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ABSTRACT. Complicated systems with non-linear time-varying behavior are
difficult to control using classical linear feedback methods applied
separately to individual degrees of freedom. At the present, mechanical
manipulators, for example, are limited in their rate of movement by the
inability of traditional feedback systems to deal with time-varying
inertia, torque coupling effects between 1links and Coriolis forces.
Analysis of the dynamics of such systems, however, provides the basic
information needed to achieve adequate control.

Implementation of a control system based on such analysis is
not straightforward, however, since impractical amounts of computation
or memory may be called for. We propose a new method that balances the
trade-off between computational and storage costs. The actuator torques
required to move a manipulator along a trajectory are calculated using
coefficients found in a look-up table indexed by the configuration of
the manipulator. Feedback plays only an indirect role in correcting for
small differences between the state of the actual device and that of a
dynamic model.
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MOTIVATION.

The application of industrial manipulators to parts transfer is still
limited by their high cost. A useful figure of merit for such a device is
the ratio of the number of operations it can perform per unit time to its
cost. The more cycles the manipulator  performs per unit time, the
more rapidly it will pay back the investment. There is, we believe, a
threshold for this figure of merit above which the application of
machine manipulation to a wide variety of tasks becomes economically
feasible. If the figure of merit were to rise above this threshold, the
increase in feasibility would make mass production of manipulators
possible, resulting in further drops in unit cost and yet wider application.

It is unlikely that this revolutionary sequence of events will be
triggered by a reduction in the cost of manipulators, since the technology
for building reliable devices in the numbers now used appears fairly stable.
It is possible, however, to decrease task cycle times with equally dramatic
results. Decreasing cycle time means increasing the rate of manipulation --
the speed the arm moves during transfer and during manipulation.

Presently, many mechanical manipulators are 1limited by their controllers.
Such systems typically employ simple, fixed analog servo loops closed
separately around each degree of freedom. Though suitable for control of
a set of independent second-order systems with fixed inertias and damping,
such control is not appropriate for devices with non-linear, time-varying
behavior. Performance is adequate at Tow speeds provided the actuators are
strong enough and the properties of the devices do not change too dramatically

with configuration. At higher speeds, however, problems are caused by:



(1) Varying effective moments of inertia,
(2) Torque coupling between degrees of freedom, and

(3) Coriolis forces proportional to velocity product terms.

Naturally, other factors, such as the mechanical strength of the device
and the power available from the actuators, also 1imit ultimate performance.

For many manipulators, however, these are not the limiting factors.




BACKGROUND.

Mechanical manipulators used for parts transfer typically consist of
rigid components, called 1inks, attached to each other at joints, each joint
being powered by an actuator (see for example figure 1). Measurements of
Joint position and velocity are available to the control system that
supplies commands to the actuators. Most commonly, manipulators are attached
to a fixed base at one end and carry a terminal device or tool at the other.
The time-varying actuator commands are intended to cause this terminal device
to follow a given trajectory through space.

Many arrangements of 1inks and joints are possible; in this paper, we
concentrate on a kinematic chain arranged in a popular serial or cascaded
structure using rotary joints. This choice allows us to be concrete and
to avoid repeated use of phrases such as "joint-angle or joint-extension"
and “"actuator torque or actuator force". Similar methods apply to devices
with linear motions and to those with parallel degrees of freedom.

The particular device shown in figure 1 was designed and built by
Victor Scheinman for the Artificial Intelligence Laboratory [1]. It has
Six degrees of freédom, the minimum necessary to reach points in the wofk
space with arbitrary orientation of the terminal device. This manipulator
is driven by six direct current torque motors, and has potentiometers for
joint-angle measurement and tachometers for Joint-angle-rates or angular
vetocities. The supporting electronics permit direct control of motor currents

and, consequently, actuator torques.



h joint, and ei the angular velocity

We designate 6, the angle of the it
of this joint. Similarly, 51 is the anéu]ar acceleration and Ti the torque
applied by the ith actuator. Frequently it is helpful to group values for
all degrees of freedom using vector notation. Thus for a system with n
degrees of freedom, we call '9 the configuration, where:

