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Most real world domains differ from the micro-worlds traditionally used
in A.I. in that they have an incomplete factual database which changes over
time. Understanding in these domains can be thought of as the generation of
plausible inferences which are able to use the facts available, and respond
to changes in them. A traditional rule interpreter such as Planner can be
extended to construct plausible inferences in these domains by A) allowing
assumptions to be made in applying rules, resulting in simplifications of
rules which can be used in an incomplete database; B) monitoring the
antecedents and consequents of a rule so that inferences can be maintained
over a changing database. The resulting chains of inference can provide a

dynamic description of an event. This allows general reasoning processes to

be used to understand in domains for which large numbers of Schema-like
templates have been proposed as the best model.
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2 Sleuth

Suppose that you were a farmer, and each week you must make decisions
about your wheat crop based on the the price you expect to get for it. You
formulate the question to yourself: "Will the price of wheat rise?"™ In

making this decision you have available a streém of information ranging from

weekly reports on global demand to your own knowledge about thé weather and

state of ydur crop. As an aid in making your decision you would like to

know whenever these facts can be organized into a descriptive scenario which
supports the hypothésis of rising wheat prices. (i.e. The ﬁuestion about
the price of wheat is treated as a hypothesis about the dbmain.)

v This is a task which involves ﬁunderstanding". It is a type of task
which can be difficult to do when the amount of information available is
large and the information changes frequently. For instance, if you wefe
charged with preparing the President's daily news summary, you would have to
read hundreds of reports each morning, and analyze them in sufficient detail
to summarize only those parts which were relevant to the president's
concerns.

_ Understanding'of fhis sort is a form of problem solving. It has two
distinguishing features. First, it is reasoning in the service of
perception. That is, it is particularly concerned with how related
inf&rmation from a variety of sources is organized into data structures
which can in turn serve as input to further reasoning procésses. This sort
of fairly éutomatic organization of semantic memory is something people do
Without much trouble. This suggests the need for a corresponding set of
computational procedures which can handle this task in intelligent support
systems. Secondly, most real world databases share certaih features of
inqompleteness and insfability which make tfaditionai reasoning'processes

break down. Once again, special mechanisms are needed to ensure that
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inferencing can proceed correctly.

In this paper I will discuss the desxgn of a program, Sleuth, for
performing this type of task. Sleuth's purpose is to recognize events in
'real world domains by makihg inferences which support the queétions it is
given, and to keep'these scenarios current over a changing database, Sieuth
is not itself a theory of probleﬁ'solving strategy, since it does not
in&olve a commitmenf to a particular approach such as means-end andlysis
" (Ernst and Newell, 1969) or procedural nets (Sacerdoti, 1977). Rathef;‘
Sleuth is an approach to the interpretation and construction of reasoning -
rulgs which allow; them to be used successfully in certain types of real
world domains. | | ‘ 4

Real world domains often don't seem to demand great problem solving
efforts in order for most people to ope}ate reasonably well in them. Many
of these domains share certain features. They are

A) Incomplete

B) Unstable

They are 1ncomp1ete because not all the information we might need in
order to make an 1nference is ava11able at a particular time. For instance,
you may have to decide if the price of wheat is going to rise, when you know
~only the supply, but not the demand for wheat.

' They are unstable since the particular subset of information available
can change fairly rapidly in the real world. For example, a farmer receives
daily weather reports, weekly crop surveys, daily market prices, and so on.

Knowledge based approaches to understanding in common sense domains
~have focused on the use of frames or scripts (Cullingford, 1977; DeJong,
1977; Reiger, 1978) This has been a successful approach in domains with
well structured semantics in which knowledge is added in a highly organized

fashion, such as stories and newspaper articles. In such cases it has been
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profitable to view the new knowledge as inStantiating a small set of static
frames or scripts. However, for complex events it is very difficult to’
provide enough scripts or frames terncompass all alternatives. Relevent
information may occur in several different stoniés or reports. These may be
added at different times. _ | |

Sleuth is intended as a model of what it medns to "understand"
kndwledge in some real world domains. Like all such models, it focuses on a
particular subéet of issues and problems and ignores others. Sleuth is an
attémpt to provide a more unified view of problem solving and understanding
by considering the creation of event descriptions from a given set of
asseftions to involve a series of inferences which link these assertions in
support of some central hypothesis. This approach ignores issues which more
knbwledge based theories have focused on, such as the use of prior knowledge
of the domain (Charniak, 1977), or the usefulness of powerful sets of
semantic primitives in making plans (Wilensky, 1976). McDonald (1978) has
reviewed these three approaches to story understanding in terms of the
~strengths and weaknesses of each apprdach. Ultimately, a complete theory of
understanding will have to incorporate elements of ﬁany‘of these partial
models.

