Massachusetts Institute of Technology
Artificial Intelligence Laboratory

8 June 1978 | - o AI Memo & 480
Dynamic Graphics using Quasi Parallelism

Kenneth M Kahn and Ca;l Hewitt

Abstract

Dynamlc computer graphics is best represented as several processes operating in parallel. Full
parallel processing, however, entails much complex mechanism making it difficult to write simple, intuitive
programs for generating computer animation. What is presented in this paper is a simple mcans of
attaining the appearance of paraliclism and the ability to program the graphics in a conceptuallyk parallel -
fashion without the complexity of a more general parallel mechanism. Each entity on the display screen
- .can be xndependently programmed to move, turn, change size, color or shape and to interact with other
entmes .) ‘

The scheme presented herein begins with the notion of a quantum of time, or tick, within which
there are no ordering constraints on events. Each entity or actor decides what it must do upon the next
tick. Ticks are a powerful means of controlling parallel processes but are usually at too low a conceptual
level for user convenience. Higher-level operations built upon the tick mechanism are pr_esented, most
notably the ability to instruct any entity or group of entities to gradually change or move at a rate that
is itsclf changecable by the same operation. To illustrate these ideas a simple celestial- mechanics
simulation’ is presented Upon each tick the velocities and posntlons of the objects are updated by the
gravxtat:onal and propuiswe forces acting upon them.

Ticks are only one product of an ob;ect-or:ented programmmg style. For the best control and
‘the most modularity, graphics programming should be object oriented. Each object displayed, and its
parts, should be indeperidently programable. Instead of being passive data, objects should be responsible
for the changes in their position or appearance, Instead of a global controller, each object should interact
with the others. - - ‘ '

This is a revision of a paper to be presented at the Siggraph *78 Conference.

One of the authors {Kahn) is current]y supported by an IBM fellowship. The research dcscrnbed hercm is
bemg conducted at the Artificial Intelhgence Laboratory - . S

T, Massachusetts Institute of
Technology 1978

Page ~ 1

Paraliel Graphics Table of Contents Kahn & Hewitt

CONTENTS
I. Parallel Processing for Dynamic Grz;phics e 3
A. Apparent Parallelism ..c...cccorvermrcviennenninnsivesrennens eeerereneereteistearennranns 4.
B. A Simple Exampleccoooovvnnininns U RO . 4
IL. ’An Example froin Celestial Mechanicseoveeverereevieenes eerererenisnsas 6
III. Efficiency and the Distribution of Control and Data ...ccovrennnens , 1
.. IV. Synchrony P-roblems rerreetareses 13
V. Cémparisons with Other Péx;allel Graph_icvsSystems Creererane reeenes 16
VI C01nclusion§ and Directions for Future Reée-a;'ch seeseennanenens 17
VIL Bibliography 19

Page-; a2

Parallel Graphics Parsilel Processing for Dynamic Graphics ~ Kabn & Hewitt

I. Parallel Processing for Dynamic Graphics

Dynamic graphics is concerned with the display of chahging images. Typically there are
many different entities or aSpects of entities changing simultaneously. To reduce the programming
complexity we represent each entity and its parts as a module capablé of changing its state and
appearance and of interacting with other modules. To simplify the control of these objects we
make them mdependent entities and run them in parallel

Each entity on the display screen can be thought of as a little person who can be asked to

~move, change appearance, remember and forget information. These little people, or éctors, interact
with -each ot.her to form a community. “This metaphor of computation as a society of interacting.
entities is especially. appropriate for dynamic graphics wherer it usually easy to anthropbrﬁorphize
the images on a display, whkether they be of DNA strands, engine parts, simﬁle geometric shapes,
| super-sonic transports, or people. The communities can exist at different levels, for example, there
" may bea cbmmunit); of people while simultaneously there is a community of arms,'!e‘gs, an.d heads
associated with each pefsqﬁ. Object-oriented computer Ianguages_shch.as'Smant'alk‘, Act 1, or

1

 Director! are ideal for pfogramming in this style. Though regardless of computef language one

can conceptualize one’s display as a community of active entities.

