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‘A, The Representation of SCHEME Procedures as S#expresSions

SCHEME programs are represented as LISP s~ expressions. Thezevaluator
'1nterprets these °s- expressions in a specified way This specification
constitutes the definition of the language.

N The definition of SCHEME is a little fuzzy around the edges.. This is
‘because of the inherent extensibility of LISP-1like languages {Note LISP Is a
~Ball of Mud}. We can define a few essential features which constitute the
"kernel" of the language, and also enumerate several syntactic and semantic
extens1ons which are convenient and normally included in ‘a given
1mp1ementat10n. ‘The existence of a mechanism for such extensions is a part of
‘the ykernel of SCHEME; however, any particular such extension is }not )
necessarily part of the kernel. ' - =

: For those who 11ke this sort of thing, here is the BNF. for SCHEMEh
programs {Note LISP BNF}:

(form) 1:1= {non-symbol atomd | <1dent1fier> I <{magic> | (combination)
Cidentifier> :é= <atomic’ symbol)>
<¥ambda -expression)

<magic) ::=
' | (QUOTE <s-expressiond )
| (IF <formd <formd> <{formd> )
| (IF ¢(form> (formd )
| (LABELS ( <labels Vist> ) <body> )
| (DEFINE (identifier) {1ambda-expression) )
I (DEFINE (1dentif1er> ( <identifier Vist) ) <(form> )
IV(DEFINE ( <1dent1fier> (identifier 1ist> ) <form> )
| (ASET' <identifier) Formd )
| (FLUIDBIND { <fluidbind list) ) <form) )
1 (FLUID Cidentifier) )
| (FLUIDSET' <identifier> <form> )
| (CATCH Cidentifier> (form> )
- | <syntactic extension)
<1ambda- expression) S (LAMBDA ( <identifier 1ist> ) <body>)
{identifier 1istd ::= Cempty> | <identifierd <(identifier Vist)
~ <body> ::= <formd
<labe1s 11st> ii= Cemptyd
) ( <identifier> (lambda-expressiond> ) <labels Tist)>
{fluidbind 1ist> ::= Cempty> | ( <ident1f1er) {form) ) {fluidbind 11st>
<combination>‘ = ( <form Vist)> )
<form Tist> ::= <formd | (Form> (form 1listd
'-f‘<syntactic extensiond ::= ( <magic word> . (s-expression> )
{magic word>_::= Catomic symbol)
<{non-symbo) atom5 ::= <number)> | <array> | (string> | ..

Atoms which are not atomic symbols (identifiers) evaluate to
themselves. Typical examples of such atoms are numbers, arrays, and strings
(character arrays) . Symbols are treated as identifiers or variables,' They
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. may be lexically bound by lambda-expressions. There is a global'ehvirohment pr

containing values for (some) free variables. Many of the variables in this
global environment initially ‘have as their values brimitiVe operations such
as, for example, cAR, coNs, and PLus. SCHEME differs from most‘LISP systems in
that the atom car is not itself an operation (in the sense of being an
invocable object, e. g. a valid first argument to AppLY), but only has one as a
value when - considered as an identlfier. : S
, Non-atomic forms are divided by the evaluator into two - classes‘
comb1nat1ons and "magic (special) forms". The BNF given above is ambiguous;
any magic form can also be parsed as a combination.. The evaluator always
" treats an ambiguous case as a magic form. Magic forms are recognized by the
presence of a "magic (reserved) word" in the car position of the form. All
non-atomic forms which are not magic forms are considered to be combinations.
The system has a small initial set of magic words; there is also.a mechanism -
for creating new ones {Note FUNCALL is a Pain}. ‘ -
Ea A combination is considered to be a list of subforms. These subforms
are ‘all evaluated. The first value must be a procedure; it is applied to the
other values to get the value of the combination. There are four important
points here: ’ o -

(1) The ‘procedure position is always evaluated just'llike anyirdther
position. (This 1s why the pr1m1tive operators are the values of global
identiflers )

-‘_(2) vThe procedure is never "re-evaluated"; if the first subform falls to ‘
evaluate to an applicable procedure, it is an error. Thus,'unllke most‘»

- LISP systems, SCHEME always evaluates the first subform of a combination
exactly once.

~(3) The arguments are all completely evaluated before the procedure 1s:
app11ed that is, SCHEME like most LISP systems, is an applicative order
language. . Many SCHEME programs exploit this fact.

(4) The arQUmeht forms (and procedure form) may in‘principle bebeValdated'
in any order. This is unlike the usual LISP left-to-right order. (All

- SCHEME interpreters implemented so far have in fact performed left -to- right:"

'evaluat1on, but we do not wish programs to depend on this fact. Indeed ‘
there are some reasons why a clever interpreter might want to evaluate them
‘right- to left, e. g to get things on a stack in the correct order )
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B

B. Catalogue of Magic Forms
1. Kern_el‘ Magic Forms

The magic forms in this section are all part of the kernel of SCHEME

'and so must ex1st in any SCHEME implementation.

“(LAMBDA ( Cidentifier 1ist> ) <body> )

L-ambda expreSsions evaluate to procedures 'Unl1ke most LISP

'systens, SCHEME does not consider a lambda-expression (an s-expressionv

whose car ‘is the atom LaMBDA) to be a procedure. A lambda- expression only
evaluates to a procedure. A lambda-expression should be thought of as - a
partial descriptmn of a procedure; a procedure and a descriptmn of it
are conceptually distinct objects. A lambda- expressmn must be "'close‘d”
(associated with an environment) to produce a procedure obJect Evaluation

~of a lambda- expression performs such a closure operation.

The resulting procedure takes as many arguments as " there are ”

'1dentifiers in the 1dent1fier list of the lambda- express1on "When the

procedure is eventually invoked, the intuitive effect is that - the
evaluation of the -procedure call is equivalent to the evaluation of the
(body> in an environment consisting of (a) the environment in which. the
lambda- -expression had been evaluated to produce the procedure, plus (b) the
pairing of the .identifiers of the <(identifier Tist> with the arguments
supp11ed to the procedure. The pairings (b) take precedence over the

~environment (a), and to prevent confusion no identifier may appear tw1ce in
~ the <didentifier 1ist>. The net effect is to implement ALGOL- _style lexical

'(IF_

( IF

scop1ng [Naur], and to "solve the funarg problem" [Moses]

'<predicate}'<consequent} (alternative))

This is a pr1mitive conditional operator. The predicate form is
evaluated If the result is non-niL {Note 1F Is Data -Dependent}, ‘then the
consequent is evaluated, and otherwise the alternative is evaluated. " The
resultmg value (if there is one) is the value of the 1f form.

<predicate> (con"s.equent))

As above, but if the predicate evaluates to NIL, then NIL is the

“value of the If form. (As a matter of style, this is usually used only ,

when the, value of .the IF form doesn't matter, for example, when the

~ consequent is intehded to cause a side effect.)
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(QUQTE (s--expression))

, As. in LISP this quotes the argument form so that it will be passed
verbatim as data; the value of this form is <s- expression). If a SCHENE'
implementation has the MacLISP read-macro-character feature, then the

. abbreviation 'Fo0 may be used instead of (QUOTE Fo00). : '

(LABELS ( <1abels 11st) ) <body> ) . 7 ‘ : . :
where (labels Vistd ::= (empty) I ( <ident‘lfier) <1ambda-'exp‘ression) ) (‘labe'ls HSt) '

This has the effect of evaluating the <body> in an env1ronment where
pa11 the identifiers (which, as for LAMBDA, must all be d1st1nct) in the
‘labels 1list evaluate to the values of the respective lambda- express1ons
Furthermore, the procedures which are the values of the lambda- expressions )
are themselves closed in that environment, and not in the outer
environment; this allows the procedures to call themselves and each other
recur51ve1y For example, cons1der a procedure which counts all the atoms
in a list structure recursively to all levels, but which doesn’ t count the

- NILS which terminate lists (but NiLs in the car of a 1ist count) In order
© to perform this we define two mutually recursive procedures, one to count
~ the car and one to count the cdr, as follows: '

' (DEFINE COUNT
~ (LAMBDA (L)
. (LABELS ((COUNTCAR
(LAMBDA (L)
(IF (ATOM L) 1
{+ (COUNTCAR (CAR L))
, (COUNTCDR (COR L))))))
(COUNTCDR '
(LAMBDA (L)
(1F (ATOM L)
(IF (NULL L) 0 1)
(+ (COUNTCAR (CAR L))
(COUNTCOR (COR L)))))))
(COUNTCDR L)

(we have decided not to use the trad1t10na1 LISP LABEL primitive in :
SCHEME because it is difficult to define several mutually recursive
procedures using only LABEL. Although LABELS is a little more complicated
than LaBeL, it is considerably more convenient. Contrast this design
decision with the choice of If over the more traditional cowno, where the
definitional 51mplicity of 1F outweighed the somewhat greater convenience'_»
of Conp. ) :
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B.2. Side Effects

These magic forms ‘produce side effe’ct_:s' in the environment.

 (DEFINE <identifier) <lambda-express1’en) )

This is used for defming a procedure in the ”global env1ronment"
permanently, as opposed to LABELS, which is used for temporary procedure‘
definitions in a local environment. DeFINE takes a name and a lambda-
expression; it evaluates the lambda- -expression in the global env1ronmentv
and causes the result to be the global value of the identifier. (DeFINE m_ay
perform. other implementation- -dependent operations as well, such as keeping

~ track of defined procedures for an editor. For this reason it is the
- preferred way to define a globally available procedure.) - :

~ (DEFINE <1dent1f1er) ( <identifier list) ) <form 1ist) )
(DEFINE ( <identifier> <identifier 1ist) ) {form Tistd> )

These a1ternat1ve syntaxes permltted by DEFINE are equivalent to?

(DEFINE <1dent1fier)
(LAMBDA ( <identifier 1istd )
~ (BLOCK <form 1ist> )))

where BLOCK is a syntact1c extension defined below. For example, these
three def1n1t10ns are equ1valent. :

' (DEFINE CIRCULATE (LAMBDA (X) (RPLACD X X)))
(DEFINE CIRCULATE (X) (RPLACD X X))
(DEFINE (CIRCULATE X) (RPLACD X X))

‘These forms are provided to support stylistic diversity.
(AsET! <identifier>'<form>)

This is analogous to the LISP primtlve sero For examplé. f:'o
deflne a cell [Smith and Hewitt], we may use ASET' as follows' S
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(DEF INE CONS-CELL °
(LAMBDA (CONTENTS)
: (LABELS ((THE-CELL
(LAMBDA (MSG)
(1F .(EQ MSG 'conrsuts7) CONTENTS
(1F (EQ MSG 'CELL?) 'YES
(IF (EQ (CAR MsG) '<-) -
(BLOCK (ASET' CONTENTS (CADR MSG))
THE- CELL) ,
 (ERROR '|unnscosnlzeu MESSAGE - CELL]
- MsG ‘
_ 'VRNG-TY#E-ARG)))))}).»
THE-CELL)))

Note that ASET' may ‘be used on global ident1fiers as well as locally bound -
1dent1f19rs {Note aser Has Dlsappeared} ' : ’

B.3. Dynamic' Magic

These magic forms' implement escape objects and fluid ('dynamic),
varmbles They are not a part of the essential kernel. For a further
exp11cat10n of ° their semantics .in terms of kernel primitives, ‘see
[ Imperative]. ' : ' -

(FLUIDBIND ( <Hu1dbind 1istd ) <formd ) i
where <f1u1dbfnd Tist) :i= (empty) I ( Cidentifier) (form> ) (f'luidb'ind 11st)

This evaluates the <form> in the environment of the Funospno.form.’
with a dynamic environment to which dynamic bindings of the identifiers in
~ the <(fluidbind 1ist> have been added. Any procedure dynamically called by the .
.__form, even if not 1ex1ca11y apparent to the frLuiosIND form, will 'se'e this
dynamic env1ronment (unless modified by further fLuiDBINDS, oOf course) The

" dynamic environment is restored on return from the form.
’ » Most LISP systems use a dynamic environment for all variables. A
SCHEME which implements FLUIDBIND provides two distinct environments., The
 fluid var1able named foo is completely unrelated to a normal lexical
_var1ab1e named foo . {Note Global Fluid Environment}, and the. access“
mechanisms for the two are distinct. ’

(FLUID ¢identifier> )

~ The value of this form is the value of the <{dent1fier> ‘in_ the
current dynamic environment. In SCHEME implementations which have the
MacLISP read-macro- character feature, (FLUID FOO) may be abbreviated to eroo0.
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(FLUIDSET' <(identifier> <form> )

The value of the <fom» is assigned to the (ﬂhntﬂler> in the current
dynamic env1ronment ‘

(STArlt’<identifier>)
The value of this is the value of the lexical identifier;' writing

| this is the same as writing just cidentifier> {Note What‘Good Is It?)}.

~ (CATCH (identiffer) ¢form> )

This evaluates the’ form in an environment where the identlfler is  -

bound to an "escape object" [Landin] [Reynolds]. This is a strange obJect
which can be 'invoked as if it were a procedure of “one argument. When the
escape object is so invoked, then control proceeds as if the cATCH
expression had returned with the supplied argument as its value {Note
~ Multiple Throw}. -
- ‘ If both catcH and FLUIDBIND are implemented, then their semantics are
intertwined. When the escape object is called, then the dynamic

env1ronment is restored to the one which was current at the time the CATCH"4

form was evaluated {Note Environment Symmetry}.

For a contorted example, consider the following obscure deflnition S

of SORT (Sussman's 1least favorite style/Steele's favorite,, but see
[ SCHEME]): -

(DEF INE SQRT
(LAMBDA (X EPSILON)
((LAMBDA (ANS TAG GO)
(CATCH RETURN

(BLOCK
(CATCH M (ASET' TAG M) - ;CREATE PROG TAG
(IF (< (ABS (-$ (*$ ANS ANS) X)) EPSILON) ;CAMGE’
(RETURN ANS)) - ;POPY

(ASET' ANS (//$ (+$ (//8 X ANS) ANS) z 0)) ;MOVEM

v (60 TAG)))) JORST

1.0 : -
NIL

(LAMBDA (r) (F NIL)))))

This example d1ffers slightly from the version given in [SCHEME], notice
the forms (RETURN ANS) and (GO TAG). SR '
As another example, we can define a THROW function, which may then
be used with catch much as it is in MacLISP [Moon] (except that in MacLISP
the tag is written after the body of the.carcH, not before)
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(DEFINE THROW (LAMBDA (TAG RESULT) (TAG RESULT)))

An example of its use:

e ' '

(CATCH LOSE : . , _ ‘ ,
~ (MAPCAR (LAMBDA (X) (IF (MINUSP X) (THROW LOSE NIL) (SQRT X)))
NUMLIST)) :

l .Indeed,‘ note the similarity_between THRow and the definri‘tivo'n of .60 in the
first example. ' : o B
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€. Syntactic Extensions

SCHEME has a syntactic extension mechanism which prov1des a way to
define an 1dent1f1er to be a magic word, and to associate a function with that

‘word. The function accepts ‘the magic form as an argument, and produces a new

form, this new form is then evaluated in place of the original (magic) form. ;
This is precisely the same as the MacLISP macro facility

C.1. 'SyStemjProvidethxtensions

- Some ‘standard syntactic extensions are prov1ded by the system for

'conven1ence in ordinary programming. They are distinguished from other magic
‘words in that they are semantically defined in terms of others rather than

belng pr1m1t1ve {Note FEXPRs Are Okay by Us}. For exp051tory purposes they
are described here in a pattern-matching/production rule kind of 1language.
The match1ng is on s- express1on structure, not on character string syntax, and

- takes. advantage ‘of the definition  of list . notation: (aBC) =
,'(A . (B . - NIL))). Thus the pattern (x . r) matches (A8 c)y with x = A and

= (B c) The ordering of the "productions" is significant; the first one
which matches is to be used. —_—

(BLOégbxi.xz t.. x;)
(BLOCK x) -2 x
(BLOCK X', r) —) ((LAMBDA (A B) (B)) )( { LAMBDA () (BLOCK . r)))

-BLOCK sequent1a11y evaluates the subforms x; from Jeft to rigﬂt_ For

‘example

‘ '(oLOCK (Aser' X 43) (PRINT X) (+ X1))

" returns 44 after setting X to 43 and then printing it {Note BLOCK Exploits
Appllcative Order}

(LET ((vy %)) (¥, %,) - (v, %)) . body)

- ((LAMBDA‘(VI 92 ) (BLOCK . body)) X, xé %)

LET provides a convenient syntax for binding several ,variables_’to
corresponding quantities. It allows the forms for the quantities to appear
textually adjacent to their corresponding variables. Notice that the
variables are all bound simultaneously, not sequentially, and that the

, ,‘initialization,forms x; may be evaluated in any order. For convenience,

~ LET also supplies a BLock around the forms constituting its body.
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i_ (DO ((v1 xl.si) "'.(Yn %n s")) (test . done) . body)

| 54 (LET ((A1 (LAMBOA () xl))'
(B (LAMBOA (v, ... v ) 5)))

(An (LAMBDA () x,))

(Bn (LAMBOA (v, ... v ) s ))
(7S (LAMBDA,(V1 e vn) test))
(DN (LAMBDA (v . vn) {BLOCK . done)))
(BD (LAMBDA (v - vn) (sLOCK . body))))
(LABEI.S ((LOOP
(LAMBDA (Z1 ... Zn)

(IF (TS Z1 ... In)

(ON Z1 ... Zn)
(BLOCK (BD Z1 ... Zn) ‘
(LOOP (B1 Z1 ... Zn)

‘ (8n 21 ... n)))))))
(LoopP (A1) . (An)))) ‘

Th1s is essentially the. HacLISP "new-style" po loop [Moon] The variables
vy are bound to the values of the corresponding Xgr and stepped in parallel
after every execution of the body by the S5 (by "step we mean ",set to the .
“value of", not "increment by"). If an S5 is omitted, v; is assumed; this
results in the variable not being stepped. If .in addition X is omitted,
~NIL is assumed. The loop terminates when the test evaluates non- NIL; - it is
evaluated before each execution of the body. When this occurs, the done
part is evaluated as a BLOCK. g
The complexity of the definition shown is due to an effort to avoid
“conflict of variable names, as for stock. The auxiliary variables Ai, Bi,
©and zi must be generated to produce as many as are needed, but they need
not be chosen different from all variables appearing in «x, y» S4» body, etc.»
. The iteration is effected entirely by’ procedure calls In this
manner ‘the definition of oo exploits the tail- recursive properties of
SCHEME [ SCHEME] [ Imperative].

~As an example, here is a definition of a function to find the
length of a list:

(DEFINE (LENGTH X)
(D0 ((Z X (COR 7))
(No (+N1)))
((NULL Z) N)))

‘The in1t1alizations forms x; may be evaluated in any order, and on
each iteration the stepping form s; may be evaluated in any order. This
dlffers from the MacLISP definition of po. For example, this definition of

NREVERSE (destructively reverse a list) would work in MacLISP “but not
necessarlly in SCHEME:
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(DEFINE NREVERSE (X)
(DO ((A X (COR A))
(B NIL (RPLACD A B)))
((NULL A) B)))

B Th1s definition depends on the cor occurring before the RNACD. In»SCHEME .
- we must instead write:

) (DEFINE NREVERSE (%)
(DO ((A X (PROG1 {(CDR A) (RPLACD A B)))
(B NIL A))
(vt 4) 8)))

- where by (PROGL x y) we mean ((LAMBDA (P Q) (BLOCK (Q) P)) x (LAMBDA () y)) (but PROGI '
is not really a ‘defined SCHEME primitive). ‘
' Note also that the effect of an ASET' on a Do variable does t

'survive to the next iteration; this differs from using SsEvQ on a oo
variable in MacLISP.

.(ITERATEVndme ((v e )‘..; (vn en)) . body);

- (LABELS {(name (LAMBDA (v oo v) (BLOCK . body))))
(name e, ... e )) :

This defines a. looping construct more general thén 00. For
"~ example, consider a function to sort out a list of s-expressions into atoms
and llsts o

= (DEFINE COLLATE .
(LAMBDA (X)
- (ITERATE coL _
“((z X) (ATOMS NIL) (LISTS NIL))
(IF (NULL Z) u
(LIST ATOMS LISTS)
(IF (ATOM (CAR Z))
(COL (CDR Z) (CONS (CAR Z) ATOMS) LISTS)
(COL (COR Z) ATOMS (CONS (CAR Z) LISTS)))))))

We have found many sitUationé'involving loops where there may be more than
~ one cond1tion on which to exit and/or more than one condition to iterate,
* where Do is too restrictive but rmkxm suffices. Notice that because each
floop has a name, one can specify from an inner loop that the next iteration v
of any outer lodp is to occur. Here is a function very similar to the one
used in one SCHEME implementation for variable lookup: there are two lists
_of llsts, one containing names and the other values.
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- (DEFINE (LOOKUP NAME VARS VALUES)
' "(ITERATE 'MAJOR-LOOP _
((VARS-BACKBONE VARS)
(VALUES-BACKBONE VALUES))
(IF (NULL VARS-BACKBONE)
NIL
(ITERATE MINOR-LOOP
((VARS- RIB (CAR VARS- BACKBONE))
(VALUES-RIB (CAR VALUES-BACKBONE)))
(IF (NULL VARS-RIB)
~ (MAJOR-LOOP (CDR VARS- BACKBONE) |
(COR VALUES-BACKBONE))
(1F (EQ (CAR VARS-RIB) NAME)
VALUES-RIB ,
(MINOR-LOOP (COR VARS-RIB) v
(COR VALUES-RIB))))))))

' v (We had or1gina11y wanted to call this construct LOOP, but see
3‘{Note FUNCALL is a Pain}. Compare this with looping construct_s appearing in
2 [Hewitt] ) _ ‘ - s o
: It happens that ITeraTE is a misleading name; the construct can
actually be used for recursion ("true" recursion, as opposed to tail-
recursion) as well. If the name is invoked from a non-tail-recursive
situation, the argument evaluation in which the call is embedded is not
aborted. It just so happens that we have found ITERATE useful primarlly to
1mp1ement complicated iterations. One can draw the rough analogy ITERATE :
LABELS :: LET : - LAMBDA. ' : el

(TEST pred fn alt) |

> ((LAMBDA (P F A) (IF P ((F) P) (A)))
pred
~ (LAMBDA () fn)
(LAMBDA O alt))

" The predicate is evaluated; if its value is non-NIL then the form"fn
should evaluate to a procedure of one argument, which is then invoked on
the value of the predicate. Otherwise the alternat1ve alt is evaluated.

This construct is-of occasional use with LISP "predicates" which
return a "useful" non-nIL value. For the consequent of an If to get at the
.. non-NIL value of the predicate, one might first bind a variable'to the

"value of the predicate, and this variable would then be visible to the
alternative as well With TEST, the use of the variable is restricted to
the consequent.. '

~ An example:

| ‘(TEST (ASSQ VARIABLE ENVIRONMENT)
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COR
(GLOBALVALUE VARIABLE))

‘Using an a-list to represent an environment, one wants to use the cdr of
the result of asso if it is nmon-niL; but if it is NIL, then the variable
was not in the environment, and one must look elsewhere. ' : o

(COND (py . &) ... (p . e ))

~ (COND) — 'NIL ,
~ (COND (p) . r) —=> ((LAMBDA (V R) (IF V V (R)))
, . (LAMBDA () (COND . r)))
(COND (p => ) . r) - (TesT p f (COND . r))
(COND (p . e) . r) = (IF p (BLOCK . e) (COND . r))

This conp is a superset of the MacLISP conpo. As in HacLISP singleton f‘
'clauses return the value of the predlcate if it is non-NI1L, and clauses
with two or more foerms. treat the first as the predicate and the rest as
constltuents of a BLOCK, thus evaluating them in order. ’
, The extension to the MacLISP cono made in SCHEME is flagged by the
- atom =>. (It cannot be confused with the more general case of two BLOCK
"constltuents because having the atom => as the first element of a sLock is
~ not useful. ) In this situation the form r following the => should have as
its value a function of one argument; if the predicate p is non- NIL, this
functlon is determined and invoked on the value returned by the predicate
-Th1s is useful for the common situation encountered in LISP:

. (conp ((SETO IT (GET X 'PROPER]’Y)) (HACK IT))

wh1ch in SCHEME can be rendered without using a variable global to the
'cono o _

(COND ((GET X 'PROPERTY)
’ => (LAMBDA (IT) (HACK IT)))
L)) ' '

or, in,this Specific instance, simply as:

. (COND ((GET X 'PROPERTY) => HACK)
: o) '
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~ (OR ’;1- X, xn)
(OR) = NIL
(OR x) = x
(OR x . r) - (COND (x) (T (OR . r)))

This standard LISP primitive evaluates the forms x, in order, returning the
first non-niL value (and ignoring all following forms). If all forms
 produce NIL, then NIL is returned {Note Tail-Recursive or}. T

( AND Xy X, ...v xn)
(AND) — T
”(AND x) — x
“(AND x . r) —> (COND (x (AND . r)))

This standard LISP primitive evaluates the forms Xy in order. .If any form
produces NiL, then NIL is returned, and succeeding forms x, are ighored. If
all forms produce non-NIL values, the value of the last is returned {Note
Tail-Recursive anp}. ' ‘ :

(AMAPCAR f x, x

1 %2 oo xn)

5 (o ((FN )
o (V1 x; (COR V1))
(V2 x, (COR V2))

(vn Xn (CDR Vn)) S .
(Q 'NIL (CONS (FN (CAR V1) (CAR V2) ... (CAR Vn)) Q)))
((OR (NULL V1) (NULL V2) ... (NULL Vn))

(NREVERSE Q)))-

AMAPCAR is analogous to the MacLISP MAPCAR function The functmn f, a
function of n arguments, is mapped smultaneously down the lists "1’ z'.
PRI I that is, f is applied to tuples of successwe elements of the
- lists. The values returned by f are collected and returned as a 1list.
Note that amapcAR of a fixed number of arguments could era511y be written as
a function in SCHEME. It is a syntactic extension only so'that it may
»accommodate any number of arguments, which saves the trouble of defining an
entire set of primitive functions AMAPCAR1, AMAPCAR2, ... where AMAPCARn takes
n¥l arguments. :
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(AMAPLrsr'f X)Xy e %)

> (D0 ((FN f)
(V1 x, (COR V1))
(V2 x, (COR V2))

(Vn x_ (COR Vn))

(Q 'NIL (CONS (FN V1 V2 ... Vn) Q)))
((OR (NULL V1) (NULL vz) . . (NULL Vn))
(NREVERSE Q)))

AMAPLIST is analogous to the’MachSP MapLIST function. The function r, a
~ function of n arguments, is applied to tuples of successive tails of the
lists. The values returned by f are collected and returned as a list.

h(AmAPt'fvxl xé ;(." an)
RN (D0 ((FN ) _

(X1 x; (COR X1))

(X2 xz (COR X2))

(Xn X0 (COR Xn)))
((OR (NULL X1) (NULL X2) ... (NULL Xn))
"NIL)
~ (FN (CAR X1) (CAR X2) ... (CAR Xn)))

amapc  is analogous to the MacLISP marc function. The procedure f. a

procedure taking n arguments, is mapped smultaneously down the lists Xy
Xpr ewes X3 that is, r is applied to tuples of successwe elements of the
“lists. Thus AMAPC is similar to amapcArR, except that no values are expected
‘ from f; therefore f.need not be a function, but may be any procedure

152 - sn)

© (PROG varlist s
- The SCHEME Pmm is like the ordinary LISP proc. There is no simple

way: to descrlbe the transformation of Pro6 syntax into SCHEHE primitives.

The basic 1dea is that a large LABELS statement is created, with a labelled

procedure (of zero arguments) for each PrRoG statement. Each statement is""
“transformed. in such a way that each one that "drops through" is made to

call ‘the labelled procedure for the succeeding statement; each appearance

of (60 tag) is converted to a call on the labelled procedure for the

statement . following the tag; and each appearance of (RETURN v(hw) is
replaced by vailue. -

Pract1ca1 exper1ence with SCHEME has shown that PROG 1is almost

'inever used. It is usually more convenient just to write the correspondlng

LABELS directly. - This allows one to write LABELS .procedures which take
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: ‘a'yr'guments",blwhich'ten.ds to clarify the flow of data [Imperative],

4 The rest of this section (FSUBRs) apphes only to the PDP- 10 MacLISP
1mp1ementat1on of SCHEME .

FSUBRs

. As a user convenience, the PDP-10 MacLISP implementation of SCHEME

~ treats FSUBRs specially; any FSUBR provided by the MacLISP system is
automatically a SCHEME primitive (but user FSUBRs are not). Of course, if
the FSUBR tries to evaluate some form obtained from its argument, the
variable references will not refer to SCHEME variables As a special case,
the SCHEME syntactic extension AARRAYCALL is provided t.o get the effect of_
the MacLISP FSUBR ARRAYCALL.

VC.vZ. ; User4Prov'ided Extensions

A SCHENE implementation should have one or more ways for the user to
extend the inventory of magic words. The methods provided will vary from
implementation to implementation. The following primitive (schmac) is provided
in the PDP 10 MacLISP implementation of SCHEME.

( SCHMAC name pattern body)

-After execution of this form, a’ syntactic extension keyed on the
atom name is defined. When a form (name . rest) is to be evaluated, rest is
matched against the pattern, which is a (possibly "dotted") 1list of:
variables. The body is then evaluated in an environment .where the
variables in the pattern have as values the corresponding parts ‘of rest.
This should result in a form to be evaluated in place of the form
(name . rest). '

The body is not necessarily SCHEME code, but rather code in the
same meta- -language used to write the evaluator. In the PDP-10 MacLISP
SCHEME implementation, the body is MacLISP code. , ' ' '

As an example, here is a definition of TEST: .
(SCHMAC TEST (PRED FN ALT)

~ (LIST '(LAMBDA (P F A) (n= P ((F) P) (A)))
PRED
(LIST 'LAMBDA '() FN)
(LIST 'LAMBDA '() ALT)))

v . The body of a SCHMAC almost always performs a comphcated consmg-
up. of a program structure Often one needs to make a copy of a standard»
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‘structure, with a few values filled in.  To make this easier, SCHEHE
" provides an "unquoting quote" feature. An expression of the form r¢s-
expression> is just like '<s-expressiond, except that sub- -expressions preceded
by " " or "e" represent expressions whose values are to be made part of (a
- copy of) the s-expression at that point. A "," denotes simple. inclus1on,

while "@" denotes "splicing“ or "segment" inclusion (Compare this with

. the treatment of lists with embedded forms in MUDDLE [Galley and Pflster],
which in turn inspired the ! syntax of CONNIVER [McDermott and Sussman].

from which SCHEME's " syntax is derived ) Using this, one can define TEsT =

as follows:

(SCHMAC TEST (PRED FN ALT)
' "({LAMBDA (P F A) (IF P ((F) P) (A)))
,PRED
(LAMBDA () ,FN)
(LAMBDA () ,ALT)))

Similarly, LET can be defined as:

_(SCHMAC LET.(DEFNS . BODY)
“((LAMBDA ,(MAPCAR 'CAR DEFNS)
(BLOCK . ,BODY))
@(MAPCAR "CADR DEFNS))) .

One could also wr1te (BLOCK eaoov) instead of (BLOCK . ,BODY).
Notice the use of (MAPCAR 'CAR DEFNS) rather than (AMAPCAR CAR DEFNS), and
recall that, as stated above, the body of a scHMAC 1s MacLISP code. not
, SCHEME code Consider too this definition of cownp:

(SCHMAC COND CLAUSES
(COND ((NULL CLAUSES) ''NIL)
((NULL (CDAR CLAUSES))
" "((LAMBDA (V R) (IF V V R))
+(CAAR CLAUSES)
(LAMBDA () (COND . ,(COR CLAUSES)))))
" ((EQ (CADAR CLAUSES) '=>). R T
"(TEST ,(CAAR CLAUSES) ,({CADDAR CLAUSES) (COND . ,(COR CLAUSES))))
(T "(IF ,(CAAR CLAUSES) e
(BLOCK . ,(CDAR CLAUSES))
"(COND . ,(COR CLAUSES))))))

We have used cono to define cono! The definltion is not circular. however'

the MacLISP cono is being used to define the SCHEME cono, and indeed the two

have slightly different semantics. The definition would have been circular
~.had we written (conp (v) (R)) instead of (IF vV vV R), for the latter is part of
_the generated SCHEME code
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- {MACRO name péttenn body)

This is just like scumc. except that body is SCHEME code rather'
than MacLISP code. While macros defined with SCHMAC run only in a MacLISP _
implementation of SCHEME, those defined with MACRO should be completely
~transportable. (We described scuvac first to emphasize the fact that macros
are conceptually part of the interpreter, and s0 conceptually written in
the meta- language. It so happens, however, that SCHEME is a good meta-
languagepfor SCHEME, and so introducing this meta- circularlty provides no
serious problems. Contrast this with writing PL/I macros in PL/IY)
- The example of defining conp using scHMAC above would be circular if
we changed the word scHMAC to MACRO. However, we can avoid this by avoiding’
- the use of cono in the definition: :

~ (MACRO COND CLAUSES
‘ (IF (NULL CLAUSES) ''NIL
(IF (NULL (CDAR CLAUSES))
"((LAMBDA (V R) (IF V V R}))
,(CAAR CLAUSES)
(LAMBDA () (COND . ,(CDR CLAUSES))))
(IF (EQ (CADAR CLAUSES) '=>)
"(TEST ,(CAAR CLAUSES)
,(CADDAR CLAUSES)
* (COND . ,(COR CLAUSES)))
~ "(IF ,(CAAR CLAUSES)
(BLOCK . ,{CDAR CLAUSES))
(conn . ,(COR CLAUSES)))))))

we strongly encourage the use of MACRO instead of scmmc in practice
so that macro definitions will not be dependent on the properties of a
specific implementation :
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D, Primitive'SCHEME Functions

: All the usual MacLISP SUBRs are available in SCHEME as procedures

- which are the values of global variables. The particular primitives CONS, 'CAR,

COR, ATOM, and EQ are part of the kernel of SCHEME! Others, such as +, -’, LI

A, =, EQUAL, RPLACA, RPLACD, etc. are quite convenient to have. ;

Although there is no way in SCHEME to write a LEXPR (a function of a
variable number of arguments), MacLISP LSUBRs are also available to the SCHEME
user. One may wish to regard these as syntactic extensions in much the same
way AMN%AR is; for example, LI1ST may be thought of as a syntactic extension
such that; - ’ o

© O (LIST) = 'NIL
a'(LIST X . r) = (CONS x (LIST . r)).

Below we also describe some additional primitive functions provided _
with SCHEME. Their names do not have any special syntactic properties in the

"way that the magic words for syntactic extensions described in the previous

section do. However, they do deal with the underlying implementation, and so

.could not be- programmed directly by the user were they not provided as
primitives

‘ The followmg primitive functions (procP and ENCLOSE) are. part of the
kernel of SCHEME. . .

(PROCP thing)

v This is a predicate which is true of procedures, and not of
".anything else. Thus if (procp x) is true, then it is safe to invoke the

- value of x. : o
' ~ More prec1se1y, if PrOCP returns a non NIL value. then the value

describes the number of arguments accepted by the procedure. For SCHEME.' ,

procedures this will be an integer, the number of arguments. For primitive
functions, this may be implementation-dependent; in the PDP-10 MacLISP
implementation of SCHEME, proce of an LSUBR returns the MacLISP ARes
- property for that LSUBR. If an object given to procP is a procedure but
the number of arguments it requires cannot be determined for some reason,
then procp returns T. : : '

(ENCLOSE fnrep envrep)

ENCLOSE takes ‘two s- expressions, one representing the code for a
procedure, and the other representing the (lexical) environment in which
the procedure is to run. EMlose returns a (closed) procedure which can be,
invoked. :
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The representation of the code is the standard s~ expression

descrlption (a lambda- -expression). The representation of the environment'ﬂ

is an association list (a-list) of the traditional kind
((varl . valuel) (varZ . valuez) ...)

NIL represents the global lexical environment.

This description of encLost should not be construed as descr1b1ng
how the 1mp1ementation of SCHEME represents e1ther environment .or code
internally. Indeed, encLose could be as simple as CONS, Or as complicated as

a compiler. All that ENCLOSE guarantees to do is to compute a procedure
obJect given a description of its desired behavior. The description must
be in the prescribed form; but the result may be in any form convenient to

the 1mp1ementat1on,<as long as it satisfies the predicate PROCP {Note_,’

EVALUATE Has Disappeared} {Note S-expressions Are Not Functions}. L
- As an example,' we can write AppLY using ENCLOSE. One way is to
generate a lot of names for the arguments involved: : i : L

(oerruz APPLY
(LAMBDA (FN ARGS) , .
(LET ((VARS (AMAPCAR (LAMBDA (X) (sensvn)) ARGS))
(FNVAR (GENSYM))) ,
((ENCLOSE "(LAMBDA () (,FNVAR @VARS))
' (CONS (CONS FNVAR FN)
(AMAPCAR CONS VARS ARGS)))))))

Here a procedure which will call the procedure FN on the required: number of

arguments is enclosed in an environment with all the variables bound to the o

appropriate values. For those who don't like Guwvn, here is another way to
do it:

(DEFINE APPLY
(LAMBDA (FN ARGS)
(DO ((TAIL 'A "(COR ,TAIL))
(REFS NIL (CONS "(CAR ,TAIL) REFS))’
(COUNT ARGS (CDR counr)))
{((NULL COUNT)
~ ((ENCLOSE "(LAMBDA (F A) (F @(REVERSE REFS))) NIL)
FN ARGS)))))

e._In this version we create a series of forms (CARA). (CAR(conA)), (cnn(con

{COR AH), ... to be used to access the arguments. (In a way, these are

distinct names for the arguments in the same way that the gensyms were for
the first version.) The values fN and ARGS are passed in as arguments to
the enclosed procedure, rather than giving a non-NIL environment
representation £0 ENCLOSE. :

’ As another example, we define a function called *LAMBDA'

il
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" (DEFINE (*LAMBDA VARS BODY)
(ENCLOSE "(LAMBDA ,VARS aoov) N!L))

Wr1t1ng (*LAMBDA (X ¥) '(Foo Y X)) is just like writing (LAMBDA (x Y) (roo Y X)),

However, if there are any free variables in the supplied body, ‘then *LAMBDA
will cause them to refer to the global environment not the current one.
‘We,cannot in general simulate taMBOA by using *LAMBDA, because SCHEME
(purposefully) does not provide a general way to get a representation of
the current environment. We could, of course, require the user to give‘
_ *LAMBDA a representation of the current environment, but this hardly seems
B worthwhile : :

The following primitive functions allow for multiproce551ng ~VWe do
not pretend that they are "right" in any sense, and are not particularly
attached to these specific definitions. They are not part of the kernel of
SCHEHE‘ (Their primary use in practice is for bootstrapping SCHEME by
creating an initial process for the top-level user interface loop.)

v : There are no primitives for process synchronization, as we have no
‘good theory of how best to do this. However, in the PDP-10 MacLISP
‘implementation of SCHEME we guarantee that SUBRs and LSUBRs execute in an
uninterruptlble fashion; that is, such functions can be considered "atomic"
for synchronization purposes. The user. is invited to exploit this fact to
-invent his own synchronization primitives {Note EVALUATE!UNINTERRUPTIBLY Has'
Disappeared}. :

'.:(CREATE!PROCESS proc)

This is the process generator for multiproce551ng It takes one_i
argument, a procedure of no arguments. If the procedure ever terminates.
the entire process automatically terminates. The value of CREATE!PROCESS is
a process ID for the newly generated process. Note that the newly createdv
process will not actually run until it is explicitly started. When_
started, the procedure will be invoked (with no arguments), and the process;

owill run "in parallel” with all other active processes.

_ (STARTIPROCESS procid)

This takes one ergument, a process id, and starts up or resumes
that process, which then runs. o '




" Steele and Sussman - ' : 22 " The.Revised Report on SCHEME

.~ (STOPIPROCESS procid)

This also ‘takes a process 1d ‘but stops the process. The stopped
process may be continued from where it was stopped by using START'PROCESS
again on it, The global variable =*pROCESS** always contains the process id
of the currently running process; thus a process can stop 1tse1f by doing

» (STOPIPROCESS **PROCESS**). :

(TERMINATE)

, “This primitive stops and kills the process which invokes it - The
process may not be resumed by STALTIPROCESS . Some other process is selected“
to run. If the last process is terminated, SCHEME automatically prints a
warning message, and then creates a new process running the standard SCHEME

"read-eval-print" (actually "read—stick (LaMBDA () .) around—enclose in top-
level environment—invoke—print") loop. ' . o
' An example of the use of TERMINATE: .

{ TERMINATE )
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-Notes

- {Note Notes Are in Alphabetical Order)

{ASET Has Disappeared}

The more general primitive Aser described in [SCHEME] has been»,
removed from the SCHEME language. ‘Although the case of a general evaluated
expr9551on for the variable name causes no real semantic difficulty (it -can
be viewed as a syntactic extension representing a large CASE statement, as

- pointed out .in [Declarat1ve]), it can be confusing to the reader.
Moreover, in two years we have not found a use for it. Therefore we have
replaced AsET with ASET', which requires the name of the variable to be

' modlfied to appear manifestly. S

We confess to being "cute" when' we say that the name of the
primitive is AseT'. We have not changed the implementation at all, but
merely require that the first argument be quoted. The form (ASET' FOO BAR)
is parsed by the MacLISP reader as (ASeT (QUOTE FO00) BAR).. Of course, @
different implementation of SCHEME might actually take AseT’ as a single
name We apologize for this nonsense.

{BLOCK Exploits Applicative Order} , R

: - The definition shown for BLOCK exploits the applicative order of

. evaluation of SCHEME to perform this {Note Normal Order Loses} It does

' not depend on 1eft to-right evaluation of arguments to functions! Notice
also that in '

(BLOCK x . r)’;a ((LAMBDA (A B) (B)) x (LAMBDA () (BLOCK . r)))

'there can be no conflict between the aux111ary variables A and B and any"
variables occurring in x and r. It is thus unnecessary to choose variables

'¢d1fferent from any others appearing in the code. . In this respect this

definition is an improvement over the one given in [Imperative]. This
‘trick (which is actually a deep property of the lexical scoping rules) is
used in ‘a general way in most of the definitions of syntactic extensions:
one wraps all the T"user code" in lambda- expressions in the outer
' env1ronment passes them in bound to internal ‘names, and then invokes them;
as necessary within the internal code for the definition,
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‘ »{Environment Symme'try}

: ~ One may think of an escape object as being "closed" with respect to"
a dynamic environment (and here we mean not only fluid variables but the-
- chain of pending .procedure calls) in much the same way that an ordinary
procedure is closed with respect to a lexical environment ‘ Just as a
procedure cannot -execute properly except in conjunction with a static
environment of the appropriate form, so an escape object cannot properly
resume control except in a dynamic environment of the appropriate form

: {.EVALUAT'E H‘as Disappeared}

_ The EVALUATE primitive described in [SCHEME] has been removed from
the. language. We discovered (the hard way) that the straightforward
implementation of EVALUATE. (evaluate the given expression in the current

environment) destroys referential transparency. We then altered it to

- evaluate the expression in the top-level environment, but were stillv
disturbed by the extent to which one is tied to a particular representation
of a procedure to be executed.

We eventually invented an ENCLOSE of one argument (a ‘lambda-
expresswn), which enclosed the procedure in the top-level env1ronment
This allowed one to remove the dependence on representation by making a

‘procedure, and then to pass the procedure around for a while before
invoking it. We had no provision for closmg in an arbitrary environment '
because we did not want to provide the user with direct access to
env1ronments as data objects. The excellent idea of allowing ENCLOSE to
accept a representation’ of an environment was suggested to us by R M
Fano. B

{EVALUATE !uu steRuhnBLv Has Di sappeared}

The EVALUATE'UNINTERRUPTIBLY primitive described in [SCHEME] has beeng
removed from the language.” This primitive was half a joke, and we have
smce discovered that it had a serious flaw in its definition, namely that
" the. scope of the uninterruptibility is lexical. This worked in our limited
examples only by virtue of the fact that SUBRs were atomic operatlons. In
general, this primitive is worse than useless for synchronization purposes.
‘Synchron1zation is clearly a dynamic and not a static phenomenon. We have
no good theory of synchronization (primitives for this were included in
[SCHEME] primarily to show that it could be done, however kludgily), and so
have defined no replacement for EVALUATE!UNINTERRUPTIBLY. We apologize for any

confusion this mistake may have caused. '
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~

- {FEXPRs Are Okay' by Us}

‘ - While the syntactic extensions are defined in terms of other
, _constructs, they need not be implemented in terms of them. For example, in
- the current PDP-10 MacLISP implementation of SCHEME, sLock is ‘actually
1mp1emented in the same way If and QUOTE are, rather than as a macro in
terms of LAMBDA. This was done purely to speed up the interpreter. The
compiler still uses the macro definition (though we could change that too

'if warranted). The point is that the user doesn' t have to know about all

this.
. It is somewhat an accident that magic forms look like procedure
calls (see also {Note FUNCALL is a Pain}): a name appearing in the car of a
list- may represent either a procedure or a magic word, but not both. (We
~could, for example, say that magic forms are distinguished by a ‘magic word
in the cadr of a list, thus allowing forms such as (FOO := (+ FOO 1)), where
:= 1s a magic word for assignment. PLASMA [Smith and Hewitt] allowed just
this ability with its "italics" or "reserved word" feature.) Thanks to
this accident many LISP interpreters store the magic function definition in’
the place where an ordlnary procedure definition is stored. A special
marker (traditionally EXPR/SUBR or FEXPR/FSUBR) distinguishes ‘ordinary
functions from magic ones.. This allows the lookup for a magic word-
definition and an ordinary value to be simultaneous, thus speeding up the
1mplementation, it is purely an engineering trick and not a semantic
~ essence. However, this trick has led to a generalization wherein quote and
'cown are regarded as functions on an equal basis with cArR and CONs; to be
sure, they take their arguments in a funny way — unevaluated — but they
are still regarded as functions. This leads to all manner of confusmn,
~which has its roots in a confusion between a procedure and its
representation : - e
It is helpful to consider a simple thought exper1ment "~ Let us
postulate a toy language called "Number-LISP". Programs in this language
_are written as s- expressmns, as usual; the kernel primitives taAMBDA, IF,
LABELS, etc. are all present. However, the primitive functionsb‘cous, CAR,
and coR are absent; one has only +, -, *, //, and -. QUoTE is not
available; the only constants one can write are numbers. ‘ T
' ‘Now Number-LISP can be used to perform all kinds of arithmetic, but
it is clearly a poor language in. which to write a LISP interpreter. Now
consider the magic form processors and syntactic extension functions for
Number LISP. They are procedures on s-expressions or functions from .s-
- expressions to s-expressions which transform one form 1nto another.
- Whatever processes IF or LABELS or BLOCK is clearly not a Number LISP

procedure, because it must deal with the text of a Number-LISP procedure,

not just the data to be operated on by that procedure ‘The 1fF- processor (a
"FEXPR") for Number-LISP must be coded in the ‘meta-language for Number-.
LISP, whatever that may be.

" Now 1t is one of the great features of ordinary LISP that it can
serve as its own meta-language. This provides great power, but also
permits great ‘confusion. . If the implementation allows mixing of leVels of
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de'finition, 'we must keep them separate in our minds. For this reason we
‘don't mind using the "FEXPR hack" to implement syntactic forms, but we do
mind thinking of them as functions just 11ke EXPRs. ‘

{FuncaLL is a Pain} .
The amb1gu1ty between magic forms and combinations could be
e11m1nated ‘by reserving a special subclass' of llsts to represent
comblnations, and allowing all others to represent magic forms . For -
”'example, we might say that all 1lists beginning with the atom cALL are
combinations. Then we would write (CALL CONS A B) rather than (CONs A B). One
could then have a procedure named LAMBDA, - for example; there could be no -
" confusion between (LaMBDA (A) (B. A)) and (CALL LAMBDA (CALL A) (CALL B A)), as there_
- would be .between (LAMBDA (A) (B A)) as a combination and as a magic form
denoting a procedure. Notice that cAlL is intended to be merely a
syntactic marker, 1like LAMBDA or IF, and not a function as FUNCALL is in
~ MacLISP [Moon]. R o _ e
If this caALL convention were adopted, there could be no confusion
between combinations and other kinds of forms. Not all expressions would
‘have meaningful interpretations; for example (Foo A B) would not mean
~anything (certainly not a call to the function Foo, which would be written
as (catL Foo A B)). The space of meaningful s-expressions would be a very
'sparse subset of all s- expressions, rather than a dense one. M would also
make writing SCHEME code very clumsy. (These two facts are of course
correlated.) Combinations occur about as often as all other non- atomic
- forms put together; we would like to write as 11tt1e as possible to denote
a call. As in traditional LISP, we: agree to tolerate the ambiguity in
SCHEME as the price of notational convenience. Indeed, this ambiguity is
~ sometimes exploited; it is convenient not to have to know whether AMAPCAR
o is a function or a magic word. ;
This compromise does lead to d1fficu1ties, however . For e,xample,
- we had wanted to define an iteration feature '

: (LOOP name varspecs body)

Unfortunately, there is a great deal of existing code written in SCHEME of
the form:

(LABF.LS ((LOOP (LAMBDA ... (LOOP ...) .‘Q)))
('Loop ) ' '

vbecause LOOP has become a standard name for use in a LABELS procedure wh1ch

1mp1ements an iteration (see, for example, our definition of oo'). If roop o

were. to become a new magic word, then all ‘this existing .code would no
longer work. We .were therefore forced to name it ITERATE instead (after
ver1fy1ng that no existmg code used the name 1TerATE for: another purpose')
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dThere}would have been no problem if all this code had been writtenAas:

a-{iF

~ (LABELS ((LOOP (LAMBDA ... (CALL LOOP ...) ...)))
' {CALL LOOP ...))

To tnis extent SCHEME has unfortunately, despite our best intentions.
1nherited a certain amount of referential opacity. :

| {Global F1u1d Env1ronment}

, There is 'a question as to the meaning of the global fluid
environment. In the PDP-10 MacLISP implementation of SCHEME, the global
lexical and fluid environments coincide, but this was an arbitrary choice
of convenience influenced by the structure of MacLISP. We recommend that

,the two global environments be kept distinct.

Is Data Dependent}

We should note that the ‘usefulness of the definition of 1§

_ explicitly depends on the particular kinds of data types and the particular

‘ predicates such as ATOM and £Q. This is in contrast to other kernel forms

' data

primitive functions available; we expect to use IF with primitive
such as LAMBDA and LABELS expressions whose semantics are independent of the

. We erred in [SCHEME] when we stated that a practical interpreter
must have a 11ttle of each of call- by -value and call- by name in it., The

-argument was roughly that a call-by-name interpreter must become call by-k

value when a pr1m1tive operator is to be applied and a call- -by-value
interpreter must have some primitive conditional such as IF. We did
mention the trick of eliminating IF in a call- -by-name interpreter by
defining predicates to return (LAMBDA (X v) x) for TRUE and (LAHBDA(X Y) v) for
FALSE whereupon one. typically writes. :

(('—' A B) <do this if TRUE> <do th'is if FALSE))

 but noted that it depends critically on the use of normal order evaluatlon"

" What we had not fully understood at that point was the trick of

’simulating call-by-name in terms of call- ~-by-value by using ‘lambda-
' e'xpresswns (our use of it in the TRY!TWO!THINGS!IN!PARALLEL ~example
- notw1thstanding'), this trick was described generally in [Imperative]. A

special case of this trick is to define the primitive predicates in a call- l

by-value interpreter to return (LAMBDA (X Y) (X)) for TRUE and (LAMBDA (x Y) (v))
for FALSE. Then one can write things like:
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(= AB) _
(LAMBDA () <do this if TRUED)
(LAMBDA () <do this if FALSE>))

‘and so eliminate a call-by-name-like magic form such as If. One can make
the dependence of the conditional on the primitive data operations even
more explicit by defining predicates not to return any particular value,
but to require two "continuations" as arguments, of which it will. invoke
one: :

(= AB
(LAMBDA () <do this if TRUE))
(LAMBDA () <do this if FALSE>))

Ve were correct when we said that a practical 1nterpreter must have call-"

by-name to some extent in that there must be some way to designate two
pieces of as yet uninterpreted program text of which _only one is to be
evaluated. We simply did not notice that LaMsoa provides this ability, and
- s0 a separate primitive such as If is not necessary. We have chosen to
retain IfF in the language because it is traditional, because its

implementation is easy to understand, and because it allows us to take =

.advantage of many existlng predicates in the host language in the PDP 10
MacLISP 1mp1ementat10n o

{LISP BNF)
_ These rules refer to the following rules for LISP s;expressions: |

<atomic symbol)> ::= <alphanumeric stringd (letter) <a1phanumeric'string)
{alphanumeric string) = Cempty> | <a1phanumer1c character) (alphanumeric string> .
<a1phanumer1c character) pi= Lletter) | <digitd | / {character>
letter> t:= A | B ...l Y|ZI*]$1%]|..
<digitd> ::=0 [ 2 ) 213 }a4]|5]|]6]|]7|81]29
<number) ::= (VERY implementation dependent)
{stringd ::= " (character string) "
V(Character string> ::= Cempty> | <(literal character) (character str1ng> :
‘ (litera1 character) ::= Cany character except " or /> | / <character)

(In the PDP-10 MacLISP implementation of SCHEME we use the " character for
another purpose because PDP-10 MacLISP does not have a string data type.
We mention strings only as a familiar example other than numbers of an
atomic data type other than identifiers.) -

- In addition, we assume the usual interchangeability of list
notation and dot notation for s-expressions: (ABC) = (A.(B.(C. NlL_)))
Thus the pattern ( <magic word> . <s-expression> ) may match the list (COND (A B)
(1.¢c)). It is the s-expression representation we care about, not particular
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~character strings.

{LISP Is a Ba11 of Mud)

~ LISP is extensible in two ways. First, there is the simple abillty
to define new functions; these are used in a way that is both ,
 syntactically and semantically identical to built-in primitive functlons
“like CcAR. This is in contrast to "algebraic" programming languages, wh1ch
either make an arb1trary syntactic distinction between addition, say, and a
user funct1on, or wander into the quagmire of extensible parsers. Second
‘there is. a uniform macro facility for transforming one syntactic form into
another,' this facility is based on internal data structures rather than
external character-string syntax. » S
_ Joel Moses (private communication) once made some remarks on the
~difference between LISP and APL, which we paraphrase here: "APL is_like a
diamond. It has a beautiful crystal structure; all of its parts are
related in a tnﬂform and elegant way. But if you try to extend this
structure in any way — even by adding another diamond — you get an ugly
kludge. LISP, on the other hand, is like a ball of mud You can add any '
amount of mud to it (e.g. MICRO-PLANNER or CONNIVER) and it st111 looks
 like a ball of mud!"

{Multiole Throw}

A full implementatlon of SCHEME .allows this to work even if the
CATCH has already been "returned from" that is, the escape obJect can be
used to "return from the catch" several times. However, we ‘allow the
'possibllity that an implementation may allow the escape . object to be
“invoked only from within the execution of the form inside the catch. (This'
is essentlally the restriction that MacLISP makes on its cATcH construct
[Moon].) This restriction permits a stack discipline for the allocation of
continuations, and also greatly simplifies the flow analysis problem for a
'Icompiler [RABBIT]

{Normal.order Loses}

Our definition of BLOCK exploits the fact that SCHEME is an
applicative-order (call-by-value) language in order to enforce sequencing.
Sussman has proved that one cannot do a similar thing in a normal order
(call- by*name) language :




Steele and SUSsman B ) 30 - bf __ The kevised Report on’SCHEME

Theorem Normal order, as such is incapable of enforcing sequencmg‘

- (whereas applicative order is) in the form of the BLOCK construct.

(Informal) proof: The essence of (BLOCK a b) is that a is evaluated
" béfore b, and that the value of b is the value of the BLock (or,
more correctly, the value or meaning of the sLock is independent of

a; a is executed only for its side effects). Now we know that if

,(mocxa b) has any value at all, it can be found by using ‘normal
order (normal order terminates if any order does). Now supposed
that the computation of a does not terminate, but the computation’

of b does. Then (BLOCK a b) must terminate under normal order,"

because the value of the block is the value of b; but this
contradicts the requirement that a finish before b is calculated.
QED

This is an informal indication that normal order is less useful (or at
least less powerful) in a programming language than applicative order We;
also noted in [ SCHEME] that normal order iterations tend to consume, more
space that applicative order iterations, because of the buildup of thunk
- structure Given that one can simulate normal order in applicative order,
by explicitly creating closures [ Imperative], there seems to be little to
- recommend normal order over applicative order in a pract1ca1 programming
‘language. —

{Notes Are in Alphebeticai Order}

‘The notes ‘are ordered alphabetically by name,v not in"order of
reference within the text. a '

(Sfexpressions Are Not Functions}

. Recall that a lambda- expression (i.e. an s- expression whose car 1s

the atomic symbol LaMBDA) is not itself a valid procedure It *is necessary .

to ENCLOSE it in order to invoke it. ) o S

‘ Moreover, ‘the particular representations we ,haver,chosen for

procedures and environments are arbitrary. In principle, one could have.

several kinds of ENCLOSE, each transforming instances of a particularA

: representat1on into procedures For example, someone might actually wantvf

. to 1mp1ement a8 primitive MﬁOLENmﬁSE, taking a string and a 2 -by-N array
, represent1ng code and environment for an ALGOL procedure:

o (ALGOL-ENCLOSE "1nteger procedure fact(n); value n; integer n;
o ' fact := if n=0 then 1 else n*fact(n-1)"
" NULL-ARRAY)
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' This could return a factor1a1 function completely acceptable to SCHEME.v of
" course, the implementation of the primitive MﬁOLENﬂDSE would have to know
) vabout the internal representations of procedures used by the implementation '
. of SCHEME; but this is hidden from the user. , ‘ .
o 81m11ar1y, one could have APL -ENCLOSE, BASIC-ENCLOSE, coBOL-ENCLOSE,‘
FORTRAN-ENCLOSE , - RPG-ENCLOSE ... ' S

{Tail-Recursive ANb}'

The definition of aND has three rules, not only for the same ‘
reasons OorR does, but because AND is not a precise dual to oRr. ~ OR, ‘on
- failure, returns NIL, but AND does not just return non- NIL on success. It
‘must return the non-NIL thing returned by its last form. . e

{Tail-Recursive or)
Wepmight have defined or with only two rules:

(OR) - NIL
~(OR x . r) ’eov'(conn (x) (T (OR . r)))

However, because of the way or is sometimes used, 1t is a technical
convenience to be able to guarantee to the user that the last form in an or
. 1s evaluated without an extra "stack frame"; that is, a function called ‘as
_'the last form in an or will be invoked tail- recursively. For example.

(DEF INE NOT-ALL-NIL-P
' (LAMBDA (X)
(LABELS ((LoOP
' (LAMBDA (Z)
(OR (CAR Z) (LooP (CDR Z))))))
(LOOP X))

executes iteratively in SCHEME, but would not execute iteratively if the
two rule def1n1t1on of orR were used

~ {What Use Is lt?}

Ve should perhaps say instead that didentifiery is treated the same

as  (STATIC <(identifier>). The sTATIC construction is included in SCHEME
~primarily for pedagogical purposes, to prov1de symmetry to (FLuiD

Cidentifierd). The fact that lone atomic symbols are interpreted as lexical
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variables rather than dynamic ones is in some sense arbitrary Some
critics of SCHEME [personal communications] have expressed a certain horror_ :
that ‘there are two kinds of variables, perhaps imagining some confusion in

'the interpretation of simple identifiers We can have as many kinds of N

».variables as we like (though we have so far discovered only two kinds of
~any ‘great wuse), as long as we can d1stingu1sh them. In SCHEME we
~distinguish them with a special marker, such as sTATIC or FLUID; then, as a
convenience, we prescribe that simple atomic symbols, not marked by such a
keyword, shall also be interpreted as lexical variables, because that is ’
" the kind we use most often in SCHEME. We could as easily have defined .
-simple symbols to be interpreted as fluid variables, or for that matter as
constants (as numbers and strings are). We could also have prescribed a
different method of distinguishing types, e.g. "all variables beginning
with I J, K, L, M, or N shall be fluid". (This is not as silly as it
. sounds. A fairly wide-spread LISP convention is to spell global variables
with leading and trailing *, as in *foo*, and some programmers have. wished
that the compiler would automatically treat variables so - spelled as.
SPECIAL ) Indeed, given the read-macro-character facility, we effectively

have the syntactic rule "all variables beginning with e shall be fluid".

We have settled on the current definition of SCHEHE as being the most
-convenient both to implement and to use.
' Compare the use of syntactic markers and read- macro characters to
“the constructions <GVAL x> = ,x = "global value of x" and <LVAL X> = .X =
"local value of x" in MUDDLE [Galley and Pfister]. Indeed, in MUDDLE a
simple atomic symbol is regarded as a constant not as an 1dent1f1er '
' - All this suggests another solution to the problem posed in {Note
o .FUNCALL is a Pain} (the confusion of magic forms with combinations) The
- real problem is distinguishing a magic word from a variable. Let us
abbreviate (s7ATIC F00) to =F00, just as (FLUID FO0) can be abbreviated ~as eFoo0.
Then ( Loor A B). would have to be a call on the function LOOP, and not a
magic form. Similarly, we could write {MAG ICWORD cono) instead. of conp, and
invent an abbreviatjon for that too. This all raises as many problems as
‘it solves by becoming too clumsy; but then again, maybe it isn't asking
too much to require the user to write all magic words in boldface (as in ‘
the ALGOL reference language) or in italics (as in an early version of '
PLASMA [Smith and Hewitt]) :
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