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1. Introduction.

Some image analysis tasks depend on the availability of a registered sur-
face model. Registration can be accomplished using manually identified ground
control points or by matching the real image with a synthetic image calculated
from the surface model using assumed reflectance propertjes. In either case,
the form of the transformation from image coordinates fo model coordinates must
be known. The registration process is then used to determine the unknown par-
ameters of the transformation.

We show here that in the case of satellite images obtained by a mechanical
scanning system, such as that used on the LANDSAT sate]1ités, an affine trans-
form applies, if small, second-order effects are neglected. Such a transforma-
tion has six parameters which depend on the state of the scanning platform.
Each parameter is exhibited as a function of the components of this state and
other relevant fixedbquantitiés. These equations can then be used to predict
transformation parameters if the state of the scanning platform is known.

A possible application of automatic registration of images and surface
models is the determination of the parameters of a satellite's orbit. Unfor-
tunately, a rigid body has six degrees of freedom (position and attitude) and
so its state has twelve components (position, velocity, attitude and attitude
rate). Clearly, then, knowing the six parameters of the affine transformation
at one instant of time is not sufficient to permit a calculation of the vehicle's
state.

A series of determinations of the transformation for images taken of dif-
ferent areas of the earth, however, may permit determination of the vehicle's

orbit. If we ignore small perturbations, then the position and velocity of
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the center of mass of the vehicle at one instant of time fully determine its

orbit. We prefer to use orbital parameters to describe this component of the

state in some circumstances.




2. Basic Orbital Geometry.

LANDSAT 1is in a near-polar, retrograde, sun-synchronous orbit which is
nearly circular. The nominal parameters of this orbit include a semi-major
axis of 7,294,690 meters, that is, 916,525 meters above an earth with equational
radius of 6,378,165 meters and oblateness of 1 in 298.3. The nominal period is
103.267 minutes, which brings the sub-satellite point back to the same spot on
earth after 251 orbits in 18 days. At the equator, neighboring sub-satellite
tracks are spaced 159,380 meters. The descending node is nominally passed
at 9:42 A.M. The orbital inclination is nominally 99.092°, which brings the
satellite within ¢ = 9.092° of the north pole at the vertex V (see Figure 1).
A1l of the parameters drift with time due to perturbing influences such as
solar wihd, Tight pressure, atmospheric drag, non-spherical distribution of
masses in the earth, effects of mass expulsion, and so on. The orbit is re-
adjusted at time using small gas discharges to maintain the positions of the
ground-tracks within about 35 km of nominal and to prevent the time of north
to south crossing of the equator from drifting too far from the nominal 9:42
A.M. The orbital data is derived from radio tracking information.

Points on the orbit may be conveniently referenced to the vertex V. The
orbital travel distance p is measured from it, and the reference meridian
passes through it. The change in geographical longitude Ag is measured from
the reference meridian (see Figure 1).

Ignoring for a moment the rotation of the earth, we find that the nominal
position of the satellite, Ss’ lies at (geocentric) latitude ¢'. The nominal
heading of the satellite relative to the local meridian is given by the angle

Hs' The relationship between orbital parameters e, o and the geographical co-




ordinates Ag> ¢' can be established using products of rotation matrices [1].

Here we follow a more direct route using spherical trigonometry.

Considering the right spherical triangle N E S (see Figure 1), applying

the sine theorem, one finds that

sin (¢')/sin (90° -¢) = sin (90°-o)/sin (90°)

OY‘,

sin ¢' = cos € cos p

Next, from right spherical triangle V P SS, one finds,

sin AS/sin o = sin HS/sin €

and, applying the cosine theorem (for angles),

]

A
cos s

or,

0S A i
cos s sin HS cos p

Hence,

tan AS tan p/sin ¢

- cos HS cos 90° + sin HS sin 90° cos p

(1)



Equations (1) and (2) determine geographical coordinates ¢', Ag in terms of

orbital parameters e, o. Similarly,

cos HS - cos ks cos 90° + sin AS sin 90° cos ¢

or,

H = si
cos S sin AS COoS ¢

. Hence,

tan H_ = tan e/sin o (3)
Equation (3) determines nominal heading HS in terms of orbital parameters e, p.

As it turns out, the earth does rotate and so the sub-satellite point is
displaced an additional amount in the direction of the local geographical para-
11el, from point SS to point S. The latitude ¢' remains unchanged, of course,
while the longitude is increased by Ae and the sub-satellite track deviates
by an angle He from the nominal direction. In order to calculate these quantities,
one must know the angular velocities of the earth and of the satellite in its
orbit. Let these quantities be wg and g respectively.

Since the satellite retraces its path almost exactly every 18 days, after

completing 251 orbits, we know the ratio of these two quantities,

rw = we/ws =d Ae/dp = 18/251 (4)



Then,
A.=Trop (5)

Actually, wg is not constant, unless the satellite is in a circular orbit --
we will return to this point later.

At Tlatitude ¢', the earth surface is displaced a distance Rwe cos ¢' dt
in a time interval dt, where R is the distance of the surface from the
earth's center.

The calculation of the change in heading is a little bit more complicated.

If we let the satellite heading H = He * He» then one can see that (Figure 2)

tan H = (rm éos ' + sin HS)/cos Hs (6)
Next,

tan He = tan (H - HS) = (tan H - tan HS)/(1 + tan H tan Hs)

tan He =r cos o' cos HS/(l +r cos ¢ sjn HS) (7)

Now, from the right spherical triangle P V SS (Figure 1), one obtains

Si

>

(90° - ¢')/sin (90°0) = sin o/sin Hg

That is,

cos ¢' sin Hs = sin ¢ (8)



Similarly, one finds,

sin (90° - ¢')/sin (90°) = sin p/sin A
That is,

cos ¢' = sin p/sin A (9)
In deriving (3), we determined that cos HS = sin Ag COS €, SO that

cos ¢' cos Hy = sinp cos e (10)

Finally, we can use equations (8) and (10) to simplify the expression for

He (7),
tan H, = r, €os e sin o/(1 + r, sin ) (11)

Equation (11) determines He in terms of orbital parameters e, p and the constant
r.e Note that r, sin e is quite small (.0112) and can be ignored in approximate
calculations [1].

Also, now using (8) and (10), we can simplify the expression for tan H (6),

tan H (rw cos? ¢' + sin )/ (cos ¢ sin p)

or,

tan H [rw(l - cos? e cos? p) + sin e]/[cos e sin o] (12)



To sum up, given e and ¢', we find the orbital travel distance o using

equation (1), the Tongitude relative to the reference meridian ) = AS + Ae

using equations (2) and (5) and the heading H = Ho + Hg using equations (3)

and (11), or (12).



3. Local Solar Time at the Point of Observation.

An immediate application of the results developed so far is the determina-
tion of the local solar time at the sub-satellite point. (This gives one some
idea of what the position of the sun is likely to be). Let the time of the
descending node be To. That is, the satellite crosses the equator from North
to South when the local solar time is T0 (for LANDSAT this is nominally 9:42 A.M.,
but tends to vary as the orbit drifts and is readjusted).

If a point is observed when the satellite has progressed p in its orbit
from the vertex V, then it still has to travel through an angle (90° - o) be-
fore reaching the equator. This will take an amount of time which can be ex-
pressed in hours as rw(90° - p)/15.

Furthermore, the point of observation lies (90° - AS) ahead of the point
of equator crossing in longitude. Thus the local solar time is later by a time
which, when expressed in hours, comes to (90° - AS)/15. Finally, then, one

sees that the local solar time at the sub-satellite point is
T= T0 + (90° - xs)/15 - rw(90 - p)/15 (13)

where tan AS = tan p/sine (2). Because r, = 18/251, one fihds that the first

term predominates. As a result, points North of the equator, imaged earlier

in the orbit, are observed at Tocal solar time after To’ while points South
of the equator, imaged later in the orbits, are observed at local solar time

before TO.
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4. The Scanning Platform.

The satellite uses an oscillating mirror to produce the across-the-track
scan. Individual lines of the image are obtained by this means. The satellite's
motion in orbit provides for the other scanning direction. Successive lines
are displaced along the sub-satellite track. Nominally, the'optica1 system
points straight down and the mirror scanning motion is perpendicular to the
velocity vector of the vehicle. In practice, there are small but significant
departures from this ideal state (Figure 3).

Pitch and roll are measured to an accuracy of .07° using horizon scanners
sensitive to the infrared radiation (around 14 um) emitted by the atmosphere.
Yaw is measured with similar accuracy using a gyro compass. Pitch and roll are
maintained within + .4° using the vehicle's attitude control system, while
yaw is maintained within + .7°. A major component of the attitude control
system is a set of inertia wheels which are used in order to keep down gas
expenditure.

An attempt is also made to minimize rates of change of attitude which re-
sult from adjustments. The maximum attitude rates are .015 degree/second.
Attitude rates are estimated from time-histories of measured attitudes. For
further information on the scanning platform and its motion, see references
[1-4].

Ground tracking information provides good ephemeris data. However, since
a picture cell in the image is only about 79 meters by 56 meters, one cannot
expect the position of the satellite to be known accurately enough to predict
exactly which point of the earth is imaged. Similarly, on-board horizon

sensors permit a good determination to be made of the attitude of the satellite



-11-

platform. Nevertheless, these measurements are not accurate enough to permit
the direct calculation of ‘the ground coordinates corresponding to a particular
picture cell. Errors of several kilometers may be encountered when this is
attempted [3].

"Precision processing" of satellite image information entails the manual
identification of known ground control points on each image and the derivation
of a suitable transformation based on this informatioh. So far, this has
proved too expensive and LANDSAT images are "bulk processed", that is, treated
as if the calculated position and attitude of the'sate111te were exact. As
a result, the final photographic products may have errors in translation of
several kilometers. Fortunately, non-linear effects introduced by this ap-
proximation are small.

One might envision systems which automatically register image information
with map or surface model information. Insuch a system, one has to model
the imaging operation so that the registration process can be used to deter-
mine the unknown parameters, suchas satellite position and attitude. A clear

understanding of the scanning process is required to accomplish this.
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5. Fineness of the Scanner Model.

A large variety of effects contribute to the imaging transformation.
Amongst these are large effects which must be considered, such as the motion
of the satellite in its orbit and the rotation of the earth beneath it. There
are also smaller effects which have to be judged individually. Some of these
produce non-linear effects. Examples are panoramic scan distortion (the mirror
scans evenly in angle, not tangent of the angle), perspective projection (which
can be dealt with only if a surface model is available) and second-order effects
of errors in attitude of the spacecraft. The relative importance of these ef-
fects has already been discussed by others [1 - 4]. The most important criterion
for including an effect in our model was linearity.

Fortunately, all major components of the image transformétion turned out
to produce linear transformation of image coordinates. Second order, non-linear
effects were neglected, but turn out to contribute errors which are typically
smaller than a picture cell in size. Compounding these linedr transformations
Teads to an overall affine transformation which is easy with which to deal.

Such a transformation has six parameters, which may be found using the registra-
tion of the image with some surface information in the form of a map or a digital
terrain model.

The six paraméters, as one might expect, depend rather directly on the
position of the satellite in its orbit, the attitude of the scanning platform,
the orbital ve]ocity,»and the mirror-sweep velocity. It is conceivable that a
system which automatically determined the parameters of the affine transformation
using a matching process of real with synthetic images obtained form a terrain

model, could also then proceed to estimate the underlying orbital data. A
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satellite equipped with such a system would be able to determine its position
or attitude more accurately than it might using predicted ephemeris data ob-

tained from expensive ground tracking efforts.




-14-

6. Nominal Parameters of LANDSAT Imaging System (Orbital Parameters Drift).

Orbit: Apogee * 917 km Perigee = 898 km
Inclination = 99.1° (Retrograde orbit)
Anomalistic period = 103.267 minutes
[That is, 251 orbits in 18 days]
Equatorial Earth radius = 6378 km
Polar Earth radius = 6357 km
Equatorial speed of rotation = 463.8 m/sec
Average ground track speed of satellite » 6457 m/sec

Mirror-Scanner: Frequency = 13.260 Hertz
[That is, 6 lines are scanned every 73.42 msec]

One line every 12.237 msec

Lines spaced by = 79.0 meters at nominal height
390 scans per image

That is, 2340 scan-lines per image

[This takes 28.63 seconds and covers = 185 km]

Pixel Information: Instantaneous field of view = 79 m x 79 m

Mirror amplitude = +2.886°

Total scan distance = 11.545°

That is ~ 185 km at nominal altitude

Pixels per line (nominal) = 3240

Sampling interval = 9.958 usec

That is, about 55.8 - 56.5 m on the ground
Consequently, Wy = 6.21 radians/second

Time to scan (six) lines (in parallel) * 32.238 msec

Total Image Size: ~ 2340 x 3240 = 7,581,600 pixels
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7. Image Coordinate Transformation.

Let the pixels be numbered sequentially within each scan line and Tet the
scan lines be numbered sequentially. Then Xg will be the number of a pixel
counted fromthe beginning of a scan-line, whiie Y will be the number of a line
counted from the beginning of a particular image. (Actually, this is arbitrary
since the scanner does not start or stop at image boundaries; the continuous
stream is segmented into images by ground processing). These will be called
satellite coordinates.

Now erect a coordinate system in the regionofiinterest. First construct
a tangent plane and let fhe X-axis run in the west-to-east direction, and the
y-axis in the south-to-north direction. HNow add a z-axis going vertically up
(we ignore the non-spherical nature of the earth and other such minor effects).
We will use the notation (xe,ye) for points on the surface. The satellite
can also be located in this earth coordinate system. At some reference time
t,» it is at (xo,yo,zo) and has attitude a(rol1), g(pitch), and y(yaw) (Figure
3). The three attitude angles will be assumed to be small.

At time to’ the scanner will also be at a particular point in its scan
of the image. Let it be scanning the xso-th pixel in the yso-th line of the
image. If the sensor were pointing straight down (that is, o = 0 and g = 0),
it would be imaging the sub-satellite point (xo,yo) (Figure 4).

At this point we introduce a convenient artifice, a spherical earth fixed
relative to the orbit of the satellite. That is, a spherical surface which
is also sun-synchronous, rotating once a year. Later we will take into ac-
count the fact that the earth rotates underneath the satellite. We will first

develop the coordinate transformation for the case of a fixed surface because
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it is easier to understand this transformation.
Here it is convenient to refer pixel locations to the reference point

(Xso’yso) (Figures 4 and 5).

xp = (xg = x ) and Y1 = (¥go - ;) (14)

Let the angular scanning velocity produced by the mirror during its linear
phase be Wy, (about 6.21 rad/sec) and let ts (9.958 usec) be the sampling in-
terval during the scan, then, on a surface at a distance z, from the satellite
and perpendicular to the extension of the optical axis of its scanning system,

we find a cross-track scanning amplitude x, as follows,

X2 = (wm ZO ts) Xl (]5)
In the along-the-track direction, the motion of the satellite in its orbit

provides for the scanning and so,
Y2 = (wg Rt)) y; (16)

where R is the distance of the surface from the center of the earth (about
6370 km), while wg is the angular velocity of the satellite in its orbit (about
1.014 mi1li+rad/sec) and t, is the interval between successive scan-lines (12.237
milliseconds). [Actually six lines are sﬁanned simultaneously every 73.42
milli-seconds. ]

At this point, we note that because of possibly non-zero yaw, the across-
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track scanning may not be perfectly perpendicular to the along-track scan.

This skewing effect can be taken care of as follows (Figure 6),

X3 = Xy COS vy and Y3 =Y, - Xp siny (17)

We still have to deal with the effects of roll and pitch. For small angles,
these will have the effect of shifting the imaged area by an amount proportional
to the product of the angles and the distance to the surface being imaged.
Secondary, non-linear effects (such as bending of the scanning 1ine) will be
ignored, as will non-commutativity of rotations.

Thus the effects of non-zero roll and pitch can be introduced,

Xy = X3 - oz, and Yu = ¥3 - B Z,

where z, is the height of the satellite above the surface as before. The co-
ordinate system above lies on the tangent place of the (fixed) sphere. One
coordinate axis (y) points backward along the sub-orbital track, while the
other (x) Tlies at right angles to it. We would prefer to work with a system
which is aligned with Tocal north. The angle between the local meridian and
the sub-satellite track (on the fixed earth) is Hs’ We can rotate coordinates

into a new system as follows (Figure 7),

X5 = Xy cos Ho + yy sin Hg (19)

¥s = =Xy sin H, + yy cos HS (20)
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In this new coordinate system, the y-axis points north and the x-axis
east. Finally, we are ready to introduce the rotation of ‘the earth. It has
no effect on the value of y, of course, but does introduce a shift in x which
depends on the time when a particular pixel is imaged. For a particular line
of the image, this time can be calculated relative to the time to’ when the
reference 1ine was imaged. For line number Ygs this time interval equals
tz(ys - yso) = -t,y1. In this time interval, the earth has rotated in an

easterly direction by an amount which depends on the latitude.

Xg = X5 + (2g Rcos ¢' t) y, and Y6 = ¥s (21)

where g is the angular rate of the earth (about 72.722 micro-radians/sec)
while ¢' as before is the (geocentric) latitude, and R the distance of the
surface from the center of the earth.

To obtain coordinates in the original system (xe,ye), we must add the

coordinates of the sub-satellite point (xo,yo),

Xe = Xg * X and Yo = ¥s t Y, (22)
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8. The Overall Transformation.

A1l the partial transformations can now be combined,

Xg = Xy cos Ho +y, sin Ho + (o, R t)) cos ¢' y; + X0

= - i + +
Yo Xy sin HS Yy cos Hs Yo

Or,
X = X3 COS HS + y3 sin HS + (we R tz) cos ¢' y; -
(o cos H, + 8 sin Hs) z) + X,
Yo = ~X3 sin Ho + y; cos Ho - (o sin H, + 8 cos Hs) z, Y,
That is,
Xq = COS (HS + ) Xo + sin Hy v2 + (we R tﬁ) cos ¢' y; + Xo -
(a cos'Hs + B sin HS) z,
Yo = -sin (HS + ) x, + cos HS Y, + Yo - (-0 s1in HS + B8 cOS Hs) z
Or,

Xo = c0s (Ho + y)(uy 2o t)xy + [sin Hy (o R t,) + cos ¢'(wR t,)]y; +

’ [x0 - (a cos Hs + 8 sin HS) zo]
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y_ = -sin (Hs + Y)(wm z

o ts) xy + cos H (ws Rt)y +

o

[yo - (-0 sin Hg + 8 cos HS) zo]
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9. Form of the Transformation.

The transformation is of the form,

x
]

=ax; +by +c (23)

=d X tey; + f (24)

<
D
|

This is an affine transformation, where the six parameters are given by

a = (wm z, ts) cos (HS + ) (25)
b = (ws R tg) sin Hs + (we R tz) cos ¢' (26)
c =X - (o cos HS + g sin Hs) z (27)
d = —(wm z, tS) sin (HS + v) (28)
e = (ug R t,) cos H (29)
f = Yo -(-a sin H, + 8 cos Hs) z, (30)

We can use these equations to predict approximate transformation parameters from
estimated values of satellite position, attitude and velocity in orbit. Con-
versely, if we can use ground control points or digital terrain models to
determine the coefficients of the transformation more precisely, we can try and
improve the estimates we have of satellite position and attitude.

From the form of the equations for c and f it becomes immediately clear,

however, that there are some limits to this process. That is, one cannot dis-
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tinguish in our model between displacements of the satellite across the track
and small roll errors. Similarly, displacements along the track have the
same effects as small pitch errors. Thus two of the six components of position

and attitude cannot be found this way.
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10. Attitude Rates.

Pitch, roll and yaw drift during the scanning of a single image. The
rates are less than .015 degrees/second. A constant rate of change, 8 of pitch
has the same effect as a change in along-track ground velocity of B Z,- That

is, equation (16) becomes,
y2 = (og R+ B82z) t, v (31)

The transformationris altered only in the appearance of (ws R+ 8 Zo) tz in
place of (ws R tz)' Typical values for wSR and ézo are 6458 and 32 meters/
second respectively (when 8 = .002 degrees/second). This, then, is a small
but noticeable change (= .5%).

A constant rate of change, &, of roll has little effect on'the scanning
of a single line since 0. 2y >> a Z,- Successive lines, however, are shifted

0
laterally by & z, t,. That is, equation (17) becomes,

X3 = Xy co0s vy + (a z, tQ)yl and  y3 =y, - Xp sin vy (32)

This causes additional skewing of the image.
Here, typical values are w2y ts % 56.5 meters and a to t2 % .4 meter
(for & = .002 degree/second). Again we see a small, but noticeable change

(* .7%), resulting in additional skewing (= .4%).



-24-

Finally, the transform parameters are now:

a = (wm z, ts) cos (HS +v) | (33)
b= (u, R+82z)t sin Hg + (& 2, t,) cos Ho + (u R t,) cos o' (34)
cC=x -(a cos HS + B sin HS) z, (35)
d = —(wm z ts) sin (HS + v) » (36)
e = (ws R+ B zo) t, cos Hs - (& z, tz) sin HS (37)
f =y, -(-a sin Hg + 8 cos H) z (38)

o

We see here that the transformation parameters depend on the timing (ts,tg)

of the scanning system, the mirror scan velocity (wm), the position of the
satellite relative to the tangent plane coordinate system (xo,yo,zo), the
orbital velocity vector (as it affects wg and HS), the attitude of the scanner
(a5 B, v), the attitude rates (&, &, ), and the latitude, 6.

The vertical component of the velocity vector (altitude rate) and also
the yaw rate do not contribute to linear changes in the imaging transformation.
The first produces a change of lateral scale from one end of the image to the
other, the second a tilt of image lines at one end of the image relative to
those at the other end. Such small, non-linear effects are ignored. Except
for these two, however, all twelve components of the state of the scanner
platform influence the transformation parameters.

If yaw rate and altitude rate are included, one finds small terms in X1Yq

(and y?). The transformation is then no Tonger an affine transformation.
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For small regions, the effects of these terms can be ignored -- for images

which are large fractions of a standard LANDSAT image, they can not. In the
latter case, one has to iné]ude other non-linear terms we have ignored in any
case and then the transformation can be expressed with sufficient accuracy by

two second-order polynomials.
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11. Figure of the Earth.

To calculate the displacement of points due to the rotation of the earth,
and to relate the geocentric distance of the satellite to its altitude above
the surface, one needs to be able to calculate the distance of a point on the
earth's surface from the earth's center. To a first approximation, a meridonal
cross-section through the earth is an ellipse (Figure 8) with semi-major axis,
a = 6,378,165 meters at the equator; and semi-minor axis, b = 6,356,783 meters
at the poles.

If we introduce a coordinate system with the x-axis along the semi-major
axis and the y-aXis along the semi-minor axis, then the geocentric latitude,

o' is defined by,
tan ¢' = y/x (39)

The more commonly used geographic latitude, ¢, is the angle between a local

normal to the surface and the equatorial plane. Thus,

-1/tan ¢ = g%— (40)

Using the equation for the ellipse,
(x/a)2 + (y/b)? =1

one finds that,
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dy _ _ (992 X

dx a’'y
so that

tan ¢' = (b/a)2 tan ¢ (41)
Further,

X = ab

vb%2 + a2 tan? ¢'

y = ( ab ) tan ¢'

vb% + aZ tan? ¢’

The distance of a point from the center, then, is,

ab
= /X2 -
R=Vxs+y va® sinZ ¢" + bZ cos? ¢ (42)

The height of a surface feature above mean sea-level must be added to this.
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12. Orbital Velocity.

Since one scanning motion depends on the satellite's angular velocity in
its orbit, it is useful to relate this to other quantities. Using Kepler's

second law, one immediately sees that

de h
2.—:—
r dt 2 (43)

where r is the radius vector (geocentric altitude of the satellite), while h

is a constant. Now the area of an ellipse with semi-major axis, a, and semi-

minor axis, b, is mab, so that

= %1 ab

N>

where T is the complete period of the satellite. Using Wy for the angular

velocity of the satellite, one finds,

_ 2r ab _ ab
b T Tz hyz (44)
where the average angular rate h = 2r/T. Further,
hZa3 = | = GM (45)

by Kepler's third Taw, where G is the gravitational constant and M is the mass

of the earth, u = 396.08 x 1012 radian2 meter3/second2.
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o
For orbits with small eccentricity, there is very little difference be-
tween a and b, so perigee, rp, and apogee, ry> are given instead, where
rp =a (1 -e)
(46)
ry=a (1 +e)
and
a2 (] - e2) = bz
Thus,
a=(r, + rp)/2 ]
(47)
b = /ra rp [
r.-r
e =P (48)
fa ¥ 7y

Note that perigee and apogee are frequently given as distances from the surface
of the earth and the equatorial radius of the earth (6,378,165 m) has to be
added to this in order to find rp and ry For a more detailed analysis, see

Lyndanne's modification of Brouwer's analysis of satellite orbits.
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13. Map Distortion.

So far we have ignored the fact that the spherical surface of the earth
cannot be represented on a planar map without distortion. Up to this point,
coordinates have been referred to a hypothetical plane tangent to the earth's
surface at a point in the region of interest. Typically, a digital terrain
model will be derived from a map with a different projection and a transformation
must be established between the two coordinate systems.

It can be shown that for typical map projections such as transverse
Mercator and confbrma] obTique axis cylindrical there exists a small rotation

Hm of map coordinates, where
sin H = sin ¢, sin (6 - eo) (49)

Here the projection is centered on a point at longitude eo and latitude ¢0
and the point of interest is at longitude 6 and latitude ¢. Consequently,
the map coordinates, (xm,ym), are related to the geographical coordinates on

the tangent plane (xg,yg) by

X cos Hm -sin Hm X

= 13 (50)
Yin sin Hm olo} Hm y

where s is the scale of the given map. There will also be a small scale change
which varies with 1/cos (o - eo) for transverse Mercator and with 1/cos (¢ - ¢O)

for conformal oblique axis cylindrical projection. Typically, this effect is
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so small that it may be ignored.

The affine transformation, (23) and (24) must be pre-multiplied by an

augmented rotation matrix M to correctly relate satellite image coordinates

to map coordinates.

cos Hm -sin Hm 0
-1 .
M= S sin Hm cos Hm 0 (51)

0 0 1
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14. Example of Map Rotation.

The national map of Switzerland is based on a conformal oblique axis

cylindrical projection with center at the city of Bern.
~ (o] 1 " . ~ (o] 1 u
8, * 7°26'20 do © 46°57'10
The region of interest covered by an available terrain model lies at
6 = 7°8' ¢ = 46°15'

The map rotation then is -.225° (-.00393 radians). The transformation matrix
becomes

1.0 +.00393

-.00393 1.0
(The scale error is less than one part in 10,000 and can be ignored). For more

details regarding suitable map transformations see Colvocoresses paper on the

"Space Oblique Mercator" projection.
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15. Numerical Example -- Estimating Transform Parameters.

LANDSAT image number 1078-09555, produced 1972/0ctober/9 shows a region
of Switzerland including a mountain range called "Dent de Morcles". The image
annotation data suggest that at the nadir the geographic Tlatitude was 45.9197°
and the heading 193.11324°. Using equation (41), we see that the geocentric
latitude of the nadir point is 45.7274° and so, using equation (8), it appears
that the orbital inclination must have been ¢ * 9.11°.

The altitude is given as 915,724 meters near the region of interest, which
Ties at an average of 1700 meters above average sea level. So z, = 914 km. The

angular velocity of the satellite is slightly above its average rate,

Ws = 5T x ggbx 60 X gﬁ; x 1.00967 radians/second

The region of interest lies at geographic latitude ¢ = 46.25° (and thus at
geocentric Tatitude ¢' = 46.06°), while the scanner at that time is above

geographic latitude ¢ = 46.40° (that is, geocentric latitude ¢' = 46.21°).

Further,
Yo =TT % 20 x 60 radians/second
w, = 6.21 radians/second
ts = 91958 usecond

~ 1
tﬂ, = m seconds
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The image annotation also gives,

o (roll) = -.20370° B (pitch) = .06688° v (yaw) = .23387°

& = -.00160°/second 8 = -.00109°/second vy =.00189°/second

The earth radius (equation 42) near the region of interest is 6,367,081 meters.

Adding the average elevation above sea level, we get
R 2 6,368,800 meters

Using equation (1), one finds that , = 43.021° and by equation (8), that HS =

13.226°. Further, (HS +v) = 13.460°. Then also, Oy 2o b = 56.521 meters,

o

(ws R+ 8 zo)t = 79.582 meters, & z tz = -.312 meter, and Wy R t2 = 5.667

) 0
meters.

So, finally,

54.969 b

21.837 o

3]
]

x0 + 2919

o
]

-13.156 e

77.543 f

Yo - 1782

See Figure 9 for a graphical illustration of this transformation. It shows as
a parallelogram the region of the surface scanned when an image with a number
of Tines equal to the number of pixels per 1line is gathered.

We can take the inverse of the 2 x 2 sub-matrix and obtain,
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]

Xx; = .01704 Xo - .00480 Yo + x!

0

Y1 .00289 Xa + .01208 Yo + Yo

where,

See Figure 10 for a graphical illustration of this tfansformation. It
shows as a parallelogram the appearance in the image of a square region on the
ground aligned with ;he north-south and east-west axes. Finally, if we have
a terrain model on a 100 x 100 meter grid, such that Xq = 100 * i and Yo =

100 * j, then,

n

Xy = 1.704 i - .480 j + x!

i

yi = 2891 -1.2083 +y)

Finally, we have to introduce the map distortion by post-multiplying by the

inverse of the map transformation matrix introduced earlier (the inverse of a

rotation matrix equals its transpose). The matrix then becomes

1.702 ~.487

.294 1.207
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16.  Determining Orbit Parameters from Transformation.

Many parameters appear in the equations for the six coefficients of the
affine transformation. Some are known atcurate]y, others only approximately.
For example, tS and tz are fixed fairly accurately by electronic oscillations
on board the satellite. The angular rate of the earth We is constant and ac-
curately known, while g s the angular rate of the satellite, depends on its:
altitude, semi-major axis, orbit eccentricity, and orbital period. The angular
rate of the scanning mirror, o varies somewhat}during each scan, though in
a fairly repeatable fashion. The earth radius, R, can be calculated with
sufficient accuracy if the latitude, ¢', is known approximately.

It is reasonable, then, to assume that one can accurately predict a value

for g R t2 cos ¢'. Then let
b' = b - g R tz CcoS ¢

The following equations permit the determination of useful satellite parameters

from transformation parameters:

Ho + v = tan"1(-d/a) (52)
(0, 2, t) = aZ ¥ d? (53)
/(ws R+ B zo)2 + (& onth = /(b")? + e (54)

If the heading HS can be estimated, one finds
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3 - 1 0
(ws R+ 8 zo) t, = b' sin H, + e cos Hg (55)

(& zo) t, = b' cos Hs sin He (56)

Alternatively, the heading can be calculated if the attitude rates are known,

- b (ws R+ 8 zo) - e (&ZO)
Hs = tan b" (& zo) + e(mS R+ 8 267 (57)

Clearly there are Timitations to this, since the full state of the scanning
platform cannot be ascertained from six parameters alone. A series of such

measurements is needed to determine all twelve components of state.
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17.  Numerical Example.

Suppose the transformation matrix applicable to a 100 x 100 meter grid

was found by image registration techniques using synthetic images,

l].694 -.5]2]

.300 1.216

for any area with a map distortion as defined previously. Post-multiplying

by the map transformation matrix gives

[1.693 —.505]

.295 1.217
The area is at geographical latitude ¢ = 46.25°. The geocentric latitude is
then ¢' = 46.06° and so R = 6,367,081 meters. If the region of interest lies
at an average altitude of 1700 meters, and tz = 1/(6 x 13.62) seconds, then
Wg R t2 cos ¢' = 3.932 meters/scan-line

The inverse transformation matrix then is

[ 55.08 22.86]

-13.35 76.63
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From this one finds,

Hs + vy = 13.624°

O Zo ts = 56.67 meters/pixel
And, if the attitude rates are assumed to be very small,
= [°]
Hs 13.874
and so,
y ¥ .251°

and

(ws Rtg) = 78.93 meters/scan-1line.
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18. Using Ground Control Points.

An alternate method of estihating transformation parameters is based on
the identification of points of known ground position in the image. Since
the affine transformation has six parameters, one needs to locate three such
points. Let the coordinates of the points be (x;, y;), (Xp, ¥,) and (X35 ¥3)

in the image and (xi, yi), (x3, y5) and (x}, yi) on the map, then

x
1]

.+ by, +
a Xy b yi tc

<
g -
i

d X; + e Y; + f

and so on. Thus,

X1 Y1 1 a X1
X2 Y2 1 b = X2
X3 Y3 1 c X3
So
-1
a X1 Y1 1 X1
b = X2 Yo 1 Xé
c X3 Y3 1 X3
Similarly,
-1
f X1 ¥1 1 ¥i
el = X Y2 1 \Z
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If more than three points can be identified, better accuracy is available

using a Teast-squares procedure. That is, if

X1 Y1 1

X2 Y2 1
M= .

X, Yn 1

a X1
bl = (M'M) 1M x5
C : '

xn
d Y1
el = w1y v
f o

yn

Typically, the accuracy obtained by fitting a discrete set of ground control
points has been found to be inferior to the area-based matching of real and

synthetic images.
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