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Abstract: -

- The Floyd-Hoare methodology completely dominates the field of ﬁrogram'verif-ication and

has contribute much to our understanding of how programs might be analyzed. Useful but limited

- verifiers have been developed using Floyd-Hoare techniques. However, it has long been known
_that it is difficult to handle side effects on shared data structures within the Floyd-Hoare
~ framework. Most examples of successful Floyd-Hoare verifications havé! avoided such situations.
A recent thesis by Suzuki attempted to state the Floyd-Hoare axioms for assignment to complex - _

‘data structures, similar statements have been-used by London. This papexJ1 demonstrates an error in -

- these formalizations and suggests a different style of verification. A - '

Recently Floyd-Hoare logic has been used as the philosophical underpinning for language:
~design efforts. Some designers suggest that one can measure a 'Ianglﬁage’s perspicuity by the
simplicity of its Floyd-Hoare axioms. Unfortunately, these researchers are considering ‘a very
~narrow interpretation of the the Floyd-Hoare methodology based on the philosophy that the effect
of ‘'a program statement can be determined by local syntactic inspection, :We show that there is a -
‘trade-off between such syntactitc locality and abstraction, forcing language designers to chose
- between the narrow verification framework and the ability to capture abstraction in programming.
languages. Language design efforts which emphasize verifiability within. this narrow framework v
- are, therefore, forced to pay to high a price. We argue in favor of maintaining abstraction
- capabilities and breaking from the microscopic analysis of current verif ierfs. S o '

~ . This report describes research done .at the Artificial Intelligence Laboratory -of the
Massachusetts Institute of ' Technology. Support for the laboratory’s artif‘ici'ai intelligence research
is provided in part by the Advanced Research Projects Agency of the; Department of Defense
under Office of Naval Research contract N0OOOI4-75-C-0643. e :
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Tinroduction .

The works of Floyd [Floyd 67, 71] and Hoare[Hoare 69,71,72] have helped establish a
fxamewotk for foxmal verification of programs. This framework has unfortunately been
consttucd by some researchers. in an overly narrow manner which restricts the verifier to local
syntacttc analysls However, since the approach has considerable power some researchers have
"begun to use it as a design criterion for programming languages [London, et. al. 7N(Guttag, 77,
It is claimed that the simplicity of a language’s Floyd-Hoare axioms can be used as a measure of

that language's perspicuity. To achieve this ease of verification within the syntactically oriented

framework of most current verifiers, various program primitives and practices have been
disallowed. 'Arguments again‘st Global variables have been made on these grounds. Most recently,
EUCLID [London et. al. 77] ‘has disallowed “aliasing” (sharing between two actual procedure
parametet s) on the grounds that this produces a simpler procedure call rule.

We will show vin this paper that this desire for a simple, syntactically oriented axiomitization
is in conflict with other more important goals of language design such as natur:t!ness ease of data .
abstraction, and simplicity of specnt‘lcatron We therefore regard the proposal to make verification
easier by disallowing programming constructs as ill-advised. Instead we will suggest an approach;'
to program verification which is not confined to local syntactic analysrs and whtch might serve as
a basrs for vertfxcatlon in Ianguages now considered difficult to verify. '

The Problem -

thle there has been much good work done within the Floyd-Hoare framework, most
researchers have avmded programs with side effects on shared data structures. Some work has
~been done on proving properxtes of programs Wthh mampulate complex data structures [Burstall,
72], but these have explicitly avoided the issue of sharing. Programs which mampulate arrays,
_howevel, have been studied to some degree. It seemed reasonable that the framework established
in dealing with arrays ought to be extensible to programs with records and manxpulable pointers.
Suzuki's thesis [Suzuki 76) was an early attempt to make this extension. ‘He provnded an-
axiomitization for PASCAL, including records and pointers. However, the assignment axrom in
Suzuki is incorrect and leads to unsound mferences when dealing with shared structures.

" Floyd- Hoare systems are constructed by stating axioms whxch descrlbe the behavior of each
-primitive of the programming Ianguage To verify a partlcular program asserttons are attached to
~the program descnbmg what conditions are expected to hold on entrance and what conditions are
promised to hold on exit. The exit assertion is then passed back over each statement of the'
~program, producing a new assertion which reflects the effects of that program ‘statement. An
_ .updated predrcate is obtamed at the entrance side of the program. This is put into an xmphcatton
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with the entrance condmon If this implication can be proved the program is said to be consistent
with the <pec1f|cat|ons More sxmply we say that it is correct. If the implication is false then the
pxoglam and its specifications are mconslstent debuggmg of either the program or its
~specifications is required. ‘ '

The process of ploducmg updated predicates by use of the language defmmg axioms is
called Verification Condition Generation. (Some systems generate the verification condmons in a

forward direction. In this.paper we will always assume backwards generation. The problems we
~will show occur in either method.) In dealing with simple programs without sharmg it was found
that the verfication condition generator needs no information other than the current predicate and
the axiom defining the current program statement, Many researchers were led to believe that local
‘syntactic analysis was both desirable and adequate for more complex situations. We will show that
there are cases where this approach is overly mncroscoplc leading to incorrect verification
~conditions. One consequence of this is that incorrect programs will sometimes be Judged to be :

. correct and vice ven sa.

