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Abstract: To choose their actions, reasoning programs must be able to draw conclusions
from limited information and subsequently revise their beliefs when discoveries invalidate
" previous assumptions. A truth maintenance system is a problem solver subsystem for
performing these functions by recording and maintaining the reasons for program beliefs.
These recorded reasons are useful in constructing explanations of program actions in
“responsible” programs, and in guiding the course of action of a problem solver. This
paper describes the structure of a truth maintenance system, methods for encoding control
structures in patterns of reasons for beliefs, and the method of dependency-directed
_backtmckmg

“Fannie and John Hertz Foundation Fellow

- This rescarch was conducted at the Artificial Tntelligence Laboratory of. the Massachusetts

Institute of Technology. Support for the Laboratory's artificial intelligence research is
- provided in part by the Advanced Research Projects Agency of the Departrnent of Defense
- under Office of Naval Research contract numbex N000I4-75-C- 0643 and in part by NSF
ant MCS77-04828. :

¢) Massachusetts Institute of
Technology 1978




Acknowledgements: 1 thank Gerald Jay Sussman, Richard M. Stallman, Guy L. Steele Jr.,
- Johan de Kleer, Drew McDermott, David McAllester, Scott Fahlman, Howard Shrobe,
Charles Rich, Maulyn Matz, Beth l.evin, Jim Stansfield, Mitchell Marcus, and Richard
Brown for ideas, comments and advice, and the Fannie and John Hertz Foundation for
supporting my research with a graduate fellowship.

This paper will appear in the Proceedings of the. Fourth Workshop on Automatic

Deduction, Austin, Texas, January 1979.  An earlier version of the paper wili appear in

Artificial lntcl/zge'me a MIT Perspective, P. H. Winston and R. H. Brown, editors, MIT
Press, 1979.

Contents

~ Introduction 3
Representation of Knowledge about Belief : _ 4
Encoding Control Structures in Sets of_)ustxflcanons ' .
Default Assumptions ' 6
Sets of Alternatives ) N , : 8
Dependency-Directed Baanackmo _ ' . 9
Truth Maintenance Mechanisms - : ' S b
Discussion S ' . - o : ' 14
References - ‘ o ' B 15

‘




conflicts.

Introduction

One important problem faced by reasoning programs is the need to make decisions based
on himited information. T his problem arises both in programs interacting with an external
environment and in contemplative programs searching a data base for an answer to some
question. There are two consequences of this need to predict; the program must have some
way to make decisions based on himited information, and the program must have some way
to revise its beliefs if these decisions are found to be in error. The first of these abilities is
provided by. utilizing episternic classifications of possible program beliefs so that conclusions
may be drawn from the lack of belief as well as from other beliefs. The second ability is in
general a very complex problem for which no complete solutions are known. (See Quine
and Ullian [1978) and Rescher [1964] for surveys of the problem.) However, the simpler
problem of revising beliefs based on limited information is solvable by recording the
reasons for each program belief. These records can be used to find the set of extant beliefs
by determining which beliefs have valid reasons. These recorded reasons also are useful in
resolving conflicts that arise when limited knowledge gives rise to incompatible conclusions.

This paper describes a mechanization of these abilities, embodied in a general purpose

problem solver subsyqem called a truth maintenance system.

- A truth maintenance system (TMS) records and maintains pxoofs of p:ogram
beliefs. It mampulyates two data structures; nodes, which represent beliefs, and justifications,
which represent reasons for beliefs. The fundamental actions the TMS can be called upon

-to perform are the creation of a new node, to which the problem solving program can

attach the statement of a belief, and the addition of a new justification to a node, to

Tepresent assertion of the belief associated with the node by some rule or procedure in the

problem solver.” The addition of new justifications may invoke the automatic procedure of
truth maintenance to make any revisions necessary in the set of beliefs. The TMS revises
beliefs by using the recorded justifications to compute non- -circular p:oofs of beliefs from
basic hypotheses. These proofs distinguish one or more justifications as the well-founded
support for each believed node, and are used during truth maintenance to determine the set
of belicfs to update by finding those nodes whose well-founded support depends on changed .
beliefs. These proofs allow anothel process, dependency-directed backtracking, to resolve
conflicts by tracing the well-founded supports of conflicting beliefs to remove one of the
assumptions causing the conflict and to make a record used to prevents similar future

The TMS employs a special type of jusnﬁcation called a non- monotam‘c
Jjustification, to draw conclusions based on limited or incomplete know\edge This type of
justification allows belief in a node to be based not only on other beliefs, as occurs in the
standard forms of deduction and zeasomng, but also on lack of belief in certain nodes. For.

-~ example, a node N-1 representing a statement P might be justified on the basis of a lack of

belief in a node N-2 representing the belief ~P. (Distinct nodes are used to represent P and

- ~P.) In this case, the TMS would have N-1 believed as long as N-2 was not believed, and

wewould call N-1 an assumption. (More generally, by assumption we mean any node whose

“well- founded wppont is a non-monotonic Jumflcanon)




. As a small example, suppose an office scheduling program is considering holding
a mecting M on Wednesday. To do this, the program assumes that the meeting is on
Wednesday. The data base of the program includes a rule which draws the conclusion that
due to regular commitments, any meeting on Wednesday must occur at 1.00 PM. However,
the fragment of the schedule for the week constructed so far has something else scheduled
for that time -already, and so another rule in the data base concludes that the day for the

- meeting cannot be Wednesday. These beliefs might be notated as follows:

Node Statement Justification

N-1 - DAY () = LEDNESDAY — (SL () (N-2))
N-2 DAY (M) = WEDNESDAY , A
N-3 TIME(M) =13:008 (SL {R-37 N-1) )

As seei in the above notation fon justifications, each justification consists of two lists. The
meaning of the notation is that the statement depends on each of the nodes in the first list
being believed, and on each of the nodes in the second list not being believed. Since there
is no known justification for N-2, it is not believed. The Justxfxcatlon for N-1 specifies that

- it depends on the lack of belief in N-2, and so N-1 is believed. The justification for N-3
shows that it is believed due to rule R-37 actmg on N-1. When the assumption N-1 is

xe}ected by somie rule,

N-2 DAY(M) « LIEDNESDAY (sL (R-s N-7 N-8) 0)

WhG’Ie N-7 and N-8 |ep:esent the day and time of some other ‘engagement, ‘the TMS will
revise the belicfs so that N- 1 and N-3 are not beheved

ch're.senmtion of K nowledge about Belief

A node may have several justifications, each of which represents a different reason for

“belief in the node. The node is believed if at least one of these justifications is valid. The

conditions for validity of justifications are described below. We say that a node which has
a valid justification is in, and that a node without a valid justification is out. The
distinction between in and out is not that of true and false. The former classification’
denotes conditions of knowledge about reasons for belief; the existence or non-existence of
valid reasons. True and false, on the other hand, classify statements according to truth

~ value mdcpendem of any 1ea<ons for belief. In this way, there can be four states of
- knowledge about a p)OpOUUOI‘I P, corresponding to the node replesentmg P bemg in or out

and the node representing ~P being in or out.
- There are two basic forms of justifications. These are inspired by the‘ typical,

forms of arguments in natural deduction inference systems. A sample proof in such a -
system might be as follows: ‘ ’




Line . Statement Justification . Dependencies

1. AoB V Premise RS
2. BoC Premise - {2l
3. A ' Hypothesis - {31
&, B MP 1,3 {1, 3}
. 5. C NP 2,4 {1,2,3}
G. AsC Oischarge 3,5 1,2}

Each step of the proof has a line humber, a statement, a justification, and the set of line
numbers the statement depends on. Premises and hypotheses depend on themselves, and
other lines depend on the set of premises and hypotheses derived from their justifications.

- The above proof proves A>C from the premises A>B and BoC by hypothesizing A and

concluding C. The assumption A is then discharged to provide the proof of ASC. There are
two effects that justifications can have on the set of dependencies in natural deduction

~ systems; either the justifications can sum the dependencies of the referenced lines (as in line
- 4). or they can subtract the dependencies of some lines from those of other lines (as in line

6). The two types of justifications used in a TMS account for these effects on dependencies.