1. Director is an object-oriented language especially designed for animation and artificial intelligence
applications. It was designed and 1mplemented by Kahn. [Kahn 1978] All the examples in this paper are
‘working programs in Director. '
© 2. ‘Of course, the convenience with which one can program this way varies greatly from language to
language. The object-oriented parallel scheme presented, for example, would be very difficult to implement
- in a gencral fashion in any language which did not permit the construction and subsequent evaluation of

code. The ability to modify planned acuons is important, as is the abxlxty to do part of a planned action
and plan to the rest latter. - :

Page - 3

Paraliel Graphics Apparent Paraliglism Kahn & Hewitt

Apparent Parallelism

To animate the changes of many objopts simultaneously one needs paraﬂel proceSsing or at
least the appearance of having it. In this paper we opt for the latter in the interests of simplicity.
Durmg a tick, processes can run in any order, even sequentxally, so long as the objects are in the
desired consxstent state when the frame ends. If the animation is being filmed, recorded
frame-by-frame on video, or in the computér’s memory for later playback then all that matters is
that the display is correct when the frame is recorded, between recordirrgs anything may happen.
If animation is being displayed .in real time then the time to perform-all the actions of a tick
should be less than a refresh cycle (typically a thlrtleth of a second). | .

To coordinate and control these processes we introduce the notion of a tick, or a quantum
of time within ‘which one is unconcerned about the order of events A!I the objects have associated

with them a variable containing a list of actions to take on the next tick. When an object receives

a tick it does all the actions it had planned for that_nme. In the simplest case, an animation

-program proceeds by sending‘ a tick to each object on the screen, recording or displaying the

current state and repeating. It is the responsibility of each object to respond to each tick. More

complexity is introduced when there are several ticks to a frame or when only certain subsets of

objects are to.run at a certain time.

A Sirnple Example

Suppose we want to animate a shape fo move gradually forward and we already have a
pnmmve called "Forward” that moves an object forward by causing it to hide and reappear at its

new position.1 We could write the following simple program

.

1. This example and the next rely upon a cornputatlonal display entity called a "turtle”. Turtles have a

" state consisting of a position and_direction and respond to messages asking them to go forward or to turn.

More details can be found in [Papert 1971a), [Papert 197lh] and [Co]dstem 1975].

Page - 4

Parsliel Graphics A Simple Example © Kabn & Hewitt

REPEAT FOREVER (ASK AN-OBJECT FORWARD SPEED) (ASK SCREEN RECORD)

The object called "an- object” will go forward “speed” then the screen is recorded and this is

- repeated forever. If we wanted two objects to move forward simultaneously then we could write:

REPEAT FOREVER (ASK OBJECT1 FORWARD SPEED1)
(ASK OBJECTZ FORWARD SPEEDZ)
{ASK SCREEN RECORD)

The need for explicitly using ticks have not yet risen. But suppose we want 'Objéctl' to
go forward 300 steps and the.b_ther 400 steps. Or we want "Object2” to change its sf)eéd after four

frames. The program becomes more and more unwieldy. An alternative is to explicitly use ticks as

follows (as opposed to the implicit use of ticks in the previous-examples)l

- (ASK OBJECT1 SET YOUR SPEED TO 50) ; this need only be mentioned initially

(ASK OBJECT2 SET YOUR SPEED TO 40) ; or a- default could have been used
(ASK OBJECT1 PLAN NEXT GRADUALLY FORWARD 300) '

-3 insert (gradually forward 300).into Object!'s. list of actions for the next tzck

(ASK OBJECT2 PLAN NEXT GRADUALLY FORWARD 400) _ ‘
(ASK OBJECTZ PLAN AFTER 4 TICKS_ CHANGE YOUR SPEED TO 60); 4 ticks later change speed

At this pomt nothmg has happened on the dlsplay screen, only the plans have been associated
w1th the objects To run the plans and record the state there is a special kind of entity, }movnes ’
that cause ticks to be sent to each object and the screen to be recorded. The sending of the

message "gradually forward 300" to Objectl causes the following events

(ASK OBJECT1 FORWARD 50) ; goes forward 50 units (its speed)
(ASK OBJECT1 PLAN NEXT GRADUALLY FORWARD 250) ; plans to do the rest next

1. This paper is not the appropriate place to fully describe the syntax of Director. The last of the
following statements means that the message (plan after 4 ticks change your speed to 60) is sent to object2.
Four ticks later object2 will receive the imbedded message, i.e. (change your gpeed to 60). The imbedded
message may be any message that the recxpnent can respond to.