Cons:dex the following fxagment of a PASCAL program which mampulates assocnatlon lists
(assocxatnon hsts are lists of pairs and are used frequently in LISP)

type alist =~record first: Tpair; rest:_?alist{ end;
pair = record left: integer; right: ihteger end;
var The Allst. alis_t;
The_pointer : Tpair;
The_pointer := The Ahst fcrst'
The_| pomter'f‘. left := 3

.end

LISP programmers will recognize that this is eqUiyalent to the following:

_‘(rpilaca {(car The_Alist) 3)
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Let us define some terminology which will make the discussion easier. Members of the alist
are the pairs pointed to by the sucessive first pointers of the alist record structure. The left part of
a pair is its Key. Suppose that for some reason we were interested in whether the keys of the

“members of the association list are all even integers (in practice we might be interested in
axiomitization for PASCAL including records and pointers. However, the assignment axiom in
. Suzuki is incorrect and Ieads to unsound mferences when dealing with shared structures.

Floyd-Hoare systems are constructed by stating axioms which descrlbe the behavnor of each
primitive of the programming language. To verify a particular program, assertions are attached to
the program describing what conditions are expected to hold on entrance and what conditions are
promised to hold on exit. The exit assertion is then passed back over each statement of the
program, pi'od,ucing a new assertion which reflects the effects of that program statement, An -
updated predicate is obtained at the entrance side of the program. This is put into an implication

with the entrance condition. If this implication can be proved, the program is said to be consistent
~ with thevspecificetions. More simply we say that it is correct. If the implication is false then the
program and its specifications ‘are inconsistent; debugging of either the program or its
specifications is required. | -

The plocess of producmg updated predlcates by use of the language defmmg ax:oms is
called Verification Condition Generation. (Some systems generate the verification conditions in a

 forward dnectlon In this paper we will always assume backwards generation. The problems we
'wm show occur in either method.) In dealing with simple programs without sharing it was found
that the verfication condition generator needs no information other than the current predicate and
the axiom defining the current program statement. Many researchers were led to believe that local
' syntactic analysis was both desirable and adequate for more complex situations. We will show that
~there are cases where this approach is overly microscopic, leadmg to mcorrect verification
conditions. One con:equence of this is that mcorrect programs will sometimes be Judged to be
correct and vice versa. '

~ Consider the ‘followi‘ng ffagment of a PASCAL program which 'rhanipulat‘es.-association lists’
(association lists are lists of pairs and are used frequently in LISP): '
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type alist = record first: fpair; rest: talist; end;

pair = record left: integer:' right: integer end;

var The_Alist: alist;
The_;aointer : Tpair;

THe_pc’:inter t= The_Alist.first;

The_pointerf.left := 3;

“end

LISP pr'ogrammers-Wil‘l reébgnize that this is equivalent to the following:

(rpoacé {car The_Alist) 3)A

Let us defme some termmology whxch wm make the dxscussxon easier. Members of the alist
are the pairs pointed to by the sucessive First pomters of the alist record structure. The left part of
a _pair is its Key. Suppose that for some reason we were interested in whether the keys of the
- members of the association list are all even integers (in practice we might be mterested in more
useful predxcates but the argument we are about to make will hold for these more complex
predicates as well) We could express this with a predlcate such as:

(Eveh_Keged The_Alist)

It is obvxous that in the above program fragment thlS predicate is false after the second
' assngnment :tatement but that it ‘might be true on entrance to the fragment of code. An accurate
verification condmon generator, therefore, should modify the predicate in moving it backwards
over this ascxgnment statement. Suzuki attempted to state an axiom-for assignment wh:ch would '
have this property The followmg discussion will show that this attempt fatled
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The methodolbgy adopted by Suzuki was a modest extension of the axioms for array
| assignment. He attempted to make other complex structures resemble arrays by allowing the "array
index"” to be an ob ject of type other than integers. Thus, a record can be regard as an array in
which the "index" is allowed to be a field selector name. LIST_1.REST, for example, can be
regarded as the object LIST_1 mdexed‘by REST.

Pointers are a little more complicated. There is no problem at all with the pointer variable
themselves, these are just simple variables and handled accordingly. Dereferenced pointers,

B however, are more complex. P? (read "P dereferenced”) means the item pointed at by the pointer P.

Since P is restricted to point only at ob jects of a particular type, P? is essentially selectmg out one
ob ject from the "array" of all the ob jects of that type. Thus, dereferenced pointers which point to
a common type are viewed as members of an array which is "indexed" by their name. For
example, if P is a pointer of type 1LIST, we can imagine the ob ject PALIST as the "array” of
‘pointers to lists. P? can then be thought of as PALIST indexed by P

_ This construction is formahzed by regarding each reference to a complex structure as bemg
composed of an identifier part and a selector part. The followmg examples show the identifier
and selector parts of typtcal simple expressnons ' ‘

" Class Example identifier  selector _

4 Simple Variabl‘e, A . - A ' none
Array Réfer‘_ence SOALLY A A (1]
"Record Selector . A.rest A  Lrest

Derefrenced Ptr  Ptrt - PHT - . cPtro-

In the last exampie T is meant to be (tgpe of Ptr1), ie. the type of ob}ects to which the pomter
can pomt These examples are extended to more complex cases by obvious recursion rules. Thus,
in the example program above, the identifier and selector parts would be:

'>THe_Ali5‘t._'first ' .~'The_Al.ist" " first o .
- The_Pointert.left ) P#Pair - cThe_Pointers. left .