9 = (6], 82, 93, oo Gn)

Similarly, we refer to the combination of & and 6 as the state, where:

6= (61, 62, 63, Ceeee Bn)

The torque vector is similarly defined as

T)

T= (T Tps Ty eene T

With this notation we see that the function of the control system is to
produce appropriate actuator torques I(t), so that the actual joint

angles, ga(t), follow a given trajectory of desired joint angles, gd(t)
(see figure 2). We will see later that this task may at times be simplified
if the control system also has access to both actua1 angular velocities,

éa(t), as well as desired angular velocities, gd(t).




A SYSTEM WITH ONE DEGREE OF FREEDOM.

To introduce some of the notions used later on, let us consider a very
simple system illustrated in figure 3 -- a one degree-of-freedom
"manipulator". Here a motor produceé a torque, T, whichdrives a shaft. The shaft
carries arodof mass mand length 2. The angular departure from vertical, o,
is measured by a potentiometer, while a tachometer measures the angular

velocity, 6. Clearly the system is governed by an equation of the form
T = 16 - ksin(e)

where I = m22/3, g is the acceleration due to gravity and k = (me/2)g.
A typical control system for such a second-order system is shown in figure 4.

Here,

T = 8(e9-6%) +a (s9- 6%
where the superscripts denote desired and actual values, while o and B
are parameters yet to be determined. Combining the two equations we find

162 +86%+ (006®-ksin6?) = god +o ol
If the actual angle, ea, is to follow the desired angle ed closely, a >> k.
In this case, the poles of the system are approximately at the roots of the

polynomial
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The speed of response of the overall system depends on v o / I ; so, for
rapid response, o shou]d be large.

To obtain good damping of transient oscillations, we choose B so that
B = 2/ a I. The details of this are not very important other than to
show that such feedback systems can achieve adequate control of simple
second-order mechanical systems and that the parameters of the feedback
system must be chosen by considering the parameters of the system itself.
When system parameters change, a different set of feedback parameters
is used to provide best performance.

If the parameters of the system vary greatly and the control system
is not altered, unsatisfactory performance can be anticipated. This may
take the form of sluggish response, excessive overshoot, or undamped

oscillations.




INVERSE SYSTEMS.

Analysis of the dynamics of a system often leads to equations that can
be used to implement an "inverse" system. The system originally analyzed
can be viewed as an analog computer for calculating position (and its
derivatives) given actuator outputs, while the inverse system computes
actuator outputs from position (and its derivatives). A simple illustration
will make this clear.

A one degree-of-freedom system was shown in figure 3, governed by the

equation
I 6 - ksin(e) = T

This system can be viewed as an analog computer solving this differential
equation for 6(t), given the input T(t). If the constants in the equation
are known, one can turn this analysis around and calculate the values of
torque, T(t), needed to achieve the desired joint-angle variations with
time, 6(t). This inverse procedure is important in solving the control

problem. An open-loop contro] system based on this notion is shown in




figure 5a. We will take up later the question of errors in trajectory
which result from small differences between the actual system and the
model used in deriving the inverse system. For now, note that in view
of this possibility the actual state of the system should be used in
the inverse calculation rather than the desired state (see figure 5b).
With this modification, the inverse system takes as its prime input the
angular acceleration, and produces actuator torque as its output.

The straightforward kind of control based on an inverse system and i1~
Tustrated here applied to a linear, time-invariant, one degree-of-freedom
system, will now be extended to control of more complex systems such as
manipulators. Before we can do this, we have to understand the dynamics
of these devices. Considerable work has been done in this area as can be

seen from references [2, 3, 4, 5, 6, 7, 8] for example.

o
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DYNAMICS OF MANIPULATORS.

The most direct route leading to a detailed understanding of the.dynamics.
of a complex mechanical system Such as a manipulator is an analysis based on the

Euler-Lagrange equations [8],

L
%

Q

O
]
3=

2|

aL
(3‘?1)

Here the Q; represents generalized coordinates, Qi generalized forces and L is

the Lagrangian, or "kinetic potential",

L=K-P

where K 1is the kinetic energy and P the potential energy of the whole system.
In our case the most convenient generalized coordinates are the joint-angles,
6.5 and then the generalized forces become the actuator torques Ti' Further-
more, since the potential energy is a function of joint-angles only, it is con-
venient to separate the calculation of torques required to compensate for gravi-

tational forces,

_oP
T = 38,
i
from the calculation of torques required to support the motion if gravity were

not present

4 oKy LK
=@ (3?0‘1.“) 30,
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Also, since the total kinetic energy is the sum of the kinetic energies of
each of the links, it is helpful to separate the calculation into components

of the form,

oK., 3K,
T..=9 () - J
ij dt aéi 30,

th

where Tij is the torque required of the i“" actuator to support the motion of

th link. The total torque required at each actuator is then obtained by

the j
summation of these terms.

The derivation of the Euler-Lagrange equations requires difficult mathe-
matical arguments; however the use of these equations is straightforward.
Application of these equations to manipulator control was pioneered by Uicker
Pieper, Kahn and Paul [5, 6, 7, 8]. A practical difficulty is the potentially
explosive growth in algebraic manipulation that accompanies analysis of
systems with several degrees of freedom. A computer system such as MACSYMA
[9], able to carry out manipulations of symbolic mathematical expressions is
very helpful in these cases.

Much of the earlier work on this problem made use of a general representa-
tion, with a coordinate system erected in each Tink and matrices describing
the transformations between coordinate systems of connected links [5, 6, 7, 8].
While perfectly general, this kind of analysis leads to very complicated re-
sults and the need to perform thousands of arithmetic operations in order to
calculate required joint-torques. A1l hope of performing these calculations

in real-time was abandoned as a result.
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ILLUSTRATION USING THE SINGLE DEGREE-OF-FREEDOM SYSTEM.

For the system shown in figure 3, it is clear that K = -;—-Ié2 and P = k cose,

sc that

L= %-Ié2 - k cose
Consequently,

g -
gives us

T =18 - k sine

as before. Here, of course, little is gained by using this method. It is,

however, invaluable for complex devices.




DYNAMICS OF A THREE-LINK DEVICE.

Recent work has shown that some devices can be analyzed easily if cal-
culations use joint-angles directly and if links are modelled as thin rods (10,
11, 12, 13]. As an example, we present the results for a three-Tink device
with offsets shown in figure 6. This corresnonds to the first three joints

of the arm discussed earlier, shown in figure 1.

22 2,2
2 3 .0

= 2 L 2 {02e2 N 2 2 -
Ty = [T +my(63 + 3% s5) + Ma(afsh + 9,035,5,3 + 37 535 + 63)] 6,

m2 m34 Ve
[E—-azzzcz + 5—-63(22202 + z3c23)] 6, -

M3
[7—-6323C23] b3 +

205 : _ 203 L.
[m, —= s,c, + m3(2035,C, + 2,503(C853 + SpCp3) + 5~ S93Cp3] 816,
i "3 2 + 2.5,.)] 62 + [My8005,0] 8,6 +
t 5 8302 oSy + 2385301 05 T IMgo3t38o3d ©23

[5= 8,2p8, + 57 85(2 &55,

ms . 284 ..
[5= 64235551 63 + [mglaCos(ys, + —3 553)] 636,




-13-
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Here L %95 L3 are the lengths of the three links.

02 -
222353 ] 63

22
33393 -

The upright column is

modelled as a cylinder with inertia I] about its axis, while the other two links

are modelled as thin rods of mass m, and my respectively.

occurs between the long axis of the upright column and the plane in which

second link rotates.

rotates from this vertical axis (see figure 6).

An offset of s

2
the

A similar offset 63 separates the’p]ahe in which Tink 3
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A shorthand notation is used for trigonometric terms. That is,

c; = cos(ei) s. = sin (s.)

and

cij = cos(ei + ej) Sij * s1n(ei + ej)
‘The terms containing 51, 32 or 33 are inertial torques (required to ac-
celerate the 1inks), while terms containing angular velocity products of the
form éiéj are Coriolis force components. The third class of terms contain g,
the gravitational constant, and are thus the torques required to compensate

for the gravitational load.

Roughly a hundred arithmetic operations are required to calculate the re-
quired joint torques given joint angles, 6, and angular rates, é, as well as
desired accelerations, 8. Such a direct calculation might be used as the
basis of a control system. In fact, if 62 and 63 are zero, several terms
fall out and the calculation becomes simpler. If, on the other hand,
we consider a device with either more degrees of freedom or links that have to
be modelled by full inertia matrices, instead of the diagonal form appropriate
to thin rods, then these calculations become quite intractable (For an example,

see appendix A in reference [7]).




-15-

WHY THE STRAIGHTFORWARD CONTROL METHOD FAILS.

If we look at the equations for the actuator torques we see that they
have some characteristics that make control more complex than it is for a
simple one degree-of-freedom second-order system. First of all, the
coefficients of 51 in the expression for Ti are not constant, indicating
variable effective inertia. Ordinarily, as we have seen, the feedback
coefficients are constants tuned for proper operation at some fixed inertia,
so control will not be good for inertias very different froﬁ this design
value.

Next, one sees that there are terms containing 5j in the expressions
for Ti’ when i # j. This cross-coupling, too, may produce problems since
accelerations of one Joint require coordinated torques af all joints. Loops
closed separately around each joint cannot easily deal with this problem.

Finally one sees numerous Coriolis force terms, multiples of products
of joint-angle-rates. At high speeds, these dominate the inertial and
gravitational torques, and actuator torques produced by traditional
control systems may not be appropriate for stable control. Such problems
become most significant for long movements, when velocities can build up

to a point where velocity product terms exceed acceleration terms.
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FORM OF THE EQUATIONS.OF MOTION.

We now examine the form of the equations for the actuator torques in
an attempt to find a reasonable computing scheme for control of such a
device. Clearly each torque is a function of joint angles, 6, angular
rates é, and angular accelerations, é. One approach then is to calculate
the required actuator torques directly from the equations; techniques
used by Paul are similar to this [8]. In most cases, however, this approach
involves ah inordinate amount of computing time and drastic simplifications
have to be introduced to make this at all feasible [8].

The other extreme ismpaseq_angwlook-up table indexed on 0, § and é.
Eacnh of the dimensions is quantfzed into m intervals. No calculation is -
required, but the look-up table has 3 n dimensions for a device with n
degrees of freedom and is thus quite unmanageable even when each dimen-
sion is quantized coarsely, that is, when m is small. If we use the
convention that subscripts correspond to variables with discrete sets of

values, then we may renresent this scheme by the equation

where the values of Fi are pre-calculated for a discrete set of values of

6, 6 and 8, and stored in a table [14]. Albus' manipulation scheme is

! De

similar to this [15].
Fortunately, however, the torques are linear functions of the

accelerations, as we have seen, and the equation can be rewritten in the




-17-

form

This leads to a second implementation, using one look-up table for Ki and one

i both indexed on ¢ and §. These tables are now only of dimension 2n.

The computation required after table Took-up is simple, namely n multiplications

for Ii

and additions per joint. Raibert's manipulator control schemes are based on

a similar formulation of the problem [16,17]. He derives the table entries by

"learning" rather than calculation from the m;de1 -- that is, the manipulator
performs test motions to estimate experihenta]]y the multipliers Ki and Iij’

- In general the look-up tables are still too large to be useful. (In the
equation above, the inertial terms Iij are written as functions of both angles
and angular rates to indicate the indexing of look-up tables in this scheme.

In fact, the inertial terms do not depend on the angular rates, something we

will exploit next.)
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CONFIGURATION SPACE CONTROL.

It turns out that the equations have a rather special form [ 8, 10] and can

be written as

- 5+
i5(e) 5

M

‘ n
T, =6;(e) + > 1
i=1

j=1

n

ij Cigle0850y

This is a consequence of the form of the expressions for the Lagrangian.

Here, Gi is the gravity compensation, Iij are inertial terms and Cijk are

Coriolis force coefficients. Each of these is a polynomial in the sines and

cosines of the joint-ang]es, the Tink 1en£ths'and masses. Clearly these

could be pre-calculated and stored in Tookup tables indexed on ©. Such tables

would be of dimension n and thus manageable in terms of storage space. A

little more calculation is required; namely, n(n + 1)/2 + n multiplications

and n(n+1)/2+n additions per joint. We call this method configuration:space control,

since the look-up table is indexed on 6, the configuration of the manipulator.
We should immediately add, that while nominally there are n dimensions

in configuration space, some economy of storage is possible by noting that the

terms are not functions of the position of the first joint; that

I..and C,

ij ijk
connecting the manipulator to its base. If in addition the axis of this joint
is parallel to the gravity vector (as is often the case), the Gi term is also
independent of the position of the first joint. Furthermore, if the important
masses in the last, or highest numbered 1ink, the terminal device, are

symmetrically distributed, then the equations of motion do not depend on the

position of the last joint either. If both these conditions are true, the stored
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tables need only be of dimension (n - 2), a considerable saving. Further
simplifications may apply to specific classes of manipulators.

Similarly, the storage required per table entry can be economized
when it is realized that the inertia matrix is symmetric, that only the
upper half of the Coriolis force coefficient matrix is needed, and that
there exist re]atﬁonships between the coefficients Cijk kji[4]' It takes a
Tittle more work to exploit the fact that for a given manipulator geometry

"and C

many of these coefficients are actually zero, or so small as to be negligible,
as can be seen from the equations we presented earlier for a three link
device (where only 10 of a possible 18 terms were non-zero).

We have now explored a spectrum of methods for computing the required
joint torques (see figure 7). It is our contention that both ends of the
spectrum represent techniques which are impractical and that the configuration
space method provides a near optimum balance between storage and computational
costs. Note for example that state space control requires more storage capacity

than configuration space control for any system with n > 1 and m > 1.

The notions of the inverse system and configuration space look-up
can now be brought together in an overall system like that shown in figure 8.
If one does not take advantage of the economies mentioned above, then
about nz(n + 3)/2 multiplications and additions are required per calculation
cycle. If each dimension is quantized into m sections, then the look-up
but manageable, especially in view of recent trends in the cost of computer

storage.
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MISMATCHES BETWEEN THE DYNAMIC SYSTEM AND THE MODEL.

Glancing at figure 8, one notices that the input to the system is the
angular acceleration, presumably supplied by a trajectory planner.
Intuition suggests that such a system is likely to suffer from the i1l
effects of approximate numerica1 differentiation and in general behave
in a fashion that has the-actual joint-angles drifting away from the
desired joint angles. The réte of accumulation of errors will depend on
how accurate an inverse one can build to the dynamic system. For Tow
speed movement it appears that the 1imiting factor in this regard will
be friction, which tends to be both difficult to predict and not a
repeatable function of joint angles and angular velocities. This suggests
that we have to augment the elegant open-loop system with sub-systems
capable of correcting for small departures of the actual trajectory from
the desired one.

Some form of negative feedback is needed. Note, however, that
feedback plays quite a different role here than it did in.the simple
control system shown earlier for a second-order dynamical system. In
that situation, feedback produces the actuator forcesj error signal are
in some sense the prime movers. Here feedback is added only to correct
for minor departures of the dynamical system from the model used in
deriving the inverse system, with the main component of actuator torque
coming from the open-loop calculation. For this reason the deSign of this
feedbafk system is much less critical, with sma]l feédback gains acceptable

and cdﬁsequent]y there need by 1ittle concern over stability.
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INTRODUCTION OF CORRECTIVE FEEDBACK

There are a number of alternate ways of introducing feedback to
correct for the departures of actual position discussed in the previous
section. Perhaps the most obvious has corrections proportional to the
errors applied to the inputs of the dynamic system (see figure 9). That
is, the actuator torque now is the sum of the calculated open-loop torque
required to follow the trajectory and terms proportional to errors in
position and velocity. Such a system would differ from the traditional
control system in that the input is first passed through the inverse Sys-
tem and that the feedback gains would be much smaller. To some extent,
this kind of system would however suffer from some of the short-comings
of the traditional system, unless these feedback gains were at least ad-
justed according to the current configuration.

If suitable costs can be associated with departures from the correct
trajectory and if costs can be assigned to control inputs, then optimal
time-varying feedback gains can be determined using the techniques of modern
control theory [18]. In a system with more than one degree of freedom, one
has to use a feed-back matrix. This too could be conventionally obtained
from a look-up table indexed on the configuration.

A different system can be obtained by applying the error signals to the
inputs to the inverse system instead (see figure 10). This has several ad-
vantages. First, the input to the overall system ffom the trajectory plan-
ner is now composed of the joint angles and the angular velocities instead
of the angular accelerations. Secondly, this system can be analyzed more

readily. For example, if the inverse system really is an exact inverse for
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the dynamic system, then their cascade connection is simply an identity
system. In this case, the overall system degenerates into an ordinary
Tinear, time-invariant second-order sysﬁem. The designer can now freely
choose the response by picking the gains o and B — that is, the poles
can be arbitrarily assigned.

Noteworthy is the linearization and decoupling of degrees of free-
dom obtained in this fashion [19]. In a system with more than one degree
of freedom, feedback can now be applied separately to individual degrees
of freedom, that is, a feedback matrix is not required. Furthermore, the
feedback gains do not dépend on the configuration and can be fixed. A re-
maining analytic difficulty is the determination of the effects of small
differences between the actual device and the dynamic model used in the

derivation of the inverse system.

SUMMARY AND CONCLUSIONS

Straightforward feedback control is unable to deal correctly with
varying effective inertias, joint torque coupling and Coriolis forces
encountered in high-speed movements of mechanical manipulators. The pre-
ciéion of manipulation for slower movement is similarly Timited. Analysis
of the dynamics of the kinematic chain leads to equations representing an
inverse system, able to compute required joint torques from desired joint
accelerations given the state of the device. Unfortunately this computa-
‘tion is quite unwieldy and essentially useless for real time control of

devices with more than two or three degrees of freedom. On the other hand,
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performing the computation completely by look-up in a table indexed on
the state of the device leads to a requirement for excessive amounts
of memory.

A compromise on this space-time trade-off is a method based on
configuration-space look-up tables. These precomputed tables are of
manageable size and the computations performed using the entries found
there are relatively straightforwérd. Each computational cycle requires
abbut'nz(n-+3)‘/2 arithmetic operations for a device with n degrees of
freedom. The total size of the look-up table for this computation is
less than [n (n+1) (n+2)/2]m" if each dimenéion is quantized into

m segments.

ACKNOWLEDGMENTS

Drawings by Karen Prendergast and Suzin Jabari.‘ Helpful comments were
provided by Matt Mason, Patrick Winston and Brian Schunck.




REFERENCES.

10.

11.

Horn, B. K. P. and Inoue, H., "Kinematics of the MIT-AI-VICARM
Manipulator," Massachusetts Institute of Technology, Artificial
Intelligence Laboratory, Working Paper No. 69, May 1974.

Markiewicz, B. R., "Analysis of the computed torque drive
method and comparison with conventional position servo for
a computer controlled manipulator," NASA-JPL Technical
Memorandum 33-601, August 1973 -

Bejczy, A. K., "Robot arm dynamics and control," NASA-JPL
Technical Memorandum 33-669, February 1974.

Lewis, R.A., "Autonomous manipulation on a robot: summary
of manipulator software functions," NASA-JPL Technical
Memorandum 33-679, March 1974.

Uicker, J. J., "Dynamic force analysis of spatial linkages,"
Trans. of ASME, 1967.

Pieper, D. L., "The kinematics of manipulators under computer
control,” Stanford University, Artificial Intelligence Group
Memo No. 72, 1968.

