RUG 1T ¥
Massachusetts Institute of Technology
Artificial Intelligence Laboratory

MIT LATORATORY

28 June 1978 fuﬂ COLiiru ER SE'EHEE Al MEMO = 482
“~ READIING ROOM

DIRECTOR GUIDE

Kenneth M. Kahn

Abstract

Director is a programming language designed for dynamic graphics, artificial intelligence, and
naive users. It is based upeon the actor or object oriented approach to programming and resembles
Act | and SmaliTalk. Director extends MacLisp by adding a small set of primitive actors and the
ability to create new ones. Its graphical features include an interface to the TV turtle,
pseudo-parallelism, many animation primitives, and a primitive actor for making and recording
"movies”. For artificial intelligence programming Director provides a pattern-directed data base
associated with each actor, an inheritance hierarchy, pseudo-parallelism, and a means of
conveniently creating non-standard control structures. For use by relatively naive programmers
Director is appropriate because of its stress upon “"il’ powerful, yet conceptually simple primitives
and its verbose, simple syntax based vpon pattern matching. Director code can be turned into
optimized Lisp which in turn can be compiled into machine code.

The author of this work is currently supported by an IBEM Fellowship. The research described
herein is being conducted at the Artificial Intelligence Laboratory, a Massachusetts Institute of
Technology research program. :

Director Guide Table of Conlents Kennath Kahn

CONTENTS
|

L. The Genmeral THEa ..o s s s sesere s ssm s soee sees semmn s ssssse . 4
IL. An Introductery Exampleocovvvvinnnnnnnnnnns R P —— 5
T 7
A. Creation and Destruction of Actors OR— P — B
B. Defining the Behavior of Actorsoovvvvvnniennne R crvenas 10
G Primting ..o e s se e ree e neaanas T 1
Do Tracing oo s e e S ——— p— 13
E. Memory Messageso.e.. T B ——— B — 14
L Variables ..., . B « 14

2. Demons for Variables . T | .

3. Relational Data Bases PP — O ssssss 19

‘a2, Memorizing .o T —— R PP— 19

b. Retrievingococcinnnne R — - R 20

c. Demons and Virtual TEEMs ..o issnnssissssssss ss essnrssnssess s es 21

d. Forgettingcccoiiiiiniananans . P — P 23

F. Plans and Pseudo-Parallelismcev...... R R 23
G. Broadcasting Messagesccoceevimrninmisirsssrssssmsenss R ——— .+ 26
H. Variables that are Special to All Actors R ——— SAPP—— L.
IV. Object oo, PO — T .
A. Creation and APPearanesc.c.oocvrvvmvererrersassanses T 30
B. Showing and Hidingoo. AR ARt s e n e e e e R ns be LTI P- 32
C. Moving and Turningoocvvnvirninnanras N —— B — 32

I Turtle Commands ... s sssessmsm sesssnssssssns evannsss 32

2. Coordinate Messagescocvnnnniinnennnnns A —— PP— L

D. Growing and Shrinking R |
E. Gradually Changing the 'I.?u'll.en:fl 'f'lrinhle . | |
L ST A — 87
G. Special Variablescccooeiireieeieennnnnnen, reeiens biebsmresamneesnnesnsransns veeee 3B
H. Colorsiiiiiiiiiimrnsean semsemsssemses P 39
L Interpolationccccoooiivvmveinnninnseianses P —— srsssnsinnsnnsnans G

Oirector Guida Table of Conlents Kennath Kahn

J- Treating Objects as Turtlesooooeecieeiniinioiisissmnenssnnnns reiAbntasananaanrs e 41
K. Appearance Definition Using Instant Turtle T . 42
L. Non Standard Appearancescccoceveaivenenns P — P 42
V. The Screencovvnvimrnriniasiees PO PT— T ———. srenriasan 44
VI. Universeocviiiiiinianans . PSS e serasenantsnes ——— 48
VIL. Movie i, P — T — ceens AT

VIIL. A Big EXample ... nssssssssss sessssssesssonssnsssssesssnse Bl
IX. Figure -1 A Test of the Space War Program S — vene 5B
X. Compilingocorvviriiniminrismsmmnmsssnsansnsnsens o S 56

XL Odds and Emds ..o ierimmeieresesesnsmsssssssssssssssssssssssssesssesessssess. Gl

A. DEBUBEINE «..cooriiiiiiiiimtinirn e s st s rssnremananaenns PR 60
B. Complete Description of Patternscoevaiecinssiiniirsssrossrnn srsmsssssssessssecss 60
C. Global Variablescocovmiiiiiiiiiiiiiniiinisrs s ssesssesssssssssssesssnssss e 61
D. Useful Lisp Functions and Macroscovvevmvmminsiessnissmssssmssssnsosnsceees B2
E. Discussion of Why Director is the Way it i!- T —— sese B3
F. Discussion of Why One Might Want to Use Director R — 64
G. Getting Startedcoovinniiininiimmiinnsiininns S — SRR 1
MIL ReFerencesccccoviirimmmmresssessensees ', Chebaae e s S Gb
|
XIIL. Index of Patterns ST S ttesrrnsessrarereasannnnrnes 69
xtvr I“d-EI nr spﬁiil v.rllhlu llllllllll Frdrdmiatarier ra A nA R R FAEFEAERtAS PRI I E OO O B ?4

Page - 3

Director Guide Tha Genaral dea Kernmath Kahbn

I. The General Idea

Director is an actor-based extension of MacLisp and is described in Al Waorking Paper 120
[Kahn 1976] This document is intended to help you use it

While much of the work described here is intended for a graphics audience (describing
much simpler and more intuitive ways of thinking about graphics and animation), much of it
should be of interest to anyone interested in actors. Graphics is an ideal domain to test out
different styles of message passing in a way that is concrete. A face telling its mouth to smile is
pedagué‘il:a"]' a much better example than a number being told to multiply by the result of
factorial being sent the result of that number being asked to subtract one. _

The language is also usable as an Al language. Each actor has rather sophisticated abilities
including inheritance, a relational database with demons, and a pseudo-parallel control structure.
The language is currently grafted upon MacLisp, so that in addition to lists, atoms, numbers,
lambda expressions and other Lisp entities, Director provides actors and a few primitives for
manipulating them. This implementation strategy was one of necessity and many of Director’s
deficiencies would disappear were it built upon an Actor language such as Act L.

Page - 4

Direclor Guide An Introductiory Example Kennath Kahn

II. An Introductory Example

To get a general impression of what Director is all about try the following the next time you
are logged into Al on a TV (if you want to try it without graphics read the "Getting Started”
section). Start up the system by typing |
idirect <carriage returnl

|Welcome to Director Version # 39| ;; af which point Director is ready for Instructions

{ask poly make pent) ;; crecfe o p{-{?gm named pent
(ask pent show) ;; o defoult polygon (a hexagon) should appear
(ask pent set your angle te 72) ;; ir should now leok like ¢ pentagon

(ask poly make star]) ;; make another poly mamed star

{ask star set your angle to 144) ;; sel ifs angle to 144

{(ask star show) ;; finally ask it to show

(ask star fTorward 200) ;: ask sfar fo go formard 200 steps

(ask star grow 250) :: aik the star o become 250 unifs larger

(ask star print) ;; if you are curlous abour what ster knows (ry printing it

At this point, you might want to play around. If the typing is too much for you there are
abbreviated versions of nearly all the messages. For example typing,

(ask star &sypt (200 -100)) ;; is the same ai typing
{ask star set your position te (200 -100))
; which means go fo the point 200 units over and 100 dewn from the center

A list of all the abbreviations is in the index at the end of thiz document.

To make a little movie type the following

Director Guidea An Introductory Example Kernath Kabn

(ask star plan next gradually shrink 300)

i3 start slowly shrinking beginning with the next clock tick

(ask star plan next graduvally left 90) ;; plan fo also slowly furn left
(ask pent plan next gradually grow 300) ;; now for the pentagon
{ask pent plan next gradually right 90)

{ask movie make my-Tirst-fiim) :; everything i3 all planned io lets make the movie

(ask my-first-film set your frames-per-second to 2)

i3 i the computer were faster 30 might be nicer

(ask my-Tirst-film film the next & ticks) ;; roll the cameras for the next 6 clock ticks
(ask my-Tirst-film project) ;; you just saw the film being shot, now lets see it profected

Page - B

Oirector Guica Somelhing Kennath Kabn

III. Bomething

When you start up a new Director you initially have available to you only a few actors. The
maost important one is called Something and it does everything that every actor should be able to
do. In other words, Something maintains a memory, accepls print messages, makes instances of
itself, maintains plans for pseudo-parallelism {with the help of Universe), and can be told how to
handle new messages. Ob ject, Movie, and Sereen do graphical things and are described later,

Every actor is an offspring of Something and therefore unless explicitly told otherwise will
behave as Something does when receiving the messages is this section. The sections describing
messages of Ob ject, Movie, Universe, and Screen apply only to those actors and their descendanis.

The relationships of all the actors initially present in Director is depicted in the following diagram.
SOMETHING -

,/Dﬂ Q un:i.mmsmsu
POLY /:Lma INTERPOLATION DEFAULT-UNIVERSE

ROCEET TEXT

This guide is organized by the patterns of messages an actor can handle. Each section
describes a primitive actor by listing those message patterns directly assoclated with it (i.e. those
messages that the actor itself handles rather than passing the problem on up to its parents or more
distance ancestors). Variables that the actor treats specially are also described.

A pattern is a list of words or patterns. If a word begins with a question mark (7} or a "%"
then it is treated specially. Patterns are matched against messages. A question mark means that
anything may be typed in the corresponding position of a message. If a question mark is followed
by a word, then that word becomes the name of the what you typed in the corresponding position
in the message. A "1" means that any number of sub-items (even zero) can be at the corresponding

position of the message. For example, the message I eat pot stickers)" matches the pattern “(I

Paga - 7

Direcior Guida Somathing Kemnmath Kok

faction %things)” and as a result the name "action” temporarily gets the value “eat™ and the word

“things" is bound to (ie gets the value) "(pot stickers)”. Currently the %" can only be used at the

end of a pattern,
You may type upper or lower case letters as you prefer. The patterns given in this paper use
capital letters for required words and lower case for variable names in patterns. If there is an

abbreviation for a’pattern in the text then it is on the far right of the pattern.

Creation and Destruction of Actors

(ASK Tanyone HAKE Tname)

This causes an instance of the receiver of the message to be made and returned. The newly
created actor will behave exactly as its parent does (except when asked for its name, offspring, or
parent’s name of course). You can tell it new things to remember or how to behave if it receives
new kinds of messages. If there was already an aq:tur.armnd. with the same name it will be
destroyed and replaced by this new one.

Any time you want to ask an actor anything you type “(ask ", then its name, the message
and end with a "}". So to create an actor named Sally just type,

[ask something make Sally)

(ASE ?anyone MAKE INTERNED OFFSPRING) mio

This behaves just like "make Pname” except that here you lets Director pick a name.!