A :-e;al;cemeﬁt notation is introduced to represent the effect of an assignment:
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'<IDENTIFIER. SELECTOR, NEu_yALUE;

This. 1ep:esents the value of IDENTIFIER with the element selected by SELECTOR replaced wnth»ﬁ
NEW VALUE. The obvious reductlon rule apphes

<Ident|f|er, Selector 1 New_Value> Selector 2 =
if Selector 1= Selector 2
then  New_Va fue

else Identif iereSelect_or_Z

where'the_ e denotes concatenation.
Finally, the extended assignment axiom can be stated as follows:

A
P . A«E} P
|<ari(A), ars(A); Es ’

o where ARI and ARS are the ldentmer and selector parts of A, and P is some predncate which is
known to hold after the assignment. The expressnon on the left represents the predicate formed
from P by replacmg every free occurence of A in P by the expression <ari (A), ars(A), E>. The
assignment axiom says that if P is known to hold after the assignment, then the substrtuted P can
be inferred to hold before the assxgnment It can easily be seen that if we are confined -to arrays
and snmple identifiers this rule degenerates to the normal array and ldennfler ass:gnment rules.

. Let us consider how this rule would interact Wlth the program fragment we showed above
and the simple pledrcate whnch we agreed would hold after the program fragment’s execution.
Here we inciude the assertlons with the code ‘
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| ASSERT ENTRANCE (Even-Keyed The_Alist);

The__poin_ter += The_Alist.first:
vThe_poir.\terT. left 1= 3;

© ASSERT EXIT ~(Even-Keyed The_Alist);
A quick examination of the assignment rule will indicate that the exit predlcate will be passed over

‘the two statements unmodified (since The _Alist is never mentloned on the left side of the = in
elthex statement) The following verlfxcatlon condition is formed: '

. (Eveaneged The_Alist) » -{Even-Keyed The-Alist)

Which simplifies to FALSE, signifying that the program is not consistent with the specifications.
Now consider what would happen if we had mistakenly written the exit assertion as follows:

ASSERT ENTRANCE (Even-Keyed The_Alist);

- The_pointer i= The_Alist.first;
The_pointer?. left ;= 33

| ASSERT‘EXIT (Even-Keged The_Alist);
In thns case it is obvious that the code and the specnflcatlons are inconsistent. However, the
~assignment axiom would lead the verlflcatlon condition generator to pass the assemon back
unchanged, obtaining the lmphcatxon
(Even_Keged The_A t'ist) + (Even_Keyed The_Alist)
which simplif ies to TRUE, incorrectly signifying that the code is consistent with the sPecxf ications.

We, thus, have a case where an overly local and syntactlc verifier will tell us that an incorrect’
- program is ‘correct: and that a correct one is mcorrect ‘ '
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What Went Wrong?

The crucial fallacy underlying the above failures of the verifier is the assumption that the
effect of a program primitive can be determmed through microscopic rather than macroscopic
analysis. Suzuki states: "The implication of this (assignment) rule is that the meaning of the -
assignment statements can be determined locally.” [Suzuki 76 p. 66). The assignment axiom
- assumes that an assignment to an object can effect only that object and therefore that a syntactic
substitution rule can be applied without macroscopic reasomng about the extent of the effects.

- However, the above ‘example v:olates these underlyxng assumptions by using pomters to
f'_ maintain non-local connections between data objects. Side effects to the pair pointed at by the
pointer cause derived side effects in the alist of which it is a conceptual part. This is true even

though the two ob jects (the alist and the pair) are of different types. Moreover, suppose that the
alist itself is a sub-part of some larger structure such as a hash table. Then side effects to the pair
could result in derived side effects in the hash table. In other words side effects are an inherently
non- local phenomenon requiring macroscopic analysxs to determine the scope of the derlved ef f ects.

Another way of looking at this is to notice that in the defmmon of the predlcate
g EVEN -KEYED there is a reference to "free" variables. In order to define a member of the alist
we ‘must talk about the pair pointed to by the FIRST pointer of the alist (and recursively for the
alist pomted to by the REST pointer). However, there is no mention of these details in the
predicate EVEN-KEYED. It is this which accounts for the non-iocal nature of assngnment‘
. Indeed, a possible solution to the problem is to say that such predxcates are not allowable, forcing
the usex to refer more explicitly to the pomters and cells mvolved

» It is mtexestmg to note that PASCAL (an early structured language) makes all pomters
explicit in an attempt to be pexsplcuous In contrast, LISP makes all pointers implicit gaining in
abstraction power. In LISP one thinks of objects snmply as being parts of larger structures, the -
pomte:s are part of the 1mplementauon and are irrelevant to the programmer. In PASCAL one
must worry about the pointers. Ironically, the loss of abstraction in PASCAL does not result in
code which is easier for a syntactically oriented verifier to understand. Indeed we have JUSI seen a
snmple PASCAL pxogram which is mlsunderstood by such a vernf:er : '

The reasonmg needed to understand this program is the same whether the program is coded
“in LISP or PASCAL. In either language we need to know that the pair is a part of the alist and
therefore that side effects to it might cause derived side effects to its parent  structure.
- Understanding p:ograms necessarlly involves reasoning about the connectwrty relations between ‘
“ob jects. -Such xeasomng is dnfferent than the mlcroscopxc view assumed by Suzukls and similar.
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systems.

The farlu:es of such ovexly syntactic verifiers are caused by the vuolatlon of the "unique
naming property” Wthh states that any ‘ob ject is accessible by exactly one name. When Suzuki
states that the "meaning of an assignment can be determined locally,” he assumes that the language :
:ansﬁes this umque namlng property”. Pointers, however, violate this property by aHowmg an
obJect to have one "name” for each pointer which points at it. This undermines the assumpnons
which underlie the venf;er We will now g0 on to show other ways in which the assumption can
be vrolated

- Pointers Are Not The Real Probleni

In what has become somewhat of a tradltlon in language design one might try to disallow -
~pointers altogether. The tendency to disallow constructs as a solution to the weaknesses of
_ syntactlcally onented verifiefs is now ‘well established. Some have argued that global variables
‘should be proscribed for this reason. Indeed, the suggestion that pointers be disallowed has been’

made seriously in [Ligler 76]. Before we dlsallow pomters as well, we should consnder whether that
| change alone will be adequate. ' ” '

For the moment, let us consider a language w1thout pomters but w1th arrays and mtegers
Most of us would consider these essential features of any language. We are gomg to show that
these will be sufficient to construct the eqmvalent of pointers. ' -

Suppose that we have two arrays of integers. The first of these wm be used to hold integer .
"values”, the second will be used to index itself. A zero index in this last array will be taken as-a
,stop code. '

‘Given-an integer one can obtaxn a series of mdxces runmng through the second array by
repeated indexing. The reader might have already realized that the two arrays might well be -
named FIRST and REST smce ‘we are using the strings of integers to implement a list structure.
(Indeed, these constructs are a simplification of LISP’s CAR, and CDR). The REST ‘array contains
the "threads" of the list-structure, FIRST contains 1nteger values whxch are members of the list.’

We can therefore, defme the re!atlons FIRST VALUE SUB_LIST, and HEHBEH between two |
integers as foHows ‘
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(‘FIRST_VAII_UE Integer_l Integer_2) = (= Integer_2 Firstl(integer_1])

(SUB_LIST I:ntegneri_l Integer_2) = (= Integer_2 Rest([Integer_11)

(MEMBER integer_l integer_2) (Or (FIRST-VALUE.integer_l integer_2) »
' ' ~ (MEMBER [SUB_LIST integer_1] integer_2))
where the [ ... ] notation is an abbreviation indicatihg the unique integer .

~ which is the sublist of integer_l.

Thus to see if one integer value is a member of the list indicated by a second integer one.
simply enumerates the chain of indices in the SUB_LIST array which begins at the place indexed
by the second integer. For each such enumerated index, the integer in the same position of the
FIRST arrziy is tested for eqdality to the integer value input to the member test. If the two integers
are equal the membership relation holds; otherwxse the search is continued until a zero mdex is -
found. '

Since we have now created hst structure of the form used in LISP it should be clear that the
arrays and mteger indices are bemg used in a manner behaviorally equwalent to pointers. We will
 now show that the syntactically oriented verifier which failed to handle pomters correctly will also
fail to handle assngnments to the above arrays.

' Considei' the following code fragment:

'_var'First, Rest : Array [l .. n] of Integer' -
'X,Y,Z Integer;

Rest [Z] := 4;

ASSERT Exit (Member X Y)

end;
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Thxs code fragment is subject to the same bug as was the pointer example above Smce the .
list X mnght thread through position Z, it-is possible that the assignment mlght splice new members
v.lnto the list or that it might splice members-out of the list. However, the verification condition
generator will pass the predicate back intact since neither X nor Y is mentioned in the assignment
statment. Once again the syhtactically oriented verifier will ignore the possibility’ of derived
side-effects. The fact that Y is a member of the list X after the assignment statement in no way
implies that the same was true beforehand. Yet the verifier acts as if it does. Thus, disallowing
' pointers is an inadequate tactic since we have produced a derived side effect even though there are
no pointers at all in our Iangu'a'ge.

~ In this case, the verifier was confused by our coding. of implicit pointers into the control flow
of the program. - The integers became pointers by virtue of the way they were used. As long as a
language has arrays and integers it will berposAsible to construct such a scheme. Disallowing
pointers will not be sufficient to enforce the unique naming property. It should be‘noted_that in
this example as in the pre\)iouvs one, free variables were used in the definitions of the predicates.
The membership predicate makes free reference to the two arrays FIRST and REST. We will
“return to this issue ina motnent. |

Faced with the pzobiem of our array example above, a truly dedicated devotee of disallowing
lancruage constructs might now move on to disallow arrays as well. However, we should take note
: k-_that, it is possible to obtain the behavior of arrays using nothing but integer variables. The bits of

“an integer can be broken up into sub- strings so that an integer of N bits can encode N/M integers
of M bits. Thus, two integer variables could encode the arrays FIRST and REST using only
arithmetic operations.” Integers alone are sufficient to produce derived side effects. We can safely

assume that none of us would argue for measures as draconian as removing integers from our
language. :

' Dxcallowmg constructs “therefore, leads us down a path which terminates in a hxghly_
- perspicuous but essentially empty language. Nothing can be written in it, but .it expresses
everything it can in a highly transparent manor Contmumg in this direction _is, therefore,
untenable; other solutions should be sought. | | .