Paga} -5

Parallel Graphics - An Example from Celestial Mechanics Kahn & Hewitt

II. An Example from Celestial Mechanics

Suppose we want to simulate the lorbits of planets and space thfsk. One way to do this is
-td assoc'iate with each physical object another object corresponding to its velocity. The velocify
actors have their own state and their position in vélocity space relative toA (0,’0) represents their
direction and m_agnbitude. At each tick each physical object’s position is tipdated by adding it to its
velocity. The velocity itself may bbe updated in a similar manner by the thrust of the ship or by
the gravit»a'tionai pull of other massive objects. The tick mechanism provides a means by which
the different physical objects can behave in apparent parallelism.” Ticks also simplifyAthe physics
by réducing the problém to the computation of the change during a small constant unit of time. In’
tﬁis way the‘integration needed to compute the .positi.on and velocity is apbroximated irrvmplicit‘ly by
the program. Turtle geometry further simpliﬁes the mathematics by computing 'the‘ vector
additions in velocity space by moving the turtle instead of using trigonometry explicitly.A This
répresentation of a velocity vector by ‘the positioﬁ of a turtle is similar to the approach presented in
[Abelson 1975 o |) ' B
: " First we define the class of physical objects by describing how to make instances of it, how :
to update the state of an instance and how to compute the gravitational pull caused by an object.. :
. A subclass ‘of physical objec‘ts,v space Shipg, are defined to do all that physical objects do and, in
addition, know héw to thrust forwar&. Suns and'planets are subclasses 6f physical objects with no‘
special behavior. 'Fin'ally we define the gravitational field which is capable of changing the

ﬁelbcit’y» of any object by exerting the pu‘llé of all the masses that it knows about.

Page - 6 .

Paraliel Graphics An Example from Celestial Mechanics Kahn & Hewitt '

(defme physical-object obJect
;3 make physical-object as a kind of object and send it the following messages
(set your mass to 10) ;; the default mass
(receive (make ?instance) now do ;; this enables me to extend the normal behavior
: (ask :self make ,instance) ;; create the object as normal
(ask ,instance plan next repeat forever update your state)
;3 on every tich send yourself the message (update your state)
(ask velocity make (velocity-of ,instance)) ;; make a velocity for object
instance) ;; return the newly created instance
(receive (update your state) ;; when | get a message asking me to update my state
(cond ((ask :self recall your offspring)) ;; if a class do nothing
(t (ask :self change your position to ;; I update my position by
i3 by adding to my current position to the position of my velocity
»(position-sum (ask :self recall your position)
(ask (velocity-of ,:self) recall your poesition)))
i3 | ask the gravitational field at my !ocatmn to clzange my veloczty
(ask gravitational-field
apply gravitational forces at
. ,(ask :self recall your position) to (ve'locity-of ,.se]f)))))
(recewe (yield pull at ?place)
35 to determine the gravitational pull at the place (G=1 in our units)
(quot1ent (ask :seif recall your mass) ;; take my mass
(square (ask :self yield distance to ,p‘lace))
; divide by the square of my distance to the place to get force per second
. .frames -per-second ;; divide by this to get force per frame
:ticks-per-frame))) ;; divide to get force per tick

Page - 7

Parallel Graphics An Exampie from Celestial Mechanics , Kahn & Hewitt

(define gravitational-field something ;; make the field and send it the Sfollowing messages
(receive (apply gravitational forces at ?place to ?velocity)

;3 for me to apply the gravitational Sorces at a place to a velocity :

