the "rlght" ones); from the second iteration on,.the
parameter values are such to ensure "filling-in" of the rxght diagonal
segments, allowing, at the ‘same time, ‘a satisfactory mathematical
analy51s of the evolutlon of the network's-state. This approach, thch':
“is carr1ed out in the next two sections, leads to the following

vparameter Values. v - ’ - L —
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6.3.1 ~Sand 0 are as in fig. 2, D=7 and M = 5 as before. Self-

‘excitation is now included but the Co,term is omitted., We therefore

write £ = 13 instead of 12.

6.3.2 - Iteration 1:

H = 13 (so that the inf operation can be neglected)
€ = 0.2 | ’
# = 10.75

6.3.83  Second and subsequent iterations:

H=7
€= 4.0
= 3.5

8

6,4.‘Probabili5tic aﬁalbsis of‘the first iierution

We shall éssume that the inputs have the properties 4.1.1 and
-4v1d2, “As in section 4.1, we distinguish several populations of cells
which are homogeneous with respect to the interaction structure:  the
populétions aré again denoted by 0, 1, 11, 10, 00 according to their

’respgctive inputs from the two images (see section 2), and po,_pj, etc.

denote the probability that'a cell in the respective population is "bn" v

after the first iteration. In this case the formulae for thé'solution

‘layer. are:




Cooperativé computation . - 45 Marr, Palm & Poggio

—r

w
1

D

Py

u b4 Y

12C vl(l - y)12’

— —de

-6

IZC,-_ . (1 - ‘ V)i .V12~i
0 .

i

?or the "wrong" léyers (writing u = 2 ¢ (1~ v)z), the formulae are

k+1-9 s
B L N P S PR
k=0 =0 -
| k+l-6
12 oo £ i 10-1
poo = T 120 01T T x(‘°” v
k—O-» i=¢ '
. | inf (£2 .2),5  inf (58 _2)-1,5
2 | . . S
| Ko \12- - -

k=0~ i=0 =0

Therefore the probabillty that a cell in the solution layer is
"on" after the flrst step is :

CPp T hpv # pp(1-y)
V and the probabilxty that a cell off the solution layer is “on" after
' the first step is ' |
Py 7 ¥yt 201 = wipgg + (1 - W 2pgp.

These equations can be used to find suitable‘parameter values. The

 parameters given in the previous section yield the values for p,. and p,
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shown in table 3.'

6.5 'Equiualent rules
The barameter’vaiuesvfrom the second iteration on imply the

following main "rules" for the aigorithm:

‘6.5.1 one "on" cell in the inhibitory neighborhood always suffices

kill an "on" cell

. 6.5. 2 without inhibition, at least three excitatory "on" cells are

needed for M"survival" of an "on" cell and four for its "birth"

6 .6 Analysrs of the second iteratton

Tabie 3 gives the densities pr and pw after the first iteration.

Only for the first iteration can a probabilistic ana1y51s provxde a

Areliable estimate of the density of "on" cells on the solution surface.

As in our earlier ana1y51s (table 1), 1t becomes unreliable for the

second 1teration, because clusters of "on" cells can be expected to

rform ‘in the solution layer (see figure 14 below)., Rule 6.5.1Aimp11es,

however, that "wrong" clusters»will disappear after the second

iteration, unless they consist of at least four elements. Moreover,

these elements must in practise be very close together for each to

' support the other three. In addition, according to rule 6.5.2, none of

them can lie in the inhibitory neighborhood of other "on"_ce115»(for




TABLE 3. The behavior of the mathematically tractable of the algorithm,
together with the probabilistic theory of the first iteration,
for the two stereograms exhibited in figures 14a and b. -

13, D=7

»3a. v=0.5FE=
€ ‘ e H Iteration E pY‘ | pw pq L | p‘| » poo | p'!o p'n ]
0.2 10.75 13.0 — 9993 .0017 _.9998 9998 .0023 .0011 .0023 Theory
| 1 .99 0003 .99 .98 . 0008 0 .0004 Algorithm
40 3.75 7.0 —2— 99 0 .99 99 0 0 0 |
| 3 1.0 0 0 1.0 0 0 0 oy
3b. v=0.25E=13,D=
¢ o H [Iteration  p, Py Po Py P P10 P
0.2 10.75 13.0 1 976  .0078 .968 1.0 0039 .0015 .082 Theory
| 1 96 .0002 .95 1.0 002 .0003 .002 Algorithm
4.0 3.5 7.0 —2 .98 0 .98 .97 0 0 0
o | 3 1.0 0 1.0 1.0 0 0 0
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' 1nstance on the solution layer where the density of on cells is
relatively hxgh, see table 3). We argue that the probability of such

E sitnations is very small (actually much smaller than in the case

cons1dered in section 4. 4) If this occurs it can be attributed to an
accidental correlation in the images. In this sense extended clusters

are in fact "right" solution regions.

