MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

A.1. Memo 473 May 31, 1978
A Three Valued Truth Maintenance System
David A, McAllester

Abstract

Truth maintenance systems have been used in recently developed
problem solving systems. A truth maintenance system (TMS) is designed to-
be used by deductive systems to maintain the logical relations among the
beliefs uhich those systems manipulate. These relations are used to
incrementally modify the belief structure when premises are changed, giving
a more flexible context mechanism than has been present in earlier
artificial intelligence systems. The relations among beliefs can also be
used to directly trace the source of contradictions or failures, resul ting
in far more efficient backtracking.

In this paper a new approach is taken to truth maintenance
algorithms. Each belief, or proposition, can be in any one of three truth
states, true, false, or unknoun. The relations among propositions are
represented in disjunctive clauses. By representing an implication in a
clause the same algorithm that is used to deduce its consequent can be used
to deduce the negation of antecedents that would lead to contradictions. A
simple approach is also taken to the handling of assumptions and
backtracking which does not involve the non-monotonic dependency structures
present in other truth maintenance systems.

This report describes research done at the Artificial Intelligence Labora-
tory of the Massachusetts Institute of Technology. Support for the labora-
tory's artificial intelligence research was provided in part by the Ad-
vanced Research Projects Agency of the Department of Defense under Office
of Naval Research contract NOOO14-75-C-0643 and in part by the National
Science Foundation under grant MCS77-04828.

[C Massachusetts Institute of
Technology 1978

Acknowledgements
Jon Dogle'and Gerald Sussman have provided encouragement and

indespensible criticism of this work. Johan de Kleer, Charles Rich, and
Houward Shrobe have also helped with fruitful discussions.

'\, A - Table of Contents

Introduction 3
The Algorithm H 5
Adding Clauses and Truth Values 5
Removing Truth Values 7
Contradictions 9
Default Values and Backtracking 12
Clause Values and Hierarchies of Assumptions 13
Comparison with Other Work ‘ 15
Appendix I, A User’s Guide | 19
Appendix 11, The Data Structures 22

Appendix III.VThe code 25
T

Introduction

Truth maintenance systems have been used in recently developed
problem solving systems [Stallman and Sussman 1976] [Doyle 1978al. A truth
maintenance system (TMS) is a domain independent system for maintaining the
consistency and uell foundedness of a set of beliefs. It is an inherenlity
propositional mechanism which is designed to be used by deductive systems
to maintain the logical relations betueen the propositions they generate.
The truth maintenance system also simulates the effects of those relations
to the extent that it can be used to incrementally modify the belief
structure and retract assumptions when they lead to contradictions. This
process can be used to realize substantial search efficiencies in that
contradictions, or failures, only result in backtracking over relevant
assumptions. ‘ ‘

An example of the use of a TMS would be an algebraic manipulator
which is capable of using pieceuise approximations to functions. In such a
manipulator each ‘equation is considered to be a proposition. When the
manipulation of some set of equations results in a neu equation, the
equations used are recorded in the TMS as supporting the neuly generated
equation. A pieceuise l|inear approximation to a function can be
represented by an implication betueen equations such as (> x -.25) A (< x
+25) = (= (sin x) x). To use such an approximation of (sin x) the
manipulator might have to assume that x was in the required range. If at
some later time a value for x is found that is inconsistent with the
assumptions, then the manipulator need simply announce to the TMS that the
tuo conflicting equations, the assumed inequallity and the found value, are
mutually contradictory. The TMS will then retract a relevant assumption.,
In such cases the TMS might instead be made to state all the assumptions
upon uhich the contradiction depends and leave the choice of removal up to
the manipulator. The use of piecewise linear approximations to the
behavior of transistors is one of the applications of truth maintenance
used by Stallman and Sussman in electronic circuit analysis [Stallman and
Sussman 1976]. ¥

In addition to the search efficiencies which are gained in dependency
directed backtracking, the recorded relations betueen beliefs can be used
to justify or explain the beliefs of the dedictive system. Such
explanations are useful in understanding and verifying the results of
problem solvers.

This paper introduces a new approach to the concepts and mechanisms
of truth maintenance. The basic idea is to represent all logical relations
between proposition in disjunctive clauses. For example implications of
the form P1 A P2 A P3 ... -5 Q uill be represented as -P1 v -P2 v -P3 ...
v Q. Notice that in the clause representation the distinction betuween
~antecedents and consequences disappears and therefore the negation of an
antecedent in the implication can be as easily deduced as the consequent.,
This feature of the representation eliminates much of the backtracking
mechanisms which are present in other truth maintenance systems [Stalliman
and Sussman 1976] [Doyle 1978al. Another common relation among propositions

Wwe uwish to be able to express is the notion that some set of them are
mutually contradictory, formally =(P1 A P2 AP3 ... A Pn). This relation
is transformed via DeMorgan’s laus into the clause -P1 v -P2 v -P3 ... v
-Pn. This again eliminates the need for certain backtracking mechanisms
present in other systems. :

The propositions in other systems have only two truth states called
"in" and "out", uwhich represent "knoun to be true" (a well founded proof
exists) and "not knoun to be true" (not in) respectively. My system uses
the three more intuitive truth states of true, false, and unknown (hence
the title of this paper). This eliminates the need of a separate entity to
represent the negation of a proposition,

The notion that the truth of some proposition is an assumption is
simply represented by appropriately tagging the proposition. When the
assumption is found to lead to a contradiction (a clause that cannot be
satisfied) the truth value is automatically retracted. 1 belijeve that this
mechanism has most of the non-monotonic power of Doyle's system, but in a
much simpler form (see [Doyle 1978al for a discussion of non-monotinicity).

At the end of the paper are a series of appendices which give the
details of the implementation and an overview of its use.

0
[

The Algorithm

The basic truth maintenance system (TMS) object types are |iterals
(TMS nodes), truth 'values, terms, and clauses. TMS nodes represent
assertions of the deductive system using the TMS. Such assertions might be
of the form (COLOR A RED) or (MODE TRANSISTOR-1 BETA-INFINITE), but their
TMS representation is simply a unique atom, i.e. a node. Nodes can have
three possible truth states, true, false, and unknoun. A truth value is a
true or false value of a node. Changing a node from an unknoun state to

either true or false uwill ‘he referred to as adding a truth value, since it
is conceptually adding information. Changing a node from true or false to
unknoun uwill be referred to as removing a truth value, as it is

conceptual ly removing information. A term is an association of a node with
- @ value and is true when the node has that value, false when the node has
the opposite value, and unknoun otheruise.

The relations betueen the truth values of the nodes are represented
by propositional formulas in conjunctive normal form. This means that
there is a set of disjunctive clauses which must all be satisfied by the
values of the nodes. Each clause contains a set of terms, one of which
must be true.

Justifications for assertions are represented as clauses. For
example, if an assertion represented by the node C was implied by
assertions represented by A and B, then the clause would be ((A.false) or
(B. faise) or (C.true)). The fact that some set of assertions are mutual ly
contradictory is also represented in a clause. For example, if assertions
represented by A,B, and C would lead to a contradiction, then the clause
would be ((A.false) or (B.false) or (C.false)).

Each clause can be given multiple interpretations. For example the
clause ((A.false) or (C.false) or (D.true)) might be thought of as (A and
C) -> D, or it could be thought of as (-0 and C) -> —-A. This clause can
also be thought of expressing the fact that a contradiction results from A,
C, and -D ail being true simultaneousiy. Even more bizarre
conceptualizations of the clause are possible, such as (A -> (=D -> =C)).
Interpretations of the last type are useful in understanding certain
backtracking techniques to be discussed later.

- Adding Clauses and Truth Values

Clauses can be directly added to system at any time by a top level
procedure and are instantly checked for possible deductions. Truth values
can be added in two ways. The simplest is to add a truth value for a node
as a premise. In this case no other reason for believing the value is
needed. The second way is to deduce a truth value from a clause. Suppose
all the terms of a clause are knoun to be false with one exception, which
is a node whose truth value is unknown. In this case the one remaining
node can have the appropriate truth value added to satisfy the clause.
This is the only way truth values are deduced from the clauses in the TMS.
- There are houever valid deductions which depend on more than one clause.
For example given the two clauses A -> B and =A -> B it is possible to

deduce B. Such deductions are only made indirectly when certain types of
contradictions arise (contradictions will be discussed in later sections).

When a truth value is added a check must be made to see if new truth
values can be deduced from the added information. This is done by
examining clauses which contain the term whose truth value has been added.
Since clauses which contain the term which is made true are automatically
satisfied, the only clauses that must be checked for possible deductions
are those that contain the term which is made false. Since truth values
are added recursively, all truth values that can be deduced via chains of
such one-step clause deductions are added. -

For reading the follouwing code it will be useful to refer to Appendix
Il in which the data structures are explained. The code presented belouw is
a slight simplification of the actual code used here onily to formalize the
algorithm as described so far. It does not contain the mechanisms for
handling contradictions which will be explained later. The complete code
is given in Appendix I11. '

(DEFUN SET-TRUTH (NODE VALUE SUPPORT)

3 SUPPORT IS EITHER THE ATOM ’PREMISE OR
;A CLAUSE WHICH IS BEING USED TO DEDUCE VALUE

(PROG ()
(COND ((NOT (EQ (GET NODE ’TRUTH) *UNKNOWN))
(ERROR *SET-TRUTH--VALUE-NOT-UNKNOHN NODE)))
(PUTPROP NODE VALUE ’TRUTH)
(PUTPROP NODE SUPPORT *SUPPORT)

v

v

;FOR. EACH CLAUSE WHICH CONTAINS THE TERM WHICH BECOMES FALSE
;SUBTRACT ONE FROM THE NUMBER OF TERMS WHICH CAN POTENTIALLY SATISFY IT.

i

(MAPC (FUNCTION (LAMBOR (CLAUSE)
(PUTPROP CLAUSE (1- (GET CLAUSE ’PSAT)) ’PSAT)))
(GET NODE (GET VALUE ’OP-CLRUSES)))

(MAPC (FUNCTION DEDUCE-CHECK)
(GET NODE (GET VALUE ’OP-CLAUSES)))))

(DEFUN DEDUCE-CHECK (CLAUSE)
(PROG (F)
(COND ((AND (= (GET CLAUSE ’PSAT) 1)
(SETQ F (PCONSEQ CLAUSE)))
(SET-TRUTH (CRR F) (COR F) CLAUSE)))))

;PCONSEQ. FINDS A NODE IN THE CLAUSE WHICH HAS A TRUTH STATE
3OF UNKNOWN AND RETURNS A DOTTED PAIR OF THE NODE AND THE
;VALUE WHICH THE NODE MUST HAVE TO SATISFY THE CLAUSE.

It would be possible to check for more complex deductions. For
example if there are two clauses (P or Q) and (P or -Q) it is valid to
deduce P. In generql. arbitrary deductions could be done by deciding

whether the addition of some truth value inevitably leads to a
contradiction. If this is indeed the case then the opposite truth
value could be ‘deduced. The problem with this seemingly
straightforward approach is in deciding if something must lead to a
contradiction. A contradiction is inevitable when the set of clauses
can not be satisfied by any truth values for the nodes which are
unknoun. Therefore in order to decide if a contradiction is inevitable
the system must decide if the set of clauses can be satisfied by the
remaining. unknoun nodes. This is a standard problem of propositional
logic and is knoun to be NP complete. This means that there are strong
suspicions that it must require exponential time to solve. Therefore,
in order to avoid such a combinatorial explosion | restrict myself to
one clause deductions, This still gives all of the intuitive deductive
power of a clause uhile preserving computational expedience. :

Removing Truth Values

Truth values can be removed as uell as added. This can happen
when the user of the TMS decides that a premise is no longer known, or
it can happen when assumptions are retracted in backtracking. When
this happens it is necessary to remove all truth values that criticaliy
~depend on the lost information. Truth values are used for deductions
only by clauses that contain the term they make false. Therefore
clauses uhich contain the term which was previously false, but is nou
unknoun, are examined. If any of these clauses were used in the
original deduction of some truth value, then the value deduced is a
candidate for removal.

In order to determine whether a clause was the one originally
used to deduce a truth value, each node has associated with it a
support. The support is only used when the node has a knoun truth
value, and is either a premise marker or the clause which was used in
the original deduction of the truth value. Since the support is aluays
assigned when a truth value is added, the truth values of the other
nodes in the support can in no way depend on the supported value. This
means that the support is well founded and the set of premises that a
truth value is deduced from can always be determined by tracing
supports without fear of loops. .

Care must be taken that values are not removed that can be
deduced in other ways. One attempt at solving this problem is to check
all clauses that contain the node whose value is being considered for
removal to see if any can be used to deduce the value. However the
follouwing example demonstrates the problem with this approach.
Consider the clauses:

A->B
! B ->C
C->B

Suppose that A was added as a premise and then later removed.
Now when A is removed there is still a clause, C -> B, that can be used
to deduce B. The problem with using this clause to support the truth of
B is that, since C depend on B, B would be used to support itself. The
solution to this problem is to first recursively remove all candidates
for removal (therefore removing all truth values that critically depend
on them). After this has been done clauses which contain the terms
whose values have been removed can be checked for deductions. 1¢f
contradictions are present in the system, then it is possible that when
a truth value is removed its opposite value can then be deduced
(contradictions will be discussed in more detail a little later).
Whenever a clause is used to deduce a truth value, the clause becomes
the support for the value. Again since the support is found before the
truth value is added, it must be well founded. An important point is
that if a premise is removed by the TMS user, but the removed truth
value can be deduced from other premises in the system, then the truth
value remains, with a clause as its support instead of the premise
marker. '

In reading the following code it will again be helpful to refer
to Appendix Il in which the data structures are explained. The code
presented here is a simplification of the actual code used only to
formalize.the algorithm as discussed so far, i.e. it does not deal with
contradictions and assumptions which will be discussed later. The
complete code is presented in Appendix 111,

i

v

(DEFUN REMOVE-TRUTH (NODE)
(PROG (VALUE)
(SETQ VALUE (GET NODE *TRUTH))
(COND ((EQ VALUE *UNKNOHN)
(ERROR '* RENOVE-TRUTH--VALUE-NOT-PRESENT NODE)))
(PUTPROP NODE 'UNKNOWN *TRUTH)
(PUTPROP NODE NIL ’SUPPORT)

;FOR EACH CLAUSE WHICH CONTAINS THE TERM HHICH WRS FALSE
;ADD ONE T@ THE NUMBER OF TERMS WHICH CAN POTENTIALLY SATISFY IT

(MAPC (FUNCTION (LANBDA (CLAUSE)
E (PUTPROP CLAUSE *PSAT (1+ (GET CLAUSE 'PSAT)))))
(GET NODE (GET VALUE ’OP-CLRUSES)))

;REHOVﬁVTRUTH VALUES WHICH THESE CLAUSES HAD BEEN USED TO DEDUCE

(MAPC (FUNCTION (LAMBDA (CLAUSE)
“(PROG (F)
(COND ((AND (> (GET CLRUSE ’PSAT) 1)
(SETQ F (CAR (CONSEQ CLAUSE)))
;CONSEQ FINDS A NODE WHICH SATISFIES THE CLAUSE.
(EQ CLAUSE (GET F ’SUPPORT)))
(REMOVE-TRUTH F))))))
(GET NODE (GET VALUE ’OP-CLAUSES)))

;CHECK FOR ANY POSSIBLE DEDUCTIONS OF VALUES FOR THE
;NODE WHOSE VALUE WAS REMOVED '

(MAPC (FUNCTION DEDUCE-CHECK) (GET NODE ’POS-CLRUSES))
(MAPC (FUNCTION DEDUCE-CHECK) (GET NODE *NEG-CLAUSES))))

! Contradictions

Consider a case in which a clause is added that contains only
terms which are false. The clause is in contradiction with the rest of
the data base and is therefore referred to as a contradiction. Since a
clause is a contradiction only when all of the terms in it are false, a
contradiction is said to depend on the truth values of the terms in it.
It is conceivable that a TMS data base could contain several such
contradictions.

The addition of clauses is net the only way that contradictions
can occur. Consider the two implications (P > Q) and (P » -Q). If no
truth values are knoun for P or Q, then no deductions are made since
each clause has tuo ways in which it might be satisfied. I1f a true

“value for P is determined, then one of the above clauses would be used

to deduce a truth value for Q, while the other clause would become a
contradiction. -1t is important to realize that in cases where both a

i

19

truth value and its negation can be proven, one of the truth values is
chosen and all clauses which could have implied its negation become
contradictions. MWhen adding a truth value leads to a contradiction, it
is possible to add new clauses that allow deductions based upon this
fact. In the above example the clause (-P) can be deduced from the
two original clauses. To get a better feel for the general case
consider the example: :

clause interpretation
{(A. true) (B. false) (C. true)) (-AAB) »C
((C. false) (D. false) (E. true)) CAD >E
((A. true) (F. false) (E. false)) (-A A F) » -E

known values

B true
D trbe

F true

Now in this case if a false value for A is added the first clause
can be used to deduce C. Then the second clause can be used to deduce
E. At this point houever the third clause has become a contradiction.
The retationship betueen the three clauses is shown in figure one. In
the figure each clause is represented by a pair of right angled
implication pointers which should be interpreted as B » (-A » C). The
neuw clause which can be added in this situation is (B AD AF) - A

To see how new clauses can be constructed from the appearance of
contradictions in general it is necessary to closely examine hou
contradictions result from the addition of truth values. At some point
a truth value is added which removes the last chance of satisfying some
clause, say Cl. The term that became true when this value was added
will be called F1 (E in the above example). At the instant before this
truth value is added Cl could have been used to deduce the opposite
value. In a qguiescent data base no such clause can exist since all
possible one step deductions are made. This means that a false truth
value was added for some term in Cl (A in the above examplie), but that
Cl became a contradiction before it could be checked for deductions.
This second term will be called F2. All possible deductions from the
addition of any ‘truth value are made when the value is added, and Cl
could potentially have been used to deduce -F1 upon the addition of
-F2. Therefore the truth value of Fl, which caused Cl to be a
contradiction, must also be a deduction from -F2. This situation is
pictured in figure tuo.

In the figure each pair of right angled implication pointers

represents a clause. The clauses should be interpreted as ((FCll A

FC12 A eed) => (=F2 -> =F1)). Now if all the involved clauses

t

D

Y

(BADAF)—=>A

Figure 1.
An example of clause formation as a result of a contradiction. The
addition of+A causes C3 to become a contradiction

)--->FJL

Figure 2.
The general case of clause formation resulting from a -

contradiction. This is the general case in which the addition of-F2 causes
Cl to become a contradiction.

12

contained only tuo terms, then the clause { F2) could be added.
However, in the general case the contradiction results only when the

peripheral terms are true. In other words (FC11 N FClz A ve. F 1 N

FCZZ A wees) => F2. This implication then is the clause which is
added. The clause is formed during the unrolling of the recurSlve
calls to the procedure for adding truth values.

Hopefullg the added clause will allow the deduction of the
negation of the truth value that lead to the contrdiction, -F2 above,
in those cases when it would again lead to the same contradiction.
While the added clause is aluays valid, it does not aluays produce this
desired result, ~The reason for this is that some of the peripheral
truth values might also be deductions from the added value. In this

case when the added value (call it -F2 as above) is retracted, some of
the peripheral values uill also disappear and its negation uill not be
deducible. Houever if -F2 is again added then the clause generated
above will become a contradiction at the point at uhich all the
peripheral values become true. This will lead to the generation of yet
another clause. If F2 is still not deducible upon the retraction of
-F2, then further' additions of -F2 uwill generate still more clauses.

I't is aluays possible to force the system to deduce the negation of a
truth value that leads to a contradiction by such "pulsing" of that
value. I would like to emphasize that it would require a quite complex
structure to requ»re more than one or two such "pulses".

Default Values and Backtracking

In many problem solving situations it is necessary to make
assumptions that have no solid reason for belief. 1f such assumptions
fead to contradictions then they should be retracted. Assumptions are
represented as a subset of the premise values called default values and
are marked in the implementation by having the atom ’'default as their
support. UWhenever ‘a node is given a default support the value
supported is placed under a default property of the node. This value
is then added whenever no other truth value for the node can be
deduced.

When a contradiction is present in the data base an attempt is
made to remove it by removing default truth values. This involves
tracing the dependency relations (via the supports associated with
nodes) to find the premises upon which the contradiction depends and is
therefore called dependency directed backtracking. When a default
value is found upon uhich the contradiction depends, it is removed.
Hopefully the contradiction becomes an implication and can then be used
to deduce the opposite of the default value removed. 1f the opposite
of the default is not deduced, then the default value is added back.
At this point, since the contradiction must reappear, the backtracking
repeats and again the default value is removed. Due to the new clauses
generated each time the contradiction appears, the negation of the
default value must become deducible, and the backtracking halts when

13

either no contradictions are left, or the contradictions that are
present do not depend on any default values.

Clause Values and Hierarchies of Assumptions

So- far there has been no mention of the removal of clauses from
the data base. UWhile the physical removal of clauses does not occur,
there is a mechanism for making them impotent. This is done by adding
a node to each clause which represents its validity. For example the
clause (A or B) might become (-Cl or A or B) where Cl represents the
validity of the clause. Now as long as Cl is true the clause acts as
expected, but if the truth value Cl is removed, then the clause is
effectively removed, Each time a clause is added, some reason is given
for believing it. This reason is used as the support for the truth of
the node which represents the clause. This is usually useful only as a
device for keeping track of the source of clauses for the TMS user.
Houwever it has one'very important use in allouing assumptions to have
antecedents. S ' ,

Suppose that in reasoning about animals it is first assumed that
they are mammals., Furthermore suppose that in reasoning about mammals
it is assumed that they are dogs. The assumption that some animal is a
dog might depend on the assumption that it is a mammal. In general
then assumptions must be.able to take antecedents, some of which might
be other assumptions. Oependencies of this form can be represented in
the TMS by a clause uhose clause node has a default support. In the
example let the mammal assumption be represented by Al and the dog
assumption by A2. Nou Al can be assumed (given a true default value).
Once this has been done A2 can be added by adding the clause (Al -> A2)
and giving the clause node a true default value. The clause al.lous the
deduction of A2 only if Al is believed, also A2 can be removed as an
assumption during backtracking by removing the default truth value of
the added clause.

Since clause nodes are no different than any other nodes, removal
of their default truth values could be taken care of by the
backtracking algorithm already described. Houever, in backtracking it
is desirable to remove first assumptions upon which no other
assumptions depend. In chess for example one normally considers
several responses to a given move before going on to the next move.
This helps prevent the thrashing involved in removing and adding many
assumptions at once.

A minor modification to the backtracking algorithm allows this
selection of the default values, The number of supporting clauses that
must be traced back from the contradiction to find a premise are
counted. There may be several paths of supports that lead to a given
premise, and in this case the maximum distance is used. Now if some
default value implies some other assumption, then it will aluays appear
at a greater distance from the contradiction than the assumption it

B
'

14

implies. This is because it will always appear in the support chains

beneath the implied assumption. In view of this fact, our goal is
achieved by choosing for removal the default value with the minimum

maximum distance from the contradiction.

15

- :Comparison with Other Work

There are several systems which use explicit justifications for
beliefs. The work uhich is most closely related to the TMS presented
here 'is that of Stallman and Sussman [Stallman and Sussman 1976] and
Doyle [Doyle 1878al. 'The basic difference betueen these systems and my
TMS is in the mechanisms used for dependency directed backtracking. In
both of these systems each assertion has only tuwo truth states,
believed and unknoun, called "in" and "out" respectively. Since no
assertion can be false in such a system, additional mechanisms are
needed to prevent the belief of sets of assumptions knowun to be
contradictory. In Staliman and Sussman’s ARS system the assumptions
underlying a contradiction are placed in a NOGOOD assertion. This is
used by additional mechanisms which prevent the set of assumptions from
being believed. _ ‘

Jon Doyle has completed a master's thesis on the implementation
of a general purpose truth maintenance system (TMS) [Doyle 1978al. His
TMS employs the notions of "in" and "out" to represent the truth values
of assertions. If an assertion is believed by the system then its TMS
node is "in". [If the assertion is not believed, i.e. either knoun to
be false or simply unknoun, then its TMS node is "out". To make a
distinction betueen simply not knowing something’s truth value and
knouing that it is false, tuo TMS nodes are required, one for the
assertion and one for its negation. If the assertion has an unknoun
truth value, then both nodes are "out". If the truth value is knoun
then one of the nodes is "in" and the other is "out". An important
point is that in Doyles system the notion of a contradiction is
completely seperate from the justifications. A node must be created
which is declared to be a contradiction and then a justification of
this contradiction node is installed for each set of nodes which are
mutaully contradictory. Specifically a contrdiction node must be
implied by each pair of nodes representing an assertion and its
negation. 1f this is not done then the system will have no problem
Wwith keeping both of these nodes in, in other words believing both an
assertion and its negation. _ ,

In Doyle's system a mechanism of major importance in backtracking
is conditional proof. A conditional proof can be thought of as a TMS
node which is true uhenever a certain implication among other TMS nodes
is true. Therefore a conditional proof is defined in terms of the
implication it represents, in other words as a set of antecedents and a
consequent. To take an example suppose that the implication AABAC - D
is present in some TMS. A conditional proof node of D with respect to
A and B would represent the truth of the implication AAB > D. Nou if C
Hwere knouwn to be true then the implication represented by the
conditional proof would be true and therefore also the "CP" node. This
can be stated more formally as C » (AAB - D).

Doyle’s TMS uses unidirectional justifications to keep track of
consequences and antecedents of beliefs. To achieve dependency
directed backtracking in such systems it is necessary to trace the
antecedents of a failure (or contradiction) and then to blame the

16

contradiction on some set of assumptions. Once this is done it is also
necessary to add implications for the negations of each assumption to
prevent the set of assumptions from being again believed at some later
time.

Doyle's TMS also uses a non-monotonic dependency structure. This
means that truth of a node can depend on another node being unknoun.
In such cases uhenever the unknoun, i.e. "out", node becomes knoun,
i.e."in", the dependant node becomes "out". Whenever an assumption is
made, an node representing its negation is created. The assumption is
then made to depend on its negation being unknoun. This can be
understood as expressing the notion "I will believe it to be true as
long as 1 cannot prove -that it is false". When a contradiction is
found which depends on some set of assumptions a conditional proof is
constructed for each assumption representing the implication of the
contradiction by the assumption. This conditional proof is then used
to imply the negation of each assumption when that assumption would
lead to the contradiction. Since an assumption depends on its negation
being "out", when the negation becomes "in" the assumption becomes
"out". : ‘ .

The implementation of the conditional proof mechanism is however
not complete. '1f the antecedants of the implication a conditional
proof represents are not "in", then it is extremely difficult and
computational expensive to check the actual truth value of the
conditional proof. Doyle’s TMS "CP" nodes are "in" in only a subset of
the cases in which they could actually be shoun true. For example the
conditional proofs uwhich result from a contradiction are each
associated with the set of assumptions upon which that contradiction
was blamed. The negation of one of these assumptions is only justified
uwhen all the other assumptions in that specific set are believed.
Therefore the conditional proof will not justify the negation of an
assumption when the assumption can combine with other information to
give the contradiction., New assumptions which lead to old
contradictions are also not prevented from being believed. By using
the contradiction itself as an active deductive agent, my TMS can make
such deductions and avoid backtracking entirely in many such
situations. .

In my TMS a contradiction is only a clause which cannot be
satisfied. Therefore, if a truth value of one of the nodes in the
clause is removed, the clause will be used to deduce the opposite truth
value for this node. This allous the direct deduction of false values
for assumptions which uwould lead to contradictions. The main advantage
of this system is the tremendous conceptual and programming simplicity
achieved. However it is more than just a simplified implementation of
the previous systems. Because no specific set of assumptions is chosen
upon which to blame a contradiction, neuw assumptions which would lead
to the contradiction can also be proven false. Houever the difference
this makes in the number of contradictions encountered is small
compared to the savings given by any form of dependency directed
backtracking.

I have not implemented any conditional proof mechanism for the

17

simple reason that I did not have any application to justify its
existence. Doyle’s TMS uses conditional proof to implement a mechanism
for levels of abstraction. This is useful in condensing explanations
of beliefs. The exploration of such uses of conditional proof and its
relation to the algorithms presented here would be an interesting topic
for further research. Also there are probably uses for the non-
monotonic dependency structure present in Ooyle’s TMS other than the
identification of assumptions. The incorporation of such mechanisms
into this algorithm and the investigation of more sophisticated
applications would also be worthuhile.

i

Bibliogﬁaphy

[de Kleer,Doyle,Rich,Steele and Sussman 1977]

Johan de Kleer, Jon Doyle, Charles Rich, Guy L. STeele Jr., Gerald J.

Sussman, "AMORD A Deductive Procedure System," MIT Al Lab, Memo 435,
September 1977, '

[de Kleer,Dogle,Sfeele and Sussman 1977]
Johan de Kieer, Jon Doyle, Guy L. STeele Jr., Gerald J. Sussman,
"Explicit Control of Reasoning," MIT Al Lab, Memo 427, June 1977.

[Doyle 1978al Jon Doyle, "Truth Maintenance Systems for Problem
Solving," MIT Al Lab, TR-418, January 1978. ’

[Doyle 1978b]

Jon Doyle, "A Giimpse of Truth Maintenance," MIT Al Lab, Memo 461,
February 1978.

McDermott 1976) |
Drew V. McDBermott,"Flexibility and Efficiency in a Computer System for
Designing Circuits," MIT Al Lab, TR-482,June 1977. :

[McDermott and Sussman 1974] '
Drew V. Mcdermott and Gerald Sussman, "The CONNIVER Reference Manual,"
MIT Al Lab, Memo 259a, January 1974.

[Stallman and Sussman 1976]
Richard Stallman and Gerald Sussman, "Forward Reasoning and Dependency

Directed Backtracking in a System for Computer Aided Circuit Analysis,"
MIT Al Lab Memo 388, September 19786,

[Sussman 19771
Gerald Sussman, "Slices: At the Boundry Betueen Analysis and
Synthesis," MIT Al Lab, Memo 433, July 1977.

Appendix | -- A User’s Guide

This is a summary of the top level procedures which can be used
to interface the TMS with any deductive system. The procedures
descibed here can be loaded into lisp on MIT-Al by evaluating (FASLOAD
THS FASL DSK DAM).

(TMS-INIT) » _ .
This procedure initializes the TMS data structures.

(MAKE-DEPENDENCY-NODE <assertion> <uhen-true> <uhen-false> <when-unknouns)
This procedure creates and returns a new TMS node to represent
the assertion uwhich is passed as an argument. The node returned is an
atom uwhich has the ‘assertion placed on its 'ASSERTION property. <uhen-
true> is a function to be applied to the assertion when the node
becomes true. <uhen-false> and <uhen-unknoun> are similarly functions
to be used when the node becomes false and unknown respectively. Any
of the three function arguments can also be nil in which case no action

is taken upon the correspoding transition of truth state.

The. truth state of the node is available as its 'TRUTH property
which is either 'TRUE, 'FALSE, or 'UNKNOWN. The node is initially
assumed unknown and must be forced true via either SET-TRUTH or the
addition of a clause which causes its deduction. <uhen-true> will be
applied when this happens. The node can never go directly from being
true to being false, or vice-versa, it must first pass through a state
of being unknoun and therefore an application of <when-unknown>.

(SET-TRUTH <node> <value> <reason>)

This procedure adds truth values. The first argument must be a
TMS node and the value must be either ’true or 'false. An error
results if the node does not have an initial truth state of unknoun.
<reason> should be a representation of the reason for believing the
truth value and, except for the special atom 'DEFAULT described belowu,
is not used by the TMS other than placing it on the 'EXPLANATION
property of the node for the convienience of the TMS user. All truth
values wuhich are given via an external call to this procedure are
considered premlses by the TMS and their 'SUPPORT property is the atom
'PREMISE. .

An internal form of this procedure is used to add truth values
deduced from clauses. In this case the support is a clause. All truth
values that can be deduced in one step clause deductions from any added
truth values are also added. If a contradiction results from the
addition of a truth value, a new clause is generated and added as
described in the section on contradictions

20

(ADD-CLAUSE <clause> <reason>) :
: This procedure adds a clause to the TMS data base. The clause
argument must be a list of dotted pairs. Each pair is a TMS node
dotted with either ’"true or ’'false to represent the node or its
negation respectively. For example: -

(SETQ A (MAKE—DEPENDENCY—NODE 'HUMAN-TURING nil nil nil))
(SETQ B (MAKE-DEPENDENCY-NODE °'FALLABLE-TURING nil nil nil))
(ADD-CLAUSE (list (cons A 'false) (cons B 'true)) 'HUMAN-FALLABILLITY)

Would add the clause:
(~CLAUSE-N or -HUMAN-TURING or FALLIBLE-TURING)

Which can be more intuitively understood as (HUMAN=FALLABILLITY -
(HUMAN-TURING - FALLABLE-TURING)). Clause-n represents the TMS node
generated to represent the truth value of the clause and is given a
true valus as a premise with an explanation property of <reason> as in
SET-TRUTH. The clause node is usefull both in generating explanations
and in removing clauses when desired (making the clause node false
effectively removes the clause). The clause node is returned as the
value of ADD=CLAUSE.

DEFAULTS : - :
The use of the atom 'DEFAULT as the reason argument in either
SET-TRUTH or ADD-CLAUSE has a special meaning. It is the way in which
assumptions are announced to the TMS. A node or clause given a reason
of *DEFAULT is said to have a default truth value. Such nodes and
clauses act just like any other untill contradictions appear. If any
contradiction can ever be traced to a node with a default value, then
the value for that node will be automatically retracted by the TMS.
Similarly if a contradiction can be traced to a deduction from a clause
With a default value, then the clause will be invalidated and the
deduction retracted. This is the way in which this TMS handles the
non-monotonic functions performed in Doyle's TMS [Doyle 1978al.

Notice hou default clauses can be used to structure assumptions.
Suppose for example that you want to assume that grocery stores have
peas. This assumption can be captured in a clause uhich represents the
implication grogery-store » has-peas. The clause would be given a
default support to announce that it is an assumption. This is
described in more detail in the section on default truth values and
hierarchies of assumptions.

If it is desired not to have the TMS do automatic backtracking
then the assumptions simply need not be announced to the TMS.

Ve -

21

(REMOVE-TRUTH <node>)

This procedure removes the truth value of the node which is
passed as an argument. An error results of the node already has an
unknoun truth state. All truth values which critically depend on the
removed value are also automatically removed. At the end of the
removal process nodes uwhoes truth values were removed, but which have
default values, have there default values added via SET-TRUTH. It is
important to realize that truth values which can be duduced from other
knouledge in the TMS will not be removed. Such truth values can only
be removed by removing the premises or clauses from which it can be
deduced. Clauses are removed by removing the truth value of their TMS
nodes.

(WHY <object>) ,

<object> may be either a node or a clause (more specifically a
contradiction, uwhich is a clause which cannot be satisfied). 1 will
first consider the case where <object> is a node. In this case the
procedure returns the justification for the belief in the truth value
of the node. If the node has truth state of unknoun then nil is
returned. [f the value of the node is a premise, then the atom
"PREMISE is returned. Otheruwise it returns a list of the nodes whoes
truth values were used to deduce the truth vaue of <node>. The clause
node of the supporting clause will appear first on the list. Because
of the internally generated clauses which result from the
contradictions it is possible that other nodes on this list are clause
nodes. Clause nodes can be identified in that there 'ASSERTION
property is the atom ’CLAUSE.

[f <object> is a clause then Why returns a list of the nodes
contained in it. " The clause node comes first. It is important to note
the distinction betueen a clause and a clause node. The former
represents the actual clauses used by the TMS and it is these which
appear on the list of contradictions described below. Clause nodes on
the other hand represent the vallidity of a clause and are used for the
recording the reasons for belief in clauses and for removing clauses as
described above.

WHY can be used to do dependency directed backtracking outside of
the TMS in cases where more controle over the choice of assumption
removal is desired.

All contradictions that occur in the TMS are placed on a list which is the
value of the global atom CONTRA-LIST. If there are no contradictions then
the CONTRA-LIST will have value nil., A contradiction is simply a clause
which cannot be satisfied. .

o

22

Appendix Il -- The Data Structures

Nodes

Nodes represent assertions or any logical items.that take on
truth values. Nodes are represented by atoms with the following
properties: '

TRUTH
This propertses can have three values, 'true,'false, and
"unknoun, wuhich represent the truth state of the node.

SUPPORT :
This property gives the support for a truth value of the
node. It is either the atom 'premise or a clause if the node has a
truth value, and is nil if the node has a truth property of
*unknown. ‘

POS-CLAUSES
This is the'list of clauses which contain the node.

NEG-CLAUSES
This is a list of clauses which contain the negation of the
node. o

MAKE-TRUE
MAKE-FALSE
MAKE-UNK ~
. These are optional properties which give functions to be
applied to the ASSERTION property when the node undergoes the
appropriate tran51t|on of truth state.

DEFAULT
This applaes only to nodes that have default truth values and
is either 'TRUE or 'FALSE. - :

ASSERTION . '
: This is the assertion external to the TMS that the node is
representing.

~ EXPLANATION
This is the reason for believing a node which is a premise,

e.g. a node uhsch uas set true or false for reasons external to the
™S.

True and False

"True and ' false are atoms with the follouing properties.

TRUE
OPPOSITE => 'FALSE

23

CLAUSES => 'POS-CLAUSES
OP-CLAUSES => 'NEG-CLAUSES
EFFECT => 'MAKE-TRUE

FALSE o
OPPOSITE: => ’TRUE
CLAUSES => 'NEG-CLAUSES
OP-CLAUSES => 'POS-CLAUSES
EFFECT => 'MAKE-FALSE

Clauses

Clauses are atoms with the following properties

CLAUSE-LIST

This lsuthe list structure uhich contains the nodes and
associated truth values which make up the clause. It is a list of

dotted pairs each of which is a node dotted with the truth value it
has in the clause

PSAT i

This is the number of nodes which either satisfy the clause
or could potentially do so. If this number is 1, and there is a
node with an unknoun truth value in the clause, then the clause can
be used to deduce a truth value for the node. 1f this number is ©
then the clause is a contradiction.

Global Variables

CONTRA-LIST :
Th|s is a lust of all the clauses which are contraductlons.

The follouing varlables are global to certain procedures in the TMS.

CONTRA-CLAUSE

This is used to construct the new clause resulting from the

appearance of contradictions. It is global to the internal version
of SET-TRUTH.

CONTRA-SOURCE

This is the contradiction which initialized the construction
of a neuw clause. It is used by the internal version of SET-TRUTH
to terminate the construction of the new clause.

REMOVED-LIST

This is used by REMOVE-TRUTH to keep track of nodes whose
truth values have been removed.

264

ASSUM-LIST ‘

This is used in FIND-ASSUM for accumulating an alist of the
assumptions underliying a contradiction associated with their
maximum distance from the contradiction. The distance to the
contradiction is the number of clauses in the link betueen the
contradiction and the assumption. ’ J

25

Appendix il -- The Code

g8l
882
883
064
885
086
087
888
889
810
;391
812
813
814
815
816
- 817
818
819

0208 -

821
822
823
824
825
826
827
828
829
838
831
832

; INITIARLIZATION ROUTINES

(DECLARE (SPECIAL CONTRA-LIST NODE-COUNT CTRACE VPRINT ACCUM

CONTRA-SOURCE CONTRA-CLAUSE REMOVED-LIST ASSUM-LIST))

(DEFUN TMS-INIT O

(PROG O

(PUTPROP *TRUE *FALSE ’OPPOSITE)
(PUTPROP *TRUE ’POS-CLAUSES ’CLAUSES)
(PUTPROP *TRUE ’NEG-CLAUSES ’OP-CLAUSES)
(PUTPROP *TRUE *MRKE-TRUE ’EFFECT)
(PUTPROP *FALSE *TRUE ’OPPOSITE)
(PUTPROP ’FALSE ’NEG-CLAUSES ’CLAUSES)
(PUTPROP ’FALSE °'POS-CLAUSES ’OP-CLAUSES)
(PUTPROP °'FALSE *MAKE-FALSE 'EFFECT)
(SETQ CONTRA-LIST NIL)

(SETQ CTRACE NIL)

(SETQ VPRINT NILY))

i
v

(DEFUN MRKE-DEPENDENCY-NODE (FSSERTION WHEN-TRUE WHEN-FALSE WHEN-UNKNOWN)

(PROG

(NODE)

(GENSYM *N)

(SETQ NODE (GENSYM))

(INTERN NODE))

(PUTPROP NODE *UNKNOUN *TRUTH)
(PUTPROP NODE NIL ’SUPPORT)
(PUTPROP NODE ASSERTION *ASSERTION)

. (PUTPROP NODE WHEN-TRUE ’MRKE-TRUE)

(PUTPROP NODE WHEN-FALSE ’MAKE-FALSE)
(PUTPROP NODE WHEN-UNKNOWN ’*MAKE-UNK)
(RETURN NODE)))

APPNDX 3 Page 1

CL] ' APPNDX 3 Page 2
802 ;CLAUSE ADDITION ROUTINES

883

804, (DEFUN ADD-CLAUSE (CLAUSE-LIST REASON)

CLE (ADD-2 CLAUSE-LIST REASON)

886 (BACKTRACK))

887

088 (DEFUN ADD-2 (CLRUSE-LIST REASON)

809 (PROG (CLAUSE CLAUSE-NODE COUNT)

218 (SETQ COUNT &)

811

812 - (SETQ CLAUSE-NODE (MAKE-DEPENDENCY-NODE °*CLAUSE NIL NIL NIL))
013 (PUTPROP CLAUSE-NODE ’TRUE *TRUTH)

814 ' (PUTPROP CLAUSE-NODE. *PREMISE ’SUPPORT)

815 (PUTPROP CLAUSE-NODE RERSON *EXPLANATION)

816 (COND ((EQ RERSON ’DEFAULT)

817 (PUTPROP CLAUSE-NODE ’TRUE ’DEFAULT)))

818 . :

819 (GENSYM 'O

828 (SETQ CLAUSE (GENSYM))

821 (INTERN CLAUSE) s

822 (COND (CTRACE

823 (PRINT * [NEW-CLAUSE |)

024 (PRINC CLAUSE)

825 (PRINC | D

826 (PRINC RERSON)

027 ’ (PRINT (MAPCAR (FUNCTION (LAMBDR (F)

828 : (CONS (GET (CAR F) ’RSSERTION) (COR F})))
0829 ; CLAUSE-LIST))))

838 §

831 . (SETQ CLAUSE-LIST (CON5 (CONS CLRUSE-NODE *FALSE) CLAUSE-LIST))
832 (PUTPROP CLAUSE CLAUSE-LIST *CLAUSE-LIST)

833 (MAPC (FUNCTION (LAMBDA (NODE)

834) (COND ((NOT (EQ (GET (COR NODE) *OPPOSITE)
835 i (GET (CAR NODE) ’TRUTH)))
836 o (SET@ COUNT (1+ COUNT))))))

a37 CLRUSE-LIST)

838 (PUTPROP CLAUSE COUNT 'PSAT)

039 .

8480 (MAPC (FUNCTION (LANMBDA (NODE)

841 (PUTPROP (CAR NODE)

842 ' .. (CONS CLAUSE

843 . (GET (CAR NODE) (GET (CDR NODE) *CLAUSES)))
844 (GET (CDR NODE) ’CLAUSES))))

845 CLAUSE-LIST)

0846

847 (COND ((= COUNT &

848 (SETQ CONTRA-LIST (CONS CLAUSE CONTRA-LIST))))
849 (PROG (CONTRA-SOURCE CONTRA-CLAUSE)

058 (DEDUCE-CHECK CLAUSE))

851 (RETURN CLAUSE-NODE)))

001
082
983
804
885
ges
007
008
809

. 818

811
812

813,

814
e1s
816
817
818
819

826

821
022
823
824
825
826
827
828
029
838
831
832
833
834
835
0836
837
838

839

840
841
842
843
844
845
846
847
848
849
GEY:)
851
852
853
854
855
856
0857
858
059
068
861
862
863
864
865
866
867
868
869
878
871
872
873
874

' : APPNDX 3 Page 3
; TRUTH VALUE ADDITION ROUTINES _

(DEFUN SET-TRUTH (NODE VALUE EXPLAN)
(PROG (CONTRA-SOURCE CONTRA-CLAUSE)
(PUTPROP NODE EXPLAN *EXPLANARTION)
(COND ((EQ EXPLAN *DEFAULT) (PUTPROP NODE VALUE ’DEFAULT)))
(SET-2 NODE VALUE ’PREMISE)
(BACKTRACK)) '

(DEFUN SET-2 (NODE VALUE SUPPDRT):
(PROG (TRACE F)
(COND (VPRXNT (PRINT *|SET TRUTH|) (PRINC NODE) (PRINC VALUE) (PRINC SUPPORT)))

;s TRACE IS TRUE IF A CONTRADICTION HAS RESULTED FROM THIS SET EITHER DIRECTLY
;0R AS R CONSEOUENCE OF RESULTING RECURSIVE DEDUCTIONS

(SETQ TRACE NIL):
(COND ((NOT (EQ (GET NODE ’TRUTH) *UNKNOUN))
(ERROR ' SET-TRUTH--VALUE-NOT-UNKNOWN NODE)))
(PUTPROP NODE VALUE *TRUTH)
(PUTPROP NODE SUPPORT *SUPPORT)
(MAPC (FUNCTION (LAMBDA (CLAUSE) (PROG ()
(PUTPROP CLRUSE (1- (GET CLAUSE ’PSAT)) *PSAT)
(COND ((= (GET CLAUSE ’PSAT) @)
(SETG CONTRA-LIST (CONS CLAUSE CONTRA-LIST))
(COND (CTRACE
(PRINT *CONTRADICTION)
(PRINC (GET CLAUSE *CLAUSE-LIST))N
(GET NODE (GET VALUE ’OP-CLAUSES)))
(COND ((GET NODE (GET VALUE ’EFFECT))
(APPLY (GET NODE (GET VALUE ’EFFECT)) (LIST (GET NODE *ASSERTION)))))

(MAPC. (FUNCTION (LAMBDA (CLAUSE)
(COND ((AND TRACE
(EQ CLAUSE CONTRA-SOURCE))
"(RDD-2 CONTRA-CLRUSE ’CLAUSE-RESOLUTION)
(SETQ CONTRA-SOURCE NIL)
(SETQ TRACE NIL))
((AND (= (GET CLAUSE ’PSAT) @)
‘ (NULL CONTRA-SOURCE))
(SETQ CONTRR-SOURCE CLAUSE)
t (SETQ CONTRA-CLAUSE (MERGE CLAUSE NIL NODE NIL))
(SETQ TRACE *TRUE))
((SETQ F (DEDUCE-CHECK CLAUSE))
(SETQ TRACE ’TRUE)
(SETQ CONTRA-CLAUSE
i (MERGE CLAUSE CONTRA-CLAUSE NODE (CAR F)))))))
(GET NODE (GET VALUE ’OP-CLHUSES)))
(RETURN TRACE)))

(DEFUN DEDUCE-CHECK (CLAUSE) ;THE FACT DEDUCED IS RETURNED ONLY IF A CONTRADICTION RESULTED.
(PROG (F)
(COND ((AND (= (GET CLAUSE ’PSAT) 1)
(SETQ F (PCONSEQ CLAUSE))
(SET-2 (CAR F) (CDR F) CLAUSE))
(RETURN F))
(T (RETURN NIL)))))

(DEFUN PCONSEQ (CLAUSE)
(DO CLIST (GET CLRUSE ’CLRUSE-LIST) (COR CLIST) -
(NULL CLIST)
(COND ((EQ (GET (CHHR CLIST) ’TRUTH) ’UNKNOWN)
(RETURN (CAR CLIST))))))

(DEFUN MERGE (CLAUSE ACCUN EXCEPTl EXCEPT2)

(PROG O
(MRPC (FUNCTION (LRHBDH (NODE)
(COND ((NOT (OR (EQ (CAR NODE) EXCEPTI)
"+ . (EQ (CAR NODE) EXCEPT2)
(HMEMBER NODE ACCUM}))
(SETQ ACCUM (CONS NODE ACCUM))))))
(GET CLRUSE ’CLAUSE-LIST))
(RETURN ACCUM)) :

001 R , APPNDX 3 Page 4

882 ;TRUTH VALUE RENMOVAL ROUTINES

883

084 (DEFUN REMOVE-TRUTH (NODE)

885 (PROG (REMOVED-LIST)

0806 (REMOVE-2 NODE)

887

2808 (MAPC (FUNCTION (LAMBDA (DOT)

089 (PROG (NODE)

8le (SETQ NODE (CRR DOT))

-39} : (COND ((NOT (EQ (GET NODE *TRUTH) *UNKNOWN)) (RETURN T)))
812 :

813 - (NODE-DEDUCE-CHECK NODE ’TRUE)

814 (NODE-DEDUCE-CHECK NODE ’FALSE))))

815 REMOVED-LIST)

816)

817 (MAPC (FUNCTION (LRMBDA (DOT)

818 (PROG (NODE)

819 (SETQ NODE (CAR DOT))) _
828 (COND ((NOT (EQ (GET NODE ’TRUTH) ’UNKNOHN)) (RETURN T)))
821

822 (COND ((GET NODE ’DEFAULT)

823 (PROG (CONTRA-SOURCE CONTRA-CLAUSE)

824 - ' (PUTPROP NODE ’DEFAULT ’EXPLANATION)
825) (SET-2 NODE (GET NODE ’DEFAULT) *PREMISE)))))))
826 REMOVED-LIST)))

827)

828 (DEFUN REMOVE-2 (NODE)

829 (PROG (VALUE)

838 (COND (VPRINT (PRINT ’|RENOVE—VHLUE P

831 (PRINC NODE)))

832 (SETQ VRLUE (GET NODE ’TRUTH))

833 (COND ((EQ VARLUE *UNKNOUN)

834 (ERROR *REMOVE-VALUE--VALUE-NOT-PRESENT NODE)))

835 (PUTPROP NODE *UNKNOUN * TRUTH)

836 (PUTPROP NODE NIL ’SUPPORT)

837 (SETQ REMOVED-LIST (CONS (CONS NODE VALUE) REMOVED- LISTY)

838 (MAPC (FUNCTION (LAMBDA (CLAUSE) (PROG ()

8383 (PUTPROP CLAUSE (1+ (GET CLAUSE ’PSAT)) ’PSAT)
848 (COND ((= (GET CLAUSE ’PSAT) 1)

844 . (SETQ CONTRA-LIST (DELQ CLAUSE CONTRA-LIST)))))))
842 (GET NODE (GET VALUE ’OP-CLAUSES)))

843 ' L

844 (COND ((GET NODE *MRKE-UNK)

845 (APPLY (GET NODE *MAKE-UNK) (LIST (GET NODE ’RSSERTION)))))
846

847 (MAPC (FUNCTION (LAMBDA (CLAUSE) (PROG (F)

048 (COND ((AND (> (GET CLRUSE ’PSAT) 1)

849 ’ ' (SETQ F (CAR (CONSEQ CLAUSE)))

858 . (EQ CLAUSE (GET F ’SUPPORT)))

851) ’ (REMOVE-2 F))))))

852 (GET NODE (GET VALUE *OP-CLAUSES)))))

853

854 (DEFUN CONSEQ (CLAUSE)

855 (DO CLIST (GET CLAUSE ’CLAUSE-LIST) (COR CLIST)

856 (NULL CLIST) ‘

857 (COND ((EQ (GET (CAAR CLIST) ’TRUTH) (CDAR CLIST))

858 (RETURN (CAR CLIST))N))

8539 :

868 (DEFUN NODE-DEDUCE-CHECK (NODE VALUE)

861 (PROG (CONTRA-SOURCE CONTRA-CLAUSE)

06 . (DO C-LIST (GET NODE (GET VALUE ’CLRUSES)) (CDR C-LIST)

063 (OR (NULL C-LIST)

864 (EQ (GET NODE ’TRUTH) VALUE))

865 (DEDUCE-CHECK (CAR C-LIST)))))

881
882
803
884
0885
886
887
088
883
ele
81t
812
013
814
815
816
817
818
819
828
821
022
023
824
825
826
0827
028
029
838
831
032
833
034
035
636
837
838
0839
848
841
842
843
844
845
846
847
848
849

858

051
852
053
854
855
056
857
858
859
068
861
862
863

;EXPLANATION AND BACKTRACKING ROUTINES

(DEFUN WHY (OBJECT)
(PROG (SUPPORT CLIST WHY-LIST)
(COND ((SETQ CLIST (GET OBJECT °*CLRUSE-LIST))
(RETURN (MAPCAR (FUNCTION (LAMBDA (F) (CAR F))) CLIST)))
(T
(SETQ SUPPORT (GET OBJECT ’SUPPORT))
(COND ((EQ SUPPORT *PREMISE) (RETURN *PREMISE))
(T (DO CLIST (GET SUPPORT ’CLRUSE-LIST) (COR CLIST)
- (NULL CLIST)
(COND ((NOT (EQ (CARR CLIST) OBJECT))
(SETQ HHY-LIST (CONS (CAAR CLIST) WHY-LIST)))))
(RETURN WHY-LIST)))))))

(DEFUN BRCKTRHCK O
(PROG (ASSUMPTION RSSUN LIST)
(SETQ ASSUMPTION NIL)
(SETQ ASSUM-LIST NIL)
(COND ((NULL CONTRA-LIST)
(RETURN T)))

(00 CONfRH CONTRA-LIST (CDR CONTRA)
(OR (NOT (NULL ASSUM-LIST))
. (NULL CONTRA))

(MAPC (FUNCTION (LAMBDA (NODE) (FIND-ASSUM NODE 1)))
(HHY (CAR CONTRAR))))

(D0 ((DO-ASSUM ASSUM-LIST (COR DO-ASSUM))
(MIND 1888 MIND))
C(NULL DO-RSSUM))
(COND ((< (CDAR DO-ASSUM) MIND)
(SETQ MIND (CDAR DO-ASSUM))
(SETQ ASSUMPTION (CARR DO-ASSUM)))))

(COND ((NULL RSSUNMPTION)
(PRINT * [CONTRADICTION DEPENDS ON NO ASSUMPTIONS |)
(RETURN NIL))
(T (REMOVE-TRUTH ASSUMPTION)))

(BRCKTRACK)))

(DEFUN FIND-ASSUM (NODE LEVEL)
(PROG (SUPPORT ASSC)
(SETQ SUPPORT (GET NODE ’SUPPORT))
(COND ((EQ SUPPORT ’PREMISE)
(COND ((EQ (GET NODE ’EXPLANATION) ’DEFAULT)
(COND ((SETQ ASSC (ASSOC NODE ASSUM-LIST))
(RPLACD ASSC (MAX LEVEL (CDR RSSC))))

APPNDX 3 Page 5

(T (SETQ ASSUM-LIST (CONS (CONS NODE LEVEL) ASSUN-LIST)))))))

(T (MAPC (FUNCTION (LAMBDA (NODE) (FIND-ASSUM NODE (1+ LEVEL))))
(HHY NODE))))))

(DEFUN SATISFY (NODES)
(MAPC (FUNCTION (LAMBDA (NODE)
(COND ((NOT (EQ (GET NODE ’TRUTH) *UNKNOHWN))
. (PUTPROP NODE ’TRUE *DEFAULT))
(T (SET-TRUTH NODE *TRUE ’DEFAULT)))))
NODES)) o

(TMS-INIT)

Symbol Table for:

ADD-2 ...iviiiiinn..
RDD-CLAUSE
BACKTRACK
CONSEQ000vuuns
DEDUCE-CHECK
TMS-INIT

v

DAM; APPNDX - 3

EXPR
EXPR
EXPR
EXPR
EXPR
EXPR

002 888
082 804
865 6817
0804 854
803 852
881 006

FIND-ASSUM EXPR
MAKE-DEPENDENCY-NODE EXPR
MERGE EXPR
NODE-DEDUCE-CHECK .. EXPR
SET-2 EXPR
HHY ..., .ee. EXPR

DR

crerssan

065 845
861 021
883 066
664 068
863 81l
885 884

85/31/78 Page 1

PCONSEQ EXPR
REHOVE-2 EXPR
REMOVE-TRUTH EXPR
SATISFY vvevvevansss EXPR
SET-TRUTH EXPR

003 860
884 028
8084 084
885 856
883 864