A suppori-list (SL) justification says that the justified node depends on a set of other nodes,

and thus in effect sums the dependencies of the referenced nodes. A conditional-proof (CP)

© . Jjustification says that the node it justifies depends on the validity of a certain hypothencal

argument, and as in the example above, subtracts the dependencies of some nodes (the
hypotheses of the hypothetical argument) from the deperidencies of others (the conclusion of
the hypothetical argument). These two types of justxflcat:ons can be used ‘to construct a
variety of forms of dependency relationships.
The suppoxt list justification is of the form
(SL <inlist> <outlists>).

A %L-Jusuﬁcatlon is valid if each node in its inlist is in, and each node in its outlist is out.

A SL-justification can be used to 1epxesent several types of deductions. When both the
inlist and outlist are empty, we say the justification forms a  premise justification. A premise
justification is always valid, and so the node it justifies will always be believed. Normal
deductions are represented by support-list justifications with empty outlists. These represent
monotonic deductions of the justified node from belief in the nodes of the inlist.
Assumptions are nodes whose well-founded support is a support-list justification with a

nonempty ouslist.  These justifications can be interpreted by viewing the nodes of the inlist

as comprising the reasons for making the assumption; the nodes of the outlist represent the

_ specific irlcom['»lerénesse"of' krnowledge authorizing the assumption. As will be-clear later, it

is sometimes .convenient to interpret the nodes of the outlist as assertions 1mplymg the
negation of the node justified by the justification.
- The conditional-proof justification takes the form
' (CP <consequent> <inhypotheses> <ou(hgpotheseS\)
A node justified by such a justification represents an implication, whose support is derived

- by a conditional proof of the consequent node from the hypothesis nodes. A justification of
this form is valid if the consequent node is in' whenever (a) each node of the znhypotheses is




in and (beach node of the outhypotheses is out. Except in a few esoteric uses, the set of
outhypotheses is empty. Standard conditional proofs in natural deduction systems specify a
single set of hypotheses, which correspond to our inhypotheses. The truth maintenance
system requires that the set of hypotheses be divided into two disjoint subsets, since nodes
may be denved both from some nodes bemg in and other nodes being out.

Encoding Contml Structures in Scts of Justifications

The use of justifications for recording normal, monotonic deductions is straightforward.
Non-monotonic justifications augment the standard deductive relationships between beliefs
by allowing the encoding of control structures (patterns of assum'ption_s)' into sets of

justifications among nodes. The virtue of such an encoding is that the choices underlying
problem solver actions become exphcit,'thus allowing careful failure analysis. In some cases,
an automatic procedure like dependency-directed backtracking can perform this failure
analysis and set the problem solver onto the next step of its investigation. We describe in
detail two important types of control structures; default assumptions and sets of alternatives.

Default Assumptions

One very common technique used in problem solving systems is to specify a default choice
for the value of some quantity. This choice is made with the intent of overriding it if either
a good reason is found for using some other value, or if making the default choice leads to

an inconsistency. The assumption of the day of the week for a meetmg in the first’ example

- above is such a default assumption.-

In the case of a binary choice, a default assumption can be represented by
behcvmo a node if the node representing its negation is out. 'When the default is chosen
~from a set of alternatives; the following generalization of the binary case is used. - Let
{F] y Fo } be the set of the nodes which represent each of the possible values of the choice.
Let G be a node which represents the reason for making the default -assumption. Then F;

~may be made the default choice by providing it with the jusufxcauon
- (SL (G) (Fyovo FuyFopeee F))o

-If no information about the choice cexists, there will be no reasons for believing any of the
alternatives except 7. Thus F; will be in and each of the other alternatives will be out. If

some other alrematnve receives a vahd justification from other xources that altematlve will
become in.  This will invalidate the support of F,,Aand F; will become out. If a

~contradiction is derived from F;, the dependency-directed backtxackmg mechanism  will
recognize that F; is an assumption by means of its dependence on the other alternatives
beirig out. (See the section on dependency-directed backtracking for an explanation of this.)
- The result of backtracking may be to justify one of the other alternatives, say Fj causmg F;
~to go out. The justification for F ; will be of the form

o GRS (QL <various thmgs> <remé|nders>)




where the remainders are the F's remaining after F; and F; are taken away. In effect,
backtracking will cauise the removal of the default choice with the set of alternatives, and
will set up a new default assumption structure from the remaining alternatives. As a
concrete example, our scheduling program might default a meeting day as follows:

N-1 DAY (1 = MONDAY
N-2 DAY (M) = WEDNESDAY (SL () (N-1 N-3))
N-3 DAY (1) = FRIDAY

—

In this example, Wednesday is assumed to be the day of the meeting M, with Monday and
Friday hemg the alternatives. Wednesday will be the default choice until a valid reason is
:upphed for either Monday or Friday.

If the complete set of alternatives from which the default assumption is to be
chosen cannot be known in advance but must be discovered piecemeal, a slightly different
structure is necessary. This ability to extend the set of alternatives is necessary, for example,
when the default is-a number, due to the large set of possible alternatives. For cases like
. this the following structure may be used instead. Retaining the above notation, let ~F; bea
- new node which will represent the negation of F;. We will arrange for F; to be beheved if
~F; cannot be proven, and will set up JllS[lflCHthl’lS so that if F_] is dxstm;t from F, Fj will
v 1mply ~F Thxs is done by giving F; the justification o :

(SL (G) (~F; )}
and by gnvmg ~F;a Jll‘tlflcatlon of the form
= (SL (FJ) 0
for each altex native F . distinct from F;. As before, F; will be assumed if no reasons for
~using any other alterpative exist. Fuxthexmore new aiternatlves can be added to the set
,sxmply by giving ~F; a new justification corresponding to the new aiternatlve This

- structure fox cefault asmmptlom will behave as did the fixed structure in the case of an

unselected alternative receiving independent support. Dacktracking, however, has a
different effect. If a contradiction is derived from the default assumption suppoxted by the
extensible structure, ~F; will-be justified so as to make F; become out. If this happens, no
alternative will be :e)octecl to"take the place of the default assumption. The extensible
structure requires an external mechanism to construct a new default assumption whenever
the current default is ruled out. For example, a census program might make assumpuons
‘about the numbm of chlldlen in a family as follows




H-CHILORENAF) = 2 (SL ) (N-2))

N-1
N-2 = #-CHILDREN(F) = 2 (5L (N=3) ()
- : : o (5L (N-4) )
{SL (N-5) ))
(5L (N-B) ())
N- #-CHILDREN(F) = -

3

4 ' H-CHILDREN(F) =1
N-5 #-CHILDREN (F) = 3

6 #-CHILDREN(F) =4

" With this system of justifications, N-1 would be believed because no different number of
children is known. If it turns out that the family has 5 children, a new statement would
“have to be made, along with a new justification of N-2 in terms of this new statement.

Scts of Alternatives

The default assumption structures allow a choice from a set of alternatives, but do not
specify the order in which new alternatives are to be tried if the initial choice is wrong.
Such advice sometimes is a linear ordering on the set of alternatives. Linearly ordered sets
of alternatives are useful whenever heuristic information is available for making a chonce'
such as the state of a transistor or the day of the week for a ‘meeting. ‘

If it is certain that rejected alternatives are rejected permanently and will never
azam be believed, the linear ordering on the set of alternatives - can be specified by a.
controlled sequence of default assumptlons This can be lmplemented by justifying each F;
with '

(SL (G ~F;.p) (~F ))

where G is the reason fox the set of alternatives. The first alternative F; wnll be selected
initially.  As cach alternatives is ruled out through its negation being Jumfled the next
alternative in. the list will be a<<umed For example we might have:

N-1  DAY(M) = ' LIEDNESDAY sl () (N-2))
N-2 DAY (M) = WEDNESDAY - .
N-3  DAY(M) = THURSDAY (SL (N-2) (N-4))
N-4 DAY (1) = THURSDAY -

N-5  DAY(M) = - TUESDAY (SL (N-4) 0

This would guide the choxce of day fox the meetmg M to Wednesday. Thursday and
_Tuesday, in that order.

' - If previously 1ejectcd ‘alternatives can be independently rejustified (say by special
case rules correcting a choice made by the backtracking system), a more complicated
Sstructure s necessary.  Such a set of ‘alternatives can be ‘described by the “following
“justifications. For each alternative A, three new nodes should be created. These new nodes




are PA; (meaning "A; is a possible alernative”), NS4, (meaning "4; is not the selected

~alternative”), and ROA4; (nieanmg "Ai i1s a ruled-out alternative"). Each PA; should be

justified with the reason for including A; in the set of alternatives. Each ROA; is left -
unjustified. Each A; and NS A, should be given justifications as follows:
A (SL (PA; NSA; oo NSA; ) (ROA)
NSAz (5L ) (PA))

(5L (ROA; )

Here the justi’ﬁcatien for 'Al- means that 4; is an alternative, no better alternative is selected, .
~and A; is not ruled out. The two justifications for NSA; means that either 4; is not a valid
altematxve or that A, is ruled out. With this structure, processes can mdependemly rule in
or rule out an altel native y__ justifying the appropriate alternative node ar
- ruled-out-alternative node. IR o
‘ This structure is also extensible.” New alternatives may be added simply by
constructing the appropriate justifications as above. These additions are restricted to

appearing at the end of the order. That is, new alternatives cannot be spliced into the
Ime“n order between two plevmusly inserted alternatlves

Dcpendcncy-Dirccted Backtracking

Making assumptions admits the possibility of making errors. When a contradiction or
“other ‘inconsistent state of the data base occurs, the TMS employs a process called
dnprndency-dncctcd backtracking to find and remove incorrect assumptions so as to restore
- consistency. There are several steps involved in dependency-directed backtracking, but first
the inconsistency must somehow be s'ignalled to the TMS, as there is no built-in notion of
inconsistency. This signalling consists of informing the TMS that a node represents an
inconsistency. With this knowledge, the TMS will try to restore consistency whenever the
node coimes in by rejecting enough assumptions to force the node out. Any node may be
marked for such treatment. A node so marked is called a contradiction. ' :
The steps of dependency-directed backtracking are as follows. First, the
well-founded support of the contradiction node is traced backwards to find the set of
assumptions (nodes with a non-monotonic justification as their well-founded support)
underlying the contradiction. Belief in at least one of these assumptions must be retracted
to remove the contradiction. This is done by creating a new justification for one of the out
nodes undcxlymg one of the assumptions. Since the backtracker may be mistaken in its
assignment of blame to that assumption, the justification used to retract the assumption
must indicate the alternatives that were available but not utilized by the backtracker. Thus
the new justification includes (a) the reason why the contradiction occurred and (b) the
other assumptions involved. Thus the second step of the backtracking’ process is to
construct a node recording the reason why the contradiction occurred, and the third step is
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to use this node and the other assumptions in justifying .an out node supporting the
assumption selected for removal.

In more detail, the first step of the backtracking process traces backwards through
the well-founded support of the contradiction node to collect the set of "maximal”
assumptions supporting the contradiction.  Not all assumptions found by tracing the
-~ well-founded support are used; instead, only those assumptions which do not support other
assumptions underlying the contradiction as well. That is, the well-founded support
relationships induce a natural partial-ordering on nodes, where one node is said to be
"lower™ than a second node if the first occurs in the second's well-founded support. The
maximal assumptions are then those assumptions which are maximal in this partial order.

Only this "front line” of assumptions is used because if the reason for revoking a lower-level
Cassumption involves a higher-level assumption, then the removal of the lower-level
~ assumption would cause truth maintenance to remove the higher-level assumption that it
' supports, so the reason for removing the lower-level assumption would not hold up. This
reflects the fact that there may not be enough information to definitely rule out a lower -level
assumption.

' The second :tep summarizes the reason for the contradiction in terms of the set of R
selected assumptions, Let S = {4 J } indicate the set of inconsistent assumptions. The
backtracker then creates a node called a nogoad a new node signifying that S is inconsistent.
Since contradrctxon nodes reaHy xepresent the false statement, the nogood node can be taken
to represent ’
, Ap Ao n Ay > false,
or alternatively, R
S o g ~(ApA N A, .
S is recorded as the nogood st of the nogood. This meanmg for the nogood node is
produced by justifying it with the conditional proof of the contradlctlon node relative to the
assumption uodes, that is, with the justification
@ ' -~ (CP <contradiction node> § ()).
~In this way, the inconsistency of the set of assumptions will be remembered even after the
contradiction has been resolved by the retraction of some hypothesxs
~ The final step is selecting an assumption 4; (the “culprit”) from S and justifying
one of the out nodes listed in its well-founded supporting justification. - (If these underlying
out nodes are thought of as "denials" of the assumption, then this step is much like
reasoning by reductio ad absurdum.) Let NG be the nogood, and let the mconsxstent
esumptxom be A, . /In. Let Dy, .., D, be the out nodes appearing in the justification
B which supports belief in the as sumption A;. This justification for the assumpnon can be

-invalidated by justifying D, with the Justrfrcatlon '

6 S NG Ay s A Apyg e Ay (Dz...Dk)) |
This Jmtrfxcatlon is valid whenever the nogood and other assumptions are believed and the

other "denials” of the culprit are not believed. "If the choice of culprit was in error, then

another contradiction will occur in the future involving D, and by this justification will be
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~led to suspect the remaining assumptions, as well as Dy if there are any other out nodes
listed in its justification. If, by means of other pre\'ioilsly existing justifications, the current
contradiction is still in following the addition of this justification, backtracking is repeated.
Presumably the new invocation of the backtracking process will find that the previous
culprit-is no longer an assumption. Dacktracking halts when the contradiction becomes out,
~or when no assumptions can be found underlying the contradiction.

As an example, consider a program scheduling a meeting, pxeferably at 10 AM in
either room §I2 or 801 Tim might be represented as:

100608 (SL O (N-2)) N

N-1 CTIMEW) =

N-2 TIME (M) = 1000 ,

N-3 ROOI (M) = 813 (SL () (N-4)
N-4 '

ROON (1) = 261

With these justifications, N-1 and N-3 are in, and the other two nodes are out. If some
previously scheduled meeting exists, it might cause this combination of time and room for
: the moctmg to be ruled out by means of a contxadlcuon

N-5 CONTRADICTXDN - -G (N 1 N-3) ())

The dependency- directed'bacl\tr‘acl\ing; system then traces the well- founded support of the
contradiction to find that it depend< on two assumptions, N-1 and N-3, both of which are -
' m«n\.mnl

N-G NOGOOD N-1N-3 ° -~ (CPN-5 (N-1N-3) ()
N-G ROOM(M) =881 (sL (N-BN-1) ()

A nogood node is created which mcans, in accoxdance with form (1) above,

’ o ~(TIME(M) ='1808 A ROOM(M) = 813)

and this nogood is given a justification corresponding to form (2) above. The assumption
N=-3 is <elected arbitrarily as the culprit, and is rejected by providing its only out supporting
node, N- 4, with a justification of the form (3) above. Following this, N-1, N-4, and N-6 are
in, and N-2, N-3, and N-5 are out. N-B, the nogood node, has an always-valid
CP- jmnﬁcatmn since the contradiction node N-5 depends directly on the two assumptions.
N-1 and N-3 without any additional beliefs intervening. If some further consideration
detexmmes that room- 80l cannot be used after aH another contradiction node could be
' c1eated to force a dlffexent choice. ‘

CONTRADICTION - (8L (N-4) ()

N-7
N-8  NOGOODN-1 . - (CPN-7 (N-1) )
N-2 . ’

TINEWM) = 10008 = (SL (N-8) ()




Tracing lmckwalds from N- 7 lthlWh N- 4 N-B, and N-1, the backtracker finds that the
contradiction depends on only one assumption, N-1. The nogood node N-8 is created and
justified with a CP-justification which n effect is equivalent to the SL-justification

(5L (N-B) (),
since the nowood N-6 contributes to the contradiction but does not ltself depend on the
assumption N-1. The revocation of the assumption N-1 removes N-5, the previous
objection to the choice of room, so at the close of this bit of decision making N 2, N-3, N-6,
and N-8 are in,"and N- 1, N-4, N-5, and N-7 are out.

There are a number  of variations on this particular scheme for
dependency-directed backtracking. All of these variations are great improvements over the
chronological backtracking systems used in classical systems like MICRO-PLANNER and
many early theorem provers. The improvements stem from the non-chronological nature of
dependency-directed backtracking, in which the support relationships rather than the
temporal orderings determine the choices responsible for an error. Another improvement is
that the cause of the contradiction is summarized via a nogood node. This summarization

keeps the system from making the same mistake in the future. Stallman and Sussman [1977)
have shown that these two Amplovements lead to enormous gams in efhcnency over the

chxonologlcal systems.

Truth Maintenahce Mechanisms
Consider the statements:-

F (= (+XY) &)

G (=X1)
H  (=v3).

If both F and G arein, then belief in H can be justified by

{sL (F G) O). :
This justmcatnon will cause H to become in. If G subsequently becomes out due to
changing hypotheses, and if H becomes in by some other justification, then G can be

. justifi'ed by

(SL (F H) 0.
Suppose the Jmtmcanon supporting belief in H then becomes mvahd thus causing the
TMS to reassess the grounds for belief in H. If the decision to believe a node is based on a
simple evaluation of each of the justifications of the node, then both G and H will be left
in, since the two justifications form circular proofs for G and H in terms of each other.
These justifications are mutually satisfactory if - F, G and H are in. This example points
out one of the major concerns in truth maintenance processing; the avoidance of using

~circular proofs to support beliefs. - This is the reason why well- founded support is

maintained.

ERentmlly thlce different kinds of cncuhutxes can arise in purported pxoofs The
fuct 'md most common is a cnculanty in which all nodes involved can, consistently with




their justifications, be taken to be out. Such circularities arise routinely through
equivalences and simultancous constraints, in which many beliefs may be mutually
supporting without any of the beliefs having non-circular reasons for being believed. The

‘above algebra example falls into this class of circularity.

The second type of circularity is one in which at least one of the nodes mvolved
must be in. " An e\ample is that of two nodes F and G, such that F has the justification
(st 0 (61,
and G has the justiflcation
(SL O (F)).
Here cither F must be in and G out, or G must be in and F out. This type of circularity

~arises in defining some sets of- alternatives. erquently other ordered altexnauve structures

can be used to avoid such circularities.
~ The third form of circularity which.can arise is the unsatisfiable cnrculanty In
this type of circularity, no assignment of in or out to nodes is consistent with their
Justmcatlons An ewample of such a circularity is a node F' with the justmcauon
(sL O (F)). :

This Jmtlﬁcatxon lmphes that F is in if.and only if F is out. Unsansf:able cncularmes are.
bugs, indicating a misorganization of the knowledge of the program using the truth
maintenance system. Unsatisfiable circularities are violations of the semantics of in and out,

which cain be interpretéd as meaning that the lack of reasons for belief in a node is-

equuvalcnt to the existence of reasons for belief in the node. (It has been my experience that
such circularities are most commonly caused by confusing the concepts of in and out with
those of 7rue and - false. For instance, the above example could be produced by this.
misinterpretation as an attempt to assume belief in the node F by giving it the justification
(sL O (F)))

In addition to the problems caused by circular proofs the TMS must also handle

“pxoblemc introduced by conditional-proof Justmcauons There are two parts to the

implemented approach.. The validity of CP-justifications is easily checkable only in case the

- consequent and inhypotheses are in and the outhypotheses are out.. This is a rare

circumstance, however, particularly in the case of backtracking in which a nogood node

~Jjustified with.a CP-justification is used to force out the contradiction node appearing as the
~ consequent of the CP-justification. The TMS thus takes the opportunistic and incomplete
_strategy of using CP-justifications to compute SL-justifications which are equivalent in
~terms of the dependencies they specify, but which can be checked for validity at any time.

Specifically, whenever the CP- -justification is- found to be valid, an equivalent

- SL-justification is computed by tracing thxough the well-founded support of the consequent

node of the CP-justification to find the "front line" of nodes which are not in turn

“supported by any of the in or outhypotheses. This set of nodes can be divided into the in

nodes, which form-the inlist of the equivalent SL-justification, and the out nodes, which’
form the outlist of the equivalent SL-justification. The way these sets of nodes are
computed from the well-founded support of the consequent of the CP-justification ensures -
that the consequent will be in whenever the inhypotheses are in, the authypotheses are out, '

and thP nodes of the equmlent SL- Jusuﬂcauon respecuvely in and out.
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The dcrarl: of the truth mamtenance mcchannms will not be pursued here. Many
dermh along with an annotated lmplementatlon are pxesented in [Doyle 1978].

- Discussion

Truth maintenance systems solve part of the belief revision problem, and provide an.
associated mechanism for making assumptions based on limited information. It has long
been recognized that making assu'mptions is a necessary part of Al systems, and many
systems have employed some-mechanism for this purpose. (For example, [Bobrow and
Winograd 1977, de Kleer et al 1977, 1978, Hayes 1973, 1977, Hewitt 1972, Joshi and
Rosenschein 1975, McCarthy 1977, McCarthy and Hayes 1969, McDermott 1974, Minsky 1962,
1975, Reiter 1978, Roberts and Goldstein 1977, Sandewall 1972, Sussman et al. 1971])
Unfortunately, the related problem of belief revision received somewhat less study. Most
work on revising beliefs was done in the framework of backtracking algorithms operating
on rather simple systems of states and actions. The more general problem of revising beliefs:
based on records of deductions has only been examined in more recent work. (See [Cox and
- Pietrzykowski 1976, Doyle 1978, Fikes 1975, Hayes 1975, Katz and Manna 1976, Latombe 1977,
~ London 1978, McAllester 1978, McDermott 1974, 1977, Nevins 1974, Srinivasan 1976, Staliman
and Sussman 1977]) The literature of philosophy and logic contains a large amount of
work on the belief revision problem (see [Quine and Ullian 1978, Rescher 1964]), as well as
“some work on formal methods for making decisions based on limited information. The
history of attempts at formalizing the Al methods for making assumptions is surveyed by
McDermott and Doyle [1978], who also pxesent a mathemancal semantics for what is termed
nen-monotonic logic. ,

Truth maintenance systems lend themselves to othex uses as well as behef revision
and making assumptions. Generating explanations is an .immediate apphcatxon The
~recorded reasons for beliefs can form the basis of an explanation system in "responsible”
pxooxamc [Sussman, personal communication]) which can justify their actions and beliefs to a
user. A crucial aspect of the problem of explanation is that unless care ‘is taken in
structuring the knowledge of the program, the explanations will contain information at
_many levels of detail, thus making the explanation incomprehensible. It is thus important
to try to structure the use of a truth maintenance system so that levels of detail in
~explanations are separated automatically.  Doyle [1978] describes a method by which.
conditional proofs are used to factor unwanted low-level details from explanations. When
- such factoring is done at each level, a hierarchical structure emerges in explanations.

- Truth maintenance systems can be applied to the problem of centrolling problem
solvers in several ways. The simplest method is that of using an automatic procedure like
dependency-directed backtracking for guiding the search. More sophxsncated methods can
be designed which represent contxol decisions as explicit program beliefs, and separate the
reasons for control decisions fr om the reasons for beliefs derived in response to the control
decisions. With such a separation, careful failure and choice analysis routines can examine
the history of the problem solver, and much information can be salvaged from mistakes.
(See [de I\Ieel et al. 1977, Doyle foxthcommg, Stallman and Sussman 19771
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