6. 7 Asymptottc analysis

The probab111st1c analysis of the first iteration (table 3) shows -

- that one can assume'that, from the second iteration onwards, there are

no wrong "on" cellsl lt remains now to show that the density of "on"

cells on the solution layer is high enough to allow asymptotic f1111ng—

.1n of the "rlghtf surfaces. ‘We prove the following. B

6.7;1 Filling-in Propositianl Assume'that_fat some iteration n
“there are no "on" cells off a given layer (diagonal); snd that‘the
density'of "on" cells on this layer exceeds 0.4375-=.7/16. Then,
in.the asymptotic configuration, there are no "off" cells on this
.layer. | - | 7 V
Proof: Divide the solution plane into squares of 4 by 4 cells (we

neglect boundar1es) At least one of these squares must contain 8 "on"

. cells, for, otherwise, every square would.contain at most 7 "on" cells
“yielding a den51ty of at most 7/16, in contradiction with the

‘hypothesis. This square will fill up with "on" cells. (This can be
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seen by examining the various possible ways in which the 8 cells can be
disﬁributed; and we leave it as an exefeise for the reader). Starting
from this Sduare, the whole piane will asymptotically be filled by "on"

cells (since,vby hypothesis, no inhibitory cells need be considered).

6.8 Invertant.states and matching rules

The matching rules were defined in section 3. States that satisfy
the matchxng rules with the present parameter values aré'shoWn in fig.
12, 'In‘view of the rules 6.5.1 and 6.5.2, the follewing clearlx hold:
| i).ConfiguratiOns that satisfy the matching rules - (fig. 12) are
, 1n\ariant.e_,, | | ” | _
11) Conversely,lxnvarlant conflguratlons clearly have to obey the
‘uniqueness cond1t10n_(because of 6.6.1). The probabilistic analys1s of'
the second.step, together with the."fillihg-in“ proposition,6.7.1;~
enseres in'practisevthet there willvbe no holes? in the esymptotic> 

invariant configurations.

6.9 Asymptotic Ltapunov descrtptton

Besides the invariant asymptotic conf1gurat1on, limit cycles of
the type descrlbed 1n figure 13 may also occur. Thus the previous
'descrlptlon of asymptotxc 1nvar1ant states is not complete. We proVide
here an asymptotic analysis in terms of a Liapunov-like\functien which
also encompasses such non- invariant states.

: For a ngen state C‘, we deflne F(C‘) to be the number of "on"'




12. With the modified parameters, cells c‘annot survive against one
inhibition. Hence stable states satisfy the uniqueness condition,
because no overlap is possible (compare figure 5).
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Cells‘naving no‘"on"‘oells in their inhibitory nelghborhood We call
“an "on" cell that has less than three "on" cells in lts excltatory
nezghborhood a "solitary cell". Observe that solitary cells can never
be "born" and that, after a f1nite number of lterations, all solitary
cells w111 have dlsappeared.
6.9.1 Growth proposition. After a finite numbervof‘iterations, the .
function i ---) F(Cct) is non-decressing. B A |
Proof: After a finite number of lteratlons i, all'solitary‘Cells haveb
died out. Let us consider the transitionjfron ¢t to ¢t*1, If a new
cell is born, rule 6.5.1 implies that it cannot lie in the inhibitory
neigbborhood of‘an alreaoy present "on" cellr Thus F will not decrease
(fron Ci to.Cf*I). ‘If a cell dles out; it cannot be»a SOlitary cell. ' ﬂQQ
Therefore it must have had an "on" cell in 1ts lnhibitory nelghborhood |

at 1teratxon 1. Thus F will not decrease.
The growth of E'adequatelyAdescribes the filling-in process,
reSpectlng ét-thevsame time the "uniqueness" matching rule.

The growth proposition implies that:

9.2 For any initial configuration C”,'the limit Lim F(Cl) = F(C)

exists (since F is bounded above by the number of cells in one layer).
6.9.3 After a finite number of iteratlons,_F(Ci)Aremains'constant.