(ASK Tanyone MAKE UNINTERNED OFFSPRING) ' muo

This behaves like the previous one only the name it picks can not be typed in. To talk to

1. Mio 1 an abbreviation for “make interned offapring™ a0 you can jusl as well type (agk joa &Emia). The
"&" is necded to signal Dircetor that what follows is an abhreviation.

Page - B

Oirecior Guide Creation snd Destruction of Actors Kermnath Kahn

the resuiting actor you must either save the result of this message in a Lisp variable or have some

other actor store it.'I

(ASK 7anyone IF NEW MAKE ?name) ' inm 7

If there already exists an actor with the same name then nothing happens otherwise one is

made. Name is returned in either case,

(ASK Fanyone MAKE COPY 7sibling) mc 7

An exact copy of the recipient in this message transmission is created. The only differences
between the new actor “sibling™ and the recipient are their names and that the newly created actor
has no offspring. OFf course, afterwards they may be told different facts and how to handle
messages. This creates an identical twini while the other "Make” messages create children. One big
difference is that if you change a twin its sibling is not affected but if you change a parent then its
children potentially will be affected.

{-'I-‘.ik: Tanyone MAKE SYNONYM Tname) ms T

This does not create a new actor. Instead the recipient is given an alias, another name with
which you can use to send it messages. Besides providing a way to give shorter names to any
actor, this is often useful when the name is a list. For example, if you have an actor that is the
comparison between A and B then you can define the comparison and give it equivalent name as
follows,

(ask something make (comparison-of A B))
{ask {comparison-of A B) make synonym (comparison-of B A))

L. The only reason for putting up with this incomvenience is so that the actor is subject to garbage
collection, ie. will go away when you no longer can get to it te sk it anything.

Fage - B

Director Guide Dafining the Behavior of Actors - Kennath Kebn

Defining the Behavior of Actors

[h;':il: tfanyone DD WHEN RECEIVING Tpattern %action) dwr 7 %
This very important message type expands the repertoire of an actor. The "1” indicates that
“action” is to be the name of the part of the message that follows the “pattern”.
Suppose you want to make an actor named “Sally” who will respond with “yes it is a nice
day, morning or evening” when you say “good morning, evening or whatever™, You just type:

[ask something make Sally)

{ask 5ally do when receiving (good 7time-of-day)
i if Sally recelves the word good followed by another word
i+ which we will call by the name time-of-day then
(type “(yes it is a nice ,time-of-day)))

If the comma had not preceded the variable “time-of-day” then she would always type the message
“yes it is a nice time-of-day”. To test it out we again ask Sally something, this time to respond to
“good morning”.

(ask s5ally good morning)
;i fo which she responds
YES IT IS A NICE HORNIMG

(ASK ?anyone EXTEND BEHAVIOR WHEN RECEIVING Tpattern BY DOING ¥some-action) ebwr 7 bd

| This is useful for extending the behavior of an actor in response to a message that it already
can respond to. If while running “some-action” a me:mge is sent that matches the “pattern”, then
this new clause is ignored and the old action is taken.! Suppose you want Star to move forward

and in addition grow whenever it is told to go forward.

1. The main reason the standard “receive” message ie not delined Lo behave this way is o allow recursion.
If cach roceiver clavse were iteell a Tull actor then extending their behavior could be done in & much
cleaner way.

Page - 10

Oirector Guida Defiring tha Bahavior of Actors Kennath Kahn

(ask star extend behavior when recelving (forward Pamount) by doing
(script: {ask :self grow ,amount) ;; ash yourself fo grow rfhe same amount
{ask :s5e1f forward ,amount))) ;; send along the message fo yourself

You could have used “star” instead of “sell™ but self will also work right if you make any offspring
of Star and ask them to go forward, since self always contains the name of the original recipient of
the message. The word "script:” is used to protect the commas. Recall that they mean use the
value of the following expression and so without the word “script:" Director would be confused and
say tl'rat- "amount” has no value when you type the above expression. Using the word “script:”
means that the comma should get the value of the following expression when the script is being
run. To learn how to remove extended behavior, if no longer wanted, see the “remove clause
for.." message below.

1f you are confused about how this message differs from the "do when receiving” message
above try making some actor and tell it "do when receiving” with the same pattern and action as
above. Then tell it to go forward some small amount. After you get the idea type control-g {while

holding down the control button {ctrl) type gl
Printing

[ASK Tanyone PRINT %option) ps OR pm OR pv OR pdb

The possible "options” are "script”, "memaory”, “variables”, “database” or "all". If no option or
“all” is given then all are assumed. They cause the script or the memory of the rﬂ:l.piml: to be
printed. The memory is split up into “variables” and "database”. If a second option is given it is

assumed to be a file name to which to print. So to print the entire definition of Sue to a file type
{ask Sue print all Sue file)

This will cause Sue to be printed out in a form that is designed to be easiest to read. It can

not be read back into a Director however., To do that use the following message

Page - N

Oirector Guida Printing Kammath Kabn

{ASK Fanyone SAVE %file-name) .

This message causes the recipient to print itself out in Lisp onto the “file-name”. If a file of
that name already exists it will add itself to the end. You can call the Lisp compiler upon the file
or just use this to save away an actor onto file, Using the Lisp function "Load” you can get the
saved actor back inte another Director. If no file-name is given then it will return the Lisp form
instead. This does not work if the actor is compiled as is the case with all the actors available in a
fresh Director. If you want to save away Sally and Sue for another time, for example, then type

(ask sally save flower file) ;; put sally in the file called flower file
{ask sue save flower Tile) ;; put sue there foo

So another time il you want Sally and Sue just type (load Yflower file)).

(ASKE Tanyone HELP Xpattern)

This causes .ll'll!' recipient to print out comments about the different messages it can receive.
If no pattern is given then all the different messages are described. 1f a pattern is gven then only
those that match the pattern are printed. So to see all the messages that begin with the word
“project” that a movie can handle just type

(ask movie help project %)

(ASK ?anyone RECALL CLAUSE FOR %sample-message) ref 7
This will return the first clause that matches the “sample-message”™. NIL Is returned if the
clause is compiled or if nothing matches the message. For example, if you tell Sally,

(ask sally do when receiving (bye Twhen) “{goodbye ,when)) ;;: ¢g (ask sally bye now)
(ask sally recall clause for bye any-ol-time)
{{BYE 7WHEN) “(GOODBYE ,WHEM)}) :: ii returned

(ASK Tanyone REHOVE CLAUSE FOR Xsample-message)

Director Guidea Printing Kennath Kabn

This removes the first clause to catch the "sample-message”. You can even remove clauses

from the compiled primitive actors such as Something and Ob ject so use this message with care,
Tracing

(ASK 7anyone TRACE ?pattern ¥action)

If any transmission occurs that match the “pattern” then a comment that it happened is
printed and the “action”, if any, is taken. Finally the message is sent and a comment is printed
describing the results. A transmission is the recipient combined: with the message. This is so that
you can ask a parent to trace some or all messages passed to it from its offspring. If you want to
see all the messages for Sally that begin with either grow or shrink, you should ask her to trace by
typing’ |
{ask sally trace (sally {or grow shrink} H}]I
or if you want a break point when she nu- any of her descendants receives a message that changes

the value of the variable “size” then type

(ask sally trace (? {or set change} your size to 7) (break size-being-set))

If you want to trace every message that Sally and her descendants receives you can type
(ask sally trace) :: rame ar (ask sally trace (7))

(ASK Tanyone UNTRACE Tpattern)
This removes any traces that match the "pattern”. If no pattern is given (the message is
simply untrace) then all traces on that ‘actor are removed. Untrace removes traces from the actor

receiving the message and all of its descendants. Therefore to remove all traces from everyone just

type "(ask something untrace)”,

1. FPatterns in Director can be more complicated than described so far. A complote description of patterns
can be found in a later section. The use of [} and or in the cxamples here mean that the pattern succeeds
if it matehes vither of the subpatiern.

Poge - 13

Direclor Guide Memory Messagea Kenrath Kabn

Memory Messages

Something (and since all actors are descendants of Something this is true of all actors in
Director) has two kinds of memories, variables and a relational data base. The variables are
known by the actor that was originally told to set them and indirectly by all of its offspring and
ml:;re distant descendants. The data base is good for remembering any list structure and recalling

it later with a pattern.

Variables

Each Director variable is associated with a particular actor. The value and the name of a
variable may be either an atom or a list. So for ﬂ:lrni:h:. an actor may have a variable called

AEYE COLOR)" and its value may be "BLUE",

[{ASK Tanyone {or CHANGE SET} YOUR Tvariable TD Tnew=-value) sy Tto TORcy Tto 7

The part enclosed in {} means that either the word "change® or “set” can be typed, there is no
difference. A message matching the pattern causes the value of “variable” to be changed to
“new-value”. If the actor had no such variable then one is created and its value sest. New-value is

recurned. For example, if Sally just got a halr cut you might want to update her hair length as

follows

[ask s5ally set wvour (hair length) to medium)

which causes Sally's variable "(hair length)” to be set to "medium”.

{ ASK Fanyone RECALL YOUR ?vuriahl-e] ry T
This message causes the value of “variable” to be returned. If there is no such variable

associated with the actor, then its parent will be asked the same question, and o0 on until either a

Oirector Guide ' Voriobios Kennath Kahn

value is found or finally NIL is returned.! So, if you ask Sally

(ask sally recall your (hair length))

the word "medium”™ will be returned,

(A5E Panyone RECALL EACH OF YOUR fvariable-pattern) reoy T

Variable names may be either atoms or lists. If it is a list then one can refer to it by giving
only part of its name and a "?" for each missing part. This message causes the return of the list
the values of all the variables that match the “variable-pattern™. Note that variable patterns are
not as general as message patterns, only ""s are permitted and only at the top level of the pattern.
Using this feature an actor can have the equivalent of property lists, nested property lists, and
arrays. For example,

(ask s5ally set your {color-of friend bob) to red)
(ask sally set your (color-of friend sam) to blue)
(ask sally set your (color-of stranger tom) to green)
i then asking

(ask sally recall each of your (color-of friend 7))
(BLUE RED) ;:: ir returned

i while asking

(ask sally recall each of your (color-of 7 7))
(GREEN BLUE RED) ;; returns all three

If you made the movie My-first-film described earlier and you want to see all the frames
¥ou can type

(ask my-first-film recall each of your (frame 7))

This pattern notation for variables also works for the “set or change” messages. For
example, typing

{ask sally set your (color-of 7 7) to yellow)

1. The returning of NIL for unbound variables is very convemient default, especially for moviees. This
can be overridden so that it becomes an error by using the variable demons discussed belaw.

Oirector Guida “Yariablea Kenmalh Kabn

will set all the variables of Sally that are three long and begin with “color-of” to "yellow™,

(ASK Tanyone INCREMENT YOUR Tvariable BY Tmulnt'l iy Thy ?