(ask se1f exert pulls of ;; I exert the pulls of the masses not at the place
»(remove-any-at-place {ask :self recall your masses) place)
on ,velocity at ,place)) ;; on the velocity '

(receive (exert pulls of (?first-mass %rest-of-the-masses) on ?velocity at ?place)
i3 to exert the gravitational pull at a point of some masses on a velocity

(ask ,velocity

move ,(ask ,first-mass yield puH at ,place)
7 in direction from ,place to ,(ask ,first-mass recall your position))
"33 move towards the mass from the place by the pull (acceleration) at that place
(ask :self exert pulls of ,rest-of-the-masses on ,velocity at ,place))
33 and let the rest of the masses exert themselves on the velocity
(receive (exert puills of () on ? at 7};; when there are 1no more masses do nathing
: nil)) :

(define velocity object);; a velocity is an object so that is can more in velocity space

(define ship physical-object ;; now to define ships
(receive (thrust forward ?amount) ;; When I'm asked to thrust forward
' (ask (velocity-of ,:self)
"change your heading to ,(ask :self recall your heading))
33 1 set the heading of my velocity to my own heading
(ask (velocity-of ,:self) ;; and change my wvelocity by
33 having it go forward the quotient of the thrust and my mass
: forward ,(quotient amount {ask :self recall your mass))))
. (draw using draw-rocket of size)) ' :
i and 1 am drawn by the Draw- rocket procedurc applzed to my size

(defme sun physical- obJect 33 a sun is also a physical-object

(set your angle to 10) ;; near enough to a circle (really a 36-agon)

(set your mass to 100) ;; the default mass of a sun is 100 ' :

_(draw using draw-poiy of s1ze angle)) ;; I am drawn using me-poly of my size and angle

(define enterprise ship ;; make a slup called the enterprise
(set your state to (-700 200 45)) HH put me at any mterestmg :tartmg state
{show) ;; show yourself
{plan next repeat 10 thrust forward 100)),, turn on tlzruster: for the next 10 ticks

Page - 8

s,

Paraliel Graphicé An Example from Celestial Mechanics Kahn & Hewitt

(define sunl sun ' ;; make’ :unl .
(ask (velocity-of sunl) to back 25) ;; start me off with a velocity of 25 downwards
(set your size to 100) ;; give it a size
(set your mass to 7000000)) ;; and a big mass

(define sun2 sun ;; this one is a little smaller and less massive
(ask (velocity~-of sun2) to forward 80)
(set your state to (600 0 0)) ;; start qff way to the nght
(set your size to 60)
(set your mass to 3000000))

{ask gravitational-field set your masses to (sunl sun2 enterprise)) ; tell the ﬁéld about the objects
i Everything is ready to go, 5o to test it we make a 10 tick movie. It can be seen in Figure 1.

(define teSt-moVie-l movie'

- (Tilm the next 10 ticks);; finally make the movie

(project));; show the movie at default speed and order

The advantages of programming in this fashion are many. Computational entities

correspond very closely with physically intuitive'entities. Corresponding to each object in space *

there is an object in the program complete with state and a behavioral specnﬁcatlon ‘The.

gravitational field is also a separate entity which upon request applies the gravitational pull of
each mass to any velocity. The ticks reduce the computation to that of calculating the change -
during a small amount of time. Also the mathematics in the example is kept simple enough for a

ten year old by keeping the trigonometry inside of the turtle primitives for moving forward and

turning right. It should be clear that the program is very general, that any number of objects can
-~ exist and new ones can even be added or old ones removed at any time. Also the accuracy with

’ whlch the calculatlons take place are easxly controlled by the variable for the number of tlcks per

frame 1

1. The time needed to compute many ticks for each frame might be ‘ver'y high though.

Page -8

Paraliel Graphics

An Example from Ceiestial Mechanics

 Kahn & Hewitt

Figure 1 -— A Simple Test Run with Two Suns and a Ship

. .
. N
,
¢ e
)

o
@
s

Page - 10

4 .