- Thus the asymptotic behavior of the system is characterized by the . —




A,
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13. An oscillating solution with the modified parameters. The state
- 13a occurs at iterations i, i+2 i+4, ..., whereas state 13b occurs at
iterations t+1, 1+3, i+6, »
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'following: Apart from invariant solutions, only those cycles can
(asymptotically) occur forvwhich F remains constant. This is a strong
restriction on the'possible asymptotic oscillatory states, for it means

_that they have to be of the type shown invfig.'13. The growth
proposition by itself does not exclude for instance the "zero"

.inrariant state. The probabilistic analysis of'the second step of the

.algorithm together with the "filling;in" proposition ensures, -however,

that invariant states as well as limit cycles will in practice have no

"holes"

V'G,IO‘, Observations : _ ’ ’

. 6.10.1 Figure 14 shows the performance of the algorithm in this form
’Afor a few different patterns and pattern densities. A comparison-with
Vfigure 8 reveals that the type of "strategy" for achieving a'sdccessful
matchingdis differentt Firstly, wrong cells are drastically eliminated
at the expense of losing many right cells, and then filling in of the

surviv1ng surfaces takes place. This contrasts with the more
complicated "strategy"”revealed in figs. 3 - 6vot Marr § Poggio 1976.
1t isrremarkable how,'while the basic_structure of the algoritnm »
remains the same, a change.of parameter values and loading conditions_
can bring about so deep a change in the algorithm's_beharior;

‘_6.10.2 'BecauSe of the rules of the present algorithm, especially rule
6.5.1,'the sharpest corner capable of snrviving (of course under no

.inhibitions) is limited only by the need for an "on" cell to have at




algorithm with modified parameters.‘ The'

14. The behavior of the 11g ;
‘densities are 50% (14a) and 25% (14b).  The pafaqgters are as stated in

G z'a"xn Vi s : i
section 6.3, and in tap§HM§ ‘14c compares the two sets of parameters

on 4 stereogram of 4 Star that contains arms of various’ 'angles. The
original parameters tend to give a more accurate final configuration.




.L~;: R
NTANE *
S !f:‘\r|'




ol

e

=
S
13




Cooperative computation 57 ' Marr, Palm & Poggio

Jisihs

ells.: This allows a 45 degree

least three excitatory neighboring

6, 10 é: Ninimum size vs. disparity._xkéain because’of rule 6.5. i,

“not depend on dlsparlty It is given by the mlnimum self support1ng

6.10.4 Loading conditions. While the present loading rule is

_fifj = 8ij where'fi is a feature and 6;; 1s the '

Kronecker §,

 .or ]‘are zero. In other words the "null" feature has'a specxal status

igp;‘clear,lhowever, at very low den51t1es (nor atvvery h1gh ones)
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ehis case{ however, not evefy point ‘is labelleo with a corresponding
feature; tne absence of any feature at a given point is a common event;
The null feature seems to have a basically different role from the
other features. These arguments clear1y7§upport the loading conditioné
used in the first part of the paper (see Merr & Poggio 1976). It 15.
olear,'on the other hand,  that both loading conditions may work. For
both,kan increasing.nnmber of "feature types" impliesaof course an

increasingly better algorithm ‘convergence. The choice between them

: depends 1n the end on the typ1ca1 feature densities that one wants to

'deal thh For natural images, quantitative estimatesvhave only

recently become possible (Marr 1976,v1977i.

7 Disocussion

7.1 ‘Alternative algorithms
‘The algorithm eq. 1.1.1 c&n be modified in various weys. One can A
adopt alternative_loading rules for the network as in section 6, and

one can vary'the parameters over a substantial range. Such apparenfly '

“ minor changes can cause con51derab1e changes in the network's behav1or,

“but often without changing the end result (see for 1nstance section 0),

because they still implement the same computational constraxnts.
If the geometry of the local 1nteractions (i.e. the shape of the

exc1tatory and inhibitory nelghborhoods) is changed, the network wxll

~in general implement a different computation, because the local"
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”constraints will have changed. If only the parameter values are
changed, our‘analysis (section 3) may'still apply. If the geometry is
rchanged, our analysis willlin'generalybecome irrelevant.

Interestingly, for a specific stereogram density, a non-iterative
version of our algorithm can recover'disparity satisfactorily (see fig.
,14& iteration l) John Fairfield (personal communication) suggested an
algorithm in Wthh &) excitation is summed independently within eacn
disparity layer, and (2) for each position, one selects only the most-
excited of the cells in the different disparity layers. This algorithm

performs well for the case v = 0.5,

_7 2 Comments on analyzing such operattons _

' We find the style of analysis that we were forced to adopt to be
.unsatisfactory for a number of reasons. Firstly, although our '
arguments appear to prov1de a qualitatively accurate description of the
algorithms s behavior, the arguments are not completely rigorous. The
main reasons'for this,lie invthe difficulty of assessing the validity '
of the randomness assumptions that are necessary for the probabilistic
analysis, and, to a lesser extent, in the need to examine a number of
.'special'cases'in order to'establish the stsbility of various solutions.
| ' Secondly,‘our analysis is very specific to the particular |
algorithm and the pérticular parameters: This style of proof cannot
'lend to any.general results about the convergence of sucn operators.

In order to overcome the first of these problems one can follow
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“the approach-of section 6. The price one pays is that the analysis is

valid for a narrower parameter range, which happens'not‘to include the
original parameter values (see Marr & Poggio 1976). The difficulty

with the. assumption of randomness arises because of the constant

'spatial structure of the operator & (eq. (1) and fig. 2c of Marr &

‘Poggio 1976). It should perhaps be noted that this objection does not

apply to the similar analysis given by Marr (1971) of a cooperative

associative memory algorithm, because there the local operator had a

"'variable and essentially random structure.

The second of’these difficulties seems to be 1nherent in the

nature of this type of cooperative algorithm. No general approach is

: atepresent available.‘ ‘Standard approaches4 that we have tried have

failed up_to'now. The flavor of the difficulties is the follow1ng A

’configuration that is stable may be perturbed by changing a large
" number of cells"withoutvaffecting its asymptotic state, provided that

“the perturbed cells are well scattered and interior. On the other

hand, one fixed point of the algorithm can be'shifted into-another by

"perturb1ng only a few cells, provxded that they have a suxtable

: configuration. rThus, the usual distance between two configurations,

namely the number of cells having different states, does not reflect
the behavxor of the algorxthm.» Therefore, the problem seems to be how

to incorporate the geometry of the interactions into the metric:

distance between configurations..

1t seems unlikely that one can construct a useful general theory

"of algorithms of the form
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7.2.1 ¢ = griech)),

 where L is a linear operator on_the vector C, and ¢ is a nonlinear
(coordinate-wise)»function.. J. H.‘Conwa&'s game "Life" can, for
_example,_be written this way (see fig. 15l and nith an appropriate
inpdt pattern is Turing universal (dnpublished result discovered‘
1ndependent1y by J. H. Conway and R.‘W. Gosper) 4
This suggests that theorles of this type of algorithm must take

due account of the structure of the 1nput data and will probably be
restricted to. very specific forms of eq. 7.2.1. _ _

e A mathenatical understanding of the behavior of eq. 7.2.1 would ‘
represent a breakthrough of rather general importance _ Cooperative
“ phenomena 51milar to those which can be described by eq. 7 2 1 are
important in physxcs (Haken 1977, Kawasaki 1972, K G. Wilson 1975), in_
development (Mostow 1975), and in biology (Eigen 1971, Marr 1971,
Richter 1976).
| . Furthermore; such‘a‘theory-might'also allow one to synthesize in.a
standard way cooperative ‘algorithms of the form of eq 7.2.1 from an

ana1y51s of the constraints on a computation
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15. Conway's game "life," which is played on an infinite plane square

‘lattice, may be represented in a manner very similar to.that of our

stereo operator. The excitatory neighborhood, together with
appropriate weights, is shown in 15a, and the threshold function
appears in 15b. This combination reproduces the rules of 1ife exactly,
and these are; :
(1) A cell will die at generation n+1 1f ¢ 2 or > 3 of its 8 neighbors
are alive at generation n (death by starvation or overfeeding).

(2) A cell with exactly 2 living neighbors at generation n will bev
alive at generation n+f if and only if it is alive at generation n.

(3) A cell with exactly 3 living neighbors at generation n will be
alive at generation n+l.
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Footnotes

1. ]n Marr. § Pogglo (1976),.the value of § was given as 3.0, whereas
- here it is 4. 0 The reason for the dxscrepancy is that the algor1thm
used to produce the stereograms for that article essentially used the

cond1t1on > 0, whereas here, we use the condition 2 6.

2.- A configuration is "spatially stable",ifrit is in-some'senée"
invariant under small perturbations (for instance each active point can
be requlred to belong to a 3. x 3 neighborhood of points with the same
dlaparlty). |

| | o 3 . .t
3. .There is a hole in:thg network for a given_y‘if thér@»exisfttwd

interséctihéflinés of sight neither of which contains an'“dn"'céll{
4. The continuous version of the algorithm eq. 1.1.1 cannot be
described in terms of a potential dynamics. In fact'ﬁhe dynamicél

system
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C = ofEC}-C = J(C) (¢ a "smooth" threshold)
does not. admit a scalarvpotential function V(C) such that
IO Ix yya = BVC)/8Cy e

A necessary condition for this to be true is that

3 s ' |
s fo i (C) = f__(C), all x,y,d,x',y"',d"
BCX’y;d X'y d aCX',_yl;dl XYd ~ ) ;

~This is not true in gener'al,' because of the nonlinearity o (consider

the case in which xyd and x'y_'d"are on the Séme disparity layer and

are reciproéally excitatory)._-_
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