This causes the value of “variable” to be set mithc sum of its old value plus "amount” in the
message. 1f there is no such variable then one is crluam,-l and set to the "amount™. Unless both
"amount” and the value of "variable” are numbers an error will resul. The new value of
“wariable” is returned. So if you type

{ask sam increment wvour size by 10)

and his old size was 20 then his size is now 30. If Sam did not know what to do when he received
a message asking him to increment a variable you could have told him by typing

(ask sam do when receiving (increment your Tvariable by Tamount)
(script: (mask :self change wour ,variable to

+(plus (or (ask :self recall your ,variable)
0) ;i In case it has no value already
amount))))

MNotice that this message and the following ones do not change the value of a variable of an
ancestor. 5o if when asking Sam to increment his size, he did not know his size and had to ask his

parent, then his parent’s size is not affected by this change. Instead a variable for size is created

for Sam and initialized to be the sum of his parent’s size and “amount”.

(ASK Tanyone ADD Pnew=-1item TO YOUR LIST OF 71ist-nama) add 7 t¥ylo 7

If "new-item” is already a member of the contents of “list-name” then nothing happens,
otherwise “new-item” is added onto the value of “list-name”. The new value of list-name is
returned. For example, typing

(ask sam sel your neighbors to (fred bob sally))
(ask sam add sue to your 11st of neighbors)

results in Sam's variable “neighbors” to be set to (SUE FRED BOB SALLY).

Page - 18

Dirr_*lnlnr Guicha WYarabiaa Kermmath Kalnm

(ASK Tanyone ADD ?new-item TO YOUR LIST OF 71ist-name REGARDLESS) add T tylo 7 reg
This is the same as the previous “add .." message only the “new-item” is added regardiess of

whether it is already a member of the value of “list-name”.

(ASK Tanyone REMOVE 7old-item FROH YOUR LIST OF 711st-name) remove T Fylo T
This removes all copies of “old-item™ from the contents of “list-name”. Suppose Bob moves
away from Sally, then you can ask Sally

(ask sally remove bob from your 1ist of neighbors)

(ASK Panyone LIST ALL YOUR VARIABLE NAMES) laywn
Returns a list of the names of all the variables known directly by the recipient. Special
variables like descendants and siblings are not included since they are computed when asked for

and are not known otherwise.

(ASK Tanyone FORGET YOUR Tvariable-pattern) fy 7

If "variable-pattern” is the name of a variable it is forgotten (the recipient is restored to the
same condition as before the variable was created}l.i If it is ™" then all variables are forgotten
except for “parent”, "offspring” and “name”. If "variable-pattern” is a list containing question
marks then all those variables which match are forgotten. So typing

(ask sally Torget your (color-of friend 7))

will cause Sally to forget about the variables “(color-of friend sam)” and “{color-of friend bob)™.

Oirector Guide Demona for Varinbles Kermalh Kabn

Demons for Variables

Sometimes you want some special action to take place when recalling or changing the value
of a variable. Each special action is called a demon and the demons for a variable are kept in a
variable whose name starts with the name of the variable to be watched followed by either
“actions-if-recalling” or “actions-if-changing” depending on whether the action should take place
when the variable is recalled or changed. Variables matching the following variable patterns are

run when their corresponding variable is changed or recalled.

Variable pattern (Tvar iable-name ACTIONS-IF-RECALLING) is abbreviated as (7 airx)

Such variables can be created, modified and inspected using the normal variable messages.
If the second name of a variable is "actions-if-recalling” then if the "variable-name” is ever recalled,
then each member of the list of actions-if-recalling is evaluated. The value returned by the recall
is the last form of the list evaluated. The forms can reference the Lisp variable "old-value™ which
is the current value of the variable. So if you want Jack to always lie about his age, 50 that it is
never greater than 39 you can type

(ask jack add (min :old-value 39) ;; refurn the minimum of current age and 39
to your list of (age actions= 1f-ra¢i‘|11nnn iy if ever rmmu; Ais age

(ask jack set your age to 7B) ;; mow fo fest if ouf

78

{ask Jack recall your age)
39 ;; fo which he responds 39

This feature is used ° y objects (descendants of Object which is described later) which have a
variable called "state” that is a list of the x coordinate, y coordinate and heading. When you ask
an object for its heading it returns the third element of this "state” variable. This is done by

(ask object add (third (ask :self recall your state))
to your 1ist of (heading actions-1f-recalling))

Page - 1B

Oirector Guice Dam:ru for Vorinbles ' Keammath Kabn

Variable pattern (?vari;hm—nma ACTIONS-IF-CHAMGING) is abbreviated as (7 alc)

When changing or setting (they are the same thing) the "variable-name” then the variable
whose first name is "variable-name” and second name is "actions-if-changing” is recalled. Each
element of that variable (if there is one) is then evaluated. The value that the variable has Just
been set to is available in the Lisp variable "new-value”. Suppose you know that Jack should
never be over 39, Then to get a warning if his age is set to too high a value just enter

{ask jack add
(cond ((> :new-value 39) ;; if the value (s greater than 39
(type “{warning jecks age set to ,:new-value which is too high))i}))
to your 1ist of (age actions-if-changing))
{ask jack change your age to 73) ;; fry it out by setting his age to too high o value
WARNING JACKS AGE SET TO 73 WHICH IS TOO HIGH
73 ;i but Ais age is set to 73 anyway

If you wanted his ége automatically set to 39 in this case then type

(ask jack add (cond ((> :new-value 39)
{ask jack set your age to 39)))
to your 1ist of (age actions-if-chamnging))

Relational Data Bases

Associated with each actor (since each actor is an offspring of Something) is a powerful data
base. The patterns used to retrieve items from the data base have the same form as the message
patterns, eg. 7" is used for nﬁrthmg in that position, “%" for anything taking up any number of
positions. A complete description of patterns can be found in a later section.

Memorizing

(ASK Tanyone HEMORIZE 7item) mem T
Any list structure may be remembered. Once an actor is told to memorize an item it will

never forget it unless you ask it to "forget” as described later. Some examples of memorizing are

Director Guide Memorizing Kermnath Kalwy

(ask sally memorize (color sky blue))
{ask sally memorize {(color ocean blue))

Retrieving

It doesn't do any good to have Sally remember these things If we can't ask her about them so

we have the following messages.

(ASK Tanyone RECALL IF AMY ITEMS MATCH Tpattern) riaim 7

Sally will answer "T" (for true) or "NIL" (for don't know anything about it} depending on
whether she was ever told something that rnzltu:lmﬁ!E the “pattern”. 5o if you asked Sally the
following questions I

{ask sally recall if any items match (color sky blue))

T i Le yup

(ask sally recall if any items match (color Tanything blue)) ;; same as (color ? blue)
T :: of course

(ask sally recall if any items match (color Tanything green)) -

NIL ;; dont know of any green things

(ASK Tanyone RECALL AN ITEM HATCHING Tpattern THENM Taction) raim 7 then 7

It would be nice if Sally would say more than yes or no. One way to do this is to use this
message. If she remembers at least one thing that matches the “pattern® she will take whatever
“action” you ask her to. So, if you type «

(ask sally recall an item matching (coler 7thing blue)
then (type “(1 know that the ,thing is blue)))
I KNOW THAT THE SKY IS BLUE ;; fo which the responds

If you hadn't told her about any blue things then she would have answered "NIL",
The first element of an item in a database is treated specially in order to speed up retrieval.
Because of this you should always provide the first element completely without using any question

Pege - 20

Director Guide ' Relrieving Kennalh Kabn

marks. IT you don't like this you can always use some dummy word in the front of all the items.

{ASK Tanyone COLLECT ITEMS MEMORIZED MATCHING Tpattern) ' cimm 7

The previous messages aren't too helpful if the actor in question has remembered several
items that match the pattern since you never know which item the actor will base its answers on.
Diirector once had (and it could come back by popular demand) a series of messages for creating a
stream of answers to guestions that could be interrogated for its answers one by one. 'Instead of
that, this simplier, less general, “collect items memorized matching..” message is provided which
collects into a list and returns all the forms that were memorized and match the “pattern”. So
typing

{ask sally collect items memorized matching (color 7 blue))
{ (COLOR OCEAN BLUE) (COLOR SKY BLUE)) ;; is refurned

Demons and Virtual Items

You sometimes want special actions to occur during some database references. Similar to the
demons for variables, you can create database demons to satisfy such needs. Variables whose name
consists of the first element of the item in question followed by either “if-recalling-items™ or
“actions-if-memorizing” are evaluated when an item with the same first element is called for or

memorized.

Variable pattern (7first-element IF-RECALLING-ITEMS) is abbreviated as (7 iri)
The constructers of virtual items {items that are not really in the actor’s database but that
pretend to be) are found on variables whose names match the above pattern. When needed by

either a "recall if any items match”, a “recall an item matching™ or a "collect items memorized

matching” message they get run.
Suppose you want to have a table actor that keeps track of blocks on top of it. You want it

to remember which blocks are left and right of each other. Furthermore, you don't want to clutter

Page - 21

Director Guida Damona and Virtual Itema Kennath Kabn

*

the table up with too many facts. One thing to do is to have the table memorize only items about
which blocks are left of which others and to use “if-recalling-items™ demons to fake it to look as if
it also had memorized which are right of which others. To do this enter,

{ask table add

i1 add o the table’s list of demons for questions beginning with right-of
{if-asked-about {(right-of Thiock-1 Thlock-2)
i3 if asked about a Mock being right of another then
(script:
{ask :self recall an item matching ;; then look for an item that says that
{(left-of {and b2 ,block-2} {and bl ,block-1})
i; the second bock is left-of the first one
then “(right-of ,bl ,b2))]})

;i ond if found prefend that @ right-of item was there
to your 1ist of (right-of if-recalling-items))

Only those items constructed that match the original request are used in answers. To test out our

table we can enter

{ask t;h!t memorize (left-of (green block) (red cube))) ;; rfell ir something
{ask table recall an item matching (right-of (red cube) Tsome-other-block)
then {(type “{the ,some-pther-block is right of the red cuba)))

i3 after asking it for something thar is right of the red cube if responds
THE (GREEN BLOCK) IS RIGHT OF THE RED CUBE

Variable partern (1Tirst-element ACTIONS-IF-HEMORIZING) is abbreviated as {?lumt}

If, instead of pretending that some item is memorized, you want some special actlons to occur
when certain items are memorized then you should put the actions in a variable whose name is the
first element of the items in question followed by “actions-if-memorizing™. Suppose you rather have
the table memorize both the left and right relationships of its blocks, but you don't want to have to
enter both kinds of statements. Then using actions-if-memorizing you can have one kind
automatically added after the other kind is. To get the table to memorize right-of statements after

first hearing of the left-of version just type,

Page - 22

"Director Guide Demons and Virtual Items Kenneth Kabn

(ask table add

:; add to the list of actions to happen if memorizing an item beginning with left-of
{if-told-about (lTeft-of Tthing-1 7thing-2)

(script: 5
{cond ({ask :self recall if any items match (right-of ,thing-2 ,thing-1)))
vy If 1 already have memorized the corresponcling item then do nothing
(t (ask :self memorize (right-of ,thing-2 ,thing-=-1)})))))
13 Orherwise memorize the {fem right-of with the things switched around
to your 1ist of (left-of actions-if-memorizing))

The reason | first checked whether the new item is already known is so that the analogous demon

can be placed upon the pattern "(right-of 7 7)” without the two activating each other forever.
Forgetting

(ASK Tanyone FORGET ITEMS MATCHING Tpattern) fim 7
This removes any previously memorized item matching the “pattern” from the data base of
an actor. If you want Sally to forget abdut all the blue things she knows about you could type:

{ask sally forget items matching (color 7 blue))

'i'u have her forget everything (except her name, parent and receiving clauses) type

{ask sally Torget items matching (X)) ;; forge! every dala base ilem
(ask sally forget your ?) ;; forget all your variables

Plans and Pseudo-Parallelism

Mormally when an actor receives a message it responds as quickly as possible. In order to
have several actors behave at what seems to be the same time this i3 not desirable. Director solves

this by providing a “tick” mechanism which is described in greater detail in [Kahn 1978]

{ ASK Tanyone PLAN MEXT %action) pn %

This indicates that the message called “action™ should be sent after the next tick. Ticks are

explained later in this section.