Parsllel Graphics Efficiency and the Distribution of Control and Data _ Kahn & Hewitt

III. Effi'ciency. and the Distxfibutioﬁ of Control and Data

Control and data are distﬁbuted in the previous éxamples of the use of ticks and objects.
’I.'het_'e' is little doubt that this reduces the concepvtual cofnplexity of the programming but it poses
'mavny questions regarding the efficiency of programming graphics in this manner. For example,
the lack of any global agenda or schedule might lead one to suspect that the distribution of the
planned actions and their times of occurrence is less efficient. The argument goes és follows. If an
object plans to do some action many ticks from now and nothing until then, then if control was
based upon a global agenda then nothing need happen until that time. With the information in
the agenda spread out in the objects involved the object with something to do much later still must
, Avbe sent ticks in order to decrement the time it plans to do the action. This seems physica“y
»mtumve but needlessly inefficient, The cost of an actor processing a tick, however, can be very
small. Moreover, the distribution of the plans makes. the changing of plans much simplier. An
' object can take its pllans and modify them and there is no gldbal structure that also needs to be
~ updated. | | _ v
' Planning with a tick mechanism is not restricted to plans with respect to a particular time.
" To plan an action to happen when a particular event happens or condition is met can be done two
ways;." Either the actor involved can ask other actors to inform it of some event or upoﬁ every tick
it deterrﬁiné if some condition is true. In this way an object can plan 'fo explode when it collides 7
with anothér or to go forward when some other actof has finished going forward. _
| Suppose we want the ships to ﬁwglt upoh cbllision with a sun and explode if coliiding with
' anyt}iing else. Then using ticks and messages we.can arrange that each ship asks the other objects
where they are on every tick, determines whether they are colliding and behaves accordingly. An'
alternative convention is to arrange that on every ticks an actor corresponding to space (or several
~ actors representing regions in spaﬁe) checks for collisions of objects within it. “This scheme is less
» generai, but usually more eff‘iciént, than the one where each objeét asks each other for its position.

For example, to have the Enterprise explode or melt upon collision ask it the following:

Page - ﬁ

Paraliel Graphics - Efficiency and the Distribution of Control and Data Kahn & Hewitt

(ask enterprise plan to {(cond ({ask ,other are you a sun) ;; if thg other is a sun
: “(melt)) ;; then the action is to melt
(t “(explode))) ;; otherwise it is to explode
33 only if receiving a message about colliding with some other
after receiving colliding with ?other) '

If one> has a multi-brocessor system with many processors then a tick mechanism can easily
- be programmed to take advantage of them. All the events that occur within a tick are unordered
except for any requirements to serialize the acts of individual actors. The events are‘«grouped by
the object 'involved and so in terms of locaﬁty of data, one can optimize by running those actions
of the same object on the same pfocessor. ’ The advantages of having ticks are great if one is
running on paraliel hardware since there is no global data structure that _fnust be kept consistent

and easily accessible.

Page - 12

Paraliel Graphics Synchrany Problems o © Kahn & Hewitt

IV. Synchrony Problems

- When processes are being run independently one occasionally runs into synchrony
problems. The most .common occurrence of such problems is when many. objects try to do
something that only a few can do at once. The simple example of how to handle this within a tick
framework that we shall explore is how to define doors such that at most one object .c‘an go
through a door on a tick. We want a fair solution, so that those waiting the longest for a door get
_ through and no one need wait forever. A solution that we shall present is one where each object
asks the door for permission before entering. The object need not wait around in a line, it is more
hke getting a number at a crowded store Each door keeps a queue of the objects that want to go
through it. A door is defined to inspect its queue at each tick and if it is not empty the door
removes the ObJECt at- the head of its queue and asks the obJect if it will enter now. If it does not
- want to enter the door any longer (maybe it went through another door in the meannme) then the
 next ObJECt on the- queue is asked if it will go through now and so on. |
The programmmg of this in Director can be accomphshed easnly as follows

(define door something ;; deﬁne a door as follows
(receive (place me on your queue ?wanderer);; a wanderer wants to go through me
(ask (queue-of ,:self) enqueue ,wanderer));; so /I put it at the end of my queue
(recewe (grant permission to front of queue)
: (cond ((not (ask (queue-of ,:self) empty?)) ;; only if the queue is not empty
('Iet ((front -of-queue (ask (queue-of ,:self) dequeue)))
i+ [take the first one off the queue and call it front-of-queue
(cond ((ask ,front-of-queue will you go thru ,:self door now?)
33 if it is willing to go through me .~ _
(print “(,:self door letting ,front-of-queue thru
at ,(ask :self recall your time)))) -
33 then print event for demonstration and testing
(t (ask :self grant permission to front of queue)))))))
33 if the fromt of the queue changed its mind
;3 then try again with the next in line

Page -13

Parallal Graphics - Synchrony Problems A Kahn & Hewitt

(receive (make ?a-door) now do ;; when making a new door
(ask :self make ,a-door) ;; make it as usual but
(ask queue make (queue-of ,a-door)) ;; alsc make a_queue for the door
(ask ,a-door plan next repeat forever grant permission to front of queue)
;3 every door should plan to always grant permission
33 to the head of its queue
(ask ,a-door set your time to Q) ;; initialize its time
- (ask ,a-door plan next repeat forever increment your time by 1)))
"3 the time is only used for tésting and demonstration

{define wanderer somethmg 33 define the objects tﬁat wander around and go thru doors
(receive (will you go thru ?door-name door now?)
i+ when asked -if 1 will go thru a door now
(cond ({ask :self recall your {wanting-to-go-thru ,door-name))
35 if 1 recall wanting to go thru that door
(ask :self forget your (wanting-to-go-thru ,door-name))
35 then I forget wanting to go thru the door
(ask :self go thru ,door-name. door)
- +3 and actually go thru the door
:) t))) :; and respond true to the question
(receive (go thru ?door-name door) : :
3s this is where the wanderer would really go. thru the door
, nil)-
(receive (want to go thru 7door -name door)
R 5 If 1 want to go thru a particular door
(ask :self set your (wanting-to-go-thru ,door- name) to t)
i3 then I remember that I want to go thru it '
(ask ,door-name place me on your queue ,:seif)))
33 and ask the door to put me on its queue

s To test this out we create two doors and a few wanderers and start them going.

(define oak door) ;; create an oak door
(define pine door) ;; create a door named pine

. (define 1azy1 wanderer ;; create a wanderer named _ : :
" (want to go thru oak door)) ;; who wants to g0 thru the oak door

_(define lazyé wanderer ;; create aﬁdther named lazy2
(want to go thru pine door)) ;; who wants to go thru the other door

Page - 14

Para'llei Graphics ' ' Synchrony Problems ' Kahn & Hewitt

(define greedyl wanderer ;; create another named greedyl
(want to go thru pine door) ;; who wants to go through both doors
(want to go thru oak door))

(define greedy2 wander‘er i3 as does anotlzer wanderer named g‘reedyz
(want to go thru cak door)
(want to go thru pine door))

- (define sensible wanderer ;; sensible is another wanderer
(receive (go thru ?door-name door) now do ;; who when going thru a door
(ask :self go thru ,door-name door) ;; does the usual for a door
(ask :self forget your (wanting-to-go-thru ?)))
: 33 and Jorgets ‘about any other doors that it might have wanted to go thru
(want to go thru pine door) ;; wants to -go tlzru either
(want to-go thru oak door))

5 Torun this we have the default universe send out ticks to those with something to do next,

"; in this case Oak and Pine.

(ask de’fau'lt-universé run for 5 ticks) s send out ticks to everyone JSive times

(PINE DOOR LETTING LAZY2 THRU AT TIME 1) ;; tkese are prmted out by each of the door.s
(OAK DOOR LETTING LAZY1 THRU AT TIME 1)

(OAK DOOR LETTING SENSIBLE THRU AT TIME 2)

(PINE DOOR LETTING GREEDY1 THRU AT TIME 2)

(PINE DOOR LETTING GREEDY2 THRU AT TIME 3) .