In contrast to these knowledge-based approaches 1 will argue tﬁat

-in real world domains where the'knowledge is not necessarily pre-structured
into simple stbries, an understanding system wiil have to have capabilities
that canlbest be characterized as exteﬁsiohs to traditional aﬁproaches to'
inferencing. Like Charniak and Wilensky, 1 have focused on the particular
type of task which most demands just those featurés'Which I wish to
emphasize. Complex events iﬁ real world doﬁains have properties which
- suggest that a dynamic approach, drawing on inferencing strategies, may be

the best solution.
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Events have fuzzy boundaries: Consider a complex event, such as the
recent Israeli invasion of Lebanon. What are the componehts of this event?

We could define it as consisting of all armed clashes befween Israeli forces

~and Palestinians after Israeli troops crossed the border. However, some

people might also include the previous‘faid into Israel which provoked the
invasion. We could go even further,’and expand our description to include
the United Nations meetings on the invasion,'the attitude of Syria, or even
the events that led to the.creation of the Palestinian refugees.v There is
no fixed definition or single frame for this event. Like many others it has
fuzzy boundaries. Usjng inferences to link the available facts yields a
dynamic'descriptioﬁ for an event. - The "boundaries" can be extended at will

by making further inferences to include more facts.

.Events are not "things": For example, consider Israeli ?ersus
Palestinian descriptions of the invasion. These may not,;nclude the same
set of facts. When the two descriptions do share facts in common, they will
be organized by different relations. Inference processes are flexible
ehough to capture this distinction by applying different rules of inference
to some initial hypothesis to generate differenf chains of inference linking
different (or partially different) sets of assertions in support of the same
central hypothesis.

Events haye variable instantiations: For any particular type of event,

a different subset of features may be missing for each instance. By using
chains of inference to connect assertions we can evaluate the plausibility
of any particular event description without necessarily having to specify
beforehand all acceptable partial instantiations.

Anything could be relevant: If we ignore plausibility, we can create

an event description with almost any set of assertions. For example, if we

follow sports we might postulate a scenario in which the Texas Rangers win
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the world series. We do not want to exclude such far fetched scenarios a

priori from the range of possibilities. Indeed, we wish to do just the
opposite. We would like to retain the ability to create event descriptions
which involve a given set of facts, and then judge whether the scenario is

plausible or not. This is useful in hypothetical reasoning, and allows us

to adjust the false alarm rate to correspond to the expected utility of the

result.

Special problems arise in recognizing an event due to its essentially
dynamic‘nature. For instance the assertions comprising a particular event
may be added to the database over a period of time. This cofresponds to
fact that events occur sequentially over time; Sequential instantiation of

an event can lead to difficulties. Current assertiohs may become obsolete,

~change or be deleted before the final components of the description are

'added to the databaSe. An event description is built on'shifting sands, so

to speak, and in generating fhese descriptions we must be able to respond to
these changes. The recognition process involves conditionality. Where we
go depends on what has gone before. For example, in a condition called
Frost Heaving, a sequence of thaws and subsequent freezes can tear the roots
of the winter wheat crop. If however, a thaw continues for more than a
short time, the ground will thaw.down to the base of the plant roots. The
next freeze will then not tear the roots as the ground refreezes.
Consequently, the durétion of the freezes and thaws is as important as the
number. 'Somehow we must keep a history of the calculation. This will allow

us to determine which features to attend to based.on the features we have

already seen.
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INCOMPLETE DOMAINS

‘In this section I will discuss how a traditional reasoning progranm,
such as Planner, can be extended for use in a domain with incomplete
information.4 Consider, for example, how‘a farmer, (let's call him Farmer
MatDonaid), might go about making weekly decisions concerning his crop of
wheat. He formulates the question: "Will the price of wheat rise?". If he
can generate a scenario from available information which supports the notion

of the price rising, he will adopt one set of farming strategies; if not,

.another. If Farmer Macdonald has a consultant program whose reasoning'

processes resembled Planner (Sussman, Winograd, and Charniak, 1971), he
might formulate the problem as follows: '
(Thgoal (price-increase wheat))

This goal is a hypothesis #bout the state of the world. 'The consultant 
makes inferences on the current set of assertions to see if an event
déscription supportihg it can be generated. .We can define an event as beingl
a set of assertions, justified by rule instances, which support some central
hypothesis. If farmer MacDonald's assistant knows'the fdllowing theorenms

and assertions, it will be able to construct a hlausible chain of inference:

(Thassert Supply Wheat 180, 000, 000 bushels)
(Thassert Demand Wheat 170,000, 000 bushels)
(Thassert Carryover Wheat 15, 000, 000 bushels)
(Thassert old-supply wheat 182,000,000 bushels)

(Thconse Thmi (X) (price-increase ?7X)
(Thor (Thgoal (Supply-§-demand 7X))
. (Thgoal (Speculation 7X)))

(Thconse Thm2 (X S D C) (Supply-§-Demand ?7X)
(Thcond ((Thand (Thgoal (supply ?X 7S bushels))
‘ (Thgoal (demand ?X 7D bushels))
, (Thgoal (carryover ?X ?C bushels))
(greaterp (?C) (- 7S ?D))))
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Thml specifies that to show a price increase for wheat, either of two .
subgoals can be attempted. The first subgoal specifies a pattern which
matches that of Thm2. Thm2 will succeed only if the difference between
supply and demand is less this year than last. If so, Thml will succeed. A
price increase fof wheat is inferred, and Farmer Macdonald can increase his
wheat plantings. (Note that we are simplifying the decision processe# of a
farmer; he has not looked at demand for alternate crops; whether his
production costs on wheat have gone ub; nor what sort of growing season is
predicted. However, our purpose is not to show how Planner can be uséd in
farming, but to illustrate some limitations of Planner.) We can illustratg

this graphicly as follows:

Wheat Price Increase?
tCarryover -~(Supply - Demand) t Speculation
Demand Carryover Supply

Current demand for wheat is reported weekly by the U.S.D.A., based on
domestic reports, and satellite observatibns of foreign lands. Each week,
as farmer Macdonald reads his newsletter, he marks’existing assertions as
old, and adds new ones.

€. g. Current information is marked as old; or erased:

(Thgoal (demand wheat ?D bushels))

(Thassert (old-demand wheat ?D bushels))

(Therase (demand wheat ?D bushels))

New information is asserted:

(Thassert (demand wheat 180, 000,000 bushels)

Suppose that the next week, due to very foggy weather in central Asia,

nd satellite photos are taken. As a result, the U.S.D.A. issues no neﬁ‘
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demand statistics. This time, when the consultant is asked about the price
of wheat, the previous inferences would fail, since no assertion'matching
the pattern for_(Deﬁand Wheat ?D bushels) would be found. For.such cases,
Planner provides a strategy. If an assertion is not in the database,
Planner will try and prove it: |

(Thconse Thm3 (X DD FD) (demand ?7X)
(Thcond ((Thand (thgoal (domestic-demand ?DD))
(thgoal (foreign-demand ?FD)))
(Plus 7DD ?FD))))

Thm3 states that to deduce demand for a commodity, f1nd the foreign and
domestic demand for this commodity, and add these together. If there are
~assertions for foreign and domestic dgmand, this theorem would succeed.
However, since the total demand reported by thé U.S.D.A. is based on the
missingvestimates of foreign deménd, Thn3 will also fail. In this case, if
there are no other methods for proving the missing assertion, the consultant
must give up. |

(In" this and subsequent diagrams italics are used to indicate
antecedents which are missing. A solid line is used to connect antecedents
to rules; ‘similarly, a solid line and arrow is used to indicate deduced
links between rules and assertions, while a dashed line and arrow indicates

inferences which have failed.)

Wheat gzice Inérease?

1
]
i

tCarryover - (Supply - Demand)

-
-
-

De%gdﬁ Carryover ~ ‘Supply

1
1

Demand = Doméstic+Foreign

~
~
~

~

Domestic Foreign
This presents a fairly brittle mechanism for dealing with domains which

share the properties of incompleteness and instability. If the needed
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assertions are not in the database, and if they cannot be infered, the
inference attempt will fail. It will}fail, however, not nécessarily because
+it is wrong, but because not enough information exists to make inferences.
People are not quite so brittle reasoners, since they often cannot postpone
decisions until more knowledge is available. For example, Farmer MacDonald
might reason that as long as the supply of wheat is decreasing, it will be
‘worthwhile to plant more regardless of demand. ~(Note: I am not suggestingA
that this is the "best" decision; merely that it is a plausible decision,‘:
and represents the sort of flexible reasoning which people are capable of.)
By being willing to make assumptiohs, Farmer MacDonald is able to use a form
of a rule which can operate on the inforhation.available. We might express

this by adding a second clause to the Thcond of Thm2:

(Thconse Thm2A (X S D C) (Supply-G-demand 7X)

(Thcond ((Thand (Thgoal (supply ?X 7S bushels))

(Thgoal (demand ?X ?D bushels))

(Thgoal (carryover ?x ?C bushels)))
(greaterp ?C (- ?2S D))
(Thor (Thgoal (supply-decrease 7X))

(Thgoal (demand-increase ?7X)))))
If the full set of assertions concerning'supply, demand and carryover
are unavailable, Thm2A now suggests either trying to prove that supply has
'decreased, or demand has increased. ByAcreating goals that require only a

subset of the assertions that the original theorem required, Thm2A starts to

capture the notion of rule simplification.

However, Thm2A does not quite capture our intuitions,abbut

simplifications. A rule should givé advice about which other theorems can
function in its stead as simplifications. We can then choose to use this
advice or not, depending on our strategy. By treating simplifications like
other goals in Thm2A, we lose this intuftion. More importantly, while we
can express simplifications of rules as theorems of fhe same sort as other

theorems, they are not equivalent to other consequent theorems. A
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'simplifi;ation is not used as a sub-goal in instantiating a theorem.

Instead it replaces that theorem and is an alternative method for proving’
that theorem's goals given the conditional circumsmpcés of the theorem failing, and our
willingness to make assumptions. The simpl'ifica'tions, for the ’purpc')ses of making
inferences, are considered eqﬁivalent to the original theorem under the
given circumstances, although ordinarily the simplifications achieve
different goals than the theorem they replace.

A rule can havé more than one procedural counterpart. Part of
Planner's contribution to the notion of pattern directed invocation of rules
was the insight that a rule has both a consequent and antecedent meaning.
These can be expressed as two classes of theorems, antecedent and consequent
theorens, which can be invoked by different patterns. We can extend this a
step further by postulating that a rule has another bundle of procedural
counterparts corresponding to its simplifications.

Actually, these simplifications will simply be other rules. However

the knowledge of when these other rules can be used as simplifications, and

which fules can be used, must be represented. Sleuth can be viewed as an

‘intelligent interpreter which can make use of this metaknowledge (Davis §

Buchanan, 1977) to substitute simpler theorems for a rule which fails. The

.appropriate place to specify this metaknowledge is in a separate class of

theorems. e.g.

(Thconse Thm2 (X S D C) (supply-§-demand 7X)
- (Thcond ((Thand (Thgoal (supply ?X ?S bushels))
’ (Thgoal (demand ?X ?D bushels))
(Thgoal (carryover ?X ?C bushels)))
(greaterp ?C (- 7S 7D))))) .

(Thassume Thm4A (X) (Supply-§-demand 7X)
(Thgoal (supply-decrease 7X))
(Thcaveat (Default)))

(Thassume Thm4B (X) (Supply-§-Demand 7X)
' (Thgoal (demand-increase ?X)) -
(Thcaveat (Thnot (Thgoal (supply-increase ?X)))))




12 | | Sleuth

We now introduce a new class of theorems, such as Thm4A and B,
indicated by the label Thassume. - These theorems contain infofmation
~concerning simplifications and assumptions. A Thaséumption will specify A)

a goal; theorems satisfying thi; goal éan function as a simplification; B)
the assumptions involved in using that simplification. These are expressed
as a caveat. If the.assumption being made is that the missing antecedents
can be ignored, the caveat will contain a Default. If there is some
particular condition which must obtain in order to assume that the
antecedents ‘can be ignored, this will be expressed in the caveat. (An
alternative approach is to use a'generative theory of simplifications in
which a rule can be examined and a simplfication generated dynamically. The |
present solution can be thought of as the end step of such a process. The
specification of the domain and metakqowledge necessary to achieve this is a
complex task, which I have defered until the next iteration. waever, see
‘Carr and Goldstein (1977) for a model of how this metaknowledge looks in one
ddmain.)' |

vFor instance, in Thm4aA, proving‘a decrease in wheat supply can function
as a simplification of Thm2 (broving a.decrease in the difference between

supply and demand), and hence can in this case be used to prove the goal of
an increased price for wheat. However, ordinarily Thm4A would never match
the goal pattern which invokes Thm2. Since no assumptions are specified in
the Caveat, these can be ignoréd. This is explicitly expressed in the
caveat as a default. If instead we use the goal of an increase in demand as
a simplification, as in Thm4B, we must take account of the caveat that
supply musi not have increased for this simplification to be valid.

When Thm2 fails, Sleuth can choose to make assumptions which will allow |
a simplification to succeed on the assertions which are available, by using

Thmd4A or B. A rule and its associated simplifications are related through
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the set of assumptions they embody. When Fa;mer MacDonald decides to ignore -
the.demand for whegt, he is doing so because he is willing to assume that if
demand changes, it will nbt changevin a direction which would invalidate his
reasoning. By making explicit .this notion of assumptions, we can extend the
list of options available in using a thebrem to achieve a goal.

After Thm2 fails, simplificatipns will be considered, and Thm4A.Found.
Thm4A first tries to satisfy the goal (Thgoal (Suﬁply-decrease 7X)). No
assertion matching thié pattern exists. HoweVer, a theorenm, Thms, can be
used to prove this assertion.

(Thconse Thm5 (X S 0S) (Supply-decrease %) _
(Thcond ((Thand (Thgoal (Supply ?X 7S bushels))
(Thgoal (old-supply ?X ?70S bushels)))
(Thcond ((greaterp ?70S ?5))))))
The value for old-supply was one of the initial set of four assertions.

Since current supply and old-supply are known, Thm5 will succeed, and

support the hypothesis of higher wheat prices,

Wheat Pq%ce Increase? ¢
|
tCarryover - (Supply - Demand)—> Thassume

-

Demand -  Carryover Supply
3 |
1 .
Demand = Domestic+Foreign N
~ - Supply-decrease
\\
Domestic Foreign _
‘ : Old-supply

This chain of inferences results in a less plausible scenario than one

requiring no simplifications.

UNSTABLE DOMAINS
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The outcome of aﬁ attempt tq understand some set of data by supporting
a hypothesis is a set of assertions and rule instances, joined by various
1abeied links. This is a process trace. It is more than just a trace of a
proof since.failed rules and unsuccessful proofs are also recorded. The
anhotation'available at any given time represent the "understanding” of the
domain. As the database changes, Sleuth will try and maintain its
hypotheses. This will be reflected in the changing set of annotation
associated with each hypothesis. Sleuth assumes support»for an hypothesis
~is conditional on the assertions available at the time it was first
considered. Hence this support must be monitored and changed as the
database changesQ All proofs are conditional on the validity of the
assertions used by the rules in the proof. However in many domains, oﬁce
.deductions are made from a set of assertions, no effort is made to insure
that while the results of those deductions are.used, the assertions still
hold trug. Generally, the user does not\éxpéct the database to éhange SO as
to invalidate prior inferences.

Sleuth extends thé concept of rule interpretafion by making the |
maintenance of goals a functioﬁ of the interprefation of rules. Sleuth does
- this by giving each active rule the autonomy to respond to changes in its
environment. As each ruie is interpreted, Sleuth creates an associated
Sentinel for that instance of the rule. The sentinel gives»the rule
instance the knowledge of how to respond to changes in its antecedents or
consequents. The result is the mainténance of hypotheses through a method
of local autonomy.

By using sentinels, Sleuth extends the basic idea of a fule which is
 eva1uated successfully if its antecedents are satisfied at the initial time
of evaluation. A rule instance must be continuously enabled while it is

used in support of some hypothesis. Before describing sentinels we must
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first consider under which conditions we wish the rule instance'to be
enabled.

1) An instanée of a rule used in suppdrt of some hypotheéis must
continue to have its conditions met while that hypothesis is successful.

.2) We can extend this to theorems which fail. These can also be
monitored, as long as the hypothesis is successful. 3ailed rules may
succeed at subsequent times, if the necessary antecedents are asserted or
proved.

| 3) This notion can be extended one step further. The hypothesis may

have initially failed. However, the goal of éupporting that hypothesis is
maintéined. In that case, the theorems attempted are gtill active, although
no event description or scenario exists. If, at a later time, they can
succeed, fhey will reactivate the attempt.

Sentinels were first developed by myself and Jim Stansfield as an aid
in instantiating frames and autdmating the recognition of simple seduences
of events within a changing database, using FRL (Roberfs and Goldstein,
1977). Sleuth extends this by associating sentinels with the application of
rules,,and'by making this use of sentinels a property of the rule
interpréter. VA sentinel associated with a rule instance will iook like:

Goal: Wheat Price Increase———¥————e—9»Sensor
TCarryover = (Supply - Demand)

Demand Carryover  Supply

N
Sensor - -~ Sentinel

Erase Sentinels = Erase Annotation Invoke Goal

A triggered sentinel can take a variety of actions. The standard ones, _

indicated in the above diagram, are to K) erase itéelf; B) erase the'.
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annotatétion; C) reinvoke a goal.

A sentinel has'sensors’Which_report to it: (Sensor => Sentinel). A
sensor has a two part condition. The first part, a trigger, is a demon
which responds to changes in the pattern that'triggefs it. For example, in
~the following case, the trigger responds to any addition or deletion of
'pattefns involving the wheat supply. The sensor then tests the pattern
against some criterion. Fdr instance, this sensor is only interested in

assertions concerning current wheat supply:

Wheat Supply for April

Sensor

e~ "Irigger<- — —--

Test: Current wheat supply?- - '
Sen'(:inelé~-—-————-———-—i:>

g;sc old supply

A sentinel can have several sensors which report to it. The sentinel

is satisfied when some arbitrary logical conjunction of its sensors succeed.
Although for the task of maintaining hypotheses more complex relatiohs are
not needed, a sentinel has the capacity to evaluate cond;tional relations
among its sensors, and even to remove current sensors and place new ones as
a responée to these conditional constraints. It can also make use of the
temporal dimension in conjunction with the logical organization of its
sensors. For instance, an "and" relation-among‘these sensors can be created
in which all sensors are satisfied at the time the sentinel is evoked, or
the relation among the sensors can be that they were all satisfied at some
preceeding time (and if desired, in some specific order) but at the time the

last sensor is satisfied, and evokes the sentinel, the state of the other

sensors is unknown.
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Supply Demand Carryover
Sensor Sensor Sensor
l/
Sentinel

The sensbrs function as triggersifor the sentinel, which is "data
driven". A sentinei and its sensors are tﬁeorems which are created for a.
specific purpose{- Unlike other theorems in the database, they héVe a
limited lifespan. A sentinel can chooéé to erase itself and its sensors
upon completing its goal. For the current task; sentinels are not required
" when their associated rulg instance is no longer active. In this case, the
sentinel will erase itself. B

Since there are several aspects of a rule's environment we may wish
monitored, we can create a cluster of sentinels, each of which is
responsible for one aspect. Typically, we will want to be able to'monitor
such things as a rule's antecedents, sub~rﬁles it requires for its own
success, the'goal which invoked the rule, and more powerful rules which
could supercede a rule if they were used. Not all of these will be
monitored at any one time. .The interpreter which applies a rule will kndw
which of these should be monitored. Should the sentinel looking at any oné
of these succeed, the result is often some action whicﬁ renders the other
~associated sentinels obsolete. For instance, if the sentinel monitoring the
goal is triggered by the erasure of thié goal, its action will be to erase
~the instance of the rule it is associated with. As a result, the other
sentinels are not needed. Consequently, the éentinels in a cluster have the
ability to erase each othér when the success of one removes the réason

d'etre of the others.
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Sensor

P Sentinele—
1 sensor
Sentinel ¢ _ Sensor

.L+Senl;ne1€ ,,<<:Sen50r

Sensor
Sleuth creates, for each instance of a rule, a cluster of sentinels which
monitor the rule's antecedents, goals, and annotation while the rule is
attiye. In the folloWing diagrams individual clusters of sensors and
‘sentinels have been collapsed into single'sensors and sentinels, for

illustrative purposes. Lets examine what happens with a successful rule

when its sentinel is triggered.

SUCCESSFUL RULE AND SENTINEL »

Goal: Wheﬂa\'t Price Increase — — —— — — — - Sensor.

TCarryover - (Supply - Demand)

-

Demgﬁd Carryover  Supply
\\
N v
Erase Sentinels Erase Annotat;on Invoke Goal

Individual ruies will succeed or fail as a'function of their
antecedents. When a suc;essful rule's antecedents changg, its sentinel will
be triggered. When this happens the sehtinellcauses the goal the rule wés
supporting to be re-evaluated. It removes the old annotation, as new
" annotation is created for the new evaluation of the goal. At this point the
sentinel can erase itself. (Nofé: A sentinel causes a goal to be re-
evaluéted. There is no constraint that Sleuth must use the same rule again.

However, in this and the following examples, it is assumed that there have
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been no other changes in the state of the system that would cause another
rule to be selected first.) | 7
| If the rule's goal changes, perhaps because we are no longer interested
in the question it supports, the_sentinel will also be triggered. In this
case we do not wish to re-evaluate the goal. The sentinel will remove
‘itself and erase the associated annotation. Thus thé rule instance will no
longer be active, since no trace of it will remain.

Now let's consider how this local association of rule instances with
sentinels can give rise to the right global behavior. The fbllowing‘

represents the state of our deduction so far:

Goal:Wheat Price Increase?¢

1
1

fCarryover - (Supply - Demand)— Thassume

-
-
-
-
-

Demaﬂ& Carryover Supply
T | |
Goal: Demand Supply-decrease
k . .
\\\ |
Demand = Domestic+Foreign Old-supply
Domestic Foreign

Suppose that a failed rule now is capable of succeeding, through its
missing antecedent being asserted. For instance, the missing foreign demand
for wheat can be asserted. This would trigger the sentinel associated with

that rule instance:




erase itself.

missing demand for wheat.
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FAILED RULE SUCCEEDS

Goal:Wheq& Price Increase? ¢
. i .

1
t
tCarryover = (Supply - Demand)—> Thassume

/”
-
-~

Demand Cérryover Supply

,f\
: .
Goai:Demand-—~$Sensor Supply-decrease
i
I .

Demand = Domestic+Foreign v 0ld-supply
Domestic Foreign Sentinel: erase annotation
\\\ - ! re-assert goal
\ , ' erase sentinel

SeNsOre-—= ——— - - - — =

This will trigger the associated sentinel to erase the annotation for

this rule instance, reassert the goal as something to be proved, and then to

with the rule instance of Thm2 for which the missing dcmand is an

antecedent:

This time the rule succeeds, resulting in a proof of the

This will in turn trigger the sentinel associated
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FAILED RULE SUCCEEDS

-
Goal:Wheat Price Increase? ————> Sensor

>

fCarryover - (Supply - Demand) r —--->Sentinel
{ erase annotation
i1 evoke goal
Il erase sentinel
‘Demand  Carryover  Supply !
l
|

U

Sensor— = —— — - - - Thassume
] -
Goal: Demand L————— Supply-decrease
Demand = Domestic+Foreign 0ld-supply

Domestic Foreign

This sentinel repeats the actions of the prior sentinel. ‘However, in
erasing the annofation, it erases fhe record of the assumption méde. This
will trigger the‘sentinel on the rule which is a simplification. Since the
~use of a simplification is conditional on another rule failing, the
'sentinels associated with theorems used as simplifications monitor the
annotation recording that failure, so that they will know when the
simplification is no longer required. They will then respond to the erasure

of this annotation by erasing the annotation for the simplification.
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FAILED RULE SUCCEEDS

Goal:Wheat Price Increase? &

TCarryover = (Supply - Demand)----- Thasisum

Demand Carryover Supplx\\ Seﬂ%or

Goal: Demand

- Demand = Domestic+Foreign \_  _0ld-supply
- . \ ur/>\ ~3 :
Domestic Foreign Sensor——-—4§ Sentinel

_ erase annotation
erase sentinel

If Thm2 again failed due to a missing antecedent, Sleuth would once
more try a simplification. Since the formerly missing antecedent for demand

“has now been infered, Thm2 succeeds, and results in the following final

proof tree:

-~ FAILED RULE SUCCEEDS

Goal: Wheat Price Increase?
tCarryover - (Supplyy— Demand)

' Deﬁgnd Carryover Supply
Goal:Demand
Demand = Domestic+Foreign

Domestic Foreign
In this next example, the missing assertion for current wheat demand is
asserted, although the rule involved (Thm2) has already "succeeded" by using

a simplification. This will trigger the sentinel associated with the rule
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instance of Thm2::

ANTECEDENT ASSERTED

B
Goal: Wheat Krice Increase?——> Sensor

|
1Carryover - (Supply - Demand) r- S Sentinel

erase annotation
evoke goal
erase sentinel

x
I

Demand Carryover Supply !

( RN :

: Sensor——— —- = " Thassume

-

!

'
Cor}r{:l)emand +———— Supply-decrease

R
Demand = Domestic+Foreign 0ld-supply

\ ' .
\\

Domestic Foreign

When Thm2 is re—ev_aluated it succeeds without recourse to either using
a simplification or trying to prove the now not missing antecedent. There
is no explici_t mechanism responsible for removing the now unneeded rule
instances. Instead, by erasing its annotation, Thm2 triggers the sentinels

associated with the subgoal of proving demand, and the simplification:
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ANTECEDENT ASSERTED

Goal:Wheat Price Increase? ¢

tCarryover - (Supply - Demand) -—- —> Thgm’zme

/
’

v , "
Deﬁgnd Carryover Supply-T oensor

i ) , v
Goal:Demand—-3Sensor = - - -— } Supply-decrease
T 1 | S
3
] , R
Demand = Domestic+Foreign; |\ _ Old—supply-w
' < = . AN
’ \\ 1 \\
Domestic Foreign ! ~
|
1 sl >
Sensor | Sensor—> Sentinel
o ! crase annotation
Sentinel & ———-— - - erase sentinel
erase annotation
erase sentinel

Both these sentinels, since their reason for existing is gone, erase

the annotation, and then erase themselves. This results in the following

final state:

ANTECEDENT ASSERTED

Goal: Wheat Price Increase?

tCarryover - (Supply - Demand)
Demand Carryover Supply

Thus, unneeded rule instances will know when to remove themselves.
Through local propagation, the representation responds to changes in the
available database. 'Consequently, once a question‘has been specified, a
dynamic-process is invoked which once attempted can be locally data-driven.
These changes will reinvoke the goal 6f inferencing, which can then proceed
_in a goal driven fashion. Obsolete parts of the répresentation are able to

remove themselves by noticing local changes in the environment.
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Sleuth, once given a goal, will attempt to'recognize this event
whenever the database contains the right set of assertions. Sentinels set
in the interpretation of rules will ihdividually call Sleuth to re-evaluate
particular goals. Sleuth will develqp new ways‘of éupporting its hypotheses
in response to these local calls for ré—evaluation.' Once applied, each
sentinel has the autonomy to respond to changes in the database.

Sleuth is not a reasoning system per se. It is a set of features for
an interpreter.applying a reasoning strategy to some domain. These features
are'designed to allow reasoning to proceed over a changing database. - Thus,
standard reasoning techniques could be used in conjunction with Sleuth, if
the domain warrented it. Perhaps the closest approach to Sleuth has been
that of Doyle (Doyle, 1977). Doyle has provided a mechanism for recording
deductive‘dependencies so that when facts turn out to be incorrect, the
entire "context" of dependent facts can be removed from the database. This
work develops the notion of dependency directed backtracking by making the
use of contexts very explicit, just as Conniver (Sussman & McDermott, 1972)
. did with the chronological backtracking of Planner. Sleuth does not
maintain deductive dependencies, since the changes it is designed to respond -
to are those imposed on the outside world by changes in the data, and not
ones due to deduced inconsistencies. However, Sleuth does provide’ﬁn
5automatic control structure so.that the user can ignore the problems of a
changing database, and focus on the deductions hé wishes to make. |

Sleuth is currently being prograﬁmed‘in FRL (Frame‘Repfesentation’
Language), and not in Planner, which was chosen for the examples since it is
a well understood language. While the ability to use siﬁplifications and to |
use sentinels in monitoring ruie instances exist in the current version, the
- Planner 1like features of chronological backtracking, and pattern-directed

invocation of rules exist only ihva rudimentary form.
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The fact that Sleuth is currently designed to operate in a frame
representation language suggests that this approach and the knowledge based
approaches are not opposites, but instead are complementary. In FRL, Sleuth
. provides deduced links between frames which themselves have a structure, and
which have been used in discourse understanding through the standard
approach of franme instantiation (Sidner, 1978). Thus an inferential
approach to understanding can take over where frame instantiation leaves
off: for descriptions whieh occur infrequently enough so that no script
exists, or which are so complex that there is no one cannonical
characterization.
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