Page - 23

Oireclor Guids Plans and Pesudo-Parallolism Karmath Kehn

(ASK Tanyone PLAN AFTER Tnumber TICKS ¥action) pa T ticks X

This requests that the message called “action™ be- sent after "number™ ticks. Suppose you
want to have Sally grow and after that to go forward and at the same time you want Sam to Eo
forward on the next tick and to grow on the tick after that. You could type

{ask sally plan next grow 100)

(ask sally plan after 2 ticks forward 50)
{ask sam plan next forward 50)

{ask sam plan after 2 ticks grow 100}

Cince all the plans have been made you can get any actor to do all planned on the next tick
by asking it to (TICK). If you ask an actor named Default-universe to (TICK) then all the actors
will do what they planned for the next tick. If you ask Default-universe to "RUN FOR 3 TICKS*®
then 2 ticks of action will happen,

{ASK Tanyone PLAN AFTER ?number SECONDS Xmessage) pa ? seconds %
This is the same as the previous message except that the units are in film seconds. While
making a movie there are variables for the number of frames per second and ticks per frame
which are multiplied by “number” in the message to get the number of ticks.
|
(ASK Panyone PLAN AFTER RECEIVIMNG Tevent-pattern TO ?-a:uﬁrfurnl parx 7 to 7
If the recipient of this message type receives a message matching the “event-pattern” then tht.
"message-form” is evaluated (in the environment extended by matching the event-pattern against
the event message) and sent to the recipient. Suppose you want Sam to melt after colliding with a
sun otherwise to explode. Then you could enter;

(ask sam plan after receiving (colliding with Pother) te
i3 i a mersage matches (colliding with 1)
(script: (cond ((ask ,other are you a sun) ;; if the other is @ sun
“Umelt)) ;; then the message to be sent is melt
(t “({explode)))}) ;; othermise it is explode

Paga - 24

Oireclor Guida Plana and Peesudo-Peralleliem Kemnnath Kabn

(ASK Tanyone PLAN AFTER RECEIVING Tevent-pattern TO ALWAYS Tmessage-form) parx 7 ta 7

This is just like the last message except that it will u!;u-;u;; do “message-form” after receiving
a message that matches 'e'-ent-pnttern'. while the other one only works the first time that a
message matches. The affect of this message could easily be accomplished using the “extend
behavior when receiving” message. Suppose you want Sally to grow 150 units 3 ticks after
gradually going forward 200, then you could type

{(ask sally plan after receiving (note that I finished gradually forward 200)
to always “(plan after 3 ticks grow 150))

[(ASKE Tanyone REPEAT Tmessage Tnumber TIMES)
This causes the “message” to be sent now and the plan the messages the comma means the

value instead of the name,

[ASKE Tanyone REPEAT Tmessage "number TIMES EVERY 7so-many TICKS) repeat 7 7 te 7 ticks
If beacons had not be told how 1o blink they could be told to using this message by entering,

(ask ,beacon repeat (show) 10 times every 2 ticks)
[ask ,beacon plan next repeat (hide) 10 times every 2 ticks)

5o that the beacon will show and hide on alternate ticks.

{ASK Tanyone REPEAT Tmessage FOREVER)
This is similar to the previous message only the action is repeated ad infinitum. This is
defined as follows:

(ask something ;; every aclor inkerits this behawior from Smﬂhin:
do when receiving (repeat ¥message forever) _
(seript: (ask :self | ,message) ;; send fhe message fo yourself
[ask :s5el1f plan next repeat ,message forever)))
ii and plan next (o repeal the same rhing again

Pagea - 25

Director Guida Flans and Peeudo-Parallelism Kennath Kahn

The ™" in the first line of the script means that the list that follows should be inserted into the list

without its parenthesises. So typing "(ask sally Nprint memory))” is exactly the same as typing “(ask

sally print memory)”.

(ASK Panyone TICKE) .

This message causes those messages planned for the next tick to be sent. These are kept on
the variable called “things-to-do-next”. Conceptually the transmissions planned for a tick happen
in parallel as does the broadcasting of tick messages by either a movie or a universe. A tick Is a
quantum of time during which you should not care about the order of transmission of any planned

messages. See the sections describing Movie and Universe below for more details.
Broadeasting Messages

Sometimes you want to have an actor send messages on along to others it knows about. The

following messages are to help you do that.

(ASK Tanyone ASK YOUR Tvariable TO Xmessage) ay T to X
This asks the recipient to recall its "variable” and then send to it the “message”. For
example,

(ask sally set your friend to bob)
(ask s5ally ask your friend to recall your offspring)

Hopefully Sally has more than one friend. In that case you can create a different variable

("friends” is a good name) and use the next message.

(ASK Tanyone ASKE EACH OF YOUR Tvariable TO ¥message) asoy T to X
This sends out the "message” to each of the members of the list that is the value of

“variable”. MNothing happens if there is no value for "variable”. As an example,

FPage - 28

Oireclor Guide Broadcasling Messagas Kennath Knhn

(ask sally set yvour friemds to (bob ted carel alicael)
(ask sally ask each of your friends to print variables)

There are a few special variables that are useful together with this message. They are
"descendants”, "childless-descendants”, "siblings” and “offspring”. Offspring are all the children of

an actor, siblings are all the offspring of an actor’s parents except itself, descendants are all the

childrenl and their children's children and 30 on, and childless-descendants are those descendants
that themselves have no children. If you wanted all the actors in existence (except Something and
those actors created by "make uninterned ﬂﬂ;pnng",‘ to print, for example, you just type

(ask something ask each of your descendants to print)
|
I

{ ASK Tanyone ASK fanother TO ¥message)

This one may seem kind of silly. Why ask someone elie (o ask another person something,
why not just ask them yourself? This is handy mostly when you are planning or repeating
something because they, by convention, deal with messages that are to be sent to the planner at
mrm; later time. The planner is typically the same actor as the one who executes plans but
occasionally this is not the case. For example, if you want Sally to tell someone I:'lﬁt he is a clutz
because he just collided with her (rather then do something herself such as explode), then you
could rype

{ask sally plan after receiving {(colliding with Tother)
to always “(ask ,other to nete that you are a clutz})

If Sally receives a message informing her that she is colliding with Bob then the following

LFANSMISSion Ooeurs

{ask sally ask bob to note that you a clutz)

(ASK Panyone DO THE FOLLOWING: XMESSAGES) dtf %

This too may seem silly at first, why send yoursell many messages at once like this? Again

Poge - 27

Oireclor Guide Broadcesting Messages Kennath Kabn

this message is handy when planning to do something later. Since you have no say, reglrdlng the
order of messages sent during a tick, this pattern provides you with some. The difference is subtle.
Using this message you can plan to do a compound action at a particular time. The alternative Is
to plan to do several simple actions all at that time. Suppose you want Sue to draw a pentagram (a
five pointed star), then you could type either

(ask sue pendown) ;; So fkal she leaves a frail behind Rer
(ask sue repeat (do the following: (Torward 200) (right 144))

or if you don't care whether the star is drawn by going forward first or right first then the
following is just as good

(ask sue repeat (forward 200) 5 times)
(ask sue repeat (right 144) 5 times)

Remember that the “repeat” message is defined to do the message and plan to repeat one less time

the same message.

(ASK Tanyone KEEP DOING UNTIL ?predicate ¥message) kdu 7 %

This keeps sending the "message” to itself until it results in something that satisfies the
“predicate”. Suppose you want Sam to grow 10 until he iz at least 200 big. Then you could type
(ask sam keep doing until (lambda (result) (> result 200)) grow 10)

Variables that are Special to All Actors

There are a few variables that are treated specially. Among them are “siblings™, “offspring”,
"descendants”, and “childless-descendants”. If there is no value for one of these variables instead of
asking the recipient’s parent for a value one is made up It returns either the relatives indicated or

NIL if there are none. . |

name is @ variable whose default value (5 <name used when made>

Every actor has a name.

Director Guide Variables thal are Special to All Actors Kenmall Kabn

parent &5 e variable whose default value {5 (the maker of recipient?

Every actor has as its parent the actor that created it. It essential to have a parent to accept
any message or recall any variable or database item that one does not know explicitly. You can
change your mind as to who a parent of an actor is and reset it using "change your _." but the
previous parent’s offspring (see below) will not be changed and the new parent will not

automatically know of this new offspring.

of fspring is a variable whose default value is ni) and is abbreviated as offs
Every actor knows the names of all its offspring (except those that are not interned). This

variable is not inherited of course.

siblings is a variable whose default value is n1) and iz abbrepiated a: sib

An actor’s siblings are all of its parent's offspring except itself.

descendants (5 a variable whose default value is ni1) and is abbreviated a1 des

This is a list of the actor’s offspring and their offspring and so on.

childless-descendants is a varichle whose defaw!t value is ni1 and is abbreviated as cd

This is a list of all the actor’s descendants that themselves have no offspring.

universe is a varichle whose default value is default-universe and is abbreviated as uni
The variable "universe” is used in planning and its value should always be a descendant of

Universe. Its value is informed whenever an actor plans anything.

things-to-do-next is a veriable whose default value is nil and (s abbreviated as ttdn

This variable contains the list of things that its owner plans to do upon receipt of the next
tick message. You need not worry about this variable unless you want to write your own planning

primitives,

Oirector Guidsa Dbjact Kenmath Kabn

IV. O hjant

Object is the top-level actor for those that can be seen on -a display screen. Objects are
much like Logo turtles only much more versatile. Many of the message patterns are intended to be

compatible with the TV turtle.
Creation and Appearance

Objects are created using the "Make™ message described above. In order to inform this newly
created actor of its appearance it must be told the name of a Lisp program (made up of turtle
commands) that will draw it on a d].':].:lh}'. If its appearance is not easily describable by turtle
commands (such as text) then you can use the instant turtle or you can supply clauses for the

reception of display and erase messages. This is all described later.

