T

Massachusetts institute of Technology

Artificial Int_elligence Laboratory '

Al Memo 462

A Comparison of PARSIFAL with Augmented Transition Networks

William R. Swartout

' March 1978

- This paper compares Marcus’ parser, PARSIFAL with Woods' Augmented Transition Network (ATN) parser.
In particular, the paper examines the iwo parsers in light of Marcus' Determinism Hypothesis. An
overview of each parser is presented. Following that, the Determinism Hypothesis is examined in detail. A

~ method for ‘transforming the PARSIFAL grammar rules into the ATN formalism is outlined. This

transformation shows some of the fundamental differences between PARSIFAL and ATN parsers, and the
nature of the hypotheses used in PARSIFAL. Finally, the principie of least commitment is proposed as an

alternative to the Determinism' Hypothesis.r ‘

This investigation was supported (in part) by National Institutes of Health Grant No. 1 P41 RR 01096-01
from the Division of Research Resources, - ’ R

(O Massachusetts Institute of
Technology 1978

- 1. An Overview of ATN Parsers

At first glance, an Augmented Transition Network looks much like a finite state machine' the
network has a number of states (or nodes) connected together by arcs. The arcs have tests and actions
associated with them whlch indicate whether or not the arc may be lraversed to a new state and what to
do if the arc is traversed. Indeed, the ATN formalism is similar to a finite state machme, but one which
has been augmented in ihree important ways:

1) Labels on the arcs between states may represent paris of the network as well as just

" Jndividual input words. A recursive mechanism is employed so that networks may be self-
referencing. For example, if the non-terminal symbol NP (noun phrase) appears on an arc,

the arc will be traversed only if there is an accepting. path through the NP network.

Furthermore, traversing the NP neiwork may cause the NP network to recursively re-invoke

itself.

2) Arbitrary tests may be: placed on an arc which musf be satisfied for the arc to be
traversed. :

3) Actions which may be placed on arcs are more extensive than those permltted in finite:
state machines. These actions will be executed if the arc is traversed. These actions are
usually used for building structures. They may also use registers for storing parhally built
structures, flags, word features, and so forth.
The resulting machine has the power of a Turing machine, although its power may be reduced by placing
restrictions on the types of conditions and actions permitted. on arcs [Woods 1972].
1.1 Arc Types

As mentioned above, arcs are directed finks which connect the varlous states of an ATN. Table 1

below, reproduced from [Woods 1972], shows the various types of arcs perrmtted A CAT arc may bel_

iaken if lhe current input -word belongs to the speclfled category. 1 A WRD arc is similar to a CAT are.

except that it checks for specific words. A MEM arc is really just a short-hand notatnon for a number of
WRD arcs. It allows a transmon to be made if the input word is one of a specified list of words A TST.

arc is traversed only if lhe speclfued test is sahsfled All of the above arc types (CAT, WRD, MEM, and

TST) consume a word of the mput siring when they are taken. The other arc types (JUMP PUSH POP

1. Recall that any tests placed on the arc must also be satisfied before the arc may be traversed. A

e AT

and VIR) do not. In fact, the only difference between a JUMP arc and a TST are is that the TST arc
consumes an input word, |

The PUSH and POP arcs are part of the recursive mechanism of the parser. A PUSH arc may be
traversed |f the state it names consumes a substring of the input starimg at the current posmon When a v
PUSH arc is taken, the ATN interpreter is recursively invoked. A POP arc is the way of returning from a
PUSH. It can also be thought of as indicating the acceptance of some subsiring. After the return, the
consumed substring will have been removed from the input. The pre-actio_ns associated with a PUSH arc
indicate actions to be taken before the recursive call is made. Usually, the pre-aclion§ are SENDRs
(described below) used to pass arguments to the lower levél. The VIR 'arc will be described below in

conjunction with the HOLD action,

(WRD <WORD> <TEST> <ACTION>")

(MEM <(WORD*)> <TEST> <ACTION>*)

(CAT <CATEGORY><TEST> <ACTION>*)

(TST <LABEL> <TESTs> <ACTI»UN>') :
(PUSH <STATE> <TEST> <PREACTIONS><ACTION>*)
 (POP <FORM> . <ACTION>*) ‘

{VIR <CATEGORY><TEST»> <ACTION>*)

(JUMP - <STATE> <TEST> <ACTION>*)

Table 1. Types of Arcs?

(SETR <REGISTER><FORM>)
(SENDR <REGISTER><FORM>)
(LIFTR <REGISTER><FORN> <NHERE>)
(HOLD <FORM>)
(TO . <STATE>)
-(SETF <FEATURE> <FORM>)

Table 2. ‘Types of Actions

2. The symbol * is the Kleene star, indicating that that element may be repeated zerrvor more times.

1.2 Actions

Table 2 lists the ditlerent types of actions that are available. SETR sets a register to thevalue of a
form. SENDR and LIFTR are used in cOnjunction with the recursive mechanism. SENDR is similar to SETR,
but rather than setting the register at the current level, it sets the register one level down. LIFTR is the
same except that it sets hlgher-level registers.‘ The "where" part of the LIFTR action is used to specify
at what level the register should be set. SENDR and LIFTR are used for passlng'arguments between

levels. TO is the action which indicates the target state ot‘the transition.

The HOLD action is used together with the VIR arc to deal with what is calied left extraposition in -

generative grammars. This phenomenon occurs when some constituent (usually a noun phrase) of an
embedded constructlon is moved up and to the left in surface structure Woods [1972] gives as an
~ example the sentence, "This is the hat that | told Mary to imd somebody to get a shovel to bury.” The
problem in trying to analyze such constructions with a left-to-nght parser is that when the parser
encounters the constituent, it can't tell where it belongs (because it hasn't parsed that portion of the
sentence yet) even though it may know that the constituent is out ot place. Thls problem was solved by
the development of a hold list. The HOLD action allows the parser to put a cOnstltuent which has been
found out of place on the hold list. As the parser continues to parse the sentence, vt will come acros‘s the

place where the constltuent would have been, had it not been extraposed from its posltton in deep

~structure. A VlR arc taken at this point will retrieve the constituent from the hold list and treat the

'cOnstituent as if it had occurred at the current position.

Burton [1976] mtroduces an addnhonal useful notlon. the feature register. Nlany tests of

grammatlcahty use the features of structured consltuents° determining subject-verb agreement is one .

,example In the original ATN formalism, teatures were only associated w:th words‘ features associated
with structures had to be built mto the structures themselves Feature reglsters allow the separation of

structural mtormatron from teatures, allowmg the grammar to be more perspicuous. The action SETF is

used to set the feature register.

ek AT

. (GETR <REGISTER>)
X .
(GETF <FORM> <FEATURE>)
(BUILDQ <FRAGHENT><REGISTER>)
(LIST <FORM>*)
(APPEND <FORM> <FORM>)
(QUOTE <ARBITRARY STRUCTURE>)

Table 3. Types of Forms

1.3 Forms

Table 3 hsts the types of forms to be described here. GETR is used to retrieve values from
registers. The "where" component may optconalty be used to indicate a register not at the current level.
The meaning of the * form depends upon the context of its use. When used in a WRD or MEM arc or in a
test condition of a JUMP POP or PUSH arc, the value of * is the current mput word. During the actions

of a PUSHVarc, * refers to the result returned by the lower computation. During both the conditions and

actions of a VIR arc, * refers to the thing bemg retrleved from the hold list. GETF is a tunctlon whuch_

‘ returns features of the value of a torm

BUILDQ is a functlon used for building the tree structures which represent the parser's analysts of

. the sentence. The arguments to BUILDQ are a tree structure template with specially marked leaves and a
list of registers. BUILDQ constructs structures by substituting the values of the reglsters for the specially

-marked Ieaves in the template. Woods gives as an-example (BUILDQ (S + (VP + +)) SUBJ V OBJ) which

would produce: .
(S (NP (NPR (JOHN))

(VP (V LIKES) ’
(NP (NF’R HARY)))) '

if the contents of the registers SUBJ, V, and OBJ were (NP (NPR JOHN)), v LlKES), and (NP (NPR

'MARY)), respectlvety Burton [1976] hsts 2 tew add'tlonal torms in his descrlption of an ATN. LIST

APPEND and QUOTE These forms are similar to their counterparts in LISP,

1.3.1 The Backup Mechanism
| Many implementations of ATNs use an automatic backup mechanism. in parsing & sentence, the
parser may find itself in a state where several of the links ieaving that state may be traversed because all
of their tests succeed. If the links are ordered, the parser takes the one with highest .priority; otherwise,
it may choose arbitrarily. Of course, there is no guarantee that the choice it makes is the correct one. 14
the choice is incorrecf, the parser will be blocked at some later time in the parsing process. When this
situation occurs, the parser backs up into the states it has been in previously, trying alternative paths,
until a successfol path is found. -
The process descrlbed above produces a depth-first search of the posslble parses By simulating
~ paraliel processing, it is possible to produce breadth-first search. Whenever there are mulliple'arcs
leaving a node, each of the arcs is traversed by its own processor, and these processors continue to move

through the network Sooner or later, if there Is a correct parse for the input sentence, one of them mll

Afmd it. If we are only mterested in that parse, we can stop the other processors, otherwnse, we can'

contmue to let them run to fmd other possible parses.

2. An Overview of PARSIFAL

in his mtroduchon, Marcus [1978] claims that "all current natural language parsers that are

adequate to cover a wude range of syntactlc constructions operate by simulating non-deterministic

' machmes, either by usmg backtrackmg or by pseudo-parallehsm PARSIFAL, a reaction against thls,

represents an effort to parse English "strictly determlmshcally The concept of strlct deterrmmsm will be

dealt with Iater in the section on the Determinism Hypothesls- th:s section \vlll descrlbe the major A

 mechanisms of the parser.

There are three major components to the PARS_IFAL parser: :

~An active node stack used for holding structures whcle they are bemg completed

-A set of pattern/achon rules organized into packets and used for controliing the analysis
process. ’ . , A : .

=A buffer of finite length. The patterns of the rules are matched against the contents of the
buffer and the words of the input sentence enter through it. The buffer gives the parser a
look-ahead capability.

These elements will be described in detail below.

2.1 The Active Node Stack
| The parseruses ra‘ stack to hold ‘incompte_te constituents while they are being completed. The stack
is thetparser mechanisn’tfor dealing with ttre recursive properties of natural language. The parser pushes
incomplete constituents (or nodes) onto the stack while it is working on that node’s daughters. After a
node is completed, it is popped frotn the stack, and the parser continues to work on the superier node. At
all times, the parser has access to only two nodes on the stack: the bottom ttode (thinking of the stack as
growing downward), also calied the current active node, and the S or NP node closest torthe bottom of the
stack whlch is called the dominating cyclic node, or sometimes just the current cyclic norie. When a
_ node is popped from the stack, it is inserted into the buffer (see below) if it is not attached to 2 node
higher in the stack. | _ 7

| The compteted structure of nodes represents the analysis produced by PARSIFAL, just as the
structures created by BUILDQ are the output of the ATN parser. As with an ATN the grammatvcal
features of a node represent the pnmary grammatucal prOpertles of the constltuent it represents. A

sample structure (from Marcus [1978]) for the sentence " will schedule a meeting.” is shown below:

520
: " NP&47 I

AUX29

WORD112 will

VP22 :
WORD113 schedule
, NPS8 2 meeting
WORD116 .

2.2 The Buffer ,

 Marcus [1978] states that "the constituent butter is really the heart of the grammar mterpreter, it

is the central feature that distinguishes this parser from all others.” The buffer may be thought of as a

7

finite Iirlear list of cells. Each cell may contain one node. In most cases, a buffer length of three is
adequate, but for parsing ooun phrases the buffer is extended to five cells. The parser matches the
patterns of rules against the buffer and uses the buffer to perform look-ahead. Since the length of the
buffer is limited to five cells, the parser may only look ahead at most five celis before leking some action.

There are three actions that the buffer may perform. Read (i) returns the value stored in the ith
cell of the buffer. Delete (i) which deletes lhe item in the ith cell and then shifts all the celis nurﬁbered
higher than i down by one to fill in the gap. Insert (w,) inserts the item w into the ith cell ufter shifting
the contents of the llh and higher-numbered celis up by one to create a gap.

- ‘While the simple buffer presented above is adequate for most constructions, it is convenienl to
introduce an offset mechanism for dealing with noun pharses. This mechanism will cause the index given
to the Read, Insert, and Delete commands to be offset from the begmnmg of the bufler by some amount m.
A stack called the buffer pointer stack is used in conjunction w:lh these offsets. The stack may be -
_ pushed or popped and the offset at lhe bottom of lhe stack (thmkmg of the stack as growmg down) is the

one currently in effecl

23 The c;r‘an5mar Rules

PARSIFAL uses a set of patlern/actlon rules to declde what to do next. The rules are orgonlzed
vmto packets If a packet is active, then the patlerns of the rules in that packel are examined to see
whether the actlon part of the rule should be taken. More than one packet may be active at any time.
Usually, the names of the packets suggest lhetr function. Typical packet names are: PARSE-AUX PARSE-
suBJY, BUILD-AUX and PARSE-VP Rules also have a numencal priority assoclaled with them. At eachﬁ
A point in the parsing process, the highest pnonly rule with a matching pattern is the one execuled3 lf

two or more rules with equal priority match, the parser is lree to choose among them.

3. Marcus suggests that it would be possnble to represent lhe prnonty of a rule by a set of rule pairs that
indicate which rules have priority over others. It might be nec2ssary to use some sort of hierarchy if ‘
some rules are discovered which cannot fit into the global partial ordering imposed by the numerical
priorities of the rules. An example would be a rule whose priority changes dependmg on lhe set of active
ruies. Apparenlly, this suluatton has nol yet arisen.

The pattern of a grammar rule consists of a hst of partlal descriptions of parse nodes. Each partial
description must match for the entire pattern match to succeed. There may be as many as five partial
descriptions in each pattern: one for each of the three buffer positions, and one each for the current
. active 'node and the current cyclic node, the two accessible stack nodes. The descriptions are Boolean

combinations of tests of grammaiical features. It is also possible to check the features of the daughters of
a node using tree walking notation provided by the grammar language.

If there are not enough symbols currenfly in the buffer to match against a pattern, the grammar
mferpreter will automatically place items from the input string into consecutive buffer celis until the
buffer is full enough so that a match may proceed. lnferestmgly, this is the only mechamsm the parser
Vhas for readmg the input string. |

Marcus [1978] lists a number of different types of actions !hat may be explu:lﬂy specified by a

grammar rule:?

‘-Create a new parse node.)

-Insert a specific lexlcal ltem into a specmc buffer cell. For example, when the the parser
recognizes an imperitive it inserts the word "you" into the butfer to serve as the subject.
After doing that, the senfence may be parsed as if it were a normal declarative.

-Attach a newly created node or a node in the buffer to the current active node ‘or the
current cyclic node, causing the grammar interpreter to remove the node from the buffer

-POp the current active node from the sfack. if it is nof yet attached anywhere, |t will be .
inserted into the first position of fhe buffer

-Assugn features to a node in the buffer or to one of the accessible nodes in the stack.

~Activate and deachvaterpackets of rules. |

The actions possible \uithin PARSIFAL's rules are conslderably more constramed fhan those of an
ATN. in particular, the followmg specific resirlctlons (paraphrased here) are mentioned by Marcus‘
~The Value of the buffer cells or the accessible stack nodes may not be set by rule actions.

(Note that the values of the accessible stack nodes do change during rule execution, but
thelr values cannot be set arb;trarlly by a rule action.) : ’

4, Some actions are specified implicitly and will be described !ater.

=No user-defined funtions are aliowed.
=There is no recursion or iteration withiin actions,

=The only siructura building operations in rule actions are a) attaching one node to another,
and b) adding features to a node's feature set.

There are a few subtle actions ihat» should be mentioned. These actions are implicit, that ;ls, they
are not explicitly ordered by the actions of lhé rules, but they oceur indirectly when certain explicit
actions are taken. As mentioned earlier, the reading of the input string symbols into the buffer is an
implicit prlocess".. Sym‘lva;:ls are reaa into the buffer as needed to match the patterns of rules. Another
point invoives the activation and de-activation of rule pickets. While packets may be explicitly activated-
or de-activated By rulab actionﬁ, éackets are tﬁo;lght of as being active with respect to the current active
ndde. Thus, when a new node is Vcreaied, the packets associated with the previous node are no longer
active. Those packet§ will be re-éctivated when the new node is popped off the stack, so that ‘}ha old

node becomes the cui’réntly active node once again.

3. Thé_ Determinism Hypothesis

The central theme of this paper involves the rDete'rminism Hypofhe#is presented in Marcus' thesis.
Marcus claims that it is the underlying motivation for _ih_e'-structure of hi-s par#er. Uﬁfortunatel):, it is a
little difficult to pin doWh _exqctl»y’ what the Detefminism Hypothesis is _becaus@ ihe definition of
determinism is non-standard5 and s‘ohewhat vague. Futhermore, the Déterminism Hypothesis itself
ch;nges in Chap-ter 9. 1 will attémpt to characterize What the.beterminism Hypothesis e’ntailsr (by qu'oting

Marcqs), and then outline a number of interesting questions the hypothe#is raises.

Marcus formulates the Detérminism Hypothesis as foliows:

90]

10

Natural language can be parsed by a mechanism that operates strlctly determmlstlcally
that it does not simulate a non-determmlstlc machine...

' He goes on to state:
Rather than attemptmg to formulate any ngorous, general explanation of what it means to
"not simulate a non-deterministic machine" y | will focus instead on several specific properties

of the grammar interpreter which will be the focus of this paper. These properties are

special in that they will block this interpreter from simulating non-determinism by blocking

the lmplementatlon of either backtracking or pseudo-parallelism. :

Next he lists three properties of the interpreter to give the reader a feeling for the necessary
conditions for strict non-detarmtmsm First, the structures created by the parser are permanent; theyv
may not be erased. Second, all syntactic substructures created by the machme for a given input must be
output as part of the structure assigned to that input. That is, once somethmg has been created it can't be
ignored or dlscarded Third, temporary syntactic structures may not be hidden in the mternal state of the
v machine. A
The Determinism Hypothesls raises a number of questuons Could an ATN interpreter be used to

parse determlmstlcally luke PARSIFAL? Do people seem to parse deterrmmstu:alty7 What seem to. be the

trade-offs betwaen non-determmlstlc and determlmstuc parsing? |s the Determinism Hypothesns really the

best way to view Marcus parser? I will attempt to shed some llght on these questions below.

3.1 Can an A TN Interpreter Parse Like PARSIFAL?

| in this section, | will show how it is possible to use a mechanistio (and quite simple) transformation
to turn the ruies of Marcus’ parser into an ATN. Of course, once we know that an ATN parser has the
rpower of a Turmg machine it should come as no _great surprise that it is possible to use it to simulate
PARSIFAL The point of the snmutahon is not to show that it can be done, but rather to show how lt'

done. Some parts ot PARSIFAL may be naturally transformed into the ATN formalism, whcle the s:mulataon
of others ls somewhat awkward The dltferences between thmgs whlch are easy and difficult to simulate
may be reﬂected in the differences between the grammars produced tor the two formallsms "Those

teatures of PARSIFAL whoch are easy to slmulate will tend to be tound in both grammars, whlle' features-

11

whlch are difficult will tend to be employed in PARSIFAL alone. By comparmg what's easy and what's
hard to simulate we can perhaps gain some msught into the real dcfferences between PARSIFAL and ATN
parsers.

The sumulahon will be done in several siages To start, only the 3 cell version of Marcus' parser

will be dealt with (the version that assumes noun pharses enter pre-parsed). We will simul_ate this
version of his parser with a one-state ATN. This simuiaiion Ais presented- first since it is fairly easy to
explain. However, it doesn't look much like a convenhonal ATN (we've iaken the N out of ATN) Next, we
will turn this one-state ATN into a more convenhonal mulh-state ATN. This transformatton should provide
some mstght mto the hypotheses used by Marcus' parser, Fmally, we will extend the discussion to include
the full form of his parser. We will proceed by showing how the various data structures of Marcus'

- parser may be sumulaied within the ATN formalism.

3.1.1 A One-State ATN to Simulate PARSIFAL

Our flrs(simulation of PARSIFAL wnll use a one-siate ATN. To slmulate the buffer, we wul! use three
speclal reglsters The rules of the grammar will be looping arcs which perform actions and return to the
smgle state. As suggested by Marcus, the rule packet mechamsm can be svmulated by assoclating 2
register wiih eaeh rule packet If a register has a non-zero value then the packet associated wnth that
register 'is considered active. Fmally, the aciwe node siack may be srmulated by the ATN recursive

mechamsm These ldeas will be made more prectse below

3.1 2 Simulating the Buffer

The buffer will be simulated by three special reglsiers' CELLI1, CELL2 and CELL3 These
correspond to the ihree cells of the buffer. The buffer operahon of Read (i) can be directly snmulated by
the ATN GETR form The . operatlons insert (i) and Delete (i) can also be eas:ly sumulated by the
apprOpnate use of GETRs and SETRs. How things can be attached to the active node stack and dropped
into the buffer will be dealt with when the simulation of the stack is descrlbed Simulating the implicit

PARSIFAL operahon of reading the lnput strmg into the buffer is a Ilttle more complex

12

" To simulate the way the iupul symbols are placed in the buffer, 2 TST arc is placed before each
rule arc which checks to see that all the buffer cells examined by the foliowing rule arc are filled®. I not,
then the TST arc is laken, and it fills the cell registers with symbols from the mpul slrmg Thus, if a rule
arc examines only the first butfer cell, it is only necessary to have one TST rule preceedmg it to- flll the
(potenhally empty) flrsl cell. lf a rule examines aII three celis, it would be necessary to have three TST

arcs, one for each cell.”

3.1.3 Arcs as Rules

rTl'le rules of the PARSIFAL grammar may be represented as arcs. Those rules lhal do not involve
pushing or popping the active node stack may be simulated as JUMP arcs, while lhese that do may be _
PUSH or POP arcs (they will be dealt with laler); The priority of the rules may be reflected in the

ordering of the arcs®, As suggested above, lhe packet mechanism may be simulated by associating

‘reglslers with packets and then placing a conditional clause in the test portion of the arcs repesentmg a

packet of rules to assure that an arc ls traversed only if the register associated wulh the packet is non-

zero (that is, only if the packet is aclwe) Slmulalmg the pattern portion of a rule is not dlfﬁcult within

the ATN formalism, because it allows arbitrary tests to be placed on an are. 7
There are various rule actions that we'musl also be able to silnulale:

_-lﬁserting a specific lexical item into a specific buffer cell may easily be done by setting the
appropriate buffer cell after moving its old contents to the appropriate buffer position.

=Activating and deactivating packets of rules may be done by setting lhe regisler associated
with the rule packel.

-Assigning features to a node may be done by using the feature register associated with that
~ .node, o .

The simulation of the remaining operahons (such as creating a new parse node, attaching a node to the 7

stack, and popping the stack) are discussed in the next section,

6. The ATN formalism permits arcs to be ordered.

7. Actually, it wouldnt be necessary to have a TST arc before each rule. For example, a rule arc need
not have a TST arc preceeding it if some higher=priority rule in the same packet has already checked ali
the cell registers used by the rule in queshon :

8. Note that the ordering of the rules wnll be independenl of packet membership.

13

3.1.4 S'mulahng the Active Node Stack
To simulate the active node stack, we will use the recursive mechanism of the ATN Using the hold
list mlght also seem like a likely way to implement the stack, using HOLD achons to place thmgs on the list
and VIR arcs to pOp them off. However, the hold list was designed to solve a very specific problem--the
‘ problem of left extraposition. Thus, it does not seem that the ho!d list would be a natural way to
mplement the achve node stack.
Creating a new parse node is simulated by traversing a PUSH arc. At each Iavél, the register
NODE is used to store the contents of that parse node. When the node is completé (i.e. when PARSIFAL
would poé the node off the active node stack) a POP arc is traversed. In PARSlFAL, when a node is
popped off the stack, it is mefely removed if it is attached to a higher level 'nbde, however, if it is not, it
is dropped into the buffer. To simulate this an additional fiag register is needed: NODE-ATTACHED. If the
current active node becomes attached eithervto the node above it or to the current cyc\ic node, then the
NDDE-ATTACHEO régistef is set using LIFTR at the level abpve the current active ﬁodef Upon réturn‘
from a lovyer lqvel, if NQDE-ATT_ACHED is not se‘t,_the iniefpreier inserts the structure being returned
into.the Buffer. Nodes hay be attached 5y using GETR t6 retrieve the value of the ﬁigher level nodes;
APPEND, LIST, and QUOTE to perform the structural operations; and LIFTR to replace thé_ new structures
back at higher levels. ' | | . ' -
Durmg the pre-achons of the PUSH arc, it wnll be necessary to éass down cortam structures usmg
' &ENDR Among these are the buffer and the set of rule packets that are to be active whlle parsmg at the'
lower level. Note that by usmg the recursive mechanism of the ATN, packets of rules are active or
inactive wﬁh respect to the currenﬂy active node, the same as ihéy are in PARSIFAL. No ‘additional
meéhanism is required to simulate PARSIFAL's implicit action of switching rule packets as nodes are -,

~ popped.

3.1.5 A Multi-state ATN

" We can convert the one-state ATN outlined above into a multi-state ATN as follows: First, we

14

intoduce a new state for each of the possible combinations of active packets. In general, wé will hav§ 2N
distinct states, (Wheré N is.the number of packets), although in actual practice the number of states will be
considerably smaller since the ndmber of rule packets active at any time is usually quite small. Since the
states" représent all possible combinations of active rule packets, we can eliminate the rule packet
registers bf the one-state simulation. To switch active packets, we merely jump to the appropriate state.
To creaté a new active node, we push fo the state representing the set of rules that are to be active. To
handie- the buffer, each ’statev must have a set of TST links associated with it similar to the ones described
above.

The network that results from the sample grammar presented in appendix C of Marcus' thesis is
shown in Figure 1. A number of details have been omitted i;) keep ti;e diagrim as simple as possible.
The actions and tests agsociated with arcs Qre not shown, and the TST arcs used for buﬂef filling have
been left >out. All unlabelied arcs are JUMP arcs. Multipia ircs between nodeé represent rules with
divfferent_ tests which perform diff-erent acii_{ms but which activate and deactivate th§ same rule packets.

The SUBJ-VERB node is connected to over 20 nodes. To save space, only a few of these have been

- shown.

Push Build-Aux

~ Push
Subj-Verb

Push
Subj-Verb

Push Build-Aux

approx. 20
more sialtes
’ y Pop
Pop
Push
Parse-Aux
— Pop

- Figure 1. PARSIFAL Example Grammar as an ATN

| think the interesting thing about the multi-state ATN simutatio_n of PARS!FAL is that tit provides

some insight into the nature of the hypotheses PARSIFAL uses. In Chapter 2 of his thesis, Marcus.

discusses hypothesus-drwen parsmg, end notes some of the shortcomings of that approach A natural

question to ask is whether or not PARSIFAL .uses hypotheses, ‘and lt it does, what thelr nature is, and how

they are represented tn conventional ATN parsers, the state the parser is in represents its "best guess"
about what it is parsing. In the multi-state ATN simulation ot PARSIFAL, the states again represent the
- eurrent hypothesus, but the tact that the states of the ATN are the power set of the rule packets suggests

an important difference: the hypotheses that PARSIFAL has are disjunctive® and they are represented by

- the set of rule packets that are active.

9. That is, hypotheses like: "It's either X y, or z." are permitted.

16

The hypothetical nature of the rule packets can also be seen by examining the times when packeté
are active. For example, tr\e packet PARSE-AUX is activated when parsing auxilliaries, PARSE-VP is
acti\re ‘when a verb purase is expected, and PARSE-SUBJ is used to remove the noun phrase squects of
various types of clauses. If several things are possible, but the parser can't determine with ;ertainty
Whi-ch one will occur, it can activate packets which will handle all the possible cases; Of course, the
grammar writer must take care that undesirabje rule interactions do not oceur as a result of having
several packets active at once. PARSIFAL can alse easily broaden or narrow a hypothesis by activating or
de-activating rule packets Although it's possible to implement this type of hypothesns within the ATN.
framework | think it is fair to say that it's inconvenient, and that PARSIFAL can represent disjunctive

hypotheses elegantly and easily.

3.1.6 Offsets |
| The'sections above outline a ﬁeiuod for simulating the version of PARSIFAL preeented in the firsf
four chapters of bMarcus' thesis. To implement noun phrase parsing, we need to be able fo offset the
buffer. This can be easily done lf we allow the registers in the ATN to be indexed and if we allow the
addition of a stack to hold the offset pointers!?, These do not seem to be unreasonable extensions to the
ATN formalism. By makmg simple modlflcahons to buffer handling (to take the indexing into account) and
by vrnplementmg simple routmes to push and pop the index stack, the Aﬂenhon Shlftmg rules may be

lmplemented

3.17 Divscue'sieh |

The above simulation of PARSIFAL may be viewed in two lights. On the one hand, it suggests thaf
ATNs allow the grammar desvgner much more freedom of expresmon than PARSIFAL rules After all, it
was poss:ble to slmulate PARSlFAL wuih only two minor extenslons to the ATN formahsm, while snmulatmg

. ATNs with PARSIFAL would be much more dlffvcult, requiring several major additions to Marcus’ parser

10. Without these extensions, the lmplementahon is much more pamful although it can be done, by adding 7
more tests. .

17

(such as backup and recursion, to name a teyv). On the other hand, great expressive freedom is not
always a good thing. 'By constraining the grammar design, one rﬁay gain insights into the characteristics of
natural languages. Marcus already has some preliminary evidence for a theory of garden path sentences.
His model of a three cell buffer seems to have some power to predict those sentences that people will
have trouble parsing. It is difficult to see how ATNs (as conventionally impiemented) could make such a
predmtlon »

The simulation lends support to Marcus' claim that the buffer is the most unique thing about his
parser. The buffer does not tlt neatly into the ATN formalism: speclal arcs must be added to fill it, the
'three special cell regusters must be passed laboriously up and down between levels, and specnal hacks
' must be placed on the actions of arcs to handle the insert and delete operat«ons The ATN tormallsm does
- not seem to encourage one to structure his grammar around a flmte-leegth buffer. _

Te change the topic slighll);, suppose that we did not want to simulate PAt!SlFAL, but instead
wishect to 'i'mplement a reore conventional ATN using less backup-ft\ow_could it be done? One way
’ suggested by Burton [197.6] is to structure the grammar so that deciding between similar structeres is
_postponed as long as possible. Another possible way to decrease backup would be to adopt the notion ot
a dlfferent|a1 dtagnosvs link from medicine [Rubm 1975]11 When a physman finds that the hypothesls he
originally chose is incorrect, he will often be able to go to the correct hypothesis dwectly Th|s is
because he knows about diseases whose symptoms closely mimic those of his onglnal hypothems Thus, if
he finds he cannot confurm his original hypothesus, he will begin to think about similar diseases. Usually
there is a specaflc test to determine which snmlar disease he should think about. One could lmagme
‘employmg a snmllar sort of mechamsm for parsmg natural language. If the parser found that it could not
proceed, and there was a dlfferentual link ieaving the state it could traverse the link (assummg tests on
 the link were satrsfled) and enter a new (and hopetully correct) state. As the link was traversed it would
probably be necessary to adjust some of the regtsters to retlect the fact that the baslc hypothesus was

changing, but this would have to be done on a case by case baSlS.'

11. Marcus has also adopted this idea to deal with garden path sentences Patll has referred to this use of
differential diagnosis as "side=-stepping". .

18
3.2 The Determinism Hypothesis: The Correct View of PARSIFAL?

Marcus proposes the Deterlninism Hypothesis as the underlylng motivation for the structure 'otv
- PARSIFAL. Yet its definition ns vague and somewhat non-standard. Additionally, the constraints on control
structure and structure-building operations are confounded to some degree in the thesis and should be
- separated.

l would propose that Marcus parser is motivated by adherence to the "principle of Ieast
commitment” with respect to both control .and structure-building operations. The principle of least
commltment [Marr 1975, Miller and Goldstein 1976] states that a system should never do somethlng that
may later have to be undone. The structure building operations of PARSIFAL reflect this principle since
structures may not be destroyed Vonce created, although the existence ol garden path sentences suggests
that it may not be possible to adhere to it entirely. However, adherence to the prmclple with respect to
structure building operatlons alone is not suftlclent fo constraln the design of the parser as tlghtly as
Marcus wushes As an example, the semantic grammar parser of Burton [1976] never creates structures
it will have to destroy, but it does this by scouting ahead in the ATN to see what will happen before it
comrmts |tself to a structure To avoid thls problem, we can requure adherence to the prmclple of least
commltment w:th respect to control. That i |s, a process should not be committed to a particular path if it
: rnay become necessary to back out or if the path may lead to a dead end. | think this wewpomt gives a

somewhat clearer view ot the motwatlon tor PARSIFAL

| ln vuewung PARSlFAL it should also be realized that a trade-off exists between the complexity of »
.‘th_e algorlthm and the degree-.to whlch the principle of least commitment may be followed. Marcus'
experlments wnth garden path sentences suggest this12, While a parser with a buffer ot 3 cells Wlll make
some commltments too early, and be taken down the garden path, a parser with 4 cells will handie more_
sentences correctly, and tl_ve will handle still more correctly. Thus, while a parser with a buffer of 5 cells

will parse more sentences deterministically, thelncreased buffer length is the cost.)

- 12.A longer Abuffer implies a rnore complex algorithm.

19

4. Conclusions

" In this paper, | have compared Marcus’ PARSlFAL and Woods' ATN. | have outlined a method for
represer!ﬁng PARSIFAL as an ATN. | have suggested that the underlying mt;:iive for Niarcys' parser is
perhaps better viewed as the principle of least commitment rather than the Determinism Hypothesis. A

This. paper may' seem somewhat critical of PARSIFAL. That is not my intent. | feel that PARSIFAL
representsr a significant advance over previous parsers, because it actually uses the principie of ieast)
cqn.tm'itment' and disjunctive hypotheses to a far greater extent than previous parsers, even fhough it

would have been possible (in principle) to do the same things in earlier formalisms.

5. References

" Burton, Richard R. "Semantic Grammar: an Engineering Technique for Constructing Natural Language

Understanding Systems”, BBN Report 3453, Bolt Beranek and Newman inc., Cambridge, Massachusetts,
1976 ‘ ' a

Kain, Richard Y. Adtomata Theory: Machines and Langdages McGraw-HiH Book Company, 1972

~ Marcus, Mitchell Philip "A Theory of Syntactié Recogniiion for Natural l..anguagev" MIT, 1978

Marr, D. "Early Processing of Visual information” MIT-AIM 340, 1975

Miller, M. L. and Goldstein, |. P. "PAZATN: A Linguistic Approach to.Adtomati_c Analysis of Elementary

- Programming Protocols” MIT-AIM 388, 1976

- Rubin, Ann D. "HypothesE Formation and Evaluation in Medical Diagnosié", AI-TR-316_, 1975

Woods, William A. "An Experimental Parsing System for Transition Network Grammars”, BBN Report
2362, Bolt Beranek and Newman inc., Cambridge, Massachusetts, 1972 I

