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Introduction

Many procedurally-oriented probiem solving systems can be viewed as performing

‘a mrxture of computation and deduction, with much of the computation serving to decide
what deductions should be made. This results in bits and pieces of deductions being strewn
throughout the program text and execution. (I am indebted to Drew McDermott for this
imagery.) This paper describes a problem solver subsystem called a truth maintenance
- system which collects and maintains these bits of deductions. Automatic functions of the
__truth maintenance system then use these pieces of "proofs” to-consistently update a data base
. of program beliefs and to perform a powerful form of backtracking called dependency-
directed backtrackmg

Truth maintenance systems record and maintain proofs. The proofs are made up N
Cof lustlﬁcanon connecting data structures called nodes. Nodes will typically represent
assertions, rules, or other program beliefs. ‘Nodes' may have several justifications, each of
which represents a different method of deriving belief in the node Some nodes may be
designated to be hypotheses For each node, the truth maintenance system computes
whether or not belief in the node is justified by the existence of a non-crrcular proof from
the basic hypotheses and the set of recorded justifications. The set ot‘ such non-crrcular
proofs is recorded as the well-founded support of the beheved nodes '

- When the truth maintenance system is given a new Justrfxcatron to record, it
checks to see if the new justification can be used to provide well-founded support for some
‘currently unsupported node. If so, the node is marked as believed, and the new Justrflcatron
Is attached to the node as its well-founded support. Prevrously exrstrng Justrﬁcatlons which
connect the newly Justmed node to other nodes may now allow well- -founded support for
some of these other nodes to be- derlved To do this, the process of truth maintenance is
‘invoked. 'This consists of scannmg from the newly justified node through the recorded
o justifications to check for any other nodes which can be supphed with proofs.

“Because their knowledge is incornplete’ prot;lern'solvers must frequently make
assumptrons for the sake of argument in order to proceed. Such assumptions take the form -

of non-monotomc 1usttf1catrons in the truth maintenance system This type of Justtftcatron is
used to make a proof of a node Wthh is based in part on the nonexrstence of proofs for




some other node. The term "non- monotonic” means that new proofs’ can mvahdate prevnous :
proofs. This is in contrast to the normal property of systems of mathemancal logic in which
~the validity of a proof is not affected by the addition of new axioms. For example, non-
monotonic justifications can be used in a way analogous to the use of the THNOT
primitive of Micro-PLANNER by basing belief in a node representxng a statement P on the
lack of a proof for the node representing the statement ~P. If a proof of ~P is subsequentiy
discovered, the process of truth maintenance will be invoked to undo the existing proof of P
and of any nodes based on belief in P.

- Representation of Knowledge about Belief

A node may have several Justlflcatnons for belief. Each of these Justmcatlon may
be consndered a predncate of other nodes. The node is beheved if at least one of these
, Justlﬁcatxons is valid. The conditions for validity of justifications are described below. We'
say that a node which is believed is in, and that a node wnthout a valid justification is out.
The distinction between in and out is not that of true and false. The former denote
conditions of knowledge about reasons for behef the latter, belief in a plece of knowledge
Cori its negat:on

‘ Two basic forms of Justmcatxons sufﬂce The first is the support hst Justlﬂcatlon, ,
' whrch is of the form '

' (AND (IN <znl|st>) (DUT <outlist>)).

A support-hst justification is valid if each node in its znhst is in, and each node in its outlist

s out. A support-list justification can be used to represent several types of deductions.

When both the inlist and outlist are empty, the justification forms a premise Justrfncatnon A
premise Justification IS always. vahd and so the node it justifies will always be believed.
Normal deductxons are represented by support-list justifications with empty outlists. These
'.represent monotonic deducuons of the justified node from the belief in the nodes of the
mhst Assumgnon s are nodes ‘whose well- founded support is a support-list justification with
a nonempty outlist. ‘These justifications can be interpreted by viewing the nodes of the
inlist as the reasons for making the - assumption; the nodes of the outlist represent the
specmc mcompleteness of knowledge authorlzing the assumptlon :




~ The second form of justification is the conditional- proof 1ust|f|catlon which is of
: the form- '
(cP <consequent> <znhgpotheses> <outhypotheses>).
" A node JustlfIEd by such a justification represents an 1mphcatlon which is derived by a
* conditional proof of the consequent node from the hypothesis nodes. A justification of this
form is valid if the consequent node is in whenever each node of the inhypotheses is in and
~ each node of the outhypotheses is out. Except in a few esoteric uses, the set of outhypotheses
is empty. Standard conditional proofs in natural deduction systems specify a single set of
7 _hypotheses which correspond to our inhypotheses. The truth mamtenance system requires
~that the set of hypotheses be divided into two disjoint subsets, since nodes may be derived
‘both from some nodes being in and other nodes being out. Some natural deduction systems ’
also allow a set of consequents in a conditional proof. For efftcnency, condmonal proofs are
: restricted in a truth maintenance system to a single consequent node

Default Assumptions

Support-list and conditional proof justifications can be employed to represent,_-
more complex relatnonshrps between beliefs. - The relationships presented below describe
choice structures, which are useful in exphcrtly programming parts of the control structure |
,_of the problem solver into dependency refationships between control assertions. In these, the
_ Justlﬁcatlons are arranged to select one default or alternative from a set of alternatives.

~ This choice is backtrackable That is, if a contradiction is derived which depends on the

‘choice, the dependency-dlrected backtrackmg mechanism will cause a new alternative to be -
chosen from the set of altematlves Other choice structures (for example, equivalence class
representative selectors) whlch are not backtrackable wm not be descrrbed here. (See [Doyle
1978]) L ' B

_ One very common technique used in- problem solvmg systems is to specnfy a
default choxce for the value of some quantity. This choxce is ‘made thh the mtent of
- ovemdmg it if either a good reason is found for using some other value, or if maklng the
- default choice leads to an mconsxstency In the case of a binary choice, such a default -
assumption can be represented by believing a node if the node representmg its negation is
out. When the default is chosen from a set of alternattves the foliowmg generahzatton of




the binziry case is used. Let {FI, w ,F } be the set of the nodes which represent each of
- the possible values of the choice. Let G be the node which represents the reason for making
~ the default assumptlon Then F; may be made the default chonce by prov:dmg it thh the
- justification
. (AND (IN G) (OUT Fyp... F”F o] voe Fl)
_,If no mformatlon about the choice exists, there will be no reasons for believing any of the
alternatives except F; Thus F; will be in and each of the other alternatives will be out. If
some other alternatlve receives a valid justification from.other sources, that alternatlve will
_ become in. This will mvahdate the support of F; and F; will become out. If a
| »'contradlctxon is derxved from F,, the dependency-dlrected backtrackmg mechanism will
recognize that F; is an assumptlon by means of its dependence on the other alternatives
being out. (See the section on dependency-dlrected backtracking for an explanatlon of this.)
- The backtracker may then justify one of the other alternatives at random, causmg F;to go
out: In effect, backtracking will cause the removal of the default choice from the set of
‘alternatives, and will set up a new default assumptlon structure from the remammg
alternatlves '

) If the complete set of alternatlves from whlch the default assumpt:on is selected is
,not known @ priori, but is to be dlscovered piecemeal, a slightly different structure is
necessary. The followmg structure allows an extensible set of alternatives underlymg the
default assumption. Such extensibility is necessary, for example, when specrfymg a number
as a default due to the large set of possxble alternatives. For cases like this the following
structure may be used instead. Retammg the above notatxon, let ~F; be a new node which

will represent the negatxon of Fi.. We will arrange for F; to be beheved if ~F; cannot be -

A proven, and will set up Justxflcatlons so that if Fj is dlstlnct from F, Fj will imply ~F,.
This is done by glvmg F; the justification ’ ' S

o (AND (IN G) (OUT ~F)),

and by glvmg ~F a Justlfxcatlon of the form '

. (AND (IN FJ] ouT)

.for each alternatlve F‘ dlstmct from F;. As before, F; will be assumed if no reasons for

using any other alternative exist. Furthermore, new alternatlves can be added to the set

umply by glvmg ~F a new justification correspondmg to the new alternative. This
structure for default assumptlons will behave as did the fixed structure in the case of an
vunselected alternatlve recelvmg mdependent support Backtrackmg, however has a




- different effect If a contradlcuon is derived from the default assumptlon supported by this
structure, ~F w:ll be justified so as to make F; become out. If this happens, no alternative
will be selected to take the place of the default assumption. The extensible structure
‘requires an external mechanism to construct a new default assumptlon whenever the default
is ruled out. ' ' '

P

Sets of Alternatives

The default assumptxon structures allow a chorce from a set of alternatives, but do
f not specxfy thé order in which new alternatives are to be tried if the initial choice is wrong.
Such adv:ce can be embedded in a linear ordering on the set of alternatlves Lmearly-
ordered sets of alternatives are useful whenever heuristic information is available for
makmg a choice. One way such s:tuatlons arise is by using recommendation lists in MICI‘O"
PLANNER. Another use is in heunstxcally choosing the value of some quantnty. such as
the state of a transxstor or the day of the week for a meetmg

, CIf it s certam that rejected alternatlves are rejected permanently and wnll never

again be believed, the linear ordering on the set of alternatives can -be. specified by a
controlled sequence of default assumptions. This can be 1mplemented in a ladder-hke
structure of Justlflcatlons by Justifying each F; with

‘ (AND (IN G ~F -]} (OUT ~F; )) .
where G is the reason for the set of alternatives. The ﬁrst alternatlve Fy wnll be selected
'mlttally As alternatlves are ruled out by their negattons being Justmed the next
alternatlve in the hst wm be assumed

_ If prevrously reJected alternatives can be mdependently rejustxfned a more
- complicated structure is necessary. This type of set of alternatives can be descrlbed by the
followmg Justifications. For each alternative A;, three new nodes should be created. These
new nodes are PA; (meanmg "A; is a possible alternative"), NSA; (meanmg A is not the
“selected alternatlve") and ROA (meanmg A is a ruled-out alternatxve ). Each PAi should
be justified with the reason for including 4; in the set of alternatives. Each ROAi is left
un Justxﬁed Each 4; and NSA; should be given Justlftcatlons as follows:




A (AND (IN PA; NS, ... NSA_) UT ROA)) |
o {or: (AND «<is alternative> <no better is selected> <is not ruled out>)}
:'_N_SAl.: (AND (IN) (DUT,PAL.)) , (AND (IN ROA) (0UT)) '

- {or: (OR <is not a valid alternatives <is ruled out>)}

With this structure, processes can independently rule in or rule out an alternative by |
justifying the appropriate alternative node or ruled-out-alternative node. '

~ This structure is also extensible. New alternatives may be added simply by
constructing the appropriate justifications as above. These additions are restricted to
‘ éppearing at the end of the order. That is, new alternatives cannot be spliced into the

. linear order between two previously inserted alternatives.

Dep‘end'ency-Dir'vected .Backtracking

.The truth mé»intenance system supports a powéffu_l' form of baéktrackirig calletjl
~dependency-directed backtracking. - This method of backtracking is used to réstoré
’ ;onsisiency of belief_s when assumptions based on incorﬁplete knowledge lead to
. contradictions. Consistency is restbred by using the contradiction to derive new knowledge.
“This new knowledge then fills in some of the incompletenesses which previously supported
one or more assumed beliefs. This causes the truth maintenance system to retract belief in
* those assumptions. S | o o |

‘To signal the exisfence of an inconsisténcy. nodes may be declared to be
cohtradictions. Cbntradiétions, as 'beliefs._ have the semantics of false. During truth
' Amaint}enénce,.nodes for which support is derived are checked to see if they are marked as
contradictions. The derivation of belief in a contradiction indicates the'inconsistency of the
~ set of beliefs used in deriving the contradiction. To restore the (apparent) consistency of the
" set of ‘b,eh'efs, the truth. maintenance systerﬁ notifies the dependency-directed backtracker of

the contradiction. ' | - o |

. The backtracking process' co‘nsiSts of tracingvbackward‘s thrbugh the well-founded
support of the contradiction node to find the @auses of the contradiction. The backtracker




presumes that all inconsistencies are due to the presence of assumptions based on incomplete
knowledge. It therefore expects that all monotonically justified beliefs are correct and
searches only for the set of assumpnons underlying the contradiction.

- Belief in at Ieast one of the assumptions underlying the contradiction must be
retracted to remove the contradiction. This is accomplished by adding knowledge where
knowledge was lacking before; that is, by providing a new justification for belief in one of
‘the nodes that supported the assumption by being out. The justification used is that the

assumption, when combined with the other assumptions, provides support for the

~contradiction. Since other behefs besides the assumptions may have played a role in
deriving the contradiction, the inconsistency of the set of assumptions is valid only under
certain circumstances -- those in which the combination of the set of assumptions together
‘with those other beliefs provndes support for the contradiction. This is the statement of a -
conditional proof. That is, the justification for not believing a particular assumptlon is that
the other assumptxons are believed, and that if all the assumptlons are believed, the
contradiction follows. Thus the justification used to retract an ‘assumption is the conditional
proof of the contradlctnon from the complete set of assumptions, together with belief in the
other assumptlons : '
In more detall the first step of the backtrackmg process is the recognmon of an
-~ inconsistency through derivation of well-founded support for'a contradiction ‘node. The
 well-founded support of the contradiction node is traced backwards to collect the set of
assumptions. supporting the contradiction. The third step of backtrackmg is the
summarlzatlon of the: mconsxstency of the set of assumptions underlying the contradiction.
Suppose that S = {A, B, .. , Z}is the set of inconsistent assumptions. The backtracker then
Creates a ogood, a new node stgnifymg that § is mconsxstent The nogood represents the
fact that S |
o AA...AZ:falsé,

or alternativel.y, that

- . o "~ (AA.. /\Z) ,
'S is called the nogood-se of the nogood The summanzatlon is accomphshed by Jusufymg. )
~ the nogood with a conditional proof of the contradiction relative to the set of assumptions. "
In this way, the inconsistency of the set of assumptions is recorded as a node which will be
beheved even after the contradlctlon has been dlsposed of by the retraction of somev




~ that is,
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hypothesis.

The last step of backtrackmg uses the summarlzed cause of the contradlctlon
represented by the nogood, to both retract one of the inconsistent assumptions and to
prevent future contradictions for the same reasons. This is accomphshed by deriving new
justifications  for the out nodes underlying the inconsistent assumptions. The  new

' justifications will cause one of these out facts to become in, thereby causing one of the

offensive assumptions to become out. This step is reminiscent of the justification of results
on the basis of the occurrence of contradictions in reasoning by reductio ad absurdum.

These new ' justifications are constructed as follows. Let the’ inconsisient
assumptions be 4 o Ap . Let Sip + Sy be the out nodes of the justification supporting
belief in the assumptxon A To effect the retraction of one of the assumptlons, Ai' justify
S;1 w1th the predlcate B ' S |
(AND (IN NGAI s 00 AlIAl+I LU A ) (UUT sz LU Sik))

(AND (IN. <nogood> <other assumptlons mvolved>)
(OUT <other denials of this assumption>) )

This will ensure that the Justification supportlng A; by means of thls set of out nodes will
no’ longer be valid whenever the nogood (NG) and the other assumptions are believed.
This process is repeated for each assumption in the inconsistent set. If the assumptions and
the contradiction are' still believed following this, the backtracking process is repeated
Backtracking halts when the contradlctlon becomes out, or when ‘no assumptions can be

found underlymg the contradlctlon

Dependency-directed backtracking improves on traditional backtrackmg’
mechamsms in two ways; irrelevant assumptions are ignored, since the set of inconsistent
beliefs is determined by tracing dependencies; and the cause of the _contradiction is

_ summanzed in terms of this set of inconsistent assumptions as a conditional proof which
remains vahd after the contradxcnon ltself has been removed.
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Truth Maintenance Mechanisms

~ Consider the situation in which the node F represents the assertion
o | ' =+ XV) &),
’ GArepresents .
_ "= X 1),
and H represents
"=V 3"
If both F and G are in, then belief in H can be justified by (AND (IN F G) (DUT)) This '
Justification will cause H to become in. If G subsequently becomes out due to changing
’hypotheses and if H becomes in by some other justification, then G can be justified by (AND
(IN F H) (0UT)). Suppose the justification supporting belief in H then becomes invalid.
If the decision to believe a node is based on a simple evaluation of each of the justifications
_ of the node then both G and H will be left in. This happens because the two' Justlfncatlons ,

form circular proofs for-G and H in terms of each other. These Justlﬂcatrons are mutually o

satlsfactory if F, G and H are in.

Thxs example pomts out one of the ma]or concerns in truth mamtenance
processing; the avordance of using circular proofs- to support beliefs. This is the reason
why well founded support is. mamtamed ' '

_ Essentrally three different kmds of c:rcularltles ‘which can arise in purported
‘proofs. The first and most common is a cnrculanty in whxch all nodes involved can be

" ’ consndered out consxstently with their justifications. Such circularities arise routinely

through equrvalences and snmultaneous constramts The above algebra example falls into
this class of cnrculanty ' ’ '

The second type of ctrculanty is one in which at least one of the nodes mvolved '
must be in. An example is that of two nodes F and G, such that F has an justification of
_ the form (AND (IN) (DUT G)), and G has an justification of the form (AND (IN) (ouT
F)). Here elther F must be in and G out, or G must be in and F out. This type of

cnrculanty arises in defining some types of sets of alternatlves Other types of ordered
alternative structures avoid such circularities. ‘
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The third form of circularity whtch can arise is the unsatisfiable cnrculanty In

this type of circularity, no assignment of support-statuses to nodes is consistent with their V
justifications. An example of such a ctrculanty is a node F with the justification (AND
(IN)  (OUT F)). This justification implies that F is in if and only if F is out.
Unsatisfiable circularities are bugs, indicating a misorganization of the knowledge of the
program using the truth maintenance system. Unsatisfiable circularities are violations of
- the semantics of in and out, which can be interpreted as meaning that the lack of reasons
for belief in a node is equivalent to the existence of reasons for belief in the node. (It has
~_been my experience that such circularities are most commonly caused by confusmg the
concepts of in and our with those of true and false. For instance, the above example could
be produced by this misinterpretation as an attempt to assume belief in the node F by
gwmg it the justification (AND (IN) (UUT F))) ' '

' ‘

~ The detalls of the truth maintenance process will not be pursued here. Many
detalls of this, and of several other processes such as the procedure for dealing with
conditional proofs. are' discussed in [Doyle 1978). David McAllester [1977] has developed an
'attractxve alternate data structure for the proofs maintained by the truth maintenance
system. This allows several algorithms to be combined into one slmphﬁed process.

_Applications .

There are severa! apphcatnons of truth mamtenance systems in problem solvnng
systems The. most immediate application is that of mamtammg the consistency of a data

~ base in the presence of assumptions based on mcomplete knowledge. (See [Stallman and
‘.Sussman 1977]) o ' '

Truth mamtenance systems also apply to systems which generate explanatlons
Problem solvers which -record the reasons for their beliefs can use these records to justify =
their actions and behefs to a human (or otherwxse) user (See [Sussman and Stallman 1975
Sta"man and Sussman 1977, Doyie 1978].) ' ‘

A crucial aspect of the problem of explanatlon is that levels of detail must be
'separated in -the explanattons produced by hlerarchlcal systems A truth mamtenance
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system can be used to automatically perform such a str’uctuﬁng of arguments. The method
used for this is that of appliying tonditional p'roofs to factor unwanted low-level deta'ils from.
explanations. When such factoring is done at each level, a hierarchical structure emergés in
explanations. (See [Doyle 1978] for more details.) - '

Another application of truth maintenance systems is in modelling. Most
modelling systems specify the effects of actions onlyA in terms of the primary effects of the
actions. Many secondary or derived effects remain unspecified. By recording the reasons
~ for derived knowledge, a modelling system can employ a truth maintenance system in
updétinﬁg”thé derived portions of its model. (See [Fikes 1975, Hayes 1975, McDermott 1977,
London 1977) = . L ' . ' :

, " The final applicétion we mention is that of control. A truth maintenance system
~ supplies the powerful _méthod of dependency-directed backtracking for use in controlling the
~ actions take_n'by a problem solver. Another use is in separating the reasons for control
_ decisions from the reasons for beliefs derived in '_response td those control decisions. (See
- [Staliman and Sussman' 1977, Doyle 1978, de Kleer, Doyle, Steele and Sussman 1977, de Kleer, ,

. Doyle, Rich, Steele and Sussman 1978]))
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