[ASE Tan-object WHEN DRAWING USE ?draw-procedure OF Xdraw=-args) widu 7 of %

This informs “an-object” that it should draw itself using the “draw-procedure”. The
procedure may consist of Forward, Back, Right and Left commands but coordinate commands (for
example, Setxy} should be aveoided. Instead of Penup and Pendown use Thingup and
Thingdown. "Draw-args” is a list of variables that must be "Recall-able”, ie. variables known
{either directly or through inheritance} by the actor in question. If these variables are changed
and the object is currently being displayed, then its its appearance will be updated. For example,
to define an object that can appear as any polygon we could type

{define poly object
{set your angle to 60) ;; sef the default to be @ hexagom
(whin drawing use draw-poly of size angle})

The macro "Define” is just short hand for:

Pags - 30

Oirector Guida Craation and Appearance Kenmalh Kabn

(ask object make poly)

(ask poly set your angle to 60)

(ask poly when drawing use draw-poly of sizé angle)
Draw-poly in Lisp could be defined as follows:

[defun draw-poly (distance turnage)

(do ({original-heading (heading)) ;; save away the original keading
(fFirst-time? t))
({and (= original-heading (heading)) ;; if back to the original heading
(setqg first-time? (not first-time?))))
i and if this is not the first time through then it's fintshed
(forward distance) ;; each time go formard the distance
(right turnage))) ;; and furn right the turnage

When giving the arguments to the drawing procedure one may put any of the arguments in
parenthesis. This declares to Director that the argument does not change the shape of the object.
For example, if the drawing procedure has an argument for the texture then it should be in
parenthesis otherwise whenever the texture is changed Director will go through much more work
than necessary. If "draw-poly” had a third argument for the texture then you should type, WHEN
DRAWING USE DRAW-POLY OF SIZE ANGLE (TEXTURE)™. Also, the variable "size” is treated specially
by the system (in the definition of grow and shrink for example) 50 you should use that name
when that is what you mean. All sizes are standardized so that any .object of size, say, 100 will just
fit inside a circle of radius 100 units. You needn't worry about centering the appearance, Director
will do it for you. This can be overridden by setting the variable “center-offset™ as described
below.

Currently the initial envirmm-lnt includes this definition of Pely and two other objects,
Rocket and Flower,

Paga - 31

Oirector Guida Showing and Hiding Kennalh Kahin

Bhowing and Hiding

{ASE Tan-object SHOW)

"An-object” is shown if not already being shown.

[(ASKE 7an-object HIDE)

“An-object” is hidden if currently visible.
Moving and Turning

Just as in Logo there are at least two ways of changing an object's position or orientation.
You can ask it to go forward or to turn, or you can ask it to change either its "xcor”™ {the horizontal

coardinate), "ycor” {the vertical coordinate), “heading”, "position” (the xcor and ycor) or “state” (the

xcor, yoor and hea:ling}.

Turtle Commands

‘There are two ways of moving or turning. An object can either disappear from where it is
and appear in its new position or orientation. Another way of moving or turning is to do it
gradually. “Gradually” messages to objects do not cause them to move slowly when the message is
received, Instead they move only a tick’s worth (see previous discussion of ticks) and plan to do
the rest. In order to see the object move gradually one should ask an instance of Universe or

Movie to run for a number of ticks (see below),

(ASK Fan-object {and Pcommand {or FD FORWARD RT RIGHT LT LEFT BK BACK})} Tamount))

If any of the words fd, forward, rt, right, It, left, bk or back followed by any sort of number is
received by an object then it will hide, do the “command”, and reappear. So typing {(ask sally
forward 200) causes Sally to disappear and then to appear 200 steps forward from the way she

Papge - 32

' Director Guide Turlle Commands Kennath Kabn

was facing (her heading). If she was hidden to start with she will move but you won't see her.

(ASE Tan-object GRADUALLY Tcommand Tamount) grad 7 7
This causes the actor to find its appropriate speed and send itself a message asking it to do
"command” with either the speed or "amount” whichever is less. The name of the speed is found

in the variable {tommand speed-name). If there is anything left over to do, then it plans to do
that next. 5o typing

(ask sally gradeally forward 250)

i 45 the same a5 typing (essuming her speed is less than 250)
(ask sally fTorward ,(ask sally recall your speed))
{ask sally plan next gradually forward ,{- 250 {(ask sally recall your speed}))

The speed of change is the varfable "speed” if the message is a “forward” or “back” message. It is
“rotational-speed” if the message is "right" or “let”. Object knows reasonable defaults for these
variables but of course you can override any of them. When an object does something gradually
such as (GRADUALLY RIGHT 88) then the message (NOTE THAT T STARTED GRADUALLY RIGHT B88) is
sent to itself and later when it finished the message (NOTE THAT I FINISHED GRADUALLY RIGHT

88). These are very handy for making complicated plans where only after some event has begun
or finished should another start.

{ ASK Tan-object RIGHT-REVOLVE fdegrees) re T

[ASKE Tan-object LEFT-REVOLVE ?degrees) ir 1
These cause the recipient to revolve around its “revolution-center” if it has one, otherwise it

acts just as if it received either “right” or “left”. It travels in a circle around its 'relvnh.ltim-l:mtﬂ"

travelling “degrees” to the right or lefL. '

(ASKE Pan-object GRADUALLY RIGHT-REVOLVE .'i"dl'ﬂflli-:l orr 7

(ASK Fan-pbject GRADUALLY LEFT-REVOLVE 7degrees) gir 7

These causes "an-object” to revolve at the lesser of its “revolution-speed” and "degrees” and

Page - 33

Director Guide Turtle Commands

then plan to do the rest next.

Coordinate Messages

Kennath Kahn

Sgmetimes you might want to tell an object where to go by giving the distance up or down

and the distance left or right from either the current position or the center of the screen. The up

and down part is called the y coordinate and the left and right part is the x coordinate. The

fellowing are the coordinate-oriented messages

{ASK ?an-object SETXY Tnew-x Tnew-y) |
Set x coordinate to new-x and y to new-y.
[ASE Tan-object SETX Tnew-x)

[(ASK Tan-object SETY Tnew-y)

(ASK Tan-object SETTURTLE { Tnaw-x Tnew-y Tnew-heading))
This is the same as {change your state to new-state),

(ASK Tan-object SETHEADING Tnew-heading)

Sets the heading same as {change your heading to rnew-heading).

(ASK 7an-object DELXY ?delta-x ?delta-y)
Add delta-x to current x coordinate and delta-y to y.
{ASK Tan-object DELX ?delta-x)

{ASK 7an-object DELY 7delta-y) "

(ASK ?an-object CHANGE YOUR STATE TO Tnew-state)

Where state is (xcor yoor heading) same as setturtle new-state,

(ASK Tan-object CHANGE YOUR POSITION TO Tnew-position)
Position is just (xcor yeor).

(ASK Tan-object CHANGE YOUR HEADING TO Theading)
Sers the heading

(ASK Tan-object CHANGE YOUR XCOR TO new-xcor)

Page - 34

satt (77 7)

cyst T

cypt 7

cyht 7

cyxt 7

Nn-irﬂ;tpr Guida Coordinate Messages Karnalh Kakn

Synonymous with (setx).

[(ASKE Tan-object CHANGE YOUR YCOR TO Tnew=ycor) cyyt T
Same as (sety ..},

(ASKE 7Tan-object RECALL YOUR STATE) rys
Returns the current state

{ ASK 7an-object RECALL YOUR POSITION) ryp
Returns the list of the xcor and ycor

(ASK Tan-object RECALL YOUR HEADING) ' ryh
Returns the current heading '

{ASE Tan-object RECALL YOUR XCOR) ryx
Returns the x coordinate

{ASE Tan-object RECALL YOUR YCOR) ryy
Returns the y coordinate

Just as with the turtle commands it is possible to have a coordinate message happen
gradually. The relative ones (Delx Dely Delxy) use the variable “speed” just as “forward”™ and
"back” do. The absolute ones (Setx Sety Setxy Setturtle Setheading) are more unusual. While the
recipients of these messages also use “speed” and “rotational-speed” where appropriate, they cause
odd belavior sometimes. An object is defined to move towards its goal {the desired coordinates
and heading) as much as its speeds allow and then if the goal is not reached to plan to do the
original message all over again on tht-‘- next tick. This can cause some interesting conflicts if you
have an object trying to get to a particular state and while that is in progress have it also receive
some “forward” or "right” messages throwing it off mhllﬂt The gradual coordinate messages are:

{ASK ?an-object GRADUALLY DELX ?delta-x) gdelx 7
[(ASK Fan-object GRADUALLY DELY Tdelta-y) gdely 7
{ASK Pan-object GRADUALLY DELXY ?delta-x 7delta-y) gdelxy 7

Page - 35

Director Guida l:’u:l'cinul:u hMessages Kannath Kahn

{ASK Tan-object GRADUALLY SETTURTLE Tnew-state) gsett 7
{ ASK Tan-object GRADUALLY SETHEADING Tnew-heading) gsh 7
{ ASK Tan-object GRADUALLY SETX Tnew-x) gsetx T
{ASK Tan-object GRADUALLY SETY Tnew-y) psety T
{ ASE Tan-object GRADUALLY SETXY Tnew-x Tnew-y) gsetxy 7

Growing and Bhrinking

All objects can change their size. Just as with going forward or turning an object can grow

gradually or all at once.

{ASK 7an-object GROW 7amount)
This is the same as the messages of the form {INCREMENT YOUR SIZE BY Tamount). If the
object is currently visible it will disappear and reappear bigger (if "amount” is positive).

{ASK Tan-object SHRINK Tamount)

This is the same as a grow message of the negative of the "amount”.

{ASK Tan-object GRADUALLY GROW Tamount) . ga 7

[ASK Tan-object GRADUALLY SHRINE Tamount) s T
This works a lot like the gradually messages for going forward, turning right and the like.
The object will grow (shrink) at most the amount of its "growth-speed” and if anything is left will

plan to do it later,

Director Guida Gradually Changing the Velue of & Varisble Kennath Kahn

Gradually Changing thu??nluu of a Variable
i .

