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| 1. Introduction
1.1 A Learner-based Paradigm for AICAIl is evolving.

The 1970's has seen tﬁe evolution of a new generation of computer-aided instructional
programs based on the inclusion of Al-based expertise within the CAI system. These systems
surmount the restrictive nature of older script-based CAI by ‘supplying “reactive” learning
~ environments which can analyze a wide range of student responses by meansv of an embedded
~domain-expert. Examples are AICAI tutors for geography [Car70], electronics [Bro73], set theory
[Smi75], Nuclear Magnetic Resonance spectroscopy [Sle75), and mathematical games [Bur76, GolT7al.

However, while the inclusion of domain expertise is an advance over earlier script-based
- CAl, the tutoring theory embeddéd within these benchmark programs for conveying this expertise
is elementary. In particular, they approach teaching from a subset viewpoint: expertise consists of
a set of facts or rules. The student’s knowledge is modelled as a subset of this knowledge. Tutoring
consists of encouraging the growth of this subset, generally by intervening in situations where a
missing fact or rule is the critical ingredient needed to reach the correct answer.

This is, of course, a simplification of the teaching process. It has allowed research to focus on
the critical task of representing expertise. Bpt the subset viewpoini fails to represent the fashion in
which new knowledge evolves from old by such processes as analogy, generalization, debugging,
and refinement.

This paper explores the genetic graph as a framework for representing procedural knowledge

from an evolutionary viewpoint.l thereby contributing to the movement of AICAI from an

L. A potential confusion in terminology may occur here. The term "genetic” is often equated with
heredity. However, 1 use it here in its older sense, namely, the genetic method is the study of the
origins and development of a phenomena. This paper is an exercise in Genetic Epistemology, the
study of the origin and development of knowledge. This enterprise has been articulately advocated
by Piaget [Pia70], who considers it the foundation on which psychology should be based.

Al Memo 449 Section LI ‘ Introduction
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expert-based to. a learner-based paradigm. 2 After introducing our experimental domain, the
mathemaiical game Wumpus, and describing an expert-based coach which we have implemented, 1
define the geneﬁc graph and describe how it can improve the range of tutoring advice that the
AICAI system can provide and the accuracy of the model that the system builds of the learner.
* Fig. 1 illustrates its central role. I then discuss in greater detail the model of the learner implicit in
the genetic graph. By articulating this model, I am able to suggest a measuré of learning complexity
in terms of the topological properties of the graph. I conclude with avsuggestion for reformulating
_traditional Piagetian notions of accommodation, asslmilaﬁon and equilibration in terms of our
procedural epistemology.

While I shall describe a student simulation test'bed which we have implemented to test
variéus genetic graph .'formu|a.tions, this paper is largely exploratory. Its purpose is to serve as a
critique of existing expert-based AICAI systems, in particular our Wumpus coach, and a proposal

for an improved "learner-based” design.
1.2 A graph representation of the syllabus has roots in AICAI research.

Scholar [Car70), the earliest of the AICAI tutors, employed a graph (semantic net)
representation for declarative facts about geﬁgraphy. The graph, however, encoded only domain
specific relationships; it did not embody a series of progressively more refined levels of gecgraphy

 knowledge linked by various evolutionary relationships. 3

2. There are other dimensions to this paradigm shift that include: (1) more sophisticated
modelling of the student’s knowledge and learning style [Bur76, Bro77a, Carr77b], (2) widening the
communication channel from student to teacher via natural language interfaces [Bur77), and (3)
developing a theory of teaching skills [Col75].

3. Scholar might be extended in this fashion, especially if employed with younger children whose
theory of the world may not already be stabilized in the expert form embodied by Scholar.

Al Memo 449 : Section 1.2 Introduction
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Fig. 1. Block Diagram of an AICAI Tutor
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ALTERNATIVE MOVES CURRENT
IN THE CURRENT SITUATION R STATE
TUTOR
—— INFO FLOW
D DATA STRUCTURES / \

GAME Z

SOPHIE-1 [Bro73), the next major AICAI milestone, was an expert-based system for the more

complex domain of electronic troubleshooting. SOPHIE-l compared a student’s troubleshooting
| hypotheses for an electronic circuit with that of its embedded expert and offered advice when the
student’s analysis went astray. Tt employed a proced.oral rather than a network representation for its |
electronics knowledge, but this representation was largely a black box. SOPHIE-1 did not have
access to a detailed, modular, human-oriented repreSentation of troubleshooting skills. Nor did 1t

have a representation for the genesis of these skills. ‘

Al Memo 449 Section 1.2 Introduction
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SOPHIE-2, now under development, will incorporate a modular, .ahthropo‘mt‘:rphlc
‘representation for the expert's knowledge [Dek76]). This structured expertise serves as a better
foundation for expert-based tutoring, but still is not a model of how the student evolved to that
level of competence.

BUGGY [Bro77a), a program for buildihg procedural models of a student’s arithmetic skills,
does incorporate both a graph representation for the basic skills and some evolutionary
relationships. The basic skill representation is a graph with links representing the skill/subskiil
relationships. The evolutibnary component consists of "deviation” links to "buggy” versions of the
various skills.

BIP?II [Wes77], a tutor for programming skills, again employs a network for the basic skill
representation, 'but embodies a different set of evolutionary relationships. There are links for
representing analogy, generalization, specialization, prerequisite, and relative difficulty relations.
The BIP-II skill network, however, does not include deviation links nor define an operational
expert for the programming domain. Rather it employs author-supplied exercises attached to the
relevant skills in the network.4 | |

The genetic graph is a descendant of fhese network representations. Its nodes are the
procedural skills of players of varying proficiency and its lihks it‘lclude. the analogy, specialization,

generalization and prerequisite relations of BIP-II and the deviation relationships of BUGGY. 5

4. MALT [Kof75], a tutor for machine language programming, does include an “expert” for
problems composed from a limited set of skills and solved in a tutor-prescribed order. However,
MALT's syllabus of skills are related only by the probability with which MALT includes them in a
system-generated problem, and not by any evolutionary links. Hence, MALT does not have BIP’s
ability to choose a problem based on its evolutionary relationship to the student’s current knowledge
state. : "

5. The skill nodes themselves, corresonding to rules of the form: "if Cl & C2 & .., do Al & A2 &
..", could be expanded into more primitive networks of conditions and conjunction nodes similar to
those employed in BUGGY and BIP-II, but I do not discuss that extension in this paper. Instead, I
concentrate on describing the evolutionary relationships between skills.

Al Memo 449 Section 2 : Introduction
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2. Wumpus serves as an experimental domain.

Designing coaches for the maze exploration game Wumpus [Yob75] has proven to be a
profitable experimental domain because the game éxercises basic skifls in logic and probability. 6
This section defines our version of the game7 and describes two expert-based coaches which have |
been previously implemented for it. The next section formulates an e\?olutionary epistemology of

the knowledge required for skilled play, providing the basis for an improved “learner-based”

design.
2.1 Definition of the Wumpus Game

The player is,initi#lly placed somewhere in a warren of caves with the go#l of slaying the
Wumpus. The difficulty in finding the beast arises from the existence of dangers in the warren -
~ bats, pits and_ the Wumpus itself. Pits and the Wumpus are fatal; bats move the player to a
‘random cave elsewhere in the warren. But the player can infer the probable location of dangers

from warnings he receives. The Wumpus can be sensed two caves away, pits and bats one cave
away. Victory results from shooting an arrow into the Wumpus's lair; defeat if the arrows are
fi‘uitlessly exhausted.

Becoming skilled poses a nontrivial Iearnirig experience for most children and adults3

locating multiple dangers in a randomly connected warren of twenty or more caves can be complex.

6. Our group is also exploring evolutionary epistemologies for other domains ranging from
elementary programming to airplane flying.

7. Yob'’s original game was played on the graph of a dodecahedron. Our version is a
generalization involving a variable maze geometry, a variable number of dangers, and a variable
warning distance for each danger.

8. By nontrivial, I mean that the experience is on the order of hours rather than minutes and that
some players (given no coaching) fail to acquire certain skills after many hours of play. This is
based on informal observations of over thirty players ranging in age from grade school children to
adults.

Al Memo 449 Section 2.1 | Wumpus
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Hence, the game provides a useful probIem domain for developing a theory of the evolution of

procedural skills.
2.2 Wumpus AICAIl Tutors

In 1976 we developed WUSOR-I [Sta76], an expert-based coacﬁ. Skilled play was analyzed in

terms of rules such as these:

Positive Evidence: A warning implies that a danger is in a neighboring cave.

Elimination: If a cave has a warning and all but one of its neighbors are
known to be safe, then the danger is in the remaining neighbor.

Multiple Evidence: Multiple warnings increase the likelihood that a given
cave contains a danger.

Below is an interaction with the WUSOR-I coach which illustrates the fashion in which the
coach explains a rule if its employment would result in a better move than the one chosen by the
~ student. The student’s responses are indented and underlined. .

You are at cave 15 with neighbors 4, 14 and @. . Brrr! There is a draft. You are
near a pit. What now?

1> 4

You are at cave 4 uith neighbors 15, 14 and 2. Brrr! There is adraft. Squeak!
A bat is near. {The game state is shou in fig. 2.) What now?

25 1

(E1) Mary, it isn’t necessary to take such large risks uith pits. There is
multipie evidence of a pit in cave 14 which makes it quite likely that cave 14
contains apit. It is less likely that cave @ contains a pit. Hence, we might
want to explore cave @ instead. Do you want to take back your move?
WUSOR-I was insensitive to the relative difficulty of the various Wumpus skills. In 1977 we
took our first steps toward an evolutionary epistemology with WUSOR-II [Carr77a), wherein the

- rule set was divided into five phasés representing increasing skill at the task.

Al Memo 449 . : Section 2.2 : Wumpus
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Fig. 2. The Wumpus game state after two moves

14
SQUEAK
o) 15 R 4 o 2
A A
F F
T T

Phase I1: Rules for visited, unvisited and fringe caves.

Phase 2: Rules for possibly dangerous, definitely dangerous and safe caves.

Phase 3: Rules for single versus multiply dangerous caves.

Phase 4: Rules for “posszbtlzty sets”, i.e. heeping track of the sources of dangers.

Phase 5: Rules for numerical evidence.
The tutor did not describe the rule of a particular level of play until it believed the student was
familiar with the rules of the preceding levels?

These phases constituted a coarse genetic epistemology, better than the completely unordered
approach of WUSOR-], but still far from a detailed platform on which to build new knowledge
from old in the student’s mind. WUSOR-III, now being implemented, addresses this limitation. It
has evolved from WUSOR-II by defining a set of symbolic links between rules that characterize
such relationships as analogy, refinement, correction, and generalization. 10 The result is that the

"syllabus” of the coach has evolved from an unordered skill set to a genetic graph of skills linked by

their evolutionary relationships.

9. [Carr77b] describes the mechanisms by which it estimated the student’s position in the syllabus.
10. It was also necessary to increase the grain of the rules. WUSOR-II rules were too coarse, and
hence obscured certain evolutionary relationships.

| Al Memo 449 Section 3 ' Wumpus
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3. The genetic graph formalizes the syllabus.

The "genetic graph” (GG) formalizes the evolution of procedural rules by representing the
rules as nodes and their interrelationships as links. In this section I discuss four of these
relationships -- generalization/specialization, analogy, deviation/correction, and simplification/

refinement - and provide examples of their occurrence in the Wumpus syllabus. I also describe a

~ student simulation testbed which we have implemented to explore the consequences of different rule

formulations. In the next section, I consider what kinds of knowledge are not properly represented

by a graph of rules, and propose apbropriate extensions.
3.1 Genetic links specify evolutionary relationships between rules.

R’ is a generalization of R if R’ is obtained. from R by quantifying over some constant.!l
S pecialization is the inv-erse relation. In fhe Wumpus syllabus, for each trio of specialized rules for
bats, pits and the Wumpﬁs, there is usuaily a common generalization in terms of warnings and
d::mgers.12 Fig. 3 illustrate§ such a cluster for rule 22 which represents the deduction: "a warning
implies that the neighbors of the current cave are dangerous.”

R’ is anaéogous to R if there exists a mapping from the constants of R’ to the constants of R.
This is the structural definition employed by Moore and Newell [Moor73]. Of course, not all
analogies defined in this fashion are profitable. However, the GG is employed to represent those

that are.

1. This is a standard predicate calculus definition, applied here to quantifying over formulas
representing rules rather than logical statements.

12. In one version of Wumpus, the wumpus warning propagates only one cave. In this case, bats,
pits and the wumpus are exactly analogous. In more complex versions, the Wumpus is no longer
exactly analogous. Hence, the analogies to bats and pit rules are in fact restricted cases or outright
deviations. We represent this in the GG explicitly, thereby giving the coach an expectation for the
traps the student will encounter.

Al Memo 449 Section 3.1 ’ Syliabus
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Fig. 3. A Region of the Genetic Graph

PHASE 1 PHASE 2 - \ PHASE 3

- -~ R2.1
IF NO WARNING,
ADD N TO SAFE
CAVE SET D-.

ADD N TO FRINGE
CAVE SET F.

! TO SINGLE
EVIDENCE CAVE SET,

R2.2
IF WARNING,
ADD N TO DANGER-
OUS CAVE SET D+

R3.2
IF VARNING, ALD
NAD! TO MULTIPLE
EVIDENCE CAVE .

R2.2B
IF SQUEAK,
ADD N TO BAT
DANGEROUS CAVE
SET B+

N = Neighbors of
curtent cave.

R2.2p
IF DRAFT, ADD
N TO PIT DANGER-
OUS CAVE SET P+

Genetic Links

R = Reginement
A = Analogy

G/S = Generalization/
Speclalization

R2.2w
IF SMELL, ADD
N TO wWuMPUS

Fig. 3 illustrates analogy links between the specialization trio of R2.2. For example, mapping
SQUEAK to DRAFT and B+ (the set of caves risking BATS) to P+ (the set of caves risking PITS)
defines the analogy maﬁping between R22B and R2.2P. The similar nature of dangers makes
clusters of this kind (one generalization and three specializations all connected by analogy links)
common in the Wumpus worid. As we shall discuss.ln sec. 5, identifying such densely linked

clusters provides teaching leverage by providing multiple methods of explanation (one per link) for

each constituent rule.

Al Memo 449 | Section 3.1 Syllabus
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: R; is a refinement of R if R’ manipulates a subset of the data manipulated by R on the basis
of some specialized properties. Simplification is the inverse relation. This relation represents the
evolution of a rule to take account of a finer set of distinctions. The Wumpus syllabus contains five
rhajor refinements corresponding to the five Wusor-II phases. Fig. 3 illustrates the refinement of
the rul_e Ril through phases |, 2 and 3. R21I and R22, fOi; example, refine Rl's treatment of the
fringe caves by distinguishing between and safe and dangerous subsets. R31 and R3.2, in turn,
refine the dangerous subset into single and multiply dangeérous categories.

R’ is a deviation of R if R’ has the same purpose as R but fails to fulfill that purpose in some
circumstances. Correction is the inverse relation. Deviations arise naturally in learning as the result
of simplifications, overgeneralizatiéns, mistaken analogies, and so on. While any rule can have
deviant forms, the GG is used to record the more common etrors.|3

A deviani Wumpus rule is: "If there is multiple evidence that a cave contains a pit, then that
cave definitely contains a pit.” The debugged rule includes the additional condition that there is
only one >pit in the warren. The deviation has a natural genetic origin: it is a reasohable rule in
the early stages of Wumpus play when the game is simplified by the coach to contain only one of

each danger.

13. The deviant skills recorded in the GG account for errors arising from the correct application of
incorrect rules. There is another class of errors atising from the incorrect application of correct rules.
These are errors arising from such causes as the occasional failure to check all preconditions of a -
rule, the misreading of data, or confusion in the bookkeeping associated with a search process.
Sleeman [Sle77] explores some errors of this class in his construction of a coach which analyzes a
student’s description of his algorithm. Sleeman’s coach, however, does not have a representation for
deviant or simplified versions of the algorithm to be tutored: indeed, he assumes that the student is
familiar with the basic algorithm. A possible extension of his system would be to include a GG
representing evolutionary predecessors of the skilled expert.

Al Memao 449 Section 3.2° ~ Syilabus
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3.2 Genetic graphs are being explored in a student simulation testbed.

The Wumpus GG currently -contains about 100 rules and 300 links!* We are currently
testing the reasonableness of this graph by means of a "Student Simulation Testbed”. 1916 In this
testbed, the performance of various simulated students, defined in terms of different regions of the
GG, is being examined. These students correspond to different evolutionary states. Fig. 4 is the
comparative trace of two students corresponding to the mastery of phases 2 and 3 respectively.

The. "WHY" messagés of fig. 4 are printed by the student simulator as the rules defining a
student are executed. The comments inside cave boxes represent hypotheses of the simulatedv
.student regardipg that cave.v The»bal‘loons reflect the differing hypotheses of the two students
regarding bat evidence -for c.avesj and H.

The phase 2 student (dotted path) does not know the multiple evidence heuristic. Hence, he
does.not realize that cave J is to be preferred over cave H. While he understands that they both
risk bats, he makes no further distinction. Thus, he randomly selects from these two possibilities,
unfortunately choosing the riskier H. The phase 3 student (dashed path) recognizes multiple

(BAT?2) evidence as more risky than single (BATI) evidence and therefore selects the safer cave J.

4. These statistics are based on an explicit representation of each generalization, its specializations
- and their common deviations. It is possible for the graph to be less extensive if procedures for
generating common deviations and specializations are supplied. This is the approach we shall
eventually employ. Specializations are simple to generate. Deviations are suggested by the common
bug types enumerated by such work as my own analysis of Logo programs [Gol75), Sussman's
analysis of Blocks world programs [Sus75), and Stevens and Collins’s study of bugs in causal
reasoning [Ste77]; or they can be induced, for simple cases, by analyzing the student’s performance

[Sel74, Gol75, Bro77bl. However, my current research strategy has been to make the graph explicit,
in order to understand its form. The next stage will include the extension to expanding the graph
dynamically.

I5. The testbed serves other purposes as well.  Simulated students can be used to test the
modelling and tutoring of teaching systems [Carr77a, Sel77, Wes77). They can also serve as models
of real students, and hence can yield insight for a human teacher observing their performance
(Bro77a, Gol77bl.

16. Following this testing period, WUSOR-II will be converted to incorporate the GG. The
expected improvement in modelling and tutoring is the subject of sections 5 and 6.

Al Memo 449 Section 32 | Syllabus
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Fig. 4. Divergent Behavior of Two Simulated Students
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Fig. 4 is a composite of the graphic output for the two students. The testbed only executes a
single student at a time. It does not generate balloons nor place the "WHY" messages on the
Warren itself.

Expert-based CAI allows only for the definition of "simulated students” formed from subsets
of the expert’s skills. The power of the GG to broaden the tutor’s understanding of the task is
evident from the testbed: the GG permits not only the creation of subset students, but also students .
formed from specializations, deviations, and simplifications of the expert’s rules.

Nevertheless, it must be stressed that the evolutionary relations discussed here remain both
underspecified and incomplete. There are ﬁany kinds of analogies, generalizations, and corrections.
There are also other kinds of evolutionary processes for acquiring knoWledge: learning by being

told,'learning by induction from past examples, and learning by deduction from old rules. The

Al Memo 449 Section 3.2 Syllabus
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next chapter explores one of the directions in which the GG must be extended to be an adequate

representation for the evolution of a student’s knowledge.
4. Extensions to the genetic graph.

The preceding chapter defined a set of genetic relationships between individual rules. In this
chapter, we extend the genetic graph to incorporate genetic relationships between groups of rules

and between rules and the declarative facts that explain and justify their behavior.
4.1 The extended GG groups related knowledge into islands.

Our first order theory of a GG has the limitation that rules which are closely related and
generally learned as a group are not so represented. To address this limitation, rules are grouped
into islands. A natural criterion for forming islands is to group rules that have the same goal. For
- Wumpus, this translates into grouping rules which manipulate the same kind of evidence. This is
illustrated in fig. 5 .

For example, the D+ island contains the rules which manipulate D+, the set of possibly -
dangerous caves. One rule subtracts the neighbors of the current cave from D+ if there is no
warning. The complementary rule is also present: it adds to D+ the neighbor set if there is a
warning. The third rule in the D+ island subtracts the visited caves from D+. It insures that D+
contains only fringe caves. (A péstrequisité planning link exists between these last two rules which
is expléined later in this section.)

Islands allow the coach to tutor the student in terms of an overall concept for a group of rules
and to model the.su.xdent in terms of his po‘ssession of the conceptual base underlying a rule set.
Just as an analogy between two rules éan be explained, so too can an analogy between two islands

" of rules. Fig. 5 illustrates this with an analogy link between the safe and dangerous islands.
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Fig. 5. The Extended Genetic Graph is a Network of Islands

Game State

ce = the cwment cave
N« neighbors of the current cave

W = warning - e o

-
Links ,
PRE = prerequisite D- 1SLAND
POST = poot/etgquuue \
A = Amatogy | . POST o \
- Ty , /
ro Fisuw gl \\ P
/ POST AN T -
‘ \ REg(I)NE F L% o
\ ,PRE ’ * p+{ D- W <=> Ay
N\ / 4
N rd ‘ - o
ey - - -~
~— /’ D+ ISLAND N

\
Cave Sets /. \
ettty D
V = visited caves ' REFINB D+

F = fringe caves

D- « safe fringe caves Dlll DZ ..
D+ = dangerous gringe caves POST ’

D1 » singly dangerous fringe caves

07 = muttiply dangerous fringe caves

~-¢-’

The acquisition of a group of skills is a natural learning episode since acquiring the island is
a local task -- the rules all follow from a single concept. But moving to the next island requires a
new conceptual base. To explore this movement, the simulated student testbed allows macro
~ instructions which add entire islands of rules to the simulated student being construded.

> (Define_student 5 (island F) (island D-) (island D+))
Student 5 defined. ;This is the phase 2 player of fig. 4.

> (Define_student 6 (student 5) (island D1) (isiand D2))
Student 6 defined. ;TAis is the phase 3 player of fig. 4.
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4.2 The extended GG represents the justifications of rules.

The GG as a represenfation of knowledge is still incomplete. Rules by themselves do not
describe the declara;ive khowled‘ge that explains and justifies their behavior. For Wumpus, this
declarative knowledge includes the definition of the evidence sets and axiomatic statements of their

properties. Fig. 6 shows the declarative facts listed below linked to the various groups of rules

- whose behavior they justify.

The fringe F is the union of D+ and D- (the safe caves).

A warning implies that some of the neighbors of the current cave -
are members of D+.

D- and D+ are disjoint.

The GG employed in the student simulation testbed has not yet been augmented in this fashion.

This extension will be important because of the possibility that the same evolutionary

relationships linking procedural rules can play a role linking declarative statements. One logistic

statement can be a generalization of another, or analogous under some mapping of constants, or a
refinement. With such an extended GG, the coach could tutor both procedural and declarative

knowledge, obtaining leverage by moving between the two in the light of the student’s current

difficulties.
4.3 The extended GG represents planniﬁg knowledge.

Not all knowledge about rules describes their evolutionary relationships. Since sets of rules
form problem solving programs for the task, we should expect, as with all programs, that
knowledge about their order of application must be represented. There is no difficulty in extending

the GG to represent this knowledge. It is only necessary to define the appropriate links. For this
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Fig. 6. Islands of Knowledge Have Declarative Foundations
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“reason, prerequisite and postrequisite relations are defined 17 Fig. 5 illustrates various planning

relations. For example, a postrequisite link insures that the D+ rule "If there is a warning, add the

17. An alternative is to supply meta-rules that specify the order of application. This is a useful
approach when the to goal is an expert program, but it is not sufficient for the tutoring context. A
meta-rule that specifies that a trio of rules be executed in the order Rl, R2, R3 does not tell the
tutor whether this is the only order or merely one among a set of possible orders. The tutor must
know if it is to respond appropriately to the student’s idiosyncratic approach. The planning links
provide only the basic ordering constraints. Sacerdoti [Sac75] makes a similar argument for
planning networks to facilitate self-debugging on the part of a problem solving system.
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neighbors to D+." is followed by the rule "Subtract tbé visited cave set from D+.". This second rule
is needed since some of the neighbors added tol D+ may have been already visited, and hence are
safe 18 |
Thus, the extended GG incorporates planning knbwled.ge. As with any addition of

knowlédge, it supplies tutoring leverage. The coach can now expect that for certain rules, the
student’s difficulty may lie not in knowing the rules, but in understanding their order. The
consequences of such confusion can be explored in the student simulation testbed. Below is
illustrated a situation wheré the student has apparently forgotten to execute a postrequisite rule and
show; the advice the new GG-based coach might offer in such situations.

T ke following interaction with the Wumpus game was obtained from a version that allows the

player to record his or her hypotheses on the display screen. The player's responses are

underlined. The final tutorial intervention (in italics) is a hypothetical one by the GG-based

coack now under construction.

We are now in cave D. The neighbors ar; caves C, G, and B. What now?

>B

We are now in cave B. The neighboré are caves F, D, and A. What a stench! The
Wumpus must be in one of the neighboring caves. Squeak! [ hear bats. They
must in one of the neighboring caves. What nou? '

> X+ ;T his command marks caves that may contain a danger.
Which danger (Bats, Pits or Wumpus)? BW. Which caves? AFD
3 The result is that the display screen shows a warren in which BAT+ and

sWUM+ markers appear in the designated caves. ( Fig.7
sis a snapshot of the display in this state.)

What now?

18. A single rule could have been written: "If there is a warning, add N-V to D+", but breaking
this procedure into two rules allows a finer grain of modelling and tutoring. The coach must be
able to identify the deviant simplification of adding the neighbors without pruning the caves
already visited. Thus as a general philosophy, rules are broken into small chunks with planning
knowledge made explicit via links between rules.

Al Memo 449 Section 4.3 Extensions




- Ira Goldstein 2 Genetic Epistemology

Fig. 7. The Warren Display after the D’ahgerous Caves are Marked
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Ira, you have correctly recorded that caves A, F and D risk bats based on'the squeak in cave
B. However, you have moved to cave C without concluding that cave D is safe. You know
cave D is safe because you have visited there. You mtght want to record this knowledge to
avoid confusion.

4.4 The extended GG is a network of islands.

In conclusion, the extended genetic graph is not different in kind from the basic genetic
grziph. It remains a graph of knowledge nodes linked by various genetic relationships. Its
increased power derives from a hierarchical structure of grouped rules (islands), an extension of
individual nodes from representing only rules to representing both rules and facts, and an
augmentation of the link set to include control knowledge.

Implicit in this structure is the following'viewa .Iéirning: new rules are constructed from old
in terms AOf processes corresponding to the individual links. However, the graph does not describe a

unique evolutionary path. One learner may rapidly acquire a generailization, another may first
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~ build several specializations befbre constructing the generaliza,tion, while a third may never acquire
the generalization. Hence, the tutor should encourage this idiosyncratic construction of new
knowledge by giving advice appropriate to the learner’s current knowledge state (position in the
graph) and particular style of learning (preference for particular links). The redesign of the
Wumpus coach to employ the guidance of the GG to more .closely approximate this ideal tutoring

behavior is the subject of the next two sections.
5. The genetic graph is a basis for tutoring.

The GG guides the Tutor component of an AICALI system in two ways. First, it suggests
which skills to discuss with the student, namely those at the frontier of the student’s position in the
graph. Second, once a skill is chosen for discussion, the GG supplies guidance for explaining that

~skill in more than one way by means of relating it to its evolutionary predecessors.
5.1 The genetic graph suggests the tutoring topic.

In Script-based CAI, the order in which topics are introdqced is predefined. 'fhe student
proceeds to the next author-supplied question after he has successfully answered the current query.
This has the advantage that the author can control the introduction of material in the light of his
understanding of the subject matter, but the disadvantage that the order is rigid.

Expert-based CAI is less rigid since it has the power to allow the student to explore a.
problem in his own fashion, analyzing his responses in terms of an underlying skill set. Tutoring is
oriented around supplying advice in those situations wherein the student has chosen a less than
ideal option. But the Expert-based tutor has no guidance with respect to whether discussion of a

given skill is premature in the context of those skills the student has already acquired.
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Providing a genetic graph addresses this limitation. If we baccept the educational heuristic
that learning is faciliated Sy being able to explain a new skill in terms of those already acquired,
the skills with the highest priority for being taught are those on the "frontier” of the student’s
knowledge model. Employing this heuristic, the AICAI tutor can limit its intervention to those
situations with "leverage”, namely those that involve the discussion of a skill on the frontier. For
example, consider two students: a beginner who has mastered the basic fringe rules and whose
frontier is the dangerous and safe islands, and an intermediate player who has mastered these
islands and whose frontier is now at the muitiple evidence island. Let us consider what kind of
. tutoring the AICAI coach should offer if the player moves to cave I4 in the scenario game of fig. 2.
Recall that 14 is a bad choice because the existence of double evidence makes it likely that a fatal.
pit is there. For the intermediate student, the .thtor would intervene -- there is leverage to describe

the double evidence heuristic in terms of its evolutionary predecessors; for the beginner, the tutor
would not -- there are no available genetic links with which to build an explanation.

The GG does not solve the “choice of topic"‘v proBIem. It offers the frontier as a preferred |
subset, but the Tutor must still'choose among this subset or possibly decide to reject it erutirely.lg
To make this decision, the Tutor must apply general teaching heuristics ("Vary the mpic

discussed!") and student specific strategies ("Maximize the opportunity for 'discovery learning’; that

19. There are alternatives to frontier tutoring. A teacher could seek to explain the syllabus as a
whole to give the student perspective. Then later the teacher could return to a given subset of the
syllabus and refine the student’s knowledge. Norman refers to this approach as Web tutoring
[Nor76]. It is more useful however for a syllabus of facts then one of procedural skills. The reason
is that skills have prerequisite relations that prevent advanced skills from being used before simpler
ones are acquired. Static facts don't generally have such a rigid ordering. Thus our skill tutors
usually do not employ the Web technique.

Nevertheless, it is possible to explain a skill whose evolutionary predecessors have not been
acquired by constructing a long explanation ab initioc. The frontier heuristic biases the system
* against such an approach, but the Tutor may be required to employ it in some situations (the
frontier skills have already been explained many times and the student appears to need some
perspective on the syllabus) and for some kinds of syllabi (the skills are largely independent of one
another).
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is, do not discuss any topic at all when the student's progress through the syllabus is proceeding at
a satisfactory rate!”). The role of the GG in this context is simply to make available to these

teaching heuristics the epistemological relations between the skills of the syllabus.
5.2 The genetic graph supplies multiple explanations.

" Once a topic is selected, the ability to explain that topic in more than one way is an
important tutoring technique. Script-based CAI achieved this explanator‘y power by supplying
'fauthor" |an§uages in which clever explanations could be written by teachers. Expert-based CAI,
by eliminating scripts, lost this power. But in return it acqgiréd the ability to respond to a larger
number of situations, albeit by means of a restricted number of machine-generated explanation
types. Genetic AICAI retains the Expert-based CAI ability to respond to a large number of
situations, but adds the capability to explain a particular skill in diverse ways. This capability
derives from the ébility to explain a new rule in terms of its genetic links.. For each link type, the
tutor is provided with an explanation strategy. For example, fig. 8 shows three variations on a
Wusor-II explanation generated by explaining the "avoid multiply dangerous situations” rule in
terms of its evolutionary relatives. (The basic WUSOR-II explanation is the one we examined
earlier for thé poor move to cave 14 in the game state of fig. 2.)

As with the selection of the rule to be discussed, the choice of explanation for that rule is not
determined by the GG. That choice depends on general teaching heuristics (such as "Vary your

explanation!”) and student specific criteria (such as "Avoid strategies which have been consistently

* unsuccessful in the past!’”). The role of the GG, however, is to increase the available choices on

which these selectional heuristics operate.
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Fig. 8. Variations on an Explanation
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5.3 Tutoring using an Extended Syllabus Representation

The range of tutoring strategies is increased further by employipg the extended syllabus
described in the previous section. Examine again fig. 5. The islands of rules for dangerous and
safe caves are linked by a "bridge analogy,” a generalization of the analogy linking the individual
rufes. By tutoring the bridge analogy, explanatc;ry leverage is gained by providing support for an
entire group of rules in a single explanation.

Similarly, a declarative foundation provides another oppoftunity for generating support for
an entire set of rules. Here the common link is from a set of declarative facts to the island of rules
they imply. For example, tﬁe tutor, using the declarative foundatio;l, might discuss the general
importance of the concept of multiple evidence rather than the specific rules employed to maintain
Al Memo 449
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the single and multiple evidence sets. Again, the tutoring hypothesis is that by discussing the

declarative foundation, the student will deduce a group of related rules on his own. It is therefore a

~ potentially powerful tutoring strategy.

5.4 The genetic graph does not solve the tutoring problem.

Tutoring is a complex task for Al-based CAI systems that do not havé access to
author-supplied scripts. The system must decide (1) whether tb intervene, (2) what fopic to discuss,
and (3) how much to say about that topic.20 The GG dées not decide these questions. However, lf ‘
does- serve, first, to coﬁstrain the set of topics by defining a frontier, and, second, to extend the

variety of explahations available for discussing the topic of choice.
6. The genetic graph is a basis for modelling.

To offer appropriate tutorial advice, a teacher must acturately model the student. The GG
facilitates the modelling process in an AICAI tutor in three ways. First, the nodes of the graph
provide a more refined structure for a model of the student’s knowledge state than the skill sets of

subset AICAI systems. Second, the organization of the graph provides a metric regarding which

~ skills the student can be expected to acquire next. Third, the links of the graph provide a

complementary structure for 2 model of the student’s learning behavior.

20. See [Col75] for a study of Socratic intervention strategies.
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6.1 The sttjdent knowledge model overlays the nodes of the genetic graph.

Script-based CAI systems build student knowledge models by maintaining statistics on the
correctness of the student’s answers. The validity of such models is severely limited by the restricted
capability of the script to judge correctness, having only a list of expected responses on which to
judge the answer.

Expert-based CAI systems escape the limitation of the script by constructing their student
knowledge model from hypofheses regarding which skills of the embedded expert the student is
believed to possess. I have termed ‘such models “overlays” [Gol77a) to emphasize that their structure
is derived from the structure of the underlying expert system.

As an exémple of the improvement of expert-based modelling over scripts, consider Wumpus.
The embedded expert of the WUSOR-II coach can evaluate any game state that arises. The
number of such states, given an arbitrary number of éaves, of dangers in these caves, and of
stndent paths through the resulting maze, is enorﬁlous. Scripts of correct answers are clearly out of
- the question. |

But expert-based models have a fundamental limitation. They fail to consider that the.
novice student may not be employing a subset <of the expert's skills, but rather using simplifications,
~ deviations, and other evolutionary predecessors of those skils2! Given our GG, the extension is
clear. The student’s knowledge model will be constructed as an overlay, not on the final set of skilis, |

but on the ‘GG jtself.

21. In certain situations, there is a rationale for expert-based models. The "expert” may be one
selected to be only minimally in front of the student. Or the task may be sufficiently restricted that
novices are generally subsets of the expert’s skills. Or the skills themselves may be broken into
small "micro-skills” so that modelling in terms of the presence and absence of these micro skills is
reasonable. Indeed, the Genetic AICAI system reduces to the expert case if the GG does not in fact
contain other than a single subset of skills. Thus, the expert-based CAI system can be profitably
viewed as a simplification of the Genetic AICAI system.
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6.2 The genetic graph guides the construction of the model.

Given the form of the model as attributing regions of the GG to the student; it is now
appropriate to examine how the model is induced. I shall describé the basic method employed by
expert-based CAI programs, and then construct an improvement based on the learning metric
implied by distance between skills in the GG.

Expert-based CAI constructs the student knowledge model by hypothesizing that a student
does not possess a skill if the student’s answer for a given situation is worse than the answer the
expert could deduce based on that skill. 2223 To illustrate this, consider again the scenario of fig. 2.
If the student chooses cave 14, which is mofe dangerous than its fellows by the multiple evidence
skill, WUSOR-II increases the weight of its hypathesis that the student does not possess this skill.24

" This method of comparing embedded expertise to student performance remains basic to the
Genetic AICAI system, but is improved as follows: the GG is viewed as .defining a number of
“players” of increasing power, corresponding to intermediate skill plateaus in the graph. For

Wumpus, there are five such players defined in terms of the .ﬁ\fe phases of Wumpus skill.

22. And contrariwise, if the student chooses the expert’s choice, then the coach hypothesizes that
the student is familiar with those skills the expert employed to determine that the move chosen was
best.

23. In fact, the process of modelling is more subtle than this. For each situation analyzed, the raw
data is recorded as increments to two variables associated with each skill: APPROPRIATE which
records how many times the Expert believed the skill was appropriate and USED which records
how many times the player was believed to have employed the rule in appropriate situations.
Their ratio forms the FREQUENCY of use of the skill. The AICAI tutor acts as though the
student knows the rule when this ratio exceeds a threshold. The complexities in maintaining such
a model are discussed in [Carr77b).

24. This simple modelling method is improved by the capability in some AICAI programs to take
account of the student’s background, and in some situations, to ask the student explicitly why he
chose a certain option. These improvements are orthogonal to the improvement the GG allows in
the fundamental method. They are discussed in [Carr77b).
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Phase 1:rules for visited, unvisited and fringe caves.

Phase 2: rules for possibly dangerous, definitely dangerous and safe caves.

Phase 3:rules for single versus multiply dangerous caves.

Phase 4: rules for "possibility sets", i.e. keeping track of the sources of dangers

Phase 5: rules for numerical evidence.
Each of these “players” examines the student's move and proposes which skills the student appears
to be employing. These hypotheses are attached to nodes of the GG. The overall belief that the
student possesses a given skill is é summation over the hypotheses of the individual players.

If it were the case that the student might possess skills from anywhere in the GG with equal
probability, then all of these players would have equal weight when‘ formulating the overall
hypothesis. But,'th'e GG embodies a theor‘y of the evolution of the learner's knoWIedge. This
theory is just that knowledge evolve§ along genetic links -- from simplification to elaboration,
~ deviation to correction, abstraction to refinement, specialization to generalization. For that reason,
the hypotheses generated by advanced players further and further away from the current plateau
are assigned less and Iess.weight.

The result is a desireable conservatism in the modelling process. This is reasonable, since it
accords with the common sense educational heuristic that a radical improvement in the play of a
student is more likely due to‘ luck than a discontinuous jump in his skills. By the same token, a
radical deficiency in a particular move isbmore probably due to carelessness than a discontinuous
jump to some earlier knowledge state.

This conservatism does not prevent the AICAI coach from ever believing in discontinuous
jumps in the student’s knowledge. Those players based on skills far from the student’s current
position in the graph are given some weight. Hence, the coach will eventually accept a radical
change in the student’s knowledge. But the conservatism is important: without it, the coach has no

capability at all to observe the lucky guess or occasional careless move. Hence, the metric on

learning defined by the GG supplies a stability missing in expert-based CAI systems.
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6.3 The student learning model overlays the links of the genetic graph.

There is still a third dividena to the GG: its links provide the structure for a learning model.
In the previous section, we discussed the coach’s ability to explain a rule in multiple ways based on
the various genétic links associated with that rule. Now given a Knowledge model, the coach is in
a position to observe the effect of a given explanation type. It can determine whether the student
employs the skill in subsequent play. If a given explanation strategy consistently leads to skill
acquisition, it is reasonable to believe that this explanation strategy is a successful one for the
- particular student. If not, then the opposite hypothesis can be induced, i.e. that .the explanation
strategy i.s not a successful teaching strategy fqr the particular student. Tﬁus, a Learning overlay
can be generated over the set of genetic links that maintains a record of the effectiveness of the
. explanation strategy associated with that link type.
The use of such a model is straightforward: lt serves to.personalize the choice of explanation

strategy for a particular student by selecting from those that have proven successful in the past.
6.4 The genetic graph does not solve the modelling problem.'

Constructing a model of the student’s knowledge and learning attributes is a complex task for
a human teacher to perform. It is certainly the most difficult activity of an AICAI tutor. The
genetic graph provides a framework for this modelling. The student’s knowledge is described in
terms of the nodes of the graph; his learning behavior in terms of the links; his progress in terms of
paths in the graph. It provides a more powérfu! foundation for modelling than either a script of
.correct answers or a set of expert skills.

Nevertheless, the GG does not solve the modelling problem. While the process of
constructing a model gains guidance from the graph, it remains complex. No particular answer by

the student is certain evidence. He may have misunderstood the question, or lost interest in

Al Memo 449 Section 6.4 | Modelling




Ira Goldstein : 32 ' ~ Genetic Epistemology

formulating an answer, or changed his goals entirely. The coach, given its inability to observe the
student’s facial expressions, understand his language, or indeed even know whether he is at the
console thinking or simbly téking a stroll, is at a severe disadvantage compared to a human teacher.
And modelling the student is among the most difficult tasks for skilled human teachers. I term this
the "bandwidth problem”. No matter how excellent the GG is as a representation of the knowledge
being acquired, modelling is dependent on observing this acquisition.” Hence, methods for
increasing the bandwidth with which the computer coach can observe the student are an important
sﬁpplement to the GG in model building.25 The virtue of the GG is simply to provide a target
data structure for the evidence gathered by this increased baﬁdwidth.

There is another deeper limitation to the modelling paradigm offered here. While it is true
that one can only model what one understands, it is not true that one must represent the syllabus in
such an explicit form. A human teacher can be expected to grow his understanding of the task in
response to observing the student’s behavior. For the more general situation of tutoring in large
open-ended worlds, this is necessax;y; however, it involves the incorporation of a learning capacity
into the coach, a non-trivial though important function. The nexf section discusses a preliminary

formulation of the learning theory that would be required.

25. For Wumpus, we are currently exploring several kinds of "assistant programs” that serve to
increase the bandwidth with which the Coach can observe the student. One assistant offers the
display screen as an interactive medium to replace the pencil and paper the student uses to draw
. the warren and record his hypotheses. In this fashion, the coach can observe that part of the
student’s intermediate reasoning that is overt. It is our expectation that this graphic assistance will
make a major improvement in the accuracy of the Coach’s model.
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7. The genetic graph is a basis for learning.

Implicit in the genetic graph is a theory of learning. This section explores this theory and
considers its implications for the design of computer coaches. The model of the student suggested
- by the genetic graph is shown in fig. 9. The processes of the student are divided into two
“homunculi?® -- 3 problem solving specialist and a learning specialist -- with the graph serving as

the student’s basic memory structuré for procedural knowledge. The problem solving homunculus
applies the program defined by the frontier of his genetic graph to the current task. The learning
homunculus extends the genetic graph in re;ponse to new tasks, tutorial advice and observed
difficulties of the current program.