Other Ways Out

- The discussib:n above has very serious implications. What we have seen is that the use of
naturally oriented predicates in our program description language comes into conflict with the
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. desire to have a simple syntactically oriented verifier. There are now researchers who suggest
attacking this conflict by restricting the programming language [Guttag 77(Ligler 76). However,

we have shown that as long as we allow predicates whose definitions have free variables there is
no way to restrict programmmg languages $0 as to make a local syntactically oriented verifier work

as we would desire. One might, therefore, either try to patch the current verifier logic or to-
develop a dlffEI ent Iogrc for program understanding.

Let us. first' try to find an incremental patch. As we have mentioned the problem can be
characterized syntactically by the presence of free variables in the definition of predicates in the
description language. We could disallow this, requiring a predicate of the meta- language to
mention explictly everything which is ult:mateiy involved in its truth. (Notice that this is not the
~ same as disallowing global vanables in the programmmg language. We reagrd the program
descr xpton language as.a separate language). In our previous example we would then have had to
“include in all MEMBER predlcates the arrays FIRST and REST.

(Member Inteéer_l Integer_2 First Rest)

Snde effects to either of the arrays would then be seen as havmg an effect on membershnp

The assignment axiom will ‘replace the appropriate symbol (FIRST or REST) by an update

“expression during venf:catxon condition generation. Similarly in the pointer example we would

have had to include in the membership predicate for ALIST a representation of pointers to lists -

and pointers to pairs. These would then also have had to been inciuded in the EVEN- KEYED
predlcate

(EVEN-KEVED The Al ist PHAlist P#Pair)

" However, we consnder this  solution unsatxsfactory Our first ob_]ecuon is on practical -
A_gxounds Fox the small list system that we created above, the predicates of the meta- language are
'aheady large. In truly large and inter-related systems it would become an unbearable chore to
~write predicates which syntactically represented all possible dependenc:es Each predlcate would

“have to mention nearly everything. As we saw earlier, the failure to include everything could lead

‘to incorrectly decxdmg that ‘an incorrect program is correct. Furthermore a ver:flcatlon system
whlch insisted on such excessive detaxl would s1mply not be used. ‘

“There is a second and more profound objection. We are bemg forced to mclude in the
predlcates of our descuptlon language references to the concrete representatxon underlying .an
- abstract data -type. We are being forced to chose between locality of effect and abstraction of
| descnpnon In the array based list system above what one is mterested in is the abstract notnons of
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‘being the first item in a list, being a member of the list, etc. At some level, these abstract concepts
ought to be independent of implementation issues such as what arrays are used to implement the
list system. Nevertheless, the local and syntactic character of our verifier is forcing us to deal wnthv
these concrete detalls at all levels.

Lanouage desngnels should take note of the tradeoff which this suggests. One cannot des;gn '
a language ‘which satisfies the locality constraints and syntactic onentatlon of current verification
systems while effectively capturing data abstractions. This tension has expressed itself in the
different strétegies taken in various language design projects. Languages such ‘as CLU
- [Liskov 74)(Liskov et. al. 77)[Liskov & Zilles 74,75] have chosen to concentrate on effective
mechanisms  for- expressing programs abstractly. In . contrast, EUCLID
- [Lampson 77){London et. al. 77](Guttag et. al. 77] was designed with the goal of being verifiable by
a verifier such as Suzuki’s. Language constructs were restricted mtennonally to make venflcatlon
more tractable. ALPHARD [Wulf 74] seems to have had both goals in mind, providing data
abstacting mecham:ms but relymg on a syntactlcally oriented methodology for verification.

Faced wnth such a chmce we would argue for language des:gns WhICh emphasnzed‘ -

abstraction capablhtes Indeed, since abstraction is a fundamental human technique for handling
COI’T][)’E\IIY, languages which provide abstractmg facilities are crucial steps forward. However ‘we
will show that even with abstraction mechamsms a language can not prevent derived sxde effects.
Therefore, we will argue for a different type of programming logxc which allows both abstraction
and a correct under standmg of the program

Can 'Ab’stractioh Mechanisms' Fix The Problem? ,

The clusters of CLU the forms of ALPHARD and related notions in other languages
provide abstxactnon facilities by deﬂnmg a data type in terms of functions which represent the
possible operations on ob jects of that type. These functions have common access to the concrete
xepxesentatlon but code outside the abstraction does not.- The transition between concrete and
" abstxact repxesentatxons are intended to take place exclusively within the clusters. Within the
clu:tex all predicates which depend on the representation should mention every concrete obJect on
“which.they dcpend Outside the cluster, abstract predicates which ignore the representatlon can be
used " This suggc:ts a style of programming in which many layers of clusters are built up, each
~adding a bit more abstraction. ‘One would hope that this would strike a compromxse which might v
solve the pnoblems we have raised above, allowing data abstraction while preservmg the Verlf:ers -
local and <yntact1c fxamewoxk
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However, there are shortcomings in this approach. One is that abstraction mechanism such
as CLU's clusters cannot prevent the programmer from making the concrete representation
underlying an abstraction available to programs outside the cluster of abstractmg functions. (In

any event, we do not believe that it is always possible or desirable to program in a strictly

hierarchical manner in which each cluster keeps its internals hidden. There is too much need for ,
interaction). However if the representation is exposed side effects to the concrete ob jects can cause
derived side effects which an overly syntactic system will miss.

A second shoxtcommg is that in a main routine a programmer might well use encoding
devnce< (such as we used in the array example above) without building up a cluster. Thus,
although abstraction oriented languages provide a notion of good coding practice, there is no way
of forcing the programmer to respect these notions. Bugs snmllar to the one in the pointer example
are hkely to occur.

The F»r:i m_e Problem

Even if clustering principles are respected the problem of derived side- effects will still
remain. Cot1<xde1 an abstraction which implements LISP style lists. This would have 5 operatlons

 CAR, CDR, CONS, RPLACA, & RPLACD sharing access to some internal representation. (In’

what follows we will not know what the representation is nor will we care). 'How would we specify
the behavior of these routines? We would like to say what is obvious, that CONS creates a brand
new pair, CAR returns the left half and CDR the right half of the pair. RPLACA and RPLACD
chanoe the left and right half of a pair respectively.

Howevex these specnflcatlons are madequate within the verification framework we have

" considered so far. If this were all we said, we would run into the probiem that predncates such as

MEMBER LENCTH ORDERED EOUAL etc. would all be mcorrectly handied. Consider the
following: ' s

Assert Entrance (LENGTH LIST_1 15)

 (RPLACD  LIST_2 LIST_3)

.

.

Assert Exit (LENGTH LIST_1 21)
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~In line with preyious examples we can see that a syntéctically oriented system which used the
speciﬁcation for RPLACD suggested above might conclude that the code and the specifications
were consistent only if 15 = 21 Since the specifications for RPLACD only say that it changes the
CDR of its first argument, the LENGTH predicate would be passed over the procedure call
unchanoed Notice that we have not exposed the rep and that we are only using operations from
the LIST cluster. '

To fix this while still maintaining the framework we have used, we would either have to
disallow the abstract LENGTH predicate or conclude that the specifications of RPLACD are

wrong. Disallowing the LENGTH predicate would negate the entire point of having the

abstraction, namely to talk about the behaviour of ob jects in intuitive terms. We might be willing
to be more concrete inside the abstraction mechanism, talking about length in terms of the
reprecentaton outside, however, a more abstract statement is desxrable We, therefore have to
1edefme the ‘pecmcat:ons of RPLACD. '

But what would we redefme its specnf:catlons to be? To make LENGTH a usable predlcate

we would have to say that RPLACD can change the length of any list of which the effected list is

a sub-list. Similarly, to make the membership predicate usable we would have to include specifics

o about how RPLACD effected it. Sxmnlarly for ORDERED and any other predicates we mlght :

want to have on lists.

The <pec1ﬁcat|0ns for each operation, therefore would have to tell us exactly how that

- operatlon affects every predicate which might eventually be used. Any time a new predicate is
added to the system, we would have to augment each operation’s specnfxcatlons with statements
describing how it did or dld not affect the new predicate. Each of these specifications would then
B ~have to be re- venfned The specnf:catxons for each functlon would be long and comphcated

This’ forces us to vwlate our intuitive sense of what an operatnons specnfncatlon ought to -
say. . Specrf:cauons should state the intrinsic behavior of an operation, ie. that behavior of an_

operation which is true ne ~matter what context the operanon is employed in. In contrast, an
extrinsic descnpuon would give a sense of the purpose of a particular instance of the operation.

_Although the borderline between intrinsic and extrinsic is quite thin and elusive, the specxfncatlonsu c
above have too much of an extrinsic flavor Sxmpler and more clearly mtnnsxc specifications

~ would be pnefexable - a o T -
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This problem also appears in common sense reasoning. For example, suppose I were to say
that the box is in the pile‘in the corner. If 1 then added that John had thrown out the pile in the
corner, most of us would assume that the box was gone. However, if I said that I had painted the
pile in the corner, then we would assume that the location of the box had not changed. Somehow
~our knowledge of "painting™ and “throwing things out” tells us that the one affects position while
the other does not. Furthermore, our knowledge of what is meant by a "pile” tells us that since the
box was in the pile, it was ‘affected by both actions on the pile. This is dlrectly analogous to
deter mmmg the scope of a derived side effect in programming. ‘

The gcnexal problem of tellmg when an. operation will affect a predlcate has been called the
Frame Problem by McCazthy and Hayes [McCarthy and Hayes, 1967] and has been the sub ject of
. considerable Artificial Intelhgence research. The Frame Problem can be characterized as follows:
If one knows about N operations and M predicates, then one must provide MxN specifications of
" how each operation affects each predncate In addition, one is required to do this in a way. which
is computatlonally practical. If M and N are reasonably large numbers (as would be the case in
common sense reasoning and large programming systems) then the specifications of the NxM

interactions would be intractably laxge One would be quite likely to overlook some interaction.
: : : i

‘ A second computatnonal problem is that after each action the verifier (or problem solver in
the more general context) must rebuild its entire view of the world. In a description of a program
of moderate complexity, this would require the verifier to examine hundreds of predlcates each
time a program side effect occurs. If a heuristic is used to reduce this computational burden, it
must be guaranteed not to introduce inconsistencies. We have seen that verification systems now in
use do introduce mconsnstencnes by failing to take account of derived side- effects

Sevetal different approaches to the frame problem have been suggested however none of
~them can claim to be a total solution. Raphael (Raphael 1970] and Hayes [Hayes 1971b] have
catalooued many of these. One rather obvious technique is to specxfy for each operanon only the
- things which it does change, assuming that predicates not mentioned in an ‘operation’s
~ specifications are not affected by that operation. This allows a context representation of time in
which predicates are automatically carried from one situation into its time sucessor unless the
specifications of the operation affectmg the transition contain an explicit instruction not to do so.
The Artificial Intelhgence programming languages QA‘& [Ruhfson et al. 1972] and CONNIVER
[McDex mott & Sussman 1972] were designed with such features

A second techmque is to classify the predxcates into a frame [McCarthy & Hayes 1967] which

- divides them “into blocks of non interacting types. For. example, color and position would be in
different blocks of the frame. Notice that this is a predicate oriented classification whnch s
‘ dxstmct from the object orlented classxf:catxon of data abstracuon languages.
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_ Another method was added in the STRIPS system [Fikes & Nilsson 1971). Predicates were
classified as primitive or derived. An operation was required to specify only how it effected the
primitive predicates, its effect on a compound predicate was deduced. PLANNER [Hewitt, 1972]
and its c_lescendént langixag‘es added the ability to provide specifications in the form of procedures
which are triggered whenever a matching predicate is added or‘_erased. In PLANNER one can
code a simple procedure which states that if an ob ject is moved then the position of al ob jects on
top of the moved ob ject should also be changed. For historical r_éésons these procedures are calied

erasing theorems.

Hayes [Hayes 197a) has suggested that a representation of the causal relafionéhips between
facts be maintained in the reasoning system. This allows the system to focus its attention. If a fact
is changed, then the system need only examine facts which are causally related to the modified fact.

It comes as a skurp'rise ta many people that the frame problem is a_p_roblem at all. People
seem to handle it so easily. However, a mechanical reasoning system can act as effectively as
people do only if it has built into it techniques and khowledge of comparable 'poWér to those which
people use. The syntatically oriented verification Systems we have examined earlier do not in
general have such powerful techniques. In fact, Suzuki's verifier and its predecessors use a very:
simple and weak strategy. These systems assume that each operation changes properties of only
those ob jects mentioned explictly in the operation. Everything else is assumed to remain as it is.
However;‘r we have seen that this assumption can be maintained only be making unreasonable
- demands on the descriptive languége., ' ' - o -

- A Different Approach to Verification :

I_.ahgua‘ge designs which attempt to enforce good coding practices are limited in what they

. can.accomplish. One can hope for a language which gncourages-a perspicuous programming style,

but there is no way to enforce a style which will allow a verifier to use nfiicroscopic analysis
exclusively. Languages such as EUCLID which do_éttempt to enforce such restrictions will be
cumbersome. v . | P ' S o »
: |

. - Verif ication systems which depend on the programmer’s adherence to "good 'coding
. practices” are likely to become too brittle. In some cases they will be able to do what is needed, in-
~ others they will be able to provide no help at all. What is desired is a system which is more
flexible. Program verification systems should be able to function with a 'partial understan'ding-. of
thé,program,'px"oviding usefu] assistance for the part they do understand and requesting more
information for the parts which they do not. Such a system would not depend on the existence of

-a well structured programming language, although the existence of one might help it do its job. "
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A system of this type is somewhat analogous to a junior programmer. It has a substantial

f"\ , body of programming knowledge to draw on, but it doesn't know everything. The senior

- programmer describes a program to the partner in high level terms; the junior partner builds an
internal model of this description which links together the dependencies and interrelationships
which he understands. This junior partner can then be assigned routine tasks such as checking
the correctness of a module since it knows enough about the system to do this effectively. Because
of the analogy, systems of this type have been termed programmer’s _aprentices
[Smith & Hewitt, 75)[Rich & Shrobe, 76).

~In an apprentice system, there is no demand for locality of program primitive effect. Thus,

in a LISP apprentice one might state that the effect of RPLACA (replacing the first of a list) is
"si'mply to change the first item of the list. ‘However, we would leave it to the apprentice to discov"erA
~ the derived side effects. There would be no need to enumerate these in the description, of
RPLACA. Typically, the "apprentice system would already know the meaning of concepts like
 MEMBER, LENGTH, SO.RTED. etc. If it didn't, it would ask the programmer to define these
predicates. These are then kept in a knowledge base of programming concepts in a form suitable
.fovrr associative retrieval. For example, the programmer might tell the system what he means by:

“membership in a list as follows:

f‘\ SR (Relation-Defjnition _
o (Member list object) =(or (first list object)
' - - (member [rest list] object)))

‘where'the brackets are an abbreviation meaning the unique ob ject which fits the description given
in the brackets. This definition is inverted to discover potentials for derived side effects. This
information is also added to the knowledge base. "

» (Depends-on ('(firSt list object))

- ~(member [ist object))

(Depencisfon» ({member 1ist-2 object)
- ’ (rest list-1 Iist-2))
{member iist-1 object)) .

- Where in the second .fdrm,the subscripts'have been inserted by the system to distinguish between
- the list and its immediate sublist. To see how the system would make use of these descriptions let
‘us look at how it would analyze a a list insertion routine such as the following: '
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{define list-insert (list object)

(rplacd list (cons object (cdr list))))

Qur system would first translate this into an internal flow diagram as follows.

rplécd
] .
v

This diagram would then beﬁ;ym‘bolically evaluated in a situational data base which represents the

intermediate states of the computation. As each module s evaluated we proye' that its
preconditions can be derived from the facts present in its situation of application. If this proof is

r‘sucessful,we create a new output situation and assert in this those facts which result from the.

execut'ipn of the module. If a side effect results we use the dependency information in the data ,

- ‘base to deduce the derived side effects. In the above program we would obtain the following

situation map:

Si:tua_t'ion—ev . ~:Situétion—1 Situation-2

CUlist Tist-1)

(object object-1) _
| . (list list-2)
lcdr list-1 list-2) .
. ’ (list list-3)
(car 1ist-3 bbjecf-l)
(cdr list-3 list-2)
{member |ist-3 object-1)
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Notice that the relation defmmon of membershnp was used in situation-2 to infer that ob}ect -lisa

member of the newly created list list-3. The rplacd is now applied in situaton 2. Given that its

specxf:catlon is simply that it changes the cdr we obtain the following situation:

'satua.taon-z | Situation-3
(list list-1) ' ' V
{(object object- 1)
{(list list-2)
(cdr list-1 llst 2) o {not (cdr list-1 (ist-2))
(list 1ist-3) '
(car list-3 ohject-1)
(cdr Iist-3 l'istéZ) ‘
 {member Iist-3 object-1) ,
| | | (cdr list-1 list-3)
(membervlist-l object—l)

Notnce that the assertion (MEMBER LIST-1 OBJECTI is a derived sxde effect whxch is deduced
by usmg the dependency mformanon in the knowledge base ’

i
'

This apploach to the problem of derived side effects draws on several of the- techmques for

' handlmg the frame problem. The examination of the predicates for dependency information is

fsxmﬂat to Hayes's notion of mamtalmng causality relations. The propagauon of the: dertved side

effect is handled in a_manner similar to that of PLANNER’s erasmg theorems. Fmally,

i specxf:canon of operations” has. the flavor of STRIPS’s division mto pnmmve and den-ved
' predlcates ' ’

“This has been only a cursory mtroducnon to the kind of reasoning which the system must
: -engage in to maintain an accurate symbolic representation of the programs dynamlc behavior. In
Fact, given an asztrary program containing side effects on complex obJects it mlght be impossible
to deduce whether a particular predicate continues to be true after the side effect has happened.
For example, suppose one of two lists is subJected to a RPLACD. In the absence of other
information, we would not know whether the second list was also effected However if we knew
that the lists shaled no structure then we would know that the second hst was unaffected

Oux system is conservative, deducing what it might not be able to know and mamtammg a
1ep1esentat|0n which is always consistent and as complete as possible. In the course of the symbolic

evaluation of the program, the System creates processes called constraint propagators which are

tnggexed by pattern directed invocation and which move information between situations.
Constraint propagators represent the effect of a module’s execution. They can move information
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both forwards and backwards in time; however, they are conservative, only moving information if
they can prove that it is appropriate to do so. The justification for every deduction is recorded in
a permanent data base, allowving the system to use advanced hypothetical reasoning techniques such
as truth maintainence, and dependehcy directed backtracking [Doyle 1977]. The programmer’s
apprentice system has been described in more detail in [Rich & Shrobe 1976]. |

Notice that in designing such a reasoning system we have fundamentaliy broken from the
microscopic character of current automated Floyd-Hoare verification systems. We have chosen to
pay the price ,maéroscopic reasoning after each program step. In return, we can allow the
- programmer the flexibility of structuring his code in whatever manner he finds comprehensible
and of déscribing the program in abstract terms without having to include awkward Specifi_cations
whose sole function is to make the verifier work. The system is quite capable of dealing with

programs which have side effects on complex and shared data Structures and we believe that the
dependency oriented architechture will allow it to be used as part of a flexible design tool.

Conclusions

Floyd;Hoal‘e logic is an attempt to assign a meaning to programs. One practical goal which
“underlies this attempt is the construction of mechani;al verifiers which can understand humanly
generated programs ‘while yet being free of the bugs which seems intrinsic to humans.
Unfortunately most  verification systems which have been developed tend to interpret the
Floyd-Hoa re'meth‘odol'ogy in an overly local and syntactic way. As we have seen, this micfoscopic
approach contradicts the need to discuss side effects on shared structures in abstract terms. -

Two solutions to this contradiction are possible. The first would restrict programming
IAanguages inan attempf to make the verifier work while still maintaining its microscopic approach.
_“Th’ere are principled lin;jtations to this approach which suggest that it is simplyrinot tenable.
However, if languages are not so constrained, current verifiers which use a local and syotactically
oriented methodology will encounter situations in which they misconstrue the progrém. ~

- While various less drastic changes to the verification methodology are possibvle, we feel that
most of these are too cumbersome and 'cont‘radvict our desire for natural and abstraction oriented
programming and. description languages. We believe it to be a more reasonable a'pproach to
’de_ve}op a much more powerful logic of prograrﬁs which reasons macroscopically about program"

‘beha vior, Using such a logic system there would be neither reason nor need for the current trend
of restricﬁng programming constructs. | ' | V ' '
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