{ASK FTan-object GRADUALLY CHANGE YOUR Tvariable TO Tnew-valua) gcy T to 7

This will gradually change any "variable” to a “new-value”. The speed of the change Is
given by the variable (,variable speed) or a.;snjmad be 1 if none is provided. If you want Sally to
slowly grow to 300 at a rate of 30 units per second (by default there is one tick per second) then

type

{ask sally set your (size speed) to 30)
{ask sally plan next gradually change your size to 300) ;; plan fo change size
{ask sally keep doing until nothing-more-to-do tick) ;; keep sending ricks wuntid _ﬁn-lsim:

{ASK Pan-object GRADUALLY INCREMENT YOUR ?variable BY Taddition) iy Thy 7

This is like the previous one and is defined to gradually change the “variable™ to its current
value plus the "addition”. The only difference between the following two ways of making Sally
grow is that grow uses “growth-speed” while "gradually increment your ... © uses (size speed).

(ask sally uraduﬁ‘l‘ly grow 200)
{ask sally gradually increment your size by 200)

Pens

When an object moves it can leave a trail behind itself. It does this by falling back upon the
TV Turtle The commands that are currently available are pu, penup, pd, pendown, erd,
eraserdown, xd, xordown, xu or xorup. They have the same meaning as described in the LLogo

memo [Goldstein 1975].

Paga - 37

Director Guida Special Varisbles Kennath Kabn

Bpecial Variables

We have already seen a few variables that objects treat specially such as “heading”, “state”,
and "position”. Also the arguments for drawing given in the "when drawing use .. message are
also special variables. They are defined to cause the object in question to disappear if visible and
then to reappear with a new appearance. This is accomplished using the “actions-if-changing”
variable demons described earlier and explains why setting the variables "size” or "angle” of a Poly
causes it to change. Suppose Bob is a square and you want him to become a triangle of size 200
then just type

{ask bob change your angle to 120) ;; become a triangle
{ask bob change your size to 200)

There are a few other special variables associated with objects that you might want to set

SOTVEL IS

after-show-action is a varieble whose defoult value is n11 and is abbreviated as asa

This contains the action to be performed 1nerithe object has finished drawing itself. The
turtle 15 at the center so that shading is possible htrE:. 50 to shade in Sally with a checker pattern
{for more about shading see the LLogo memo [Goldstein 1975]) you type

{ask sally change your alter-show-action to (shade “checker))

after-hide-action is a variable whose default valie is ni1 and is abbreviated as aha

" This describes the action to be taken after the object has erased itself. If you want Bob to
print a message every time he hides then

{ask bob change your after-hide-action to {type “(try and Find me now)))

erasability isa variahle whose defaulf value is t and (s abbreviated as eras
Director has two ways to erase arl object, either redraw it with an eraser or erase everything

in the region of the object. Only if the object’s erasability is nil is the latter action performed.

Page - 38

Oirector Guida Special Variables Kannath Kehn

This is necessary if the appearance is shaded for example and is often faster if the drawing is

complex. Sally’s problem now that she is checkered is that she can't be erased by redrawing with

an eraser so you should rype

({ask 5ally change your erasability to nil)

center-offset is o variable whore default value is ni) and is abbreviated as co

Director assumes that an object should be shown, turn, grow, etc. around its center. The
center-offset is evaluated before these actions are taken to allow you to change this. If you want
Bob to be a flower that turns {or grows) not at his center but his base then try

{ask flower make bob)

(ask bob change your center-offset to (forward (azk bob recall your size)))
[ask bob show)

(ask bob right 30) ;; motice the difference if you create another flower and have if rfurn

Colors

If you want to change the colors of an object you use can the “change your .." message. If
colors were mentioned in the "When drawing use” message then this will work automatically. The
list of possible colors is in the Lisp variable "colors” and others can be made as described in the

LLogo memo. If you want to see a smooth transition from one set of colors to another you can use

the following message.

{ ASKE Tan-object CHANGE YOUR COLORS TO Ycolors IN Pnumber TICES) cyct 7 in 7 ticks

The number of colors before should be equal to those after. Each color is slowly changed to
the color in the corresponding position in “colors”. Only linumber of the change will occur, the
rest will be planned for later. Of course, if you are not running the color system then these colors

will all look white, but internal variables can be inspected to see that indeed the color is being
“changed”.

Page - 35

Oirector Guide Colora Kennath Kabhn

(ASK ?an-object PREPARE TO MIX COLORS WITH fother-colors) ptmcw 7

The number of "other-colors” should be the same as the current colors. This message sets up
a variable called "color-mix” that controls the mix of the old colors with the “other-colors™ If

“color-mix” is set to 0.0 then the old colors appear, if it 10 then the new-colors, if it is 5 then they

are mixed 50-50, This message is used to define the previous message as follows

{ask object

do when receiving (change your colors to fecolors in Tnumber ticks)
(script: (ask :self prepare to mix colors with ,colors) ;; prepare the mix

(ask :self set your (color-mix speed) to ,{//% (float number)))
i3 reciprocal of number is what should be done each rick

(ask :self gradually increment your color-mix by 1.0)))

i3 On each fick color-mix {5 Incremented by the (color-mix speed)

For example,
(ask sally change your colors to (red white blue) in 5 ticks)
is the same as typing

(ask sally prepare to mix colors with (red white blue))
(ask sally set your (color-mix speed) to .Z2)

(ask sally gradually increment your color-mix by 1.0) ;; if starfs off at O

Interpolation

Sometimes you want an object’s shape to slowly change to another shape. In Director you

can create an actor that is the interpolation between the appearance of two other actors.

(ASE Tan-object HAKE Tname INTERPOLATION TO fanother-object)

This returns an actor named “name” that is the interpolation between “an-object” and
“another-object”. This actor is an object that you can tell to grow, turn or whatever. It has
assoclated with it a special variable called "amount™. Amount is initially 5 which means that the

appearance should be exactly between the two appearances. 0.0 will make it look like "an-object”

" Director Guide Interpolation Kennath Kahn

and L0 -the appearance of "another-object”. Very interesting results occur if you try negative

numbers or numbers greater than one.

(ASK Tan-object HAKE INTERPOLATION TO 7another-object) mitx 7

Same as the previous one only Director picks a name of the interpolation for you. To make

a simple movie of a tircle becoming a square try the ﬂ.:ﬂ',nwing

(ask poly make circle)
(ask circle set your angle to 10) ;3 wild ;.pp,ltc like a circle but will really be a a 36-agon
(ask poly make square)

{ask square set your angle to 90)

(ask circle make circle-to-square interpolation to square) ;; make rhe inferpolation’ actor

lask circle-to-square set your amount to 0.0) ;; start off fooking like a circle
(ask ecircle-to-sguare set your (amount speed) to .05)

{ask circle-to-square gradually increment your amount by 1.0)

(ask circle-to-square show) ;; needs fo be visible if we're going to make a movie of it
(ask movie make cts-movie) :; movies are described in a lafer section

(ask cts-movie Tilm the next 20 ticks) ;; semd our 20 ficks recording as you go
(ask cts-movie project) ;; filming is over so project yourself

This transition will be linear. If you wanted the rate of change to increase just enter the following
before running the movie,

{ask circle-to-square set your ((amount speed) speed) to .01)
i Phe amount speed itself has a speed, now (ie the acceleration)
(ask circle-to-square gradually change your (amount speed) to .25)

Treating Objects as Turtles

It is possible to have an object behave as a turtle and run turtle procedures. To do this use

the following message pattern

(ASK Tan-object RUN Xaction)

“Action” can be any turtle command, procedure, or sequence of them beginning with the

Poge - 41

Director Guide Trealing Objects s Turties Kannath Kahn

word “script:". If you want an object named Sam to go forward 100, turn right 45, and then follow
the course of a circle then you could type:

{ask sam pendown) ;; fo see his trail
(ask sam run script: (forward 100) (right 45) (draw-poly 10 10))

where draw-poly is a Lisp TV Turtle program.
Appearance Definition Using Instant Turtle

Another way of creating appearances for objects is by using a mode called “instant turtle”. Tt
Is entered by typing (instant) and is exited by either type “g" or control-g. The idea is to enable
you to “draw” on the screen by having the turtle move to your every key stroke. Most single letters
cause the turtle do something or to define the current image as either an actor, procedure or the
definition of single character. Mumbers are given to it by typing them before the letter command.
If no numbers are given then the numbers last given to that letter are assumed (or | if it is the first
time that letter is used). The mode is self-documenting just type

[instant)
Welcnme to Instant Turtle ;; And it will will welcome you when it is ready
T o« ou type T oand then any letter or an % for help on all commands

and each character will describe itself. MNote especially the “n” command for naming the picture as

an actor,
Non Standard Appearances

The default :ppe.a.raﬁ:t handler of objects assumes that the Lisp program given in the
"When drawing use” message consists of turtle mrnmaindt such as forward, right, left, and back. If
you want a special kind of appearance you need to define an appearance handler that takes at least
two messages “Display” and "Erase”. 17 you want even less help from the system then you can
define your actor to accept "Hide"™ and "Show™ messages but this is not recommended. Suppose you

want an actor that displays text then]-.nu could define it as follows:

Page - 42

Director Guida Non Slandard Appearances Kernelh Kahn

(define text object
(set your text to |No text given|) :: frovide a default rext
(set your font te tvfont) ;; default font (s this one

(set your appearance-variables to {text Tont)):: needed only for movies
{do when receiving

({or display erase}) ;; if the messages is either display or erase
{(penup)

(setturtle (ask :self recall your state)) ;; move the turtle fo state
(Tontprinc (ask :self recall your text) ;; prinf the fext in the Sont
(ask :self recall your font)))) :; prints if blank, otherwise erases

This is the minimum needed to define a text of any font, or position. You might want the

screen to reflect changes in the variables "text” and "fomt™. The “actions-if-changing™ variables

(described in the earlier section on demons for variables) can be used for this as follows

{ask

(ask

(ask
{ask
(ask
(azk

text add (script: (ask screen wipe) :new-value)

35 can't erase old cppearance easily so erase everything and redraw it all
to your list of (text actions-if-changing)) :; if text is changed
text add (script: (ask screen wipe) :new-value)

te your list of (font actions-if-changing))

We can now use the new text deflinition.

text make lTabel)
label show)

label change your text to |Here I am|) :: 5o if becomes the words Aere { am
label forward 200} ;; fo move it forward

The “text” actor in Director is defined as described here with the ability to dl:;pIay the text in

various fonts. The fonts have to be made by "windowize™ which is described in ailibdociwmake

kenl.

If you want you can use a font called trl8 (about 3 times bigger than normal) and it will

automatically be loaded in. Fonts are loaded in iumtluﬂr if the font name has a

"font-autoload-file” property. So if you type

{ask

label change your font to tri#)

the text will be displayed in that font.

Oireclor Guide Tha Scraan Kennath Knbhn

V. The Boreen

The Screen actor provides the interface between the world of actors and the TV Turtle
display area. There is currently only one “screen” though the system could be extended to have

multiple screens. To see them on different physical displays is another quéﬂlnn. Much of what
Screen does you need not bother with, The messages of some use follow, .