The learning homunculus consists éf a set of strategies corresponding to the various links of
the graph. Its task is to Suild new rules, leaving behind -- as a record of its operation - links
which connect the new rulves to their evolutionary predecessors. The links are labelled with the
learning strategy responsible for the construction. 2728

The genetic grapvh off‘ers only a structure for a learning theory. It suggests that the learning
processes consist of p>rocedures which generate the various links, but it does not describe the details

of these processes. It does not enumerate what criteria are used to form analogies, recognize

26. 1 use the term "homunculus” to emphasize that the learning and problem solving components
are envisioned to be machines of exactly the same power. Their only difference lies in their
programs. '

27. The links are left behind because they themselves can serve as input to the learning strategies.
The existence of a profitable analogy can suggest that more analogies "of an analogous kind" are
possible. For example, an analogy between the rules of bats and pits can suggest a similar analogy
between bats and wumpii. It may not be exact, but the suggestion offers a direction for the
learning homunculus to expler. . :

28. It is of course a simplification to believe that the entire genetic graph remains available to the
learner. In fact, there must be a process of forgetting. This process must exist partly to avoid an
indefinitely growing use of space and partly to eliminate outdated knowledge that would serve only
to misguide the learning processes. A theory of forgetting is crucial to an overall theory of learning
and of teaching, but goes beyond the scope of this paper.
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Fig. 9. Homunculus Model of the Student.
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However, this structure is of use, for it focusses our attention on issues involving the
interaction of the teaching and learning processes. Four of these issues which I discuss below are:
(i) the student as an active agent, (2) a genetic graph for learning, (3) a theory of belief, and (4) the

topology of the graph as a measure of learning complexity.

29. Enumerating such criteria has been the focus of much work in Al including Winston [Win75),
Evans [Eva68), Moore & Newell [Moor73] and Richard Brown [Brow77] on analogy; and Sussman .
[Sus75], Goldstein [Gol75], and Sacerdoti [Sac75] on debugging.
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7.1 The student is an active agent.

Theb model of the student presented above emphasizes the viewpoint that the student is an
active agent, engaged in a constructive process of generating new knowledge. From this
perspective, the tutor’s objectwe is to encourage this process in the student This reminds us that
the current activity of most AICAI tutors -- intervening and supplying a complete explanation -- is
only one end of spectrum of tutoring activity. At the other end of the spectrum is "tutoring without
talking”, that is saying nothing at all, but instead altering the problem domain in order to facilitate
tﬁe learning process.30

There are as well a range of intermediate interventions between these two extremes. An
example is that the tutor could suggest that a rule exists that could be applied in the current
situation which is analogous to some already acquired rules, but not specifying the new rule or
stating the analogy. The next generation of AICAI tutors should be able to supply advice across

this spectrum, altering the nature and extent of their intervention in relation to the current state of

‘the student model.
7.2 A genetic graph for learning skills is possible.

Dividing the student into a Learning Homunculus and a Problem Solving Homunculus
raises the question of whether the skills of the Learrﬁng Homunculus can themselves be represented
as a geneﬁc graph. - If there are a collection of rules that define the processes of énalogy,
generalization, debugging and refinement which are themselves related by genetic links, then

explicating this graph becomer an important Al/Psychology goal.

30. "Tutoring without talking” is exemplified by one option WUSOR-II can exercise. It can alter
the complexity of the Wumpus game by varying the number of dangers, the propagation distances
of their warnings, the number of arrows, and the geometric complexity of the warren. WUSOR-II
does this in accordance with its estimate of the student’s current level of skill.
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A competing hypothesis is that the learning processes are not félated one to another, nor do
they have simplifications from which they evolve. They are only an unstructured Acéllection of
heuristics, acquired in an isolated fashion. I believe this unlikely, but it may not be simple to
explicate a genetic graph for learning.

Constructing a genetic graph for learning skills whose links are again the analogy,
generalization and other genetic lrelationships discussed earlier suggests that still a third L2,
homunculus is not necessary to oversee the acquisition of learning skills. Rather, since the links are
the same ones as occur in the domain graph, the Learning homunculus is potentially able to operate
on its own genetic graph. Thus the recursic;n of homunculi is terminated. If this is so, it would be
an important result both for artificial intelligence and for psychology, naﬁely that a single learning
theb;y is sufficient for both domain knowledge acquisition and a recursive improvement in the
system’s own learning capacities.

Naturally for the process to begin, there must be some learning strategiés that are innate.
E.stabhshing from an Al standpoint which strategies are sufﬁc.ient to generate the remainder then
becomes an important research question. |

Given a detailed account of the learning processes themselves, fhe possibility arises that the
Coach might be ;ble to tutor these very skills. As fig. 10 illustrates, its tutoring could be oriented
towards pointing out the relevant genetic strategies for constructing new rules. This wjll be an
important direction for future research, since tutoring the skills of any particular domain is less

important than tutoring the processes by which these skills are acquired.
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Fig. 10. Learning Oriented Explanations

[ 1T ISN'T NECESSARY TO TAKE SUCH LARGE RISKS WITH PITs |
INDUCTION GENERALIZATION ANALOGY REF INEMENT
Vi
El: [N THE PAST, E2: THE GENERALIZA- E3: AN ANALOGY CAN E4: IN THE PAST,
WE HAVE SEEN THAT TION APPLIES THAT BE DRAWN BETWEEN WE HAVE DISTIN-
MULTIPLE EVIDENCE MULTIPLE EVIDENCE BATS AND PITS, WE GUISHED BETWEEN
FOR A PIT WAS MORE IS MORE DANGEROUS HAVE SEEN THAT MUL- SAFE AND DANGEROUS
DANGEROUS THAN ‘SIN-| THAN SINGLE EVI- TIPLE EVIDENCE FOR EVIDENCE, THIS
GLE EVIDENCE, THIS DENCE FOR ANY DAN- BATS IS MORE DANGERA DISTINCTION CAN BE
IS A GENERAL RULE. GER. OUS THAN SINGLE EVI- REFINED. MULTIPLE
DENCE. BY ANALOGY, EVIDENCE 1S MORE
MULTIPLE EVIDENCE DANGEROUS THAN
FOR PITS IS MORE SINGLE EVIDENCE,
DANGEROUS THAN SIN-
GLE EVIDENCE,
£ HERE THERE 1S MULTIPLE EVIDENCE FOR A PIT IN 14 AND
SINGLE EVIDENCE FOR B, HENCE, WE MIGHT WANT TO EX-
PLORE @ INSTEAD,
7.3 A belief measure can be defined on the genetic graph.

Presenting both a Learning Homunculus and a Problem Solving Homunculus focusses our
attention on the relation between the two: in particular, it raises the question of when a new rule
added to the genetic graph becomes a part of the problem solver’s program. It is a simplification to
speak of the program of the Problem Solving Homunculus being the frontier of the genetic graph.
A new rule may represent a misunderstanding, may not be an improvement, or may be as yet
incomplete. Hence, some inertia is desirable in a dynamic learning system, if it is not to oscillate
wildly or degrade its performance by accepting premature modifications.

~
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This corresponds, perhaps, to the psychological observation that a student does not always
employ a skill which has just been explained. While the student maf be able to repeat the
explanation, and even describe implications of the new knowledge, he may not actually use the skill
when soiving problems. Teachers recognize this property of students and employ the heuristic of
supplying further examples and different kinds of explanations. 3

A formal representation for this learning conservatlsm. can be added to our learning model by
introducing a belief measure. We can restrict a skill on the frontier 'frorﬁ being employed by the
~ problem solving homunculus until "belief" in this new piece of 'knowledge‘gxceeds. some threshold,
where "belief” is a function of the vnumber, kinds and l;ecency of explahations and examples that
have been provided. In terms of our genetic graph representation, we can say that a new ri'lie is
~ not employed until its linkage into the 'genetic graph is sufficiently strong, i.e. belief in the rulg,
defined in terms of the number and kinds of links that attach the rule to the existing graph,
excegds some threshold. 32

Such a metric caﬁ improve the tutor’s expectations about the student’s use of a rule following
its introduction. The Psychologist module maintains a record of its estimate of the student’s belief
in a rule in terms of the types of explanations provided, their recency, and their number. When

belief is below some threshold, the tutor can expect that more explanations will be needed and that

the student will be able to describe the rule when queriéd, but probably not employ it33

31. Authors of script-based CAI systems can incorporate this educational heuristic by supplying
multiple exercises and explanations. But the scripts do not provide a theory of where such
- additional advice wili be needed.

. 32, This is a first order theory. The linkage strength depends as well on the number of situations
in which the rule has been explained, the time since these links were constructed, etc. However, this
first order theory is sufficient to define some interesting learning complexity criteria which I discuss
in the next section, and lmply some procedural consequences for the Tutor.

33. This threshold can be dynamically adjusted on the basis of the student’s performance
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Giyén this refined model, we can undertake a fine grained analysis of belief criteria in
learners. For e‘xample,' for some students, many examples of a few links may engender stronger
belief than single examples of many links. By examination of the stqdent's performance with
respect to the occurrence of such bonds, we can explore the tradeoffs between diversity, repetition
and recency. There is also the corresponding Al i]uestion of which belief metrics result iﬁ a

reasonable learning rate, which lead to instability, and which are too conservative.
7.4 The genetic graph topology provides a learning complexity measure.

Focussing on the genetic graph as a record of the learning process suggests a relationship
between various topologies‘ of the graph and learning comple:;ity. The utility of this
characterization is that it provides guidance to the Tutor regarding which areas of the syllabus
require more attention and to the Psychologist with respect to which skills the student can be
expected to have difficulty with. 3

From a learning viewpoint, the complete genetic graph of the tutor is a roadmap. It describes
various path_s the student’s learning process might take. If the tutor’s graph shows that a given
rule has many links, then the expectation is that the student will have little difficulty in acquiring
that rule himself. There are many opportunities for him to do so. But if another rule has but one
link to the other rules, or indeed none, then here is a topology that suggests the need for tutoring
~ advice.

For example, fig. 3 showed a cluster of rules densely connected By geﬁeralization and analogy

links. Our belief metric suggests that such clusters are easier to acquire than sparsely connected

34. Traditional epistemology discusses validity, not complexity. This is because complexity is not

well-defined except in relation to a particular learning theory. Traditional epistemology did not
have such a theory. We are developing a theory of knowledge that is not independent of the
"knower". v
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regions of the graphv. The procedural import of graph density is to cause the Tutor to expect that
repetition will be little needed in dense regioﬁs but strongly demanded in sparse areas3® |

Thus, topol‘ogies of the syllabus suggest a theory of learning complexity. Experiments are
" needed to determine if this is borne out. But if so, it is an important theoretical idea for education,

independent of the use of cc:m;:vuters.?’6

7.5 Designing simulated students is a research methodology.

We intend to explore the many issues raised here by extending our "student simulaticn
testbed” to include cofnputer students which learn. Such students can be used to explore the effect
of different belief metrics on stability and of different learning strategies on the growth of the

graph.

35, Recall that in our discussion of the genetic graph and its relation to the Psychologist, I
introduced a learning complexity metric. This metric was employed to make the Psychologist
conservative in its belief that the student’s behavior had exhibited a particular skill when that skill
was far from the frontier of the student’s current knowledge state. Formally this took the form that
the K model “"appropriate” and “used” parameters are altered proportional to how far the skill is
from the student’s current knowledge frontier.

The learning complexity implied by the belief metric for certain syllabus topologies suggests a
refinement of this complexity metric, namely that sparsely connected nodes should be expected to be
more difficult to acquire then densely connected ones, if at the same distance from the knowledge
frontier. In particular, with respect to skills on the frontier, the Psychologist should be conservative
in believing that a student has acquired a particular skill when that skill is weakly linked to the
student’s knowledge frontier. ,

36. It is conceivable that formal analysis of a syllabus with a genetic graph may serve a useful
educational function by predicting the learning complexity of the material. If the graph is largely a
chain of rules, we can expect difficulty in convincing the student to employ these skills. Their
support will rest entirely on repetition of a single explanatory method. On the other hand, if the
GG contains many islands, bridges, and clusters, then we can expect that little tutoring may be
required due to the rich interconnectedness of knowledge in this domain.

The validity of the formal analysis is not yet established. But its importance is clear. Education
rests on at best a pop epistemology. Philosophic epistemology is too removed from learning. If our
analysis provides a middle ground, rigorous, objective, and concise but still about the learner’s
relation to knowledge and not some abstract definition of truth, then we have made progress in
developing a theory of education. ‘
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Ultimately, embedding a learning capacity in the coach can have an important consequence
for the genetic graph itself. It can eliminate the requirement that the AICAI tutor have a complete
graph to teach. The graph can be incomplete but grown by the embedded learning program when

needed.
7.6 The genetic graph is not a complete theory of learning.

~ While the issues raised in this section are provocative, the genetic graph is by no means a
complete theory of learﬁing. Hard questions remain to be studied: When should a learning strategy
be applied? How are profitable analogies, generalizations aﬁd refinements detected? What are the
_ criteria for forgetting? Furthermpre, there is an enormous amount of experimental exploration that
must be done. But I believe it is clear that AICAI programs will gain increased leverage by

embodying an explicit theory of the learner.
8. Conclusions

My interest in the evolution of a learner's knowledge was inspired by Piaget, who often
. speaks of him>se|f as a genetic epistemologist. He characterizes the fundamental problem of genetic
epistemology as: "the explanation of: the construction of novelties in the development of knowledge.”
This paper has explored the construction of new knowledge in terms of a genetic graph. As a test
of the effectiveness of this theory, I have described a design by which the graph can irﬁprove the
tutoring and modelling of AICAI systems. I have also described a complementary design for a set
of computer-based learning programs, in which the genetic processes form a separite expert
. operating on the learner’s genetic graph.
Our next step will be to comﬁlete the implementation of an AICAI tutor based on the genetic .

graph approach, and experiment with the resulting system. I have little doubt that the genetic
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graph will increase the effectiveness of this tutor over a comparable Expert-based system. More
interesting will be the fine-grained analysis of learning that such a system makes possible. We will
employ it to explore such Piagetian questions as:
# Are there "stages” in the acquisition of these genetic processes as evidenced
by certain explanation strategies proving unuseable for populations of
different age and background?
# Does tutoring ‘“procedural assimilation” prove easier than tutoring
"procedural accommodation”, where the former is defined in terms of the
acquisition of additional procedures implementing a known concept, that is

intra-island rules linked by generalization, specialization, analogy and
correction links; while the latter represents the acquisition of a new concept

and the associated growth of a new island of rule_s?37
s Do islands define stable knowledge plateaus, providing a kind of
"equilibration”?
While I do not know the answers to these questions, I believe this paper demonstrates that
the formal study of learning and teaching required by AICALI research is a powerful methodology

for studying fundamental questions in cognitive psychology and artiﬁcial,intélligence.

37. For Piaget, "accomodation” for situations where the learner builds new structures to handle a
task; "assimilation” involves situations where the adaptation of old structures proves sufficient. My
definitions of procedural assimilation and procedural accomodation are intended to provide a loose
analogy, wherein new structures correspond to new islands. I employ this analogy only to indicate
that our procedural approach allows the exploration of precise definitions for the notions of local
and global changes to a knowledge structure. Whether a more precise match of computational and
Piagetian terminology is possible (or fruitful) remains to be seen.
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