Kahn, M. E., "The near minimum-time control of open-loop articulated
kinematic chains," Stanford University, Artificial Intelligence
Group, Memo No. 106, 1969.

Paul, R., "Modelling, trajectory calculations and servoing of a
computer controlled arm," Stanford University, Artificial Intelligence
Group, Memo No. 177, November 1972.

MACSYMA Manual, Massachusetts Institute of Technology, Laboratory for
Computer Science, MATHLAB Group, 1977.

Horn, B. K. P., "Kinematics, Statics, and Dynamics of two-d
manipulators,"” Massachusetts Institute of Technology, Artificial
Intelligence Laboratory, Working Paper No. 99, June 1975.

Freund, E., "A non-linear control concept for computer-controlled
manipulators," Proc. IFAC-Symposium on Multivariable Technology
Systems, Frederickton, Canada, July 1977.




12.

13.

14.

15.

16.

17.

18.
19.

a};/

Horn, B. K. P., Hirokawa, K., and Vazirani, V., "Dynamics of a three-
degree of freedom kinematic chain," Massachusetts Institute of Tech-
nology, Artificial Intelligence Laboratory, Working Paper No. 155,
October 1977.

Renaud, M., "Automatic Equation Generation of Articulated Mechanisms,"
Yugos. Symp. on Indust. Robots, Belgrade, November 1977.

Raibert, M. H., "Analytical equations vs. table Tookup: A unifying
concept," Proc. IEEE Conference on Decision and Control, New Orleans,
December 1977.

Albus, J. S., "A new approach to manipulator control: the cerebellar
model articulation controlled (CMAC)," J. Dynamic Systems, Measurement
and Control, Trans. of ASME, Series G., Vol. 97, pp 220-227, September
1975.

Raibert, M. H., "A state spacefmodel for sensorimotor control and
learning," Massachusetts Institute of Technology, Artificial Intelli-
gence Laboratory, Memo No. 351, January 1976.

Raibert, M. H., "Control and 1earhing by the state-space model: Exper-
imental findings," Massachusetts Institute of Technology, Artificial
Intelligence Laboratory, Memo No. 412, March 1977.

Kwakernaak & Sivan, "Linear Optimal Control".

Porter, w.\A., "Diagonalization and inverse for non-linear systems,”
Int. J. Control, Vol 11, No. 1, pp 67-76, 1970.




Ao

? ?
.uo mm_mcmpc_.onvmimmnmﬁmu%o;nog ,mm mmpmcapc.ﬁo.n .
fenioe syl eyl oS sanbuol uozenioe azersdoudde ajeuasusb 03 SiI waRsAS S

[043U0D 3y} JO uoijouny dYl ‘wWeSAS Jojejndruew ay3 0 wedaberp yooig 2

U3INNV1d
A¥OLO3rvil

SJOINVNAQ
301A3Q

W31SAS
TOYLINOD




1. Outline drawing of the MIT-AI-VICARM electric manipulator. This is a
typical computer controlled device with six degrees of freedom, DC
torque motor actuators, potentiometers for position readout and
tachometers for the determination of angular velocities.
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POTENTIOMETER

o

TACHOMETER

TORQUE MOTOR

Simple one degree-of-freedom mechanical system used to illustrate
control schemes. The control system has access to the ang]e of rotation

of the shaft as well as the angular velocity and in turn controls the
motor torque.
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éd INVERSE DYNAMIC
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5a. Block-diagram of open-loop control using an inverse system.

' DYNAMIC
. SYSTEM

INVERSE
SYSTEM .

5b. Block-diagram of modified open-loop control using actual state rather
than predicted state in the calculation of the inverse.
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SIDE - VIEW

~ TOP-VIEW

Geometry of a three degree-of-freedom manibu]ator. This could be a
diagram of the first three degrees of freedom of the device shown in
figure 1, or the drawing for a "leg" on a Tocomotory device.




2

Table of features of the four methods for calculating actuator torque.
The two extremes of the spectrum do not represent viable computational
techniques because of excessive computation or storage requirement.
Configuration space control appears to provide the optimal balance.
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