(ASK SCREEN SILENT RUNNING) ' -

This makes the Screen “pretend” to do what its told but not to show anything on the TV.
This is useful mostly for making movies, but also if one wants to do many things and then see the
final result. For example, il it takes a t;hile to draw an object you may not want to see it erase and
redraw as you tell it to go forward, grow and turn. You could always hide the object first but if

there are many objects then it is easier to use this. If, while Director is running, you want the

Screen to run silently you can type control a at any time.

{ASK SCREEN NORMAL RUNNING) nr

This tells the Screen to stop running silently and also to wipe as described next. This

message can be sent to Screen by simply typing control .,

{ ASK SCREEN WIPE)

This wipes off anything from the Screen and then redraws any objects that should be
visible. This is useful if a message or something messed up your display area.

{ASE SCREEMN CLEARSCREEM) cs
This tells all the actors to hide, so that the screen becomes blank,

Page - 44

" Director Guide The Scresn Kennelh Kahn

height is a variable whose defawlt value is 200

width is a variable whose default value is 550

The height and width of the screen is controlled by its variables "height™ and “width™. If
you want a square screen 400 big then type

(ask screen set your height to 400)
(ask screen set your width to 400)

visible-objects isa variable whose default value is n11 and is abbreviated as vo
This is a list that Screen keeps of actors it thinks should be visible, If you forget the name

of somegne on the screen then look at this variable,

Director Guide Universs Kannath Kahn

VI. Universe

Universes (instances of Universe) are the actors responsible for knowing who wants ticks
messages. Any actor that has planned anything has told its universe that it has something to do.
(The "plan .." messages handle this and all actors inherit these from Something.) The only thing
that you need ask of a universe is to run when you want all the planned activities to occur. Each
actor is asked for its "universe” when planning and unless told otherwise inherits from Something
one called “default-universe”. Telling a universe to run is not recommended when the display is

involved instead Movie should be asked to "film". (Movies are described in the next section.)

(ASKE Ta-universe RUN FOR Tlength TICES)

Send tick messages to each actor with something planned “length® number of times. So to
run through a scene with Sally and Sue both growing you could type

{ask sally plan next gradually grow 300)
{ask sue plan after 2 ticks gradually grow 200)

(ask sally plan after 2 ticks print memory) ;; fo see what's happening to Sally
{ask sally ask your universe to run for 4 ticks)

i: unless told otherwise Sue and Sally live in the same universe
actors-to-run-next i(s5a varighle whose default value is n11 and is abbreviated a5 atrn

This variable is kept by a universe and should be a list of all actors in that universe with
anything planned.

Page - 4B

Director Guids Mavie Kenneth Kahn

VII. Movie

Movie can also be told to run and its major difference from Universe is that movies manage
to remember any changes to the screen. Movies can then be asked to play back at a speed that is

typically much faster than when first created.

[(ASE Ta-movie FILH THE HEXT ?f1Tm=Tength TICKS) ftn 7 ticks

This is similar to the “run for " message for instances of Universe, however movies
{instances of Movie) also record what's happening to the display. To create a movie nmamed
Fantasia |12 ticks long one need only type

{ask movie make Tantasial
(ask fTantasia film the next 12 ticks)

All objects that are currently on the screen or plan to appear during the next 12 ticks will be in the

movie,

frames-per-second iy a pariable whose defaulf value is 1 and i abbreviated as Tps

Sometimes you may want to see the same movie but with more frames and less change
betw:m: frames. 1f you used “gradually” commands described above then you can control the
number of frames per second. Remember that the speeds of gradually commands are in units per
second. If the display were fast enough setting the number of frames per second to 20 or 30 and
projecting at that rate would make the movement very smooth. To project many frames per second
see the messages described later in this section. If you set Fantasia's l'r:m:rper-iemnd to 4 and
had it run for 48 ticks instead then every fourth frame will be the same as before and the others
will show a smooth transition between the frames. You can think of frames-per-second as the

speed with which the “camera” shoots the action. The default value for frames-per-second is .

ticks-per-frame {5 a parigble whose default value is 1 and is abbreviated as tpf

If you want to film just every Sth tick then set the movie’s “ticks-per-frame” to 5. This is

Page - 47

Oirecior Guida Mowvia Karnmeth Kabn

primarily useful if you want a tick to be a small unit for accuracy and yei don't want to see or

record every tick.

(ASK Ta-movie FILM SECRETLY THE NEXT 71ength TICKS) fstn 7 ticks
This does the same as the previous message in that all changes to Screen are recorded except
here they are not displayed. This is useful if you wa.;nt to save the time of displaying changes on

the screen or to free the terminal to do something else (eg. edit a file) while the movie is being

computed.

There is a wide selection of different messages asking a movie to display itself. They are:
(ASK Ta-movie PROJECT) '
: Show ali the frames from the start not shipping any
(ASK Ta-movie PROJECT FRAHT' *hegin TO Tend SHOWING EVERY Tso=-many) | pfs ¥ to s& 7
i Show from frame number BEGIN to END skipping every SO-MANY Sframes.
(ASK ?a-movie PROJECT FRAMES Thegin TO Tend) piTte?
v assume rhat no frames should be shipped
(ASK ?a-movie PROJECT STARTING AT FRAME Tbegin SHOWING EVERY ?so-many) psat 7 se 7
; show urm!-:h end of the movie from BEGIN showing every 3O-MANY frames
(ASK ?a-movie PROJECT SHOWING EVERY 7so-many) pse 7
: ftaris af the beginning and goes to the end showing every JO-MANY frame
(ASK ?a-movie PROJECT FRAME Tnumber) pt 7

i st shew rhat ﬂn.r'_,f'r::tmr

speed ir a variable whose default value iy 99999
Movies have a speed which indicates how many frames per second should be displayed.

Unfortunately the computer seldom can show more than a small number per second. The speed

Page - 48

" Director Guida Movie Kenneth Kabn

m:-:r be less than one if you want very slow motion. If the machine can not display frames as fast
as indicated {for example if the speed i3 the default of 99999) then it will just show them "as fast as

the it can’™.

new-frame-action {5« variable whose defawlt value is (clearscreen) and is abbrepiated as nfa

Another variable associated with movies is called the “new-frame-action”. This provides
instructions as to how to make the transition between frames. The default is (CLEARSCREEN)
which just clears everything off the screen. The value of this atom is evaluated so if it is NIL then
nothing will happen and you will see all the frames superimposed on the screen. One useful value

is “erase-old” which redraws the frame with the eraserdown. Sometimes this is faster.

(ASK Ta-movie SHART COMPILE %file-name) sC %

This message will create a file of Lisp code that can then be compiled. The resulting movie
projects the same as before but can run faster and be saved. To run the movie, load it into your
Director and call the function "PROJECTED-COMPILED-MOVIE" (abbreviated PCM). If you
call it with a "7 it will print out a description of the arguments it expects and their defaults. So to
save the movie My-first-film as ffilm >, compile it and then run it do the following:

(ask my-Tirst-film smart compile ffilm »)

ii puf the Lisp translation of my-first-film in the file ffilm > on your directory
~z i+ Leave Director

:qeompl FFidm > 55 compile che film if you went if to run a little faster
direct™ ;. after compilarion is finished return to Director

(load “Ffilm) :; load the compiled movie into your Lisp

(pem “7) ;; fo see the defaults

(pem) ;; fo project it using the defaults

I contemplate extending Movie so that while projecting you can have the "projector” zoom,
pan, or other filmic effects. Type "(Ask Movie help)” to find out about this. Also Scripts are

planned which will save the state of all the plans, This way you can save the script, run the

movie, restore the script and then modify it.

Director Guide A Big Exnmpina Kennath Kahn

VIII. A Big Example

Supjprose we want to write a space war in Director. First we will want to define space ships,
suns, and gravity. One way to do this is to associate with each physical object another object
corresponding to its velocity. The velocity actors have their own position which corresponds to the
magnitude and direction of the velocity. On every tick each object’s position is updated by turning
it in the direction of its velocity and going forward the magnitude of its velocity. Also the velocity
itself may be updated in a similar manner by the thrust of the ship or by the gravitational pull of
the suns. This use of a turtle’s position to represent the velocity vector Is similar to the approach
prcsmt-.;d in [Abelson 19751 First we define physical objects that will include the space ships and
the suns. Then we define the gravitational field to apply the forces between the objects to their

velocities.

Papa - 50

" Director Guide A Big Example Kenneth Kahn

i this file is @ test of Director for doing orbital physics
(include [ai:ken;declare 3|) ;; this is needed only if | am compiling the following
(define physical-object object
i make physical-object as a kind of object and send it the Sfellowing messages
(set your mass to 10) :: fhe default mass
(extend behavior when receiving {make 7instance) by doing
is this enables me to extend he normal bekavior of make ?
(ask :s5el1f make ,instance) ;: creare the object as normal
(ask velocity make (velocity-of ,instance)) ;; make a velocity for object
instance) ;; return the newly created instance
(do when receiving (update vour state)
i when | get a message asking me fo update my state
(ask :self change your position to ;; | update my posifion by
i3 by adding to my current position to the position of my wvelocity
(position-sum (ask :self recall your position)
(ask (velocity-of ,:self) recall your position)))

pi 1 ask the gravitational field at my location to change my velocity
(ask gravitational-field

apply gravitational forces at
+(ask :self recall your position) te (velocity-of Li5al1F)))
(do when receiving (yield pull at Tplace)
ii fo determine the gravitational pull at the place (Ge=! in our wnirs)
(quotient (ask :self recall your mass) :: fake my mass
(square (ask :self yield distance to ,place))
i: divide by the square of my disiance ro the place 1o get force per second
:frames-per-second ;; divide by this to get force per frame
ticks-per=frame))) ;; divide to get force per tick

Director Guids A Big Example Keannath Kabn

(define gravitational-field something
i3 | mever move or appear on the sereen 10 no need to be an object
i: make the field and rend it the following messages
(do when receiving (apply gravitational forces at Tplace to Tvelocity)
ii for me fo apply the gravitational forces at a place to a velocity
(ask :self exert pulls of ;; [exert the pulls of the masses not at the place
s (remove-any-at-place (ask :self recall your masses) place)
on ,velocity at ,place)) ;; on the wvelocity
{do when receiving
(exert pulls of (7first-mass ¥rest-of-the-masses) on Tvelocity at Tplace)
i fo exert the gravifational pull at a point of some masses on a velocity
(ask ,velocity move ,{ask ,first-mass yield pull at ,place) in direction
from ,place to ,(ask ,first-mass recall your position))
pi move fowards the mass from the place by the pull (acceleration) at that place
(ask :self exert pulls of ,rest-of-the-masses on ,velocity at ,place))
i and let the rest of the masses exert themselves om the velocity
(do when receiving (exert pulls of () on 7 at 7)
;i when there are no more masses do nothing
nil})

(define velocity object) ;; a velocity is an object o that is can move in velocity space