(OAK DOOR LETTING GREEDY1 THRU AT TIME 3)

- (OAK DOOR LETTING GREEDY2 THRU AT TIME 4)

. Page- 15

Paraliel Graphics Comparisons with Dther Parallel Graphics Systems Kabn & Hewitt

V. Comparisons with Other Parailel Graphics Systems

Several animation systems permxt parallelism that is described and controlled via
graphlcal input. The approach taken in- this paper is not an alternative to -these demonstrative
systems but rather is complerﬁentary. -One alternative approacﬁ was taken by Pfister in the system
called Dali [Pflster 1974]. Dah is programed by specifying demons which fire when their tnggermg
conditions become true. The use of ticks combined with serializers [Atkinson 1978] is both simplier

“and more general since it does not make any restrlcnons upon how information can flow.
Some other languages are too similar to what is presented here to form any important
: comparisons. For example, Smalitalk [Kay 1977] éan easily be extended to have ticks. Simula
v[Birtwistl’e 1973), a language whichlstrongly influenced both Smalitélk and Director, could also be
changed slightly to support quasrparallehsm for graphics. As we have seen, txcks permlt the ’
'specxﬂcatlon of any condmon for an event, whxle a global agenda sorted by time as in Sxmula_

restrlcts one to a temporal specxﬂcatlon

Pagse - 16

Paraliel Graphics Conclusions and Directions for Future Research Kahn & Hewitt

-VI. Conclusions and Directions for Future Research

- One wants one’s programs to reflect the structure of the task. Dynamic graphics involves
the display of ‘changes'of many different elements and their features. rlt has been argued that an
object-oriented parallel approach reflects this. This approach is a]so physxcany intuitive in its
- stress on locality and modularity. Programming in this style, one can make use of powerful
| metaphors from physics and think- of each entity as a physical object that is affected only by other

actors that send it messages and that behaves independently having its own clock. Another very

useful metaphor that a programmer can make use of is that of a society. just as in societies we are
familiar with, there are various structures of command and information flow that map over to
object-orlented computatlon _

One dlrectxon of future research is to find othervpowerful»computational concepts for the
conceptualization of the display of changing images. Turtles, ticks, and objects are both
programming Ia\'nguage‘ constructs and ways of thinking about one's problems. There needs to be
m-ore of them. For exampfe, perhaps the notion of an activity that an object is engaged in should
be esplicisly fepresented as an actor. In that way it could receive messages and change its plans in

. accordance with new events. One might also consnder extending the physxcs metaphor. Perhaps'
all events should be viewable only from a frame of reference” in a way analogous to relativity.
The generahzatlon of this idea of taking the ‘observer into account should apply to ali events,
including, of course, the vnewmg of a three-dimensional object from a viewpoint. This direction

for research is also pointed out in [Kay 1977b}, [Moore 1973), and [Bobrow 1977).

' A related and equally important direction graphlcs programming should move is towards.
the 1nclusxon of much more knowledge into the software. ‘The more the system knows about what
Vthe entities being dxsplayed are, how they behave and interact the easier it becomes to use it. The
graphics programmlng has been at too low a level of detail, we should be movmg towards systems
“that know enough so that a users pnmary effort is commumcatmg what he or she wants to

happen and not how to do it. Much of the research in the artificial intelligence community on

" Page - 17

Parallel Graphics ' Conclusions and Directions for Future Research Kahn & Hewitt

"knowledge-based programming” is very relevant to the task of making images and manipulating
them in a convenient manner. ’

The apphcatxon of artificial mtelhgence techniques to computer graphics is called for.

One of the authors of this paper is engaged in creating a system capable of producing simple

non-representational narrative cartoons in response to a vague, incomplete, high-level description
[Kahn 1977b] The system knows enough about how characters should move and look in order to
estabhsh a personality, convey an emotional state, or an interpersonal mteracnon Animation is

more than the simulation of a world, its production entails inferences, heuristics, and knowledge.

Acknowledgeménts

We wish to thank Henry Lieberman, Andy diSeSsa, Bill Kornfeld and Gerry Sussman for

- their very helpful criticism of earlier drafts of this paper. Henry Lieberman, Danny Hillis,

'Seymou'r bPapert, and the work of the Learning Research Group at Xerox Parc were a source of

- many of our ideas. The snpport of the'MIT Artificial Intelligence Lab was crucial. One of the
authors (Kahn) is very grateful to IBM for providing a féllowship that gave him the time to

e‘xpiore this and other topics.

Page - 18

Paraliel Gréphics ' Bibliography _ Kahn & Hewitt

VII. Bibliography

[Abelson 1975] Abeison, H,, DiSessa A., Rudolph L.
Velocxty Space and the Geometry of Planetary Orbits," American Journal of Physics, July 1975

[Baker 1977] Baker, H. and Hewitt, C.

"The Incrementa] Garbage Collection of Processes” SIGART-SIGPLAN Symposium on
Artificial Intelligence and Programming- Languages, August 15-16, 1977 University of Rochester

[Bivrtwistle 1973] Birtwistle, G., Dahl 0., Myhrhaug B, and Nygaard K. .

Simula Begin, Auerbach Publishers, Inc., Philadelphia, Parallel. 1973

[Goldberg 1976] Goldberg, A. and Kay, A. edltors
"Smalltalk-72 Instruction Manual”
The Learnmg Research Group, Xerox Palo Alto Research Center, March 1976

[Goldstein 1974] Goldstem 1P,

Understanding Simple Picture Programs, MIT Al Laboratory AI-TR-294, September 1974

[Goldstein 1975] Goldstein I, Lieberman H., Bochner H., Milier M.

A LLOGO An Implementation of LOGO in LISP" MIT-AI Memo 307, March 4, 1975

[Hew1tt 1975] Hewitt C., Smith B.
"Towards a Programmmg Apprenttce IEEE Transactions on Software Engineering SE-|, March 1975

. [Hewitt 1977] Hew1tt -C. and Atkmson R.

"Parallelism and Synchronization in Actor Systems"

Record of 1977 Conference on Principles of Programming Languages,jan 17-19, 1977 267-280

[Kahn 1976] Kahn, K. -
"An Actor-Based -Computer Ammatlon Language®, Proceedings of the SIGGRAPH/ACM Workshop
on User-Oriented Desrgn of Computer Graphxcs Systems, Pittsburgh, Pa, October 1976

[Kahn 1977a] Kahn, K.

_"Three Interactions between Al and Education”,
E ‘Machine Intelligence 8 Machine Representatlons of Knowledge
eds Elcock E and Michie, D., Ellis Horwood Ltd and john Wyhe & Sons, 1977

- [Kahn 1977b] Kahn, K.

"A Computational Theory of Animation”, Massachusetts Instxtute of Technology,
Al Working Paper #145, Aprll 1977

Page - 18

Paraliel Graphics Bibliography Kahn & Hewitt

[Kahn 1977c] Kahn, K., Lieberman H.
"Computer Animation: Snow White's Dream Machine”,
Technology Review, Vol. 80, Ne. I, October/November 1977, pp. 34-46

W [Kahn 1978] Kahn, K.
"Director Users Guide", Forthcommg Massachusetts Instltute of Technology, AT Memo, 1978

[Kay 1977a] Kay, A., Goldberg A.
"Personal Dynamic Medla Computer IEEE, March 1977, v. 10, n. 3, pp 3I-41

[Kay 1977b] Kay, A
"Microelectronics and the Personal Computer”, Scientific American, September 1977

- [Newman 1971] Newman, W.
"Display Procedures”, CACM, Vol 14, No IO Oct 1971

[Pailme 1977] Paime, }.
"Moving Pictures Show Slmulanon to User”,
FOA Rapport, Swedish National Defense Research Institute, April 1977

[Papert 1971a] Papert S.
."Teachmg Chlldren Thmkmg MIT Al Memo 247, October 1971

[Papert 1971b] Papert S.
- "Teaching Children To Be Mathematicians vs. Teachmg About Mathematics”,
MIT-Al Memo 249, July 1971

[Prister 1074] Pfister, G.
The Computer Control of Changing Plctures
‘MIT Project MAC Technical Report TR-135, PrOJect Mac, 1974

Page -20 -

