. behavior,

- MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARTIFICIAL INTELLIGENCE LABORATORY

AL MEMO 459 | | | o JANUARY 1978

PROGRAMMING

VIEWED AS AN ENGINEERING_'ACT'IVI'TY

Charles Rich, Howard E. Shrobe, Richard C. Waters
Gerald J. Sussman and Carl E. Hewitt

Tt is profitable to view the process of writing programs as an engineerihg actiVity.

- A program is a-deliberately contrived mechanism constructed from parts whose behaviors

are combined to produce the behavior of the whole. We propose to develop a notion of

understanding a program which is analogous to similar notions in other en.gineering_ (' ’
- subjects. Understanding is a rich notion in engineering domains. It includes the ability to

identify the parts of a mechanism and assign a purpose to each part. Understanding also -

- entails being able to explain to someone how a mechanism works and rationalize its
- behavior under unusual circumstances. ‘ ‘

Part of our methodology for investiga{ting these ideas is to build a computer-aided

,deSign tool for computer programs. The construction of this tool will serve both as a

concrete realization of our theoretical ideas and as a testbed for our practical techniques,
We have in mind an interactive system used by an expert programmer to aid in
maintaining the consistency of his design and performing routine tasks of analysis, synthesis

“and debugging. Our system will be able to explain the workings of the programs it
~understands. This'is a more modest goal than trying to build a system which is itself an

expert'prqgr.ammér. Nevertheless, the general availability of an interactive design aid such
as we propose would significantly improve the quality of programs that are written. In

a‘.dditionv, a program. which understands other programs is a crucial first: step towards

programs. which understand themselves and are therefore accountable for their own

This paper 'Vwas adapted from a prdp'osal to the National Science Foundation. i

The‘ research described in this paper was done at the Artificial In’te_llvigen,'ce Labdratory of

* the Massachusetts Institute of Technology. Support for the laboratory’s artificial intelligence
_research is provided in part by the Advanced Research Projects Agency of the Department

) - of Defense under Office of Naval Research contract N00014-75-C-0643.

(© Massachusetts Institute of
Technology 1978

PROGRAMMING |
- VIEWED AS AN ENGINEERING ACTIVITY

‘Charles Rich, Howard E. Shrobe, Richard C. Waters

Gerald J. Sussman and Carl E. Hewitt

It is profitable to view the process of - writing programs as an engmeermg activity.
A ptomam is a deliberately contrived mechanism constructed from parts whose behaviors
are combined to produce the behavior of the whole. We propose to develop a notion of
understandmg a program - which is anatogous to similar notions in other engineering

~ subjects. Undexstandmg is a rich notion in other engineering domains. It includes the
ability to ndennfy the parts of a ‘mechanism and assign a purpose to each part.
Understanding also entails being able to explain to someone how a mechanism works and
latxonahze its behavxor under unusual circumstances.

‘How can program verification techniques be developed into a form of - englneermg ,
analysis? How can engineering ideas such as modelhng and equnvalence be applied to- the
problems of software development? The time ' is ripe for a theoretical synthes:s of several
families of ideas; technical ideas from computer science can be combined with
organizational ideas from engineering mediated by the methods of of artificial mtelhgence
A crucial step is the evolution of a computer sc1ence concept analogous to the engineering

concept of a design plan -- a representation of the teleologxcal relationship of the structure of
a mechamsm to its function.

"Part of our methodology for mvest:gatmg these ideas is to bunld a computer -aided
desxgn tool for computer programs. The construction of this tool will serve both as a
concrete realization of our theoretical ideas and as a testbed for our pract:cal techniques.
We have in mind an interactive system used by an expert programmer to aid in
maintaining the consnstency of his design and performing routine tasks of analysis, synthesns
and debugging. Our system will be able to explain the workings of the programs lt
undetstands This is a more modest goal than trying to build a system which is itself an
expert programmer. ‘Nevertheless, the general avallablhty of an interactive des:gn aid such
as we propose would significantly improve the quahty of programs that are written. In
addltlon a program which understands other programs is a crucial first step towards
programs which understand themselves and are therefore accountable for their own

Programming Viewed as ... 2 Rich,Skrobe,W aters,Sussman, H ewitt

behavior.

This péper develops the “notion of plans as a general framework for
understanding how programs are constructed. In developirig this idea, we draw liberally
upon our own intuitions and mtrospectlons about the activity of programmmg We will
" show several examples of programs explained in terms of plans and discuss how plans can
be formally represented. Next, we will describe our proposed computer- aided design system.
Computer aided design is an established methodology in other engineering disciplines. We
will adopt and extend this methodology in the domam of programming. Finally, we will try
to place our research in the context of our previous work and the work of other researchers.

| The Engineering Context

An engineer applies knowledge from mathematics and physics to construct
- techniques and mechanisms which satisfy given desiderata. A typtcal engineering problem
can be idealized as follows:’ given a starting set of devices with known behavior and set of
rules by which these may be combined to produce more complex entities, construct a
composite mechanism whose behavior satisfies certain specified propertres Engmeermgv
design is a set of methods engineers bring to bear on such problems.

e ——— ——n st

the problem is of a familiar kind, he may retrieve several candidate forms In most
engmeer ing domains the form of the answer is the description of the desnred mechanism as a
set of parts and their interconnections. In general this description has many undetermined
parameters. The engineer’s problem is then to determine if it is possible to instantiate one of
these general answer forms according to the constraints of the particular problem. If a
design- problem is not familiar, it must either be reformulated into a familiar problem or '
decomposed into a combination of more familiar problems The composmon of solutlons to
sub-problems may lead to unforseen interactions requnrlng debugging. '

The central organizing structure of the engineering design method is a plan
which describes the mechanism being designed at many levels of detail. At each level there
is a blueprint descrlbmg the interconnection of parts at that level of description. Durmg the
design process, information flows through the plan in several directions: up and down '
between levels of detail, and between parts on the same level of detail.

Programming Viewed as ... 3 Riclz,Shrobe,Waters,Sdssman,H ewitt

- Synthesis moves information down in the plan. In synthesis the descriptions'o’f
| parts of a composite mechanism are refined based on the description of the whole and the
way the parts are lnterconnected to form that whole. This further specifies the propertles of
a pmt so that it can itself be designed.

Analyus moves mformatnon up in the plan by determining aspects of the
behavior of the composite mechanism from appropriate aspects of the behaviors of its parts
and then interconnection. When the composite object is itself part of a larger plan this
mformauon constrains the design of neighboring parts in the Iarger plan

At the end of the design process, the plan includes not only a descriptiori of the
physxcal connections between the parts of a mechanism, but also a description of how the
behav:ors of the parts interact and constrain each other to produce the overall desired
behavior. -

Retrieving the form of the answer to familiar problems, synthesis, and analysis
constitute ‘the routine part of engineering design. Reformulating and decomposing
unfamlhar design problems and debugging their solutions is a more creative part of the
desngn process We will restrict our initial mvest:gatlons to the routme aspects of
engmee: mg de:xgn in the domain of computer programming. '

Plans and Teleology
The behavior of a device or part of a device can be described in two ways.

Some properties of a device are independent of its context of use. These
properties.constitute the intrinsic descrlptlon of the device. For example, a capacitor can be
described by the relation i(t) = C dv(t)/dt. Part of a complex mechanical assembly may be
described as a "rod" or a "Shaft”. The LISP function APPEND can be described intrinsically -
by its input-output behavxor of returning the concatenation of its arguments. Intrinsic
descr lpnom correspond to speaﬂcat:ons in the hterature of software engineering.

‘A device may also be descrlbed by its role in the plan for a larger mechamsm
" This is its extrinsic descnpnon or teleology. For example, a particular capacitor may be ,
de:cnbed as a couplmg capacitor, a bypass capacitor, or a tuning capacitor, dependmg upon
its pmpo:e in the circuit. A purpose of a piston rod is to couple power from the piston to
the crank shaft while a purpose of a valve rod is to transmit control mformatron from the

Programming Viewed as .. 4 Rich,Shrobe,Waters,Suisman,Héiuitt

camshaft to the valve. Slmllarly, APPEND may be used to produce the union of two disjoint
sets represented as lists, or to attach a suffix to a root word represented as lists of characters.

The abstract form of the answer retrieved in the engineering design method is a plan in
which each part is specified only by its extrinsic properties. Synthesis involves filling each"

~ role in the plan with a part whose intrinsic - description satisfies the given extrinsic
description.

A single part may have several extrinsic descnptlons corresponding to multxple
needs that it satisfies in the larger mechanism. For example a screw in a camera may fasten »
two plates together and also provide.a fulcrum about which to pivot a lever. ‘There may
~ also be several plans for a given device, descnbmg its structure in different dimensions. In
thxs situation, each part has the potential for one or more roles in-each plan. For example,
in a radio-frequency ‘amplifier an inductor may be both part of a resonant circuit in the
frequency domain plan and part of the bias network of a transistor in the DC plan. :

- The essence of understandmg a mechanism is knowing the purposes of each
part. Thx< involves building a descuptlon of the mechanism which matches each part with
its roles in the apptopnate plans. Each role in each plan must be filled by some part of the

mechanism and the intrinsic properties of that part must satisfy the extrinsic propertles of its
_roles. |
The utility of this kmd of understanding is that it factors knowledge Many
devices share the same plan. Therefore understanding the teleologlcal structure of a plan
(which ‘may be very dlfﬁcult) need only be done once. It need not be repeated for each _
'device whose principles of operation are based on that plan. If we prove certain propertlesr ’
of a plan, we know these properties will hold for all instances of that plan. |

Limits of Engineering

One major hmntatlon faced by all physical engmeermg dlsuplmes is in"the
-accmacy with which the elements of the domain can be modeled.” This is obvious in Civil
Engmeenng where the actual properties of the engmeermg materials such as soil and _
concrete are only matrginally understood. In Mechanical Engineering there is much better
control of the properties of the materials, but many important processes such as wear,
~lubrication, and vibration are still inadequately modeled. Electrical Engineering has very
- accurate models for some of its basic components, as for example the Ebers-Moll model of a
transistor. Unfor tunately, very accurate models introduce a new kind of difficulty -- the

Programming Viewed as ... 5 Riclz,Slzr_obe,Waters,Sﬂssman,Hewitt N

equations zesultmg fxom the use of such models are too complex to be solved. Circuit
engmeets are usually forced to construct a linear "small signal” model around some
approximate operating pomt which will hopefully be accurate enough for the analysis at
hand. Computer science has the same difficulty with precise but unuseable models. For
example, most computers have a floating point add instruction whose properties are precxsely
defined in the hardware manual for that machine. However, the existing methodology for
analyzmg programs which use these instructions usually requires intractably complex
manipulations. As ‘in Electrical Engineering, we are usually forced to assume a simpler
model which only approximates the true behavior of the component.

A complexity problem also arises due to the interactions among components in an
engmee: ed system even if the components are simple in themselves. In LISP, for example,
the RPLACD operation has a simple description: it replaces the rxght half of a list cell with a
new value. However, if this operation is used in a program which has many linked Ilsts
with shaled structure, its effect can be very comphcated to describe.

Thus complexity arises in two ways. The parts of a system may be hard to
- describe precisely, and the interactions among the parts may be complicated. In both these
cases we produce composite objects whose descrlptlons are practically unuseable. '

-How do we keep complexity under controP In Iarge social orgamzatlons B
complexnty is controlled by establishment of bureaucratic structures which separate parts of
the system and enforce stylized means of communication among parts which interact.
Engineered systems contain similar bureaucrac:es One of our goals is to understand the
techniques of building and managing these bureaucracies.

- One tradltlonal bureaucratic organization is hlerarchx Groups of electronic
components are organized into ampllflers oscillators, gates, and power supplies. If an
amplifier can be built whose propetties are sxmply and accurately describable, it is irrelevant
~that the descriptions of the transistors it contains are complex or inaccurate. Computer
science also employs hlerarchy to advantage Programs are organized by means of block
structure, subroutines and hierarchies of data. The description of a subroutme is often
much sunpler than the description of its parts :

Programming Viewed as .. . 6 Riclz,Si:robg,Waters,Sussman,H ewitt

A related notion is abstraction, the.throwing away of detail which is.not relevant
to the task at hand. For example, expert circuit designers make use of termmal and port
~equivalences for summarizing the behavior of parts of a circuit. A similar technique is
frequently used by programmers, although it is rarely talked about in terms of formal»h
equivalences. For example, when trying to debug one part of a program, it is common to',
model the behavior of other parts of the programming environment in a very general way
: (eg “that part of the program searches the data base”) which hides a myriad of currently
irrelevant details, Depending on the questlon being asked, different sets of details are
relevant This is why there may be more than one plan for a device.

Eng,ineeri'ng and Macroscbpic Reasotling :

“Much of physical reahty is, in principle, described to a high degree of accuracy by
the theoxy of quantum electrodynamics. Given this fact, one ‘might propose to use this
theory dnectly for example to explain biological phenomena by reduction to Schroedmger s

equation. Practical experience suggests that little success can be expected along this route.
since the complexity of the resulting explanation turns out to be intractable. '

Similarly, in programming the connection between the microscopic and the
macroscopic cannot be direct. Program analysis which concentrates on the axiomatic
descnptlon of program prlmltlves is inadequate for dealing with the complexity of real
world programs. Instead, one needs to develop abstractions appropriate to the task at hand.
Wlthout these, the resulting description is too complex to be manipulated or understood.

Consider avp'plyin!g a microscopic theory to a program as simple asa merge of two
“ordered lists. The program works by splicing elements from the first list into the second in
such a way that the resulting list is ordered. The microscopic approach begins by
describing the initiat state of eVéry cell in the computer memory. Important properties of the
lists, such as being ordered,' are derived from the states of the individual cells before and
after each side-effect operation. Manipulating the resulting "equations” is infeasible, and
even if we had a machine fast enough to handle these computations, the result would be
mcomptehensnble

Programming Viewed as .. ' 7 Rich,Shrobe,Waters,Sussman, Hewitt

An engineering approach works with higher Ievel notions. It is more fruxtful to
think about two lists and splicing as a kind of operation on these higher level objects, rather
* than thmkmg of computer memory as a large collection of cells and about changing pointers

Cin particular cells. In this way, we are much more likely to arrive at a computationally
feasible and easily understandable description of the behavior of such a program.

The higher level notions used in the engineering approach can be related to the
primitive level of description. They are not a different theory of phenomena but rather a
means of organizing the basic principles into useful structures which allow us to calculate
what we need to know. In our research, we intend to identify the higher level notions that
allow expert programmers to build and understand real-world programs. We will do this by
developing a formal system and a programming environment in which these abstractions
can be embedded and tested. The abstractions will be evaluated by their ability to help a
computer program analyze and understand programs.

An Exoinple

The following example illustrates some of the methods we bring to bear on the
' problem of understanding programs. Specifically, we display how knowledge of the plan for
a program constrains and directs the analytic process.

\

A basic programming plan is the enumeration loop, which enumerates a sequence

of values. A variety of more complex loops can be constructed from this plan by adding’
other features. For example, a filter can be added in order to select some subset of the
- sequence of values for special processing. Another important plan which may be combined
with an enumeration loop is the accumulation, in which some aspect of a number of objects
‘are combined using an associative operator (such as sum or union). |

The p:og:am below illustrates the use of these programming techmques Given
an array encoding the pay status and salary of all employees, this program computes the

total sa Iary paid to those employees who are paxd biweekly.

10 sum « 0;

20 FOR i « 1 STEP 1 UNTIL semployees DO
30 IF employee[i,status] = biweekly

40 : THEN sum « sum + employee[i,salary];

Programming Viewed as ...) 8 Rich,Shrobe,W aters,Sussman, H ewitt

~ The plan for this program, which will be referred to as a filtered accumulation
loop, consists of an enumeration loop, a filter to select those employees who are paid’
biweekly, and an accumulation which sums the salaries of those employees which pass the
filter. |

An enumeration_ loop has three parts: initialization, bump, and end-test. The
most essential feature of an enumeration loop is the sequence of values it enumerates. Here
the enumeration loop enumerates the employees represented by the integers 1 to semployees.
The current element being enumerated is the value of i. The initialization, bump, and end-
test of this enumeration loop are all expressed by the FOR construct (line 20): the
in-iti,alizat;lion sets i to I; the bump' adds | to i; the end-test halts the loop after the last
employee has been enumerated. |

A filter is a predicate which is used to select a subset of the elements being
ehumerated In the example line 30 selects the values of i which represent employees whose
~pay status is biweekly.

An accumulatlon consists of three parts: initialization, the accumulauon operator |
and the contribution function. In the example, the accumulation operator is "+" (line 40).
The initialization assigns 0 to sum (line 10). The contribution function (which computes the |
~contribution of the current element to the accumulation) computes the employee’s salary from
the cunent employee number i.

How do we know that the above program computes the total salary paid to
blweekly employees? We assume that the employee array contains information on all of the
1elevant employees, and that the first coordinate of this array runs from 1 to *employees
Given this, we know that the enumeration loop enumerates all of the employees; the fllter
selects JUSC those which are paid biweekly; and the accumulatlon sums their salaries.

The important thing to notice here.is that the form of this correctness argument:
~(this is not yet a formal proof, but it could be made into one) follows from the form of the
plan Specific parts of the program fit into the argument in a way which is determined by
the part of the plan whxch they implement.

' P'rog“ramming Viewed as .. - 9 Rich,‘Shrobe,Waters,Sus.éman,Heiuitt

The power of using plans has been fo factor the problem of understanding how a
program works into three more tractable sub-problems: recognizing the underlying plan of
the program; establishing “how each part of the plan is |mplemented by the code; and
developmg an understanding of the underlying plan. This factorization has the addmonal'
advantage that the number of fundamentally different underlying plans is much smaller
than the number of possible programs based on them. Thus once we have developed an
‘ under:tandmg of a basic plan, such as filtered accumulation loop, this can be applled to
many pxogram: whose teleology may superficially appear to be totally different.

A More Compl’i-cavted Example’
- : .
- The followmg program computes the intersection ¢ of the two sets a0 and- bo,
,where each set is’ represented as ani ordered list with the smallest element first.

le a « a0
20 b« b0
30 c « list();
" 40 ~ WHILE -empty(a) A -empty(b) DO

50 IF head(a) = head(b)

60 " THEN BEGIN ¢ « append(c,list(head(a)));
70 ' a « tail(a);

80 b « tail(b)

90 a END

100 ELSE IF head(a) < head(b)

110 o - THEN = a « tail(a)

120 ~ ELSE b « tail(b)

“This program can be understood by recogmzmg that its underlying plan is also a
filtered accumulation loop. Analysis of the data flow in the program shows that line 60 is an
'accumulatxon which is initialized by line 30. It also shows that the rest of the program forms
an enumeration loop. The fact that the accumulation step is not executed on every iteration
of the loop, but only when the predicate on line 50 is satisfied, indicates that line 50 is a
filter. Once a correspondence has been established between the parts of this program. and
the parts of the abstract plan for a filtered accumulation loop, the plan can be used as a

gmde for understanding how the program works.
!

Programming Viewed as ... 10 Rich,S hrobe, Waters,$ ussman, Hewitt

The essential feature of an enumeration loop is the sequence of values it
enumerates. Here elements of the union of a0 and b0 are enumerated in order startmg w1th
the smallest. The variables a and b hold the elements of the sets a0 and b, respectlvely, :
which have not yet been enumerated. On each iteration of the Ioop, the bump (lines 50 and
70-120) selects the smallest element not yet enumerated and then removes it from a or b, or
both. To achieve this the program takes advantage of the fact that the lists a and b are
ordered and therefore the smallest element must be the first element of a or b, or both.
Notice that in this way of coding the program there is no variable which has the currently
‘enumerated element as its-value. In lines 60-80 and 110 the enumerated element is head(a)
and in lines 60-80 and 120 it is head(b)

The fllte1 (line 50) selects the enumerated elements whlch are elements of both a0
and b0. These are the elements of the mtersectlon of a0 and b0. The accumulauon (Ime 60)
producec an ordered set of these elements,

The use of append as the accumulation operator is an mterestmg example of the
dnffexence between intrinsic and extrinsic behavior. Intrinsically, append(c list(thead(a)))
concatenates head(a) onto the end of list ¢. In thls partlcular situation, however this achieves ,
 the operation of adding head(a) as a new elemént of the set represented as an ordered list in
c. This is possible because the enumeration lgop in whxch this accumulatnon is embedded
enumerates elements in order and without duphcates '

The filter (line 50) is another example of the difference between intrinsic and
extrinsic benavioral descriptions. Intrinsically line 50 checks whether or not the first
elements of a and b are identical. Extrinsically, it checks whether or not the currently
enume:ated element is in the intersection of a0 and b0. It is clear that if the ldentlty test
_ succeeds the enumerated element is in the intersection. The fact that when the test fails the
~ enumerated element is not in the intersection, is not so obvious. There are two cases: first
suppose head(a) < head(b), then the enumerated element is head(a) and it cannot be an
element of b0 because it is less than all the elements of b and greater than all the other
elements of b0 (those which have already been enumerated); alternatively, if head(b) <. '
head(a) the argument is the same with the roles of a and b reversed.

Notice that line 50 fills two roles in the plan for this program. It is the filter, and
it is also part of the bump for the enumeration ‘loop This sharing makes the program more
compact, but less clear. Using plans allows us to separately ldentlfy the multiple roles of a
piece of code in order to understand how the program works.

Progmmming Viewed as .. Il ‘ Rich,Shrobe,Waters,Sussman, H ewitt

A final complexrty in this example program arises from the fact that the end test
of the enumeration loop (line 40) may stop the loop before all of the elements of the union of
a0 and bO are enumerated. However, when it stops the loop one of the sets a or b must be
empty. Thus the remaining elements cannot be members of both a0 and bO. '

The proof of correctnéss for this program has the same structure as the proof for
the first example program. First we have to show that the enumeration Ioop enumerates all
-of the elements of a0 and b0 which could possnbly be in the intersection. Then we ‘must
show that the filter selects only the elements which are in the intersection. Finally, we must
show that the accumulanon constructs an ordered set of the selected elements.

- The intersection program has been understood in terms of the same simple plan
as the first example program. The greater complexity of this example is due to the fact that
the sequence of elements being enumerated is less obvious, and that the code has beenv
optimized by sharing (line 50) and taking advantage of the propertles of ordered lists.

A Divfferent 'Exampl’e

Thns exampie will bring out two points. First we introduce several new plans
(driver loop, transitive closure and demons) which operate at a higher level of abstracnon ,
than plans such as flltered accumulation loop. These plans are defined more in terms of
teleological structure than patterns of data and control flow. However these plans play the
* same role in this example as the filtered accumulation loop plan in the previous examples
they are tepresentat:ons of programming knowledge and are used to develop the form of a

- proof of correctness.

‘The second point illustrated by this example is the degree to which plans may be :
nested, allowmg a program to be understood at many levels of detail. In this example a very ,
abstract plan (transitive closure) is implemented by a more specific plan (demons) which is in
turn lmplemented using queues. Furthermore, the function calls in this example hide large
and compllcated sections of program, such as pattern matching and data base retneval

H
i

" The foHowmg program is the top-level loop of a procedural deduction system like

those used in artificial intelligence systems. The program reads in facts and asserts them in
~a data base. As each fact is asserted, it tnggers applicable demons. The effect of processing |
~ theése demons is to create new facts, which are called the repercussions of the original fact.
These repercussions must also be asserted in the data base, which may trigger additional ‘

Programming Viewed as .. 12 Rich,Shrobe,W aters,Sussman, H ewitt

demons which assert addmonal repercussions, and so on. The central claim of the -
specifications for this program is that all of the repercussions of every asserted fact will
eventually be asserted.

- 10 PROCEDURE run (user-stream); BEGIN
20 fact-queue « new-queue();
30 demon-queue « new-queue();
40 data-base « create-new-table();
50 WHILE true DO BEGIN

60 - fact- queue « enqueue(read(user -stream), fact- queue),
70 WHILE ~empty(fact-queue) DO BEGIN A
80 - assert-new- fact(first(fact -queue), data-base); ‘
90 " demon-queue « trigger-demons(first(fact- queue), data-base) -
100 fact- queue « dequeue(fact -queue);
110 : ' WHILE -empty(demon-queue) DO BEGIN ,
120 , new-facts « process-demon(first(demon-queue));
130 ‘ ‘ ' fact4qUeue « append(fact-queue, new:facts);
140 ’ demon-queue « dequeue(demon-queue)
150 - END |
160 END
170 END '

180 END

At the topmost level of description, the plan for this program is a composmon of
the driver loo op plan and the transitive closure plan. The driver loop is a simple non-

terminating Ioop which reads in data from a user and then performs calculations based on
this data. The READ-EVAL- PRINT loop of LISP is an example of a driver loop. '

Lines 70-160, which perform the calculation part of the driver loop, ca'in be

understood in terms of the ttansmve closure plan. Like any plan, the transitive closure plan

specifies how sub-segments can be combined in order to achieve a partlcular purpose. Here
the purpose is to compute a transitive closure, specifically: given an operator, the current' '
~ closure, and a new item to be added to the closure, the plan gives one way of computing an
enlarged closure which contains the new item and enough other new items so that it is still
closed under the operator. (Here the operator is the computation of repercussnons by the
demons). The structure of this plan is based on a lemma which states that transitive closure
is accomphshe_d given that two conditions are satisfied: (i) whenever an item is added to the

Programming Viewed as ... B Riclz,Slzrobe,Waters,Sussman,H ewitt

closure all of the images of that item under the operator are eventually calculated (n) every
item which is calculated will eventuaily be added to the closure.

, The transitive closure plan is very abstract, allowing for many specific

“implementations. This program uses demons. Demon plans are characterized by ‘the
following features: there are two data bases, one containing facts, and the other containing
demons; there is a method of triggeting the demons that are applicable toa glven fact; and
the execution of triggered demons results in the creation of new facts. The teleological
structure of demon plans is expressed by the followmg four lemmas:

(i) For any fact asserted in the data base all applicable demons are eventually
triggered. :

(ii) Every tnggered demon is eventually executed :

(iii) Execution of the demons triggered by a given fact produces the immediate
repercussions of that fact. 7 ‘ -

(iv) Al facts produced by demon execution are eventually -asserted in 4t_l1e data
base. '

Lemmas (i)- (m) above 1mplement condition (i) of the transitive closure plan Lemma (IV)
above lmplements condmon (ii) required for transitive closure)

The demon plan ltself is still abstract enough to allow consnderable variation in

the way it is 1mplemented Most of this variability comes from the ways in which
"eventually” can be implemented In the above program, two queues are used. One contains
facts which are waiting to be asserted in the data base. The other contains demons which
are waiting to execute and produce the repercussions of those facts which have been
asserted. Still lower level plans describe how these queues are used to lmplement the lemmas
- of the demon plan. In brief, the loop which empties the fact-queue (lines 70-160) satisfies (
lemmas (i) and (iv) of the demon plan, while the loop which empties the demon-queue (lines
110-150) satisfies (ii) and (m)

Thus the log;cal structure of this program is embedded in three levels of plans
each satisfying the requnements of the next higher level of structure. Below these plans lie
yet more layers of plans and abstractions which implement the queues and the data bases.
The pxograms analysis is factored into manageable steps by this hierarchy of plans and

- abstractions. ’

Programming Viewed as .. ' - _ 14 Rich,Shrobe,W aters,Sussman, H ewitt -

Representing Pla'ns

~ In order to formahze the kind of program understandmg demonstrated in the -
examples above, we have developed a representation for plans and investigated the use of
this representatnon to describe various types of programs.

_ A plan is a hierarchical network of segments with three kinds of links between
- them: data flow, control flow, and purpose links. Each segment has specifications which, are
a formal statement of the conditions and relatlonshlps between objects which are expected to
hold prior to and immediately following execution of the segment. -

Data flow links specify how data objects flow between segments. Control flow
links specify the order in which segments are executed. The teleological structure of a plan
is expressed by purpose links, which relate the specmcatlons of segments to one another.
The two simplest types of purpose links are prerequisite links, which represent the fact that
the ihput expectations of one segment are satisfied by the output assertions of another
segment, and achieve links, which record how the output assertions of a sub-segment flgure
into achlevmp the output assertions of the segment of which it is a part,

anure 1 shows the data flow and control flow in a plan for a ﬁltered_
accumulation loop It. is neither the most general possible plan for filtered accumulation
loops, nor the plan of any particular- program -- it is rather the kind of intermediate level
plan that is th_e common knowledge of every practicing programmer. The names of
segments are in upper case, data objects are in lower case. Solid lines denote data flow.
Dotted lines are control flow links.

Specnﬁcanons for segments in theplan are given in Table la and Ib followmg the
figure. A specnf:catlon has four parts: a list of input objects (INPUTS:), a list of output
objects (OUTPUTS:), pre-conditions (EXPECT:), and post-conditions (ASSERT:). These pre-
- and ‘post-conditions are are written in a formalism developed by Rich and Shrobe and
vdesc_:nbed in detail in [Rich & Shrobe, 1976). Briefly, each clause in an EXPECT or an ASSERT
is a predicate on the data objects, written in prefix notation. Square’bracke'ts denote
functional terms. Thus if (FIRST SEQUENCEI OBJECT1) is the predicate meamng OBJECT1

- is the first part of SEQUENCEI then [FIRST SEQUENCE1] denotes “the object which is” the
first part of SEQUENCEI "

initializing-data

FILTERED-ACCUMULATION-LOOP

i
]
|
{
i
g
i
4 \
INIT . \
{ \ \
\
INIT- / \ \
ENUMERATION '
| \ \
! v ¢ \
! \
M BUMP \
!
\
| |
; INIT- | | |
ACCUMULATION | élement {
enumeration-stat / \
l
-]

| \
4
|
FILTER (
~ {
N
\ \ ’
v \ ‘
JACCUMULATE] |
CONTRIB \ |
\fsgntribution | {
v !
opP {
/
\ | {
] . /
\ gcumulation’ t
Py Ld <- — Q
{
i
\/
Figure 1. Control Flow and Data Flow in Plan

for Filtered Accumulation Loop

Programming Viewed as .. : 16 Rich,»Slzrobe,Watérs,S ussman, Hewitt

(DEFSPECS FILTERED-ACCUNULATION-LOOP
(INPUTS : INITIALIZING{DATA) |
(EXPECT:)

(OUTPUTS: ACCUNULATION)
(ASSERT: (PI ASSOC-OPERATOR
| (ELEMENT-OF RESTRICTED-SEQUENCE =X) [CONTRIBUTION OF =X]
| ACCUMULATION)))

/(DEFSPECS INIT-ENUMERATION
(INPUTS: INITIALIZING-DATA)
(EXPECT:)
(OUTPUTS: ENUMERATION-STATE)
(ASSERT: (CURRENT-ELEMENT-OF ENUMERATION STATE [FIRST SEQUENCE])))

(DEFSPECS END-TEST
(INPUTS: ENUNERATION-STATE)
(EXPECT:)
~ (OUTPUTS:) !
(CASE1 (ASSERT: (EXHAUSTED ENUNERATION-STATE)))
(CASEZ (ASSERT: (NOT (EXHAUSTED ENUNERATION-STATE)))))

(DEFSPECS BUMP .
(INPUTS: ENUMERATION-STATEL) |
- (EXPECT: (NOT (EXHAUSTED ENUNERATION-STATE1)))
- (OUTPUTS: ELEMENT ENUNERATION-STATEZ)
'(ASSERT: (CURRENT-ELEMENT-OF ENUMERATION-STATE1 ELEMENT)
(NEXT-STATE ENUMERATION-STATE] ENUMERATION-STATEZ)))

~ Table la. Sp'ecs; for Segments in Filtered Accumulation Loop Plan.

. Programming Viewed as .. - _ 17 Rich,Shrobe,W aters,Sussman, H ewitt

(DEFSPECS FILTER |
(INPUTS: ELEMENT)
(EXPECT: (MEMBER SEQUENCE ELEMENT))
(OUTPUT:) . | |
(CASE1 (ASSERT: (MEMBER RESTRICTED-SEQUENCE ELEMENT)))
(CASEZ (ASSERT: (NOT (MEMBER RESTRICTED-SEQUENCE ELEMENT)))))

(DEFSPECS INIT-ACCUMULATION

 (INPUTS:)

~ (EXPECT:)
(OUTPUTS: ACCUMULATION) :
(ASSERT: (ZERO-OF ASSOC-OPERATOR ACCUMULATION))

" (DEFSPECS CONTRIB

(INPUTS: ELEMENT)
(EXPECT:)

(OUTPUT: CONTRIBUTION) A

(ASSERT: (CONTRIBUTION-OF ELEMENT CONTRIBUTION)))

~ (DEFSPECS OP

(INPUTS: CONTRIBUTION ACCUNULATION1)
(EXPECT:) |
(OUTPUTS: ACCUNULATIONZ) | .
~ (ASSERT: (ASSOC-OPERATOR CONTRIBUTION ACCUMULATIONI ACCUMULATIONZ)))

“Table Ib. “Specs for Segments in Filtered Accumulation Loop Plan (cont’db). i

v

Prqg*ranzming 14 iewed as .. 18 Rich,Shrobe,Waters,S ussmdn_,H ewitt

Underlined symbols in spec:ﬂcatlons are unmterpreted at the current Ievel of
abstraction. These symbols are instantiated (within specified constraints) when an abstract
plan’is apphed to a particular program. For example, the plan for a filtered accumulatxon
loop at this level of abstraction is not committed to what particular sequence is being
enumerated, which restricted sub-sequence is bemg selected by the filter, what the associative

~operator is used to form the accumulation, or what is the contribution of each selected
element. Additional input object‘s may also be added to these specifications when they are
. applied to a particular program. For example, the filter segment often compares the current »
element with some external input object ;

The first specification in Table la is a statement of the overall behavior of a
filtered accumulanon loop. PI denotes the composition of a given functlon over a sequence
(if the function is addition this would be the usual algebraic SIGMA notanon) Thus the
specnﬂcat:on for FILTERED ACCUMULATION- LOOP asserts that the output object is the
compo<itlon usmg a given associative operator, over all elements of a restricted sequence,
usmg a given contnbutlon function for each element.

To decompose the teleological structure of the filtered accumulation loop, we
consider the way the plan’is built up. The "backbone" of the plan is an enumeratlon loop,
which has three sub-segments, the mltlahzatlon the bump, and end-test. Specifications for
these segments are shown in Table la. The importance of recognizing these three sub-
segments as a separate gr ouping in the plan is that there are simple standard lemmas and
methods of proving things about enumeration loops. The specifications of these sub-
segments are also fanly abstract. The data object called the enumeration state represents
'some way of encoding the current element being enumerated, and a ‘way of gemng to the -
next element ir the sequence. In the first example program, the enumeration state was
' lmplemented simply as the current index (i) in the array. In the second example the current
values of a and b encoded the state of the enumeration.

Filtering may be added to an enumeration loop by msertmg a FILTER segment at
the appropriate place in the control flow and data flow. As shown in Figure 1, the new
segment is inserted in the control flow between the BUMP and the END-TEST. Its only
“connection with the data flow of the enumeration loop is that it uses the ELEMENT output of -
the BUMP. This also alters the logical structure of the plan. Associated with filtering is
knowledge about how to prove the new specifications. In order to prove that a filter selects
a particular restricted sequence, first show that the restricted sequence is a subset of the
enumerated sequence, and then show that the filter selects exactly those elements whlch are
in the rectncted _sequence.

Prbgmmming Viewed as ... 19 thl:,Shrobe,Watérs,Sussman,Hetﬁitt

'Anbther,method of building a more useful plan out of an enumeration loop is to
add accumulation. Figure | shows how the various sub-segments involved in ‘accumulation
fit into the rest of the plan. The initialization is put with the initialization - of the

'enumeratlon while the contribution function and the accumulation step are put in the

control environment created by CASEL of the filter. The only connection with the data flow
~of the sunoundmg plan is again the use of the current ELEMENT.

.The accumulation part of the plan carries with it an important. lemma: if the
accumtﬂation is initialized to the zero of the operator, and the operator is associative, then it
computes the PI of that operator on the sequence of elements given as input to the
' .ACCUMULATE segment.

This view of bunldmg up the filtered accumulation loop from enumeratlon
- mten ing, ‘and accumulatlon suggests how to understand particular programs based on thls'v
plan first discover what sequence the enumeratlon loop enumerates and show that the
restricted sequence is a subset of it; second, show that the filter performs the proper
restriction; fmally, use the lemma about accumulations to conclude that the plan computes
the xequned combmatlon of contributions. ‘

! Now we can cons:der the purpose Imks in this plan. Each EXPECT of a sub-

| segment needs to be satisfied by the ASSERT of some other sub- segment (or the EXPECT of
the overall segment, though this does not occur in this example). Only two sub- segmentsb
- have EXPECT's in this abstract plan

(1) BUNP; (EXPECT: (NOT (EXHAUSTED ENUMERATION-STATEL)))
' which depends on ‘
END TEST: (CASEI (ASSERT: (NOT (EXHAUSTED ENUMERATION- STATE)))

(ii) FILTER: (EXPECT: (MENBER SEQUENCE ELEMENT))-
» which depends on : .
BUMP: (ASSERT: (NEXT-STATE ENUMERATION-STATEl ENUMERATION-STATE2))

The first of these prerequisite links is straightforward. The second link involves
a step of deduction from the meaning of the predicate NEXT-STATE and the data flow
connection between BUMP and FILTER in the plan. The NEXT-STATE operation‘ COrresponds
to moving from one element of a sequence (the current element of the old state) to the next
Aelement of that sequence (the current element of the new state).

Programming Viewed as ... 20 Rich,Shrobe,W aters,Sussman, H ewitt

‘ The FILTERED -ACCUMULATION- LOOP segment has only a single output assertion,
(PI 2+), which depends on the output assertions of all the sub-segments. The logical
structure of this achieve link has been explained in detail for each of the two ‘example
programs. It involves decomposing the operation of the plan into enumeration, filtering,
and accumulation and making use of standard lemmas about each of these parts.

Relavting, Abst:ract Plans to Coilcrefe Programé

, Plans are more abstract than programs in two ways First, plans are a procedural
- abstraction. As we have seen in the examples understanding the underlying plan of a
program entails abstracting away from the syntactlc sugaring”, such as FOR or DO WHILE or |
GOTO, that is used to achieve the ordering of segments in control flow. Similarly, the data
flow is abstracted from the particular syntactic techmques used to achieve it, such as the use
of variables, return values, and so on, depending on the particular programmlng language
Plans also include data abstraction. The plan for a filtered accumulation - loop is written in
terms of abstract data types such as "sequence” and "accumulation”. The unification of
procedural and data abstraction is one of the most novel and important properties of our
system of description.

The precise relatlonshlp between a concrete program and the more abstract
undet!ymg plan needs to be explicitly represented and reasoned. about. For example, in the
| employee enumeration program the abstract data object ENUMERATION-STATE is implemented
in three parts: an arr ay, and two indices. The part of the sequence yet to be enumerated is
the array section between the two indices. Table 2 shows the notation we are developmg to
repxesent this kind of knowledge. The first form in the table names the abstract object
being implemented and gives the name ARRAYSECTION to this particular implementatlon‘
scheme. The next section names the three more concrete objects which are used in this
lmplementatlon ARRAYPART BOTTOM-INDEX, and TOP-INDEX. Finally, the
INPLENENTATION DEFINITIONs describe how each abstract operatlon on the enumeration
state is |mp|emented in terms of the more concrete objects.

; Of course this only does part of the job. What is not shown here is the mapping |
of abstract data objects all the way down to the particular variables used in the program (for
example that the BOTTOM- INDEX is i and the TOP - INDEX is aemployees) This also applies to
the data flow and control flow. For each link in the plan diagram above, we record how
that link is achieved in the code. We prefer to de-emphasize this part of the program
undetstandmg problem because it is very dependent on the particular programming

'”26

N Interactive Modules _ Data Structures Expert Modules
v
- new Plan _ Plan
pi;;;__> Inpqt | \\\\\\9] Recognition
‘ PLAN
LIBRARY
R
code Flow Plan
: ' Analysis _ Proposing
concrete
plan
annotation | ‘ ‘
Mecs , Comment ; DESIGN Analysis
desi Input — NOTEBOOK - >} Rules
esign
decisions
queries)
i . . Synthesis
Explanathn ‘Rules
<
documentation
‘ Figure 2. Structure of System.

| Programming V iewed as .. 22 Rich,Shrobe,Waters,Sussman, H ewitt

language being used. We are primarily interested in representing structures that are
universal, such as FILTERED ACCUMULATION- LOOP or the above scheme for |mplementmg an
enumeratnon ‘ '

" A Library of Plans

“There are many different plans in common programming use. It is helpful to
organize these plans along two orthogonal dimensions: "concrete” to "abstract” and "simple”
to "compound”, '

A ‘given program can be descnbed by plans at various levels of abstraction. A
concrete plan is a pattern of control flow and data flow with some additional constraints. An
abstract plan is a logical structure of goals and lemmas which expresses the underlying
teleologlcal structure of a program. For example, enumeration loop is a more concrete plan'
than transitive closu:e

“Enumeration loop and transitive closure are simple plans. Compound plans are
larger structures built up by combining simple plans. For example, filtered accumulation
loop is a compound plan built up from an enurheration loop, a filter, and an accumulation.

- Control and data flow analysis of the code for a program yields the most concrete
» plan for that program, which for non-trivial programs is a compound plan. Deeper analysis’
ylelds plans for the same program at higher levels of abstraction. The plan at one level is
xmplemented by the more concrete plan at the level below. '

‘The concrete plan for a program factors out much of the surface detall of the

program, so that there are fewer concrete plans than there are coded programs For
example, a program implemented using imperative iteration with assignment statements and
an equnvalent program. implemented using tail recursion are both mapped to the same
concrete plan. However, there is still a very large number of plans. Fortunately, it appears
that compound plans are built up from a manageably small number of simple types of plans
Waters [Waters 77] has investigated this mformally by making a manual analysls of 44
_programs in the IBM Scientific Subroutine Package He found that the seven snmple
- concrete plans discussed below were sufficient for bu:ldmg the compound concrete plans for
most of these programs We also believe that compound abstract plans can be decomposed
into a manageable number of simple abstract plans. ‘

Programming Viewed as ... 231l Rich,Shrobe,Waters,Sussman, Hewitt

i
One of the goals of our research 1s to develop a library of useful plans _In

general, very large compound plans do not appear in such a library because they have
limited applicability. Consnderable work has already been done on simple concrete plans

The simplest concrete plans are conjunction, conditional and composition. These

three plans correspond to three ways of decomposing a problem: it can be divided into a set
of independent sub-problems (conjunction); it can be classified into sub-cases (conditional);

’

or it can be divided into sub-problems whose solutions are cascaded (composition). Thus

~the conjunction plan combines a set of sub-segments which do not interact. Each sub-
_segment is executed once in order to achieve the overall effect requrred The condltional

plan combines a multnple case predicate with a set of sub- -segments. On any given execution

~of the p|an only one of the sub-segments is executed in order to achieve the overall effect.

The composition plan combines two sub- segments such that the first has data ﬂow into the

. second. The two segments are executed in sequence to achieve the overall effect.

* Loops form another major class of s:mple concrete plans. The enumeration loop
is the clmplest plan of this class. In an augmented loop, a computatlon is performed on each_

iteration of the loop which is independent of the computations on other iterations. A
program Whlch copies a vector by copying the elements one at a time is an example of an -
augmented loop. An accumulation loop is mote complicated than this, since there is a data
object the accumulation, which is passed between iterations. A final example from this class
of plans is the interleaved Joop, which combines two loops so that they are executed in

synchrony. The combination terminates as soon as either one terminates. Thls plan is most
commonly used to bound the execution time of a loop by interleaving it with another loop
whlch is known to terminate.

Other concrete plans which need to be added to the above list include more
compllcated loop augmentations, plans based on interrupts and error exits, coroutlnmg plans,
and plans based on more complex data structures, such as trees. There are also many
important abstract plans which need to be formalized, such as satisfying a set of constraints
by xelaxanon, succes:nve approxrmatlon and operating like a finite state machme

Programming Viewed as ... ' i 24 Rich,Shrobe,Waters,Sussman, H ewitt

Proposal for a Program Understanding SySter'n

As part of our research, we propose to implement and experiment with a
computer system that can understand programs using the methods and formal
representations presented above. This system will be the prototype of a computer- alded'
design tool for expert computer programmers called a mogrammers apprentice
[Rich & Shrobe, 1976] [Waters, 1976] [Smith & Hewitt, 1975), A programmer’s apprentice is
an interactive programming environment in which both the computer and the human
programmer cooperate to produce software more quickly and reliably than either could do
working alone. ' ' '

In the apprentlce environment the programmer will treat the computer as lf it
were a colleague explaining and developmg the program design interactively. The
apprentice however will play a substantially passive role; its task is not design but rather
careful bookkeeping and criticism. ‘If the apprentice does not understand what the
programmer has told it, its job is to complain, forcmg the programmer to either debug his)
current plan or to provide sufﬁcrent detail for the apprentice to understand him. \

‘The apprent'ice will be able to provide the programmer with services such as
maintaining the consnstency of the design and explaining the program in high level terms
convenient to the task at hand These tasks depend on the apprentice’s ability to analyze
the programmer’s design and code In addition, the apprentice should be able to conduct
routine synthesis tasks. For example, in des:gnmg a large system the programmer mrghr

invoke an unimplemented sub- ~segment in several different contexts. The apprentice should |

be able to combine the various requirements placed on this uncoded module into a module

‘specification and search the plan library for a plan which might be able to satisfy these

specnﬂcatlons

- The apprennce is not expected to be a program designer, nor is it requnred to be
super ~human at the jobs it is assigned. It will often be unable to complete many of the tasks
it sets out to accomphsh However, it will always be able to report what it has learned in

‘any attempt and what it has been unable to understand. If its knowledge base is rich

enough, the apprentice will be able to interact smoothly with the programmer, providing far
more asmtance than annoyance

Programming Viewed as .. - 25 Rich,Shrobe,W aters,$ us;vnian,Heiuitt

‘The internal structure of the apprentice is shown in the Figure 2 which is
separated into interactive components, expert components, and mediating data structures.
The interactive components accept design statements, code, and teleological annotation from ‘
the programmer and provide him with program explanation, design criticism, and other
assistance. At the nght side of the dnagram are the modules whose job it is to analyze,

lcyntheme recognize, and propose plans. These experts are implemented as rule-based

systems capable of modular extension. Medlatmg between these modules are two main data
structures, the desngn notebook and the plan library.

The desngn notebook records the apprentlces current knowledge and beliefs about
the program being designed and serves as the communications center for the entire system.

~ The notebook includes the actual code wntten thus far, the programmer’s comments, a

current wonkmg plan” for the program, and teleologlca! annotation explammg how the
program implements this plan.

The various modules communicate with one another by makmg assertions in the

: notebook Each module has predefined trigger patterns which cause it to perform specnf:c‘

tasks, such as making a deduction or querying the user, whenever appropriate assertions
appear in the notebook. -Every assertion added to the notebook is also accompanied by a
Justification for its presence (a justification of special importance is that the programmer said

s0). These Jmtmcatlons ‘make it possible for the apprentlce to account for its actions when
lequned '

The asceltlons in the notebook are used to represent the followmg kmds of
mfor mation:

(i) The siequence of increasingly refined plans which partially accomplish: some of
the tasks specified. | »

(ii) Partial specifications for some of the subtasks whi_cn are to be accomplished.

(iii) Partial justifications regarding how some of the plans satisfy some of their

‘ specifications. : ‘

(iv) Partial descriptions of some of the background knowledge (mathematical facts,
physical laws, government regulations, etc.) of the envnronment in which the
system will operate.

(v) A collection of scenarios (at various articulations of detall) ‘demonstrating how

| the system is supposed to work in concrete instances.

'”26

N Interactive Modules _ Data Structures Expert Modules
v
- new Plan _ Plan
pi;;;__> Inpqt | \\\\\\9] Recognition
‘ PLAN
LIBRARY
R
code Flow Plan
: ' Analysis _ Proposing
concrete
plan
annotation | ‘ ‘
Mecs , Comment ; DESIGN Analysis
desi Input — NOTEBOOK - >} Rules
esign
decisions
queries)
i . . Synthesis
Explanathn ‘Rules
<
documentation
‘ Figure 2. Structure of System.

Programming Viewed as ... _ 27 Rich,Shrobe,W aters,Sussman, H ewitt

The notebook-centered architecture allows the apprenttce to generate mcomplete
but nevertheless useful commentary about a program design. It also allows the programmer
to interleave design development with the actual coding effort in whatever order he sees fit.
The apprentlce gathers whatever information it is provided with and takes actton whenever
the information available becomes sufﬁctent

To get a better feeling for how the expert modules mteract through the desrgn
notebook, consider what happens as the user types in the source code for a simple program
(cunently in LISP or FORTRAN). The main interaction in this scenario is between the
plan recognizer and the analysis expert. '

First the programs control ﬂow and data flow is analyzed in order to butld the

'most concrete plan. This becomes the current working plan for the program The “plan

recogmzer then examines the working plan, noting the presence of loops, recursions, and
other features characteristic of certain more abstract plan types. When enough of these
features combine to suggest one or more particular plan types, the recognizer records these as
hypothe<e< in the notebook.

Hypothecnzmg a more abstract plan imposes various constraints. In partlcular

. each segment of the abstract plan has an extrinsic description (a specification in terms of the

role the. segment plays in the abstract plan) which must be deducible from the intrinsic
specifications of the matching segment(s) in the current working plan. Thus the plan
recognizer is implicitly proposing theorems about the behavior of groups of segments.

‘Control assertions requesting proofs for these theorems are added to the notebook wrth a

Justification connecting the proposed theorems to the hypothes:zed abstract plan.

The:e control assertions tr lgger the analysis expert, which wrll attempt to prove

that the ‘behavior -required by the abstract plan is deducible from the known behavior of

segments in the current working plan. There are three possible results.

If contradlctlons are discovered, a complamt is entered in the notebook. Thls will

‘cause the plan recognizer to try another hypothesned plan If no other plans are possible , ~'

an interactive module is triggered to warn the ‘programmer that a bug is present

b

‘Prbgmmmi,ng Viewed as ... ' 28 Rich,Shrobe,thers,Sussn_zan,H'ewitt

1If the required properties are confirmed, then the current working plan is a valid
implementation of the proposed abstract plan. The apprentice has thus gone one step
deepet in its underttandmg of the code.

1t is also possible that the analysns expert will neither be able to verlfy the
: xequned property nor find a contradiction. One possible source of such uncertainty is the
use of subroutines which have not yet been ‘written. In such cases, the analysis expert asserts
in the notebook that the desired behavior can be obtained, assuming that the unwritten
subroutine can in fact be 1mplemented If the synthesns routines (or the programmer) should
fall to do so, the validity of the or lgmal analysis is called into question.

, The analysis component makes use of two closely related techniques: Symbcﬂic
Execution [Rich & Shrobe 1976] [Smith & Hewitt 1975) [Yonezawa 1976b] [Burstall 1974] and
Analysis By Propagation Of Constraints [Stallman & Sussman, 1977] [Sussman & Stallman
1975). The first step of analysis is to symbohcally execute the current plan on typnca! (or

symbolic) inputs. This leads to a network of situations which represent the possible

intermediate and final states of the computation. Each Sltuanon consists of assertions about
the symbolic objects operated on by the program.

Connectmg the situations are constramt propagators which represent the behavnor '
of plan <egment< Constraint propagators can pass information both forward and backward

between situations (tlme runs forward). To illustrate constraint propogatlon consider a
~segment which 1mplements the "plus” operation. If the values of the two inputs to the-
segment are known, the propagator creates a symbolic value in the output situation and
asserts that this output is the sum of the two inputs. If one input and the outp’ut'afe known,
propogation can assert that the other input is the difference of the output and the first
input. Propogation of constraints involving quantifiers is more involved (see
[Rich & Shrobe, 1976)), | | |

~ Constraint propz{gators record in the notebook a justification for every assertion.
‘These Jmtnﬁcatlons form a network of logical dependencies between the intrinsic behaviors
of sub- -segments in a plan and their extrinsic descriptions, and also between the extrinsic
descriptions and the behavior of the overall plan segment. Thus when plan recognition is
successful, a complete teleological analysis of the program has been performed as well This
analysis is useful in many ways.

Programming Viewed as ... , 29 Rich,Shrobe,Waters,Sussman, H ewitt

An important application is perturbatlon analysis. If a change is made in the
specnﬂcatnons or |mplementatlon of a segment, a technique called Truth Maintenance
(Doyle, 1977] uses the recorded dependencies to calculate exactly what information is still

valid and what follows from the new assumptlons making use of what has atready been
learned. Thus small changes in the design may require only small amounts of new analysis.
The justifications and truth maintainence system used in the apprentice maintain the code
“and its documentation as a unified and consistent entity which is robust under evolutxonary
- changes. This is an important feature since large systems are currently extremely brittle in
the face of change. This brittleness is due to the fact that numerous dependencies not
apparent in the code underlie the correct workings of the system. Adequate written
documentation and commentary is seldom supplied, and even when documentation is
supplied with the initial release of a system, this documentation is infrequently maintained.
Thus a pmgrammer seeking to add features or make changes is forced to guess what the
under lymg assumptlons are, often introducing subtle bugs in the process. '

A second use of dependencies - occurs when part of a proof fails.. The
dependencies recorded in the notebook allow the plan recognizer to analyze the failure using
a technique called Dependency Directed Backtrackmg [Stallman & Sussman 1977] which
: txaces backwards through the dependencies to determine whlch assumptions led to the

contradiction. By discovering such sets of mcompatxble assumptlons this technique can
prevent combmatonal explosnons and guide the search for a correct plan more quickly.

If it turns out that the plan recogmzer cannot find any abstract plan which f:ts,
the program, the teleologlcal dependencies dlscovered by the analysis expert will help '
explam the p:oblem to the programmer.

Although our work will concentrate more on analysis than synthesis, we can see
similar mechanisms‘ being employed in synthesis tasks as well. If a subroutine has been used
‘in several places but has not yet been designed or coded, the constraint propagators could
bring together the condmons which this segment is required to satisfy. A plan proposing'
expert could then search the plan library for a plan which accomplishes these or similar
specifications. If such a plan is found the synthesis expert will further employ constraint
‘propagation in an attempt to instantiate the plan in detail. By using the notebook as the
commummtmns center the system maintains the flexibility of prov:dmg only a partial
solution. If it cannot reach a final synthesis on its own, the apprentice still has the option of
calling on the user to guide it further. If it is convinced that the synthesis task is 1mpossnb|e
it can warn the programmer that he has a design bug in which he has based his program

k Prdg)’a mming Viewed as .. 30 Rich,Shrobe,Waters,S u:sman; Hewitt

on a subroutine which cannot be coded.

This highly flexible architecture seems best suited to the kinds of interaction we
expect to be necessary for the task. For the foreseeable future we do not want to entrust the
complete task of program design and synthesis to the computer. Instead we " propose a
cooperative environment in which both machine and programmer can analyze, debug and
edit each other’s code. We believe this will lead to more economical, reliable, and
perspicuous programs. This environment will also serve as a workshop in which to codify
and clarify the engineering knowledge whnch is prerequisite for the construction of the
automatlc programming systems of the future. Furthermore it develops these ideas within a
~ dependency-based architecture which will permit future programming systems to be both
responsible for their actions and capable of explaining the programs they have written.

Our Research in Context

We propose to conduct this research as part of the Engineering Problem Solvmg
plOJect at the MIT Artificial Intelligence Laboratory Its goal is to uncover fundamental
reasoning strategies for the design, analysis, debuggmg, and explanation of complex systems
Reasoning about these highly structured systems is relatively deep and requires the abrlnty to
deal with such notions as causality, teleology, and simultaneous constraints. To this end we
are studying the problem solving process in' electrical circuit design as well as computer
programming. We are trying to capture this knowledge in the construction of computer-
aided desngn tools for'the engmeer

Thrs endeavor has numerous antecedents. Its most direct ancestry begins with the
Ph.D. theses of Sussman [Sussman 1973,1975], and Goldstein [Goldstein 1974]. These theses
developed a new problem solving method we call PSBDARP (Problem Solving Byv
Debugamg Almost-Right Plans) which is based on the belief that creation and -removal of
bugs is an unavoidable part of solving a complex problem. Goldstein began the important
task of classnfymg plan types In his thesis he classified plans into three very abstract -
categor ies: round plans (Ioops) sequential plans, and insertion plans (formahzmg the use of
interrupts and state-transparent constructlons)

Programming Viewed as ... ‘ ' s Rich,Shrobe,W aters,Sussman, H ewitt

Many of the ideas in this proposal are also a result of the general intellectual

- atmosphere of the MIT Artificial Intelligence Laboratory So many of the ideas present here ,
were developed in synergistic interactions mcludmg the authors, Aki Yonezawa and Mark
Miller, Marvm Minsky and Joel Moses that it is impossible to document them individually.

Goldstem and Miller [Miller & Goldstem 1976b] of the MIT Al Laboratory, have
been ctudymg problem solving in highly constrained domains such as the programming of a

' computer-controlled cursor to draw stick figures on a TV screen. They have made a catalog

of very general problem solving strategies, such as decomposition and reformulation, and
have organized these into an augmented transition network grammar which can be used to
generate and recognize sxmpte programs in this domain. They are also mvesugatmg the use
of this grammar with novice programmers to analyze their protocols [Miller and Go!dstem

19771 and to provide a highly structured programming environment [Miller and Goldstein

1976]. One emphasis of their work is on the development of a psychologlcally plausible -
theory of general problem solving processes in programming. This contrasts with and

' complements our effort to develop a theory which is adequate to provnde computer -aided

design tools for the expert programmer

We in the Engineering Problem Solvmg Project have had consxderable success in

y understandmg the nature of the problem of electrical circuit design -- for an overview see

[Su<5nmn 1977). Drew McDermott's Ph.D. thesis [(McDermott 1976] developed a rule-based |
language, called NASL, in which it is possnble to express strategies, tactics, and advice for a_
designer. He used this Ianguage to encode some general and specific strategles for the

‘ desrgn of electrical circuits.

The process of localization and removat of bugs, which is part of the PSBDARP

' de:tqn theory, requires an approach to engineering analysis in Wthh every result has a

justification describing the exact set of assumptions it depends upon To this end we have
developed a new meth_od of electrical circuit analysis we call Analysis by Propagation of
Constraints (see [Sussman & Stallman, 1975] and [Stallman & Sussman, 1977). We have

- implemented several programs which analyze circuits and can explain the basis of their

deductions. The Justifications constructed by Propagatron of Constraints are useful both for

‘a PSBDARP circuit designer program and also to limit the combinatorial search that occurs
- in analysis of a circuit. We have developed an efficient means of limiting such search which
“we call Dependency Directed Backtracking [Stallman and Sussman 1977 The use of

Justnﬂcatnons and dependencies in the control of problem-solving systems has been the
sub ject of a recent $.M. thesis [Doyle 1977].

Prograrrzming Viewed as ... , 32 "Rich,Skrobe,Waters,Sussman, H ewitt

~ Allen L. Brown's Ph.D. thesis [Brown 1977] explored the use of causal and
teleologlcal reasoning in the troubleshootmg of complex electrical systems. In this thesis
~Brown devcloped a set of linguistic conventions for the representation of the plan of a
complex, hierarchically-structured system. Brown’s methods inspired the construction of the
~ EL analysis system [Sussman and Stallman, 1975]. Brown needed analysis by propagétion of
constraints to predict the consequences of a hypothesized fault in a component. These
“consequences are compared with the measured values as a test of the fault theory. j'oha'n de
Kleer develops this technique in his debugging program INTER [deKleer 1976]. De Kleer
is now workmg on a Ph.D. thesis [deKleer 1977] which is aimed at a deeper theory of plans
in electrical CllCUltS and which extends Propagatlon of Constraints to deal with more
: qualitative analysis and causality. ;

‘ The "algebraic difflcu'lty of determilﬂng the component valyes in a circuit of
known topology and specifications is large. Expert circuit designers use terminal equtvalence
and power arguments to reduce the apparent synergy in a circuit so that their computatlonal
power can be focused. Sussman [Sussman, 1977b] introduced a new descriptive mechamsm

which he calls slices, to combine the notion of equivalence with identification of parameters.

Armed with appropriate slrces an automatic analysis procedure using Propagatlon of
Constraints can be used to assign the component values in a circuit. Sussman describes
'techmques of formation, notation, and use of slices and how they originate in the topologlcal
design process. We beheve that slices will be an -important concept in program
u’nc'lerstnnding. ' | ; ' -
_ We have also made some progress on the problems of programmmg Aided by
the earhez works of Brian Smlth & Carl Hewitt [Hewitt and Smith 1975] and Aki Yonezawa
[Yonezawa 1976b], Charles Rich and Howard E. Shrobe [Rich & Shrobe 1976] have desngned'
and partially 'implemented a LISP programnﬁer’s apprentice, an interactive programming
system to be used by an expert programmer in the design, implementation, and maintenance
~of large, complex programs. Their system is based on three forms of program descnptlon

(i) defmmon of structured data objects, their parts properties, and relations between them,

(i) input- output specification of the behavior of program segments, and (iii) a hrerarchlcal'
representation of the mtemal structure of programs (plans) Their maJor theoretical
contribution is a representatlon for program plans which includes data flow, control flow,

and also goal subgoal, prerequisite, and other dependency relatlonshlps between the
segments of a program. Plans are utilized in the apprentice both for describing partrcular
programs, and also in the compilation of a knowledge base of more abstract knowledge
about programmmg, such as the concept of a loop and its various specralrzatlons such as
search loops and .enumeration loops. Rich and Shrobe also lmplemented a prototype

Progmmming Viewed as .. : ' 33; ARic/:,Slzro.be,Walers,.S.’ussman,He'witt

reasomng module, which can verify the correctness of plans, ‘and a module whlch performs
data and control flow analysis for LISP code. '

Richard Waters [Waters 1976,1977] is bu:ldmg a system which, when completed
w:ll be able to understand mathematical FORTRAN programs such as those in the IBM
Scientific Subroutme Package While Rich and Shrobe’s work has been geared towards a - '
general framework for program understanding, Waters has engaged in the complementary
task of testing that framework within a particular probtem domain. Furthermore Waters.
has pushed ahead on the problem of plan recognition, using the correspondence between
plan types and patterns of data and control flow to assess which plan is being used in a
particular program. Waters has also characterized the teleological structure of each plan
type so that the deductive part of a verification system can be given strong guidance and
thereby prevented from doing much useless computation.

Comparison with Other Work |
. E N ! ! !

Our research takes an engmeerlng approach to the problem of programming.
Central to this approach is the use of plans as abstractnons capturing most of the knowledge
~commonly used by programmers. Organizing our work around a library of commonly used
plans allows us to attack programming from a macroscopic viewpoint. Plans are intended to
‘bea repre:entatnon of programming know!edge that a programmer finds comfortable to use.
For. example using the filtered accumulation Ioop plan to analyze the intersection program
leads to an explanation that is very close to how many programmers themselves describe
‘such a program. We have placed emphasis on identifying those abstractions which allow
practicing program engineers to manage the Complexity they have to deal with.

Mathematics of Programs
: ;

Many researchers have worked on an attempt to reduce the problem of
programming to a problem in mathematics. This work has led to development of
mathematical foundations for the semantics of programs. The various semantic theories
have led to the development of techniques for the verification of propertles of programs and
synthesis of. programs. '

Programming Viewed as .. 34 Rich,S hrobe,Waters,Sussman, H ewitt

An_axiomatic semantics of programs was first developed by Robert Floyd (Floyd,
' lq87 1971] and extended by C.A.R. Hoare [Hoare, 1969). Vaughan Pratt [Pratt 1976] has -
recently tightened the foundations of the Floyd-Hoare system by providing it with a model.
In Pratt’s model programs denote binary relations on environment states. Pratt has derived
interesting computabnhty results about such Ioglcs

The Floyd- -Hoare method is to assocxate axioms with each prlmmve of a
programming language which specifies how that primitive affects the state of the
computation environment. For example, an. assignment statement can be described by an
axiom which states that after a is assigned to x, the new value of x is a; and furthermore
- that if P(x) is true before the assignment, then after the assignment there exists a value for
whlch P is true namely the old value of x. Thls can be written as follows: '

P(){x « a) APy & x =2

This axiomatic semantics can be used in a techmque for verification of propertles
of pxognams leen a set of predicates beheved to be true before a. program starts execution,
one can apply the axioms for each primitive in the program in turn, leadmg to a set of
updated pledlcates for each exit point of the program. These are then introduced into an

ynmphcatxon whose consequent clause is a pledlcate expressing those condmons which are
supposed to hold after the program completes lts execution. If this implication can be shown
to be valid, then the program is said to be pamally correct (ie. if the program terminates,
then the consequent is true).

- Hoare’s formulation of this method actually works in the opposxte dlrectlon “he
begms with predicates which express the desired terminal conditions and passes them
backwards over the program primitives. This leads to an lmphcatlon that the initial
- conditions imply some complex set of condltlons resulting from passing the termmal
conditions backward. Successful verification systems of this type have been described by
King [1969), Deutsch [1973] and Igarashi et al. [1973]. An important extension has been
made by Wegbnelt (1976, 1973], who introduced a technique for generating loop mvarlants.

The Floyd- -Hoare axiomatic tradition has spawned many descendents. Manna
_and Waldmget (1974] have developed a logic of programs which makes it possible to dlscuss
termination of a ‘program along with the Floyd-Hoare argument of partial correctness.
Pratt's dynamic logic [Pratt 1976] [Litvintchouk & Pratt 1977] is claimed to subsume most
existing first-order logics of programs that mampulate their environment.

Progmmming Viewed as .. 35 Riclz,Slzrobe,Watef.f,S ussman, H ewitt

. An alternate semantic tradition was started by Scott [1972). In Scott"s denotational
~ semantics, a mathematical function is constructed as the meanmg of each program Building
on the work of Scott, R. Milner developed a logic for computable functions, LCF, based on
the theory of the typed lambda calculus, and augmented by a powerful induction principle
closely related to McCarthy'’s recursion induction [1963). R. Milner and R. Weyhrauch (1972]
have used LCI‘ to fon mulate and prove the correctness of a small compiler.

More 1ecently, McCarthy and Cartwright have formalized the behavior of
recursive programs as formulas of first-order logic [personal communication -- Hew;tt]

Our fundamental differences with the mathematical approach to the problems of
p:ognmmmg is that it starts from the atomic elements of the domain, the programming
language pnmmv’es, and then tries to relate their behavxor to that of an elaborate program.
Such a method is in principle possible, but the complexity of the interactions render such a
direct link from language primitives to gross program behavior as intractable as a direct
link from quantum physics to biochemistry. Thus we have concentrated on a hierarchy of
description, using plans to describe interactions on each level.

Thls is not to imply that those interested in the mathematical description of
programming have not recognized the pitfalls inherent in an overly mlCI’OSCOPIC approach. -
Indeed, C.AR. Hoare has attempted to integrate the natural hierarchy of subroutines and
data into his methods. In his axiomatic definition of the programming language PASCAL
(with N. Wirth (1973)) Hoare includes a special set of axioms for procedure definition and
invocation. In addition, his axioms for programs with complex data types [1972] make it
possible to prove correctness properties of programs which involve complex data B
abstractions -- but this approach has not yet been able to reconcile the use of such high- levelv
abstractions with the existence of mutable, recursnvely defined, possibly shared structures
such as LISP lists. Suzuki [1976] has extended the Floyd-Hoare methodology to deal with .
some programs with side effects on complex data structures, but his methods lose the poWei’
of the data abstractions by construction of intractably large expressions representmg the
:equences of <|de effects.

We believe that the essence of the dlfflcult)' is the lack of a clearly deﬂned concept B
of the plan of a program. The plan includes not only abstractions of the structure of the
program under consideration but also commentary describing the teleology -- how the
- programmer maps the parts of the program to the roles they must play in the design. This
~information is not part of the program, but it is necessary to make effective use of the almost .
hierarchical structure of the program as a guide to its analysis. Basu and Mlsra [1975 1976]

' changes in the analycls

Programming Viewed as .. 1 36 B Rich,S hrobe,W aters,Sussman, H ewitt

have made a step in thls direction by ldentxfymg typrcal loops for which the loop invariant

is already known, thus making the verification process more direct. Gerhart [Gerhart 1975a]

has also characterized typical programs for which the proof is already known Her work
relies on syntactic templates which match the surface structure of the source code, thereby

'achrevmg less generalrty than do plan types. But she uses program transformatlons to

regain some of the lost generality.

jT Schwartz [1977] goes even further He makes a strong argument for the
inherent mfeasrblhty of verifying the correctness of arbitrarily large programs by the flat
Floyd-Hoare techniques. Instead, he is proposing to construct a library of proved root
programs which represent the "fundamental and essentially mdecomposable elements of

~algorithmic technique”, and a library of proved constructors by which already proved
_'program: can be combined to produce proved compound programs. This idea is very

strong, but it enforces a strict hierarchical structure on a programmer which-limits his abrhty

‘to create cleverly engmeered systems. Many powerful new techniques are invented through

debugging of wrong but almost-right ideas. We are concerned with giving the programmer
tools to help him act effectively with creatnvnty. We do not want to provide him with a
certain set of "certified" ideas out of which all other ideas must be constructed.

~One ploblem recognized early in attempting to describe programs is that there are

often <everal closely related ways to code the same program For example, as demonstrated
by Paterson and Hewitt (1970] and Strong [1971] recursive programs can be recoded as loops. -
It is clearly useful to catalogue and categorize these and similar transformations, as has been’_ '

done by Darlington and Burstall [1973] and Gerhart [1975b). We also expect. to make use of

-transformatrons in understandmg programs, applying them at the plan level rather than
'dnectly to the surface structure of the code in some particular programmmg Ianguage

An 1mportant way our approach differs from the work reviewed above in that we
are almmg at engmeermg analysis rather than proving of selected properties of programs.
We require that our kind of analysis must produce results that a programmer can '

- understand. Our kind of analysis must be robust in that even partially completed analysis’

of the kind we propose to study can be of use to an engineer, and small changes in the
program plan (as may occur in normal program maintenance) should only cause small

Programming V iewed as .. 37 ' Riclz,Sh_robe;thers,Suss.man,Hewitt

Mb,dern Progra mhving Languages and Structured Programming

The ptoblem of programming has also been attacked by buxldmg hlgh levelv
languapes The idea is that some of the difficulties of programming stem from the
requirement that the programmer not only speclfy the result to be obtained, but also the
means for obtammg it in an efficient manner.

J.T. Schwartz a pioneer of this apptroach says it this way [Schwartz 1973} "One
may cay that programmmg is optimization, and that mathematics is what programmmg
becomes when ‘we forget optimization and program in the manner appropriate for an
mﬁmrely fa<t machme with infinite amounts of memory." But the primitives of
programming languages, by contrast to the primitives of the physical sciences, have no claim
to fundamental status. Engineers are interested in the description of artifacts in extrlnslc
terms. Pnogxammmg languages instead provide intrinsic forms which are extrmsxca"y
ﬂexnble a FOR construct may be used to express both searching and enumeration: plans.
‘Others who work in programming languages are more concerned with an engmeermg
approach in which efficiency is of the essence. The question is how one can construct a
system which ‘gives the programmer the control over the engineering tradeoffs which he
‘needs to construct efficient programs while aﬂowmg him to think at a high level of
abstraction most of the time; thus insulating him from the details of the machine, and the
details of his data representatlon ' '

An important goal of research on programmmg language design has been the
construction of languages which encourage the construction of modular programs by
: pxovndmg appropriate language constructs. SIMULA-67 [Birtwistle et. al. 1973] was a
vmaJor breakthrough in this approach. It introduced the concept of a CLASS. This enables
some of the data and procedural aspects of computational objects to be umfied into a single
_concept.

CLU [Liskov, et. al. 1977), and ALPHARD [Wulf, et. al. 1974) have built on
this idea. The CLU group has concentrated on the issues of efficiently xmplementmg data
abstractions, and on simplifying the CLASS concept. The' ALPHARD group has
concentrated on providing the techniques for verifying that such programs meet thelr
specifications, building on the work of Hoare. Both CLU and ALPHARD have iteration
statements that capture some of the structure of the enumeration loop plans discussed earher

- in this paper. More general incremental generation structures have been developed in the

stream concept of Landin; the lazy evaluation schemes of Wadsworth, Vuillemin; Morris
and Henderson; Friedman and Wise; and in the sequence concept of PLASMA.

Programming Viewed as ... 38 Rich,Shrobe,Waters,Sussman, H ewitt

Languages for specnfymg the behavior of programs are the basis for

commumcatxon between the lmplementor ofa module and the users. Zilles [1975) and Guttag

(1975] have developed formal descriptive system called Data Algebras for describing the
‘behavior of immutable data abstractions. Yonezawa [1977] has developed conceptual
representations for specifying objects whose behavior can change with time. Liskov and
Berzins [1077] have written an excellent survey. of program specification techniques.

A major idea which runs ‘through both structured programming and automatic

pxogrammmg work is hierarchical stepwise refinement. As Dijkstra [1976] points out, top-

down refinement is best thought of as procedural abstraction. A program can be vxewed as
~a composition of solutions to sub- -problems, each of which in turn has a similar
decomposition. Thus a program can be viewed from many levels of abstraction. However,
this principle has often been interpreted in an extremely rigid way which ends up

proscribing certain syntactic forms, such as GOTO. This overly rigid interpretation of

hierarchical refinement totally isolates the different levels and does not allow for multiple

purposes of a single block of code. Yet such optimization is an rmportant part of program

engineer lng In allowing mathematical elegance to take precedence over normal human
engrneermg methodology, this interpretation of structured programmmg moves away from
our goal of a human centered model of understanding.

The Knowledge-Based Approach

For us the notion of hierarchy is only a starting point, a means to an end. We are
more concerned with cataloguing and classifying the standard building blocks and
commonly used abstractions. Knuth ' [Knuth, 1968] has compiled many of these standard
programming techniques and given analyzes of their behavior. What we call a "plan
library” is ‘something along these lines, although we will capture a level of generality lackmg
in Knuth’s compilation. For example, instances of the filtered accumulation loop plan
appear in Knuth as many different programs Of course, we also seek to incorporate this

knowledge in a computer system which understands programs a goal which Knuth has not
set. :

- Early efforts to use a catalogue of specxﬁc programmmg knowledge mclude
PROTOSYSTEM-1 [Ruth, 1976b,1976c], and Ruth’s program analyzer [Ruth 19’73 1976a]
- PROTOSYSTEM-I is an attempt to use expert knowledge to synthesize extremely el‘fluent
file and data manipulations for business applications. It pastes together modules customized

for a partlcular application. The IBM System 3 Application Customizer is a similar but less |

'Progmmmin'g Viewed as .. - 39 Riclz,Slzrobe,Water.t:Sussman,Hewitt

~ ambitious venture.

Greg Ruth’s program analyzer was an early attempt to capture the notion. of the
plan of a program. He constructed a system which analyzed correct and near-correct PL/I
programs from an introductory programming class, gwmg specific comments about the
nature of the errors detected in the incorrect programs. In Ruth’s system, the class of
expected programs for a given exercise is represented as a formal grammar augmented with
global switches which control conditional expansions. This grammar is then used in a
: combmatlon of top-down, bottom- -up, and heuristic-based parsing in order to recognize

pamcuhr prog:ams ' ‘ |

Ruth’s work has two fundamental shortcommgs Flrst his analysis of programs
does not include any form of specnﬁcatlon There is no explicit statement of what a program
is attempting to achieve, or what any of the subparts do individually. Thus Ruth’s analysns‘
never really captures the teleologncal structure of a program.

Further more, even if input-output specrﬂcauons were given, parse trees derlved
from a formal grammar are inadequate for representing many important forms of
teleological structure. Ruth's explanatlon of the purpose of a given action in a program is
limited to an upward trace through the non- terminal nodes dominating the action in the
program's parse tree. Tree structure is adequate to represent goal-subgoal relationships
(achleve links), but does not make a crucial distinction between steps that just happen to
prececle each other and actual prerequisite hnks Furthermore, the restriction to tree-
structured analysxs precludes one program acuon from having two different purposes; or
put another way, it precludes overlappmg the actlons which implement distinct modules at a
higher level of descuptlon ‘ ‘

A large body of machine-usable know!edge about LISP programmlng has been
compiled by Green and Barstow [Green & Barstow, 1975] as part of the PSI automatic
‘programming project [Green, 1976, 1977) at Stanford University. Their codification consists
“of rewrite rules that progressively refine the description of a desired program in a very high
level language “into a correct implementation in LISP. Furthermore, the rules in their
~ generative grammar are annotated with pragmatic information which the PSI system uses o

[(Barstow & Kant, 1976] to select efficient implementations from among all possnble correct
lmplementatlons

Programming Viewed as .. 4 Rich,SArobe, Waters,Sussman, H ewitt

R -)

. As a representation of programming knowledge for use in a programmer’s
,apprentic’e,' the PSI rules suffer from the same two shortcornings as Ruth’s work. 4Bein.g
developed primarily for synthesis rather than analysis or explanation, the PSI rules provide
no representation of the teleological structure of the resulting prograni other than a hietory
of the rule dpplications. Furthermore, the existing rule library includes only rules for
hierarchical refinement. Program refinements which overlap module boundaries are not
included in Green and Barstow's current theory. '

Manna and Waldinger [1975] use a mixture of programming knowledge and
’mathematlcal formalism to perform program synthesis. They specify a program’s desired ‘
behavior by input and output predicates. The intended goal is reduced by loglcal
mampulanons They have developed addmonal mechanisms for the consistent handling of |
conjunctive goals. The synthesis process involves the formation of inductive goals which are
satisfied by the construction of recursive procedures. They have written an excellent survey ’
of synthesm techmques [Manna and Waldinger 1977].

Robert Balzer et. al. [1974) has identified the four major phases of Automatic |
‘Programming as being: Problem Acqulsition Process Transformation, Model Verification,
and Automatic Coding. He proposes to investigate whether systems that 1mplement this
paradigm can be built to converse with experts [businessmen, doctors, englneers etc.]- who
_can not program to automatlcally produce programs in their domain of expertise. The
extent to which this will be possible within the foreseeable future is unknown. We are
workmg on a rather different problem our goal is to construct a programers apprentlce
which can aid expert programmers in constructmg large public software systems in such a
~way that they will be easier to write, debug, and modify. Furthermore there must be a
substantial reason to believe that the programs will behave as contracted. The success of
our prolect is not dependent on the success of the Automatic Programming pl’OJECtS Indeed,
it seems likely that substantial progress is necessary on the programming apprentice problem
~before Automatic Programming can progress past a certain pomt Of course partial
successes or useful techniques that are developed for automatic programming stand a good '
chance of bemg useful in our project.

Programming Viewed as .. = 4l Rich,S hrobe,W aters,Sussman, H ewitt

Programming SyStem Tools

‘ There a large number of tools curreqtly in use to aid programmers. They mclude
editors, debuggets tracers, statistic gathermg packages, spelling correctors and cross
xefelencmg schemes. Probably the most compt‘ehensxve and best integrated systems are the ‘
Progxammmg Assistant of Warren Teitelman [Teitelman 1977] and the M.LT. LISP machine

[Greenblatt et. al. 1977]. Currently such systems have no' knowledge of the plans,

- specifications, or teleology of programs and thus are severely limited in the aid they can give
to the programmers. We propose to remedy this deficiency by the development of a
programmer’s apprentice.

Acknowledgments

We would like to thank Mark Mlller and Marvin Mmsky for their extensive help
in the development of this document. Discussions with Jon Doyle, Johan De Kleer, Guy
Steele Drew McDermott and Marilyn Matz were critical to solidifying our 1deas Ira
'Gold<tem Mike Der touzos, and Patrick Winston also made useful suggestions.

Progr'arnmi71 gV ivez_qed as .. 12 Rich,S Izrobe,Water.é,S ussmdn,H ewitt
Bibiiograpiry '

Balzer R. lQ73 Automatlc Programming Institute Technical Memo, Umversnty of Southern ’
- California / Information Sciences Institute, Los Angeles, Cal.

Balier' R. et. al lq74 Domzun lndependent Automatrc Programmmg, ISI/RR-73- H'
Umversnty of Southern California (March 1974)

,Barstow David 1977, Automatxc Construcuon of Algorlthms and Data Structuxes PhD '
The<15, Stanford Umversrty, September 1977,

B Barstow David and Kant Elaine 1976, Observatlons on The Interactlon of Codmg and

’ Efﬂcrency Knowledge in the PSI Program Synthesm System”, Proceedlngs of The |

Second Internatlonal ‘Conference on Software Engmeering, San Francrsco Cahforma
‘October 1976, pp. 19 31

Basu S. & Misra, J. 1975 Provmg Loop Programs”, IEEE Trans on Software Engmeenng'
~ Vol. 1 Number 1, March 1975. '

Basu S. & Mrsra J. 1976, "Some Classes of Naturally ‘Provable Programs Second
' International Conference on Software Engmeermg, pp 400-406, Oct. 1976. '

Bauer M. 1_975 "A Basis for the Acqu:smon of Procedures from Protocols Fourtn
' Internatlonaljomt Conf. on AL, USSR '

~ Birtwistle, G.M; Dahl, Ole- -Johan; Myhrhaug, B, and Nygaard K. 1973 'SIMULA
- _BEGIN. Auerbach. 1973 |

.Boyer R.S..& Moore, Js.. 1975 "Provmg Theorems About LISP Functlons" jACM vol 22A
- no. |, january 1075

Brown AL 1977 Ouahtatlve Knowledge Causal Reasoning, and the Locahzatlon of B
' Fallures MIT. Artlfxcral Intelhgence Laboratory Technical Report 362, March 1977

Burctall R. M. 1974, "Program Proving. As Hand Simulatron and A Lnttle Inducuon ‘
Proceedmgs of IFIP Conference 1974.

: Pr’og"rq'ﬁimi,ng Viewed as 43 Rich,S hrobe,W aters,Sussman, H ewitt -
Burstall R. M. 1969 "Proving Propertres of Programs by Structural Inductron Comput }l’
“vol. 12, pp. 4-8 :

Burstall, R. M. 1972 "Some Techmques for Proving Properties of Programs Whrch Alter.
" Data Structures Machrne Inteﬂrgence 7, Edinburgh University Press.

Dahl OJ Drjkstra E., And Hoare C. A R. 1972 Structured Programmrng, Academrc Press
IQ72

- Darlmgton J. and Burstall R.M. 1973 "A System Which Automatrcally Improves Programs |
' - Third Internatronal Joint Conf. on A, Stanford U.’

' Darlrngton jared L. 1973 "Automatrc Program Synthesrs in Second- Order Logrc" Third'
) Internatronal _]omt Conf. on A, Stanford U.

Deutsch, L..P. 1973, An Interactive Program Verrfrer PhD. Thesis Universrty of Cahfornia -
at Berkeley, june I97‘X

Dijkstra, E.W'. '197'6, A Discipline of Programming, Prentice;Hall,'Englewood Cliffs, Nj 19‘76' :

Del(leer Johan 1976, "Local Methods for Localization of Faults in Electromc Circuits"
‘MIT. Artificial Intellrgence Laboratory Memo 394

14

DeKleor)ohan 1977 A Theory of Plans for Electromc Crrcurts MIT Artrfrcrai Intellrgence
Laboratory Workmg Paper 144, May 1977

DeKIPer , J., Doyle, J, Steele G. & Sussman, G.J. "AMORD: Explrcrt Control of Reasonrng . |
- Proceedings of the Symposium on Artificial Intelligence and Programmmg '
[anguages August 1977.

Domea Gouge V., Huet G, Kahn, G., Lang, B, and Levy, JJ. 1975 "A Structure- Orrented N
Program Edrtor A First Step Towards Computer Assisted Programmrng" Report IH
Instrtut de Recherche en Informatrque et Automatique, France.

Doyle Jon 1977, Truth Maintenance Systems for Problem So!vmg, MIT Artificial |
' Intelligence Laboratory M.S. Thesis May 1977. Also to appear as M.LT. Artrfrcral ‘
Intellrgence Laboratory Technical Report 419, 1977.

Progn'z,mming 14 ie;ued as .. ‘ 44 Riclz,Shrobe,Wat-ers,Susmian,H ewitt

- Floyd R. W. 1967 ' Assrgnmg Meaning to Programs Mathematical Aspects of Computer

~ Science. J.T. Schwartz (ed.) vol 19, Am." Math. Soc. pp. 19-32. Provndence Rhode
Istand. :

Floyd, R.W. 1971 ';Toward Interactive Design of Correct Programs”, IFIP, 1971.
- Gerhart,S. L. 1975a Knowledge About Programs: A Model and Case Study”, SIGPLANA o
,Notlce.s,. Vol. 10, Num. 6, Proceedmgs of the International Conference on Rehable» "

Software.

" Gerha"rt S.L. 1975b "Correctness-Preserving Program Transformatlons" Proc of 2nd Symp |
on Pnncrples of Programming Languages, Palo Alto. '

X German S. & Wegbrert B. 1975 "A Synthesnzer of Inductive Assernons" IEEE Transacuons \
- on. Software Engineering Vol. 1 Num 1, March 1975.

Goldttem Ira 1974 Understandmg Snmple Picture Prog;rams MIT Artiﬁc:al Intelllgence _
Laboratory Technical Report 294, September 1974 ’ '

Goldetem Ira 19‘76 The Computer As Coach" MIT Artificial Intelhgence Laboratory‘
~ Memo 389, December 1976.

'Gotdqtem EP and Miller, M.L. 1076 "Structured Planning and Debuggmg, A ngunstlc
Theory of Des:gn" MIT’ Al Lab Memo 387. December, 1976.

2 Gre’en G.C. 1976, “The Design of The PSI Program Synthesis System”, Proceedings of The
' "~ Second Internatnonal Conference on Software Engineering, San Francisco, October
1976 pp 4 - 18.

" Green G.C. 1977 "A Summary of The PSI Program Synthesns System Proceedmgs of The |
' Fifth_International. Joint Conferencer on__ Artificial Intelhgence, Cambrldge,' '
Massachusetts, August 1977, pp. 380 - ‘38l. |

» Green G. C & Barstow D.R. "Some Rules for the Automatlc Synthesrs of Programs" I}CAI- 'b
4 TbthI USSR, September 1975.

'..Guttag, j V. l()75, “The Specification and Application to Programmmg of Abstract Data
Types Techmcal Report CSRG-59. University of Toronto September 1975.

. ngmmng l_/iewed as .. . 45 Rich,Shrobe,’Waters,SdSsman,Hew;’tt

Hewntt Carl 1972, Descrlptlon and Theoretical Analys:s (Usmg Schemata) of PLANNER A
Language For Provmg Theorems and Manipulating Models in_a Robot, MIT o

 Artificial Intelhgence Laboratory Technical Report TR- 258 Aprll 1972.

Hew:tt C. & Smlth B.C." 1975, "Towards A Programming Apprentlce IEEE Transactlons on _ -

- Software Engmeering, Vol SE-1 No. I, March 1975,

‘ Hoate C AR 1969, "An Axiomatic Basm for Computer Programmmg Comm. ACM, vol. _ o

12, number 10, October 1969, pp. 576- 580583

_Hoaxe CAR |97l "Proof of A Program Find" Comm. ACM, vol. 14, number 1, January ,

lQ7I pp. 39- 4‘3

Hoate C AR. 1972 "Proof of Correctness of Data Representatlons" Acta Informatlca 14, pp
27] 281 ' ‘ ‘

‘ Hoaxe CAR. and Wirth, N. 1973 "An Axiomatic Definition of the Programmmg Language | 3

PASCAL", Acta Informatica, 2,4, PP- 335-355.

Igaxashl S., London R and Luckham D. 1973, Automatlc Program Venﬁcatlon I A Loglcal
Basxs and Its Implementation, Stanford AIM-200, May 1973,

Kant, Ev "The Selecnon of Effluent Implementations for A ngh Level Language ‘

Proceedmgs of the Symposium on Artificial Intelhgence and Programming -
Languages August 1977

Katz, SM., and Manna, Z. 1973, "A Heuristic Approach to Program Venﬁcatlon Thlrd B
Intmnauonal Joint Conf. on AL, Stanford U. ' |

. Katz, S, & Manna, Z. 19'76 "Loglcal Analysis of Programs”, Commumcatlons of the ACM

Vol 19 Num 4 pp 188-206 April 1976.

- King,'_]. 1969, A Proéranﬁ Veriﬁer, Car,negie Mellon Univ.érsity',' 1969.

King, J.C. 1971 "Proving Programs to be Correct”, IEEE Trans. on Computers, ‘04’20,711, -

Nov. 1971.

, ng?, _].C; 1976) "Symbolic Execution aod‘Progr.am Testing”, 'Comm.v of the AC‘M,__v]uly,AVol. B

Programming Viewed as .. v‘ 46 Rich,Shrobe,W aters,Sussman, Hewitt

19, No. 1, p. 285,

" Knuth, DE 1968 The Art of COmputer Programming, Vol I>, Addison-Wés'ely.

Liskov, B. 1974, "A Note on CLU", MIT/Computatlon Structures Group Memo 112,
MIT/LCS, November 1974.

Liskov B Snyder, Alan; Atklnson Russell; and Schaffert, - Craig; 1977, "Abstraction
Mechanlsms in CLU", Communications of the ACM, August 1977, pp. 564 - 576.

Liskov, B. and Berzins, V. "An Appra;sal of Program Speaﬂcatnons" MIT Computatxon‘ ’
~ Stzucture< Group Memo 141-1. April 1977

Liskov, B. and Zilles S. 1974 ° Programmmg with Abstract Data Types", Proc. of Conf on ,
Very High Level Languages SIGPLAN Notices, Vol 9, No. 4.

l LISkO\I B. & leles SN. 1975 "Specification Technlques for Data Abstractlons, IEEE‘ |
' Transactions on Software Engmeermg Vol. SE-1 No. 1, March 1975, '

| thvmtchouk S.D. and Pratt, V.R, 1977 A Proof—Checker for Dynamlc Loglc MIT AI Memo
" 429 June 1977

London R.1975 "A View of Program Verification”, ACM SIGPLAN Notices, Vol IO No
6, Proc. of International Conf. on Reliable Software. ‘

Long.’W.j. 1977 ;'A Prograrn'Wr_iter" MIT/LCS/TR-107, November 1977 (Ph D. Thesns)

Manna Z and Pnueh A. 1974 'Axiomatic Approach to Total Correctness of Prognams in
 Acta Informatica 2, pp. 253- -263, 1974. '

Manna Z. and Waldmger R. 1975, "Knowledge and Reasoning in Program Synthesns
Artificial Intelhgence 8, pp- 175-208. :

_MaJma 7. and 'Waldinger R. 1976, "Is ’sometime’ sometimes better than alw‘ays?'

Intermittent assertions in proving program correctness” in Proc. 2nd Int Conf. on

. Software Engineering, October 1976,

- Manna, Z. and Waldinger; R. 1977, Synthesis: Dreams => Programs, Stanford Research

Progmmniing Viewed as ' 4'7 Rich',S,lzrobe,Waters,S u’s.‘tm'a'n,ﬁewitt

) Insti'tute’Techn‘ica'l Note 156, Novemb_er 1977,

McCarthy J. 1963, Towards a mathematlcal science of computatlon ' Proc. IFIP Congressb'v _
62, pp 91-28, Amsterdam North Holland.

McCanthy, J and Hayes, P. 1969 "Some Philosophical Problems from the Standpomt of
Artnﬂcral Intelligence”, Machine Intelligence 4, American Elsevier, N Y.

, McDermott Drew Vmcent 1976 FIexnblhty and Emcnency in a’ Computer Program for
Des:gmng Circuits”, MIT PhD. - Thesis, September 1976.

' Mrkelsons M 1975 Computer Assxsted Application Deﬁmtlon Proc. of 2nd ACM Symp
' of Pnnclples of Programmmgs Languages Palo Alto.

’Mnllen M. L. and Goldctem 1P. 1976a "SPADE A Grammar Based Edltor For Plannmg '
o “and Debuggmg Programs MIT Al Lab Memo 386. December 1976

Mtller M. L. and Goldstem IP. 1977a, Structured Planning and Debuggmg" UCAI -717.
‘ August 1977. . :

Miller, ML and Goldstein, I-P-'1'9;77b "Problem Solving Grammars as Formal Toots for
. Il1tell‘igent CAI" ACM77. October, 1977, '

Minsky, M., "Form and Content in Computer Scrence" JACM 17, No.’ 2, April 1970 pp- 197-'
- 215, 1970 ACM Tummg Lecture

Moore, J.S. 1974, "Innoducmg PROG inta the PURE LISP Theorem Prover" Xerox PARC
Report CSL 74-3.

‘Moone Robext Carter 1975, Reacomng From Incomplete Knowledge In A Procedural -
Deductlon System, MIT/AI TR 347 December 1975,

Morris, J. H. & Wegbrert B. 1977, "Subgoal Induction”, Communications of the ACM Vol.
200 Num 4 pp. 209- 222 April 1977,

~ Patrnas, D.L. 1972 "A Techmque for Software Modu!e Specification thh Examples" CACM
' Vol. 15, No

Programmin g‘V iewed as ... 48 Rich,Shrobe,Waters,Sussman, H 'ewi'tt_

Patenson M. and Hewrtt C. 1970 "Comparative Schematology Conference Record ACM
‘ Conference on Concurrent Systems and Parallel Computatton (1970)

Pratt, V.IIS‘)‘JB, Semantrcal ‘Considerations on Floyd Hoare Logic", MIT/LCS/TR 168
September 1976; also in Proc. 17th Ann. IEEE Symp. on Foundations of Comp
» pp- 109-121, 1976,

Rich, C 1977, Plan Recognition In A Programmers Apprentrce" MIT/AI Working Paper'
147, May l97’7

Rich C. and ﬁhrobe H. 1976, An Inmal Report On A LISP Programmers Apprentlceb"
MIT/AI/TR ‘3"74 December 1976,

'Ruth Gregoty 1973, Analysls of Algorrthm Implementatlons MIT Phd Thesis Project -
MAC Technical Report 130.

Ruth, _Gr'egory 1976a, "Intelligent Program Analysis”, Artificial Intelligence 7, Spring 1976, Pp-
65 - 85. - | o

~ Ruth, Gregory 1976b, Protosystem I An Automatlc Programmmg System Prototype" TM-
72, MIT Laboratory for Computer Science, 1976 (also to appear in the proceedmgs of(.
the 1978 NCC in abbrevrated form). :

"R»uth' Gregory 1976c, Automatlc Desngn of Data Processmg Systems 23rd ACM
Symposrum on Principles of Programming Languages 1976. ' |

.Sacetdotn Earl D. 1975, "The Non-Linear Nature of Plans” Stanford Research Instltute AI »l
Group Technical Note 101,

SaCercloti, Earl D. 1975a, "A Structure ,for Plans and Behaviot", SRI Technical Note 109. "
: Schwartz jT 1973, On Pro,qrammmg, An Interim Report on the SETL Prolect Installment

I, Generahtres Courant Instrtute of Mathematical Sciences, New York Unlversxty,_
February 1973. '

’Schwartz J.T. 1977 "On Correct Program Technology in Courant Computer Sclence” -
' Report #12, Septembet 1977. :

Programming V tewed as ... ' : 49 Rich,S hrobe,Waters,Sussman, Hewitt

Scott, D. 1972 - "Lattice Theory, Data Types and Semantrcs, in Formal Semantlcs of
Plogrammmg Lang‘uages Rustin ed, Prentlce Hall, p. 65.

Shaw, D Swartout, W., and Green C. 1975 "Inferring LISP Programs from Examples ,

Fourth International jonnt Conf. on AL, USSR.

Shrobe Howard E. 1Q78 "Plan Verification in A Programmers Apprentice M. IT Artlfmal‘» |
Intelhgence Laboratory Workmg Paper « 158, january 1978.

Siklossky, L. and Sykes D. 1975 'Automatic Program Synthesis from Example Problems ’
Fourth Internatxonal Joint Conf. on AL, USSR. "

ﬁprtzen J & Wegbrert B. 1975, "The Verification and Synthesrs of Data Structures Acta
. Informa“uca 4, 1975.

Stallman, R:chard and Sussman G. j 1977 "Forward Reasoning and Dependency Dlrected
Backtracking In A System for Computer Alded Circuit Analysis”, Artlflcxal
Intelhgence Journal, October 1977.

s 'Steele Guy L. 1977, "Debunkmg the Expensnve Procedure Call Myth Proceedmgs of

- ACM- 77 Octobel 1977.

‘Stnong HR. IQ7O Translatmg Recursion Equations mto Flow Charts, Reports RC 2834

(M'nch IC!7O) and RC 28h9 (Aprll 1970), IBM Yorktown Helghts

Sussman GJ. 1973, A Computatlonal Model of Skill Acqursmon MIT Department of_*‘ ”

Mathematncs Ph.D. Thesis; M.LT. Artificial Intelligence Laboratory Technical Report

297, August 1973; A_Computer Model of Skill Acqulsmon New York ~ American |
Elsiver 1975. : :

o Snssman, GJ 1977, "Electrical Design- A Problem for Artificial Intelligence Research”,

Proceedmgs of The Fifth International Joint Conference on Artrﬁcral Intelhgence
Cambrldge Massachusetts August 1977,

Sussman, G. J lq77b "§L~ICFS- At The Boundary Between Analysis and Synthesis" M.LT.

Artificial Intelligence Laboratory Memo 433, July 1977. (Also to appear in The
Proceedmgc of The IFIP Working Conference on Artuflcm Intelligence and Pattern' '
Recop nition in Computel Alded Design in 1978.) - ’

- Programming lfiezt;ed as ... T K0 ‘ Rt‘clz,Slzrobe,Wdters,.Sussmdn,_H_ew’itt

Sussman G J. and Stallman thhard 1975, "Heuristic Techniques in Computer Alded
' Cncurt Analysrs JEEE Transactrons on Clrcurts and Systems, Vol CAS-22, No 1,
. Nove_mber 1975.

»‘,Suz'uki N 1976 Automatnc Verlﬂcatlon of Programs wrth Complex Data Structures

Stanford AIM-279, February 1976.

Teltclman w. 197'7 ‘A Dlsplay Oriented Programmers Assistant” IjCAI -71. August 1977

'Waldmgex R.and Levntt K.N. 1974 "Reasoning About Programs" Artificial Intelhgence 5,

pp- 2% e,

Waldmger Richard |975», 'Achieving Several Goals Slmultaneously“ Stanford Research'

- Instrtute AL Group Technical Note 107.

Waters, RC 1976, "A System for Understanding Mathematrcal FORTRAN Programs

M. LT. Attificial Intelligence Laboratory Memo 368, August 1976

Waters, ‘R.C. 1977, "A Meth’od, Based on Plans, for Understandihg How a Loop imﬁle‘tﬁents ’

a Computation”, M.LT. Artificial Intelligence Laboratory Working Paper ISQ, July
977, e - _- .

Wegbreit, B. 1973, HBUHSth Methods for Mechamcally Derwing Inductive Asseruons
Thnd Internatlonal Joint Conf. on AL, Stanford U.

Wegbrelt B. 1974, The Synthesrs of Loop Predicates”, Communications of The ACM Vol_
17, pp 102-112, Feb. 1974.

'Wegbreit,' B. 1976, "Constructive Methods In Program Verification", Xerox 'Palo'_AIto‘-

Research Center CSL-76-2, July 1976.

Wivlczy-nski D. 197 "A Process Elaboration Formalism for Writing and Analyzmg"
Programs U. of S. Cal. Informatlon Sciences Inst., ISI/RR 75- 35

Wmomad Teuy 1973 "Breakmg the Complexity Barrier Again” Proceedmgs of the ACM
SIGIR- S]GPLAN Interface Meetmg Nov. 1973. ‘

' qulf; W.A. 1974, v"ALPHARD: Towards a Language to Support Structured Progr'amming",'

* Programming Viewed as .. b Riclz,Slzrobe,Watebrrs,sussmc'z‘n',H'eibiit

o Carhe‘gie Mellon University Dept. of Comp. Sci., April 1974.

Yonezawa, A. 1975 Meta Evaluatlon of Actors With Side Effects" MIT/AI Workmg Paper

ol June 1975.

Yonezawa, Aki 1976a "Meta Evaluation for Verlﬁcatxon and Analysis of Actor Programs
Draft paper, MIT Al Lab. |

Yonezawa, A. 1976a, "Symbolic-Evaluation As An Ald To Program Synthesns" MIT/AI |
7 Wokag Paper 124, Apm 1976.

: Yonezawa A 1976b, "Symbolic Evaluatxon Using Conceptual Representatlons For Programs

‘With Side- Effects" MIT/AT Memo 399, December 1976.

Yonezawa A 1077 'Verification and specification Techniques for Parallel Programs baed on
: Me«age Pasmg Semantics”. M.LT. PhD. December 1977.

- Aleles S. 19‘75, “Abstract Specmcatlon for Data Types", IBM Research Laboratory, San jose

‘California, 1975.