(define ship physical-object ;; now fo define ships
{do when receiving (thrust Tforward Tamount) ;; When 'm asked fo rhrist forward
(ask (velocity-of ,:salf)
change your heading to ,(ask :5e1f recall yvour heading))
i I oser the heading of my wvelocity to my own heading
(ask (velecity-of ,:s5el1f) ;; and change my velocity by
ii having it go forward the quotient of the thrust and my mass
forward ,(quotient amount (ask :self recall your mass))))
(when drawing use draw-rocket of size))
i3 and [am drawn by the Draw-rocker procedure applied to my size

{define sunm physical-object ;; o sum is alto ¢ physical-obfect
(set your angle to 10) ;; near enough fo a circle (reclly a Fé&-agon)
(set your mass to 100) ;; the default mass of @ sun is 100
(when drawing use draw-poly of size angle})
ii [am drawn using Draw-poly of My size and angle

' Director Guide A Big Exampla Kernmath Katn

(ask object ;; It is reasomable to give this ability to all Objects
do when receiving (move Tamount towards Tposition)
(script:
{let ({original-heading (ask :self recall your heading}))
i save the original Aeading
(ask :self change your heading to ;; change heading fo face towards pumm
»(ask :sel1f yield heading to ,position))
(ask :self forward ,amount) ;; go forward the amount
(ask :self set your heading to ,original-heading)))) :: restore old heading

(ask object ;; o move parallel to a line between the positions given
do when receiving
(move Tamount in direction from Thegin-position to Tend-position)

(script:
(let ((original-heading (ask :self recall your heading)))
(ask :self

set your heading to ,(heading-from begin-pesition end-position))
{ask :self forward ,amount)
(ask :self set your heading to ,original-heading))))

MNow to test out this program we make a short movie. One ship will pass by a double star
system. We define this as follows

(define enterprise ship :: make a ship called the enterprise
(set your state to (-1000 -400 90)) ;; pur me af an interesting starting state
(show) ;; shew myself
(plan next
repeat (thrust forward Z00) 5 times)) ;; turn on thrusters for the next 5 ticks

(define sunl sumn ;; make sunl
(set your position to (0 200)) ;; start off 200 units above the screem center
(ask (velocity-of sunl) to forward 25) ;; start me off with a welocity of 25 upwards
(set your size to 100) ;; pgive if @ size
(set your mass to 7000000)) ;; and o big mass

(define sunZ sun ;;: this one is a little smaller and less massivg
(ask (velocity-of sun2) to back 75)
(set your position to (600 200 0)) ;; start off way to the right of Sun]
{set your size to G60)
(set your mass to 3000000)) -

Page - 53

Diurector Guide A Big Example Kenneth Kahn

(ask-epach “(sunl sun? enterprise) plan next repeat (update vour state) forever)
poon eeery tick send to each of the objects the message (update your stafe)

(ask sunl set your after-show-action to (shade “lighttexture))
iy g0 that i i shaded

(ask sunl set your erasability to nil)
{ask sunl show)

(ask sun? sel your after-show-action to (shade “texture))
ii o darvker fexture for Jun2

{ask sun? seot wyour erasability to nil)
{ask sunZ show)

lask gravitational-Nield et your masses to (sunl sun2 enterprisell; tell the field abour the ob jects
s Everyrhing (5 requdy fo go, 5o fo test it we make a 10 tick movie. It can be seen in Figure l.

(define test-movie-1 movie
(Film Lthe next 10 ticks);: finally make rhe movie
(project)) ;i show the movie af default speed and order

I'll leave it as an exercise for you to finish the space war program. Unfortunately, it will be
the slowest space war ever created. To speed things up very much! we could compile our code as

described in the next section

1. Bui prabably «todl pol enough ta rum on Lthe &1 machin

Paga - 54

Director Guide

IX. Figure -1

Figure - 1 A Test of the Space War Program

A Test of the Space War Program

QO .
L
&
B
6D
®
-
®
&
=
o ©
%]
i 2

Kernalh Kabn

Ew

Director Guida Compiling Kennath Kahn

K. Compiling

There are some very fancy macros for compiling Director code into efficient Lisp so that it
will run at a more reasonable speed. There are three major optimizations, one is to compile the
patterns given in "do when receiving” messages and database inquiries. For example, the pattern
(BELIEVED: (COLOR-OF ?THING TCOLOR))

becomes something like the following

i bhis is the test part of the paitern
(LAMBDA (OBJECT)
{AND OBJECT ;; it is noi NIL
(EQ (CAR OBJECT) “BELIEVED:) ;; the Jirst element s “believed:
(CADR OBJECT) :: there ir o secomd element
(EQ {CAADR OBJECT) “COLOR-OF) ;; the first element of the second Is 'color-of
(CDADR OBJECT) ;; there is @ second element of the second element
(CODADR OBJECT) ;:; rhere ir a third element of the second element
(NULL (CDR {CDDADR OBJECT))) ;; and there it no Sfourth element
(NULL (CDDR OBJECT)))) ;; and no rhird element af all
+ this is the part that finds the variables in the pattern {actually more complicated but..)
(LAMEDA (OBJECT) (LIST (CAR (CDDADR OBJECT)) (CADADR OBJECT)))
i: refurn a list of the color and the thing

This compilation of patterns happens throughout the system. The clause patterns and the
data base inquiries are compiled. The clause patterns are also compiled into nested CONDs so
that redundant tests are avoided. If you are curious about how this works create a simple actor
and then ask it to save (see description of "save %file-name” earlier) and it will return the Lisp
optimized version of itself. (Note that this does not make the actor become that more efficient. To
do that you should type {eval {ask sue save))) | _

A more important optimization is the compilation of message transmissions, The typical
message will be tried by several different actors as the message gets passed along to each actor's
parent. Also the predefined actors such as Something and Object have very many patterns to try

out on the message. To skip all this computation a macro for transmission (Ask) figures out what

action will be taken by the transmission and substitutes that action for the transmission. For

Pape - 56

' Director Guide Comgpiling Kennath Kahn

example, the transmission

(ask my-Tirst-film project frames 3 to &)

is replaced by

(LET ((:SELF “MY-FIRST-FILM)
{ :MESSAGE “(PROJECT FRAMES 3 TO 6)))
(1 (PROJECT FRAMES 7BEGIN TO 7END)MOVIE|))

where the Lisp function | (PROJECT FRAMES TBEGIN TO TEND)MOVIE| corresponds to the action part
of Movie's clause whose pattern is "(project frames fhegin to fend)”. This optimization has its price
in terms of flexibility. If My-first-film is told a new way to project this will have no affect upon
the compiled code which contained the above transmission. In practice this is not too serious since
changes to the way that Movie itself handles this kind of “project frames™ message will affect
compiled code. This scheme works fine even when the message and target contain commas
indicating variables.

What has been described so far, is the default action for compilation when no other advice is
available. It is possible to give advice as to how any particular message should be compiled.
(ASK Tanyone COMPILE MESSAGE Tmessage-form AS IN (ASK Ttarget-form ¥message)))

The compiler uses this message to compile all transmissions. The target-form and the
message-form are from the actual transmission. The “mestage” is an example of the
“message-form”. This message is sent to the target when incrementally compiling (as described
below). Otherwise the actor in which the transmission is embedded (or Something if there is
none) is sent this message. The following is a simple example of this ability to give the compiler
advice:

(ask (macros-of something) do when raceiving

i+ a parallel parent-offspring structure is kept beginning with the atom macros-of
(compile message (recall your parent) as in (ask Ttarget-form %))
“(parent-of (actor-of ,target-form)))

Using this advice the transmission

Oirector Gueda Compiling Kernnath Kaehn

(ask ,some-actor recall your parent)

will compile o

(PARENT-0OF (ACTOR-OF SO0ME-ACTOR))

There are a few macros for defining "macro” receivers for an ulm.-. Something and Object
use them often so that messages that they receive are compiled efficiently. A corresponding normal
receive is also created so that while running interpretively there is no overhead. For more details
see me. The code produced in this manner is very close to the Lisp one might have written. For
example the transmission .

{ask something ask each of your offspring to print memory)
i &3 compiled into
{HAPCAR
(FUNCTION (LAMBDA (ACTOR)
{FAMCY-PRINT < {MEMORY)
(OR (GET-ACTOR ACTOR) (ACTOR-AUTOLOAD ACTOR NIL))IID)
(RECALL-VARIABLE “SOMETHING “OFFSPRING))

{(ASKE Tanyone COMPILE MESSAGE ¥message)
This provides an easy way to see how a message would be compiled. For example,

(ask sally compile message change your color to blua)

will return

{ CHANGE-VALUE “SALLY “COLOR “BLUE)

There are two ways in which you can use the compiler. One is incrementally and all you
need do is to type (COMPILER-SWITCH T) and it is turned on. From then on all transmissions will
be repllaced by their expanded form and their old form prefaced by the atom “Expansion:™.
(COMPILER-SWITCH NIL) will not only prevent new forms from being made but will clean up old

EXPansions.

To compile your Director code into machine language you need to include the Director

‘Oireclor Guidsa Compiling - Kamnnalh Kahn

declaration file into your file. At the beginning of you file you should have:

{ INCLUDE |AL:KEMN;DECLARE 3|)

Use the COMPLR when trying this. The "c” switch to the compiler has been added and means to
"cleverly” compile the transmissions. If you create any actors without using DEFINE then to get
them compiled you should have the form (COMPILE-ACTORS)" at the end of your file.

Director Guida Odde and Endas Kenmath Kahn

XI. Odds and Ends
Debugging

For the most part debugging Director is like Lisp. The “trace” message described under the
Something section is helpful. There are three kinds of break pmnu: Lisp ones,
“shouldnt-happen” ones which indicate a system bug or a "no-such-actor™ or a “bad-message”
break. These last two are often easy to recover from. The “no-such-actor” break can be returned
from as follows:

{ask sue recall your parent)

;Warning from ASK that SUE who was asked (RECALL YOUR PARENT) 15 not an actor
;BEPT NO-SUCH-ACTOR

(?) i o good way to get some help

{ask something make sue)

(return “retry)

SOMETHING

If I had meant "sally” not "sue” then | could simply have replied (RETURN *SALLY). Similarly the
"bad-message” break point can be returned from. If you fix it so that the message is receivable
then just return ‘retry. If the message was wrong just return the right message. When you get an
error try typing "(?)°, it might be helpful,

Complete Description of Patterns

A pattern can be any list structure. If an atom in the pattern begins with a 7" then
anything can be in the corresponding position in the message. In addition, the Lisp variable
whaose name follows the question mark becomes bound te the corresponding expression in the
message. The character "1 s similar but will match the rest of the corresponding list structure,
and so should be used only at the end of a list (which can be a sub-list of course). An expression
surrounded by curly brackers [} is also treated specially. If it begins with the word "OR" then if

any of the following expressions match the corresponding element in the message then the match

Fage - 60

' Director Guide Complate Description of Patterna Kenneth Kahn

continues. If the word is "AND", thén all the following expressions must match and all the
bindings occur. Any other expression is evaluated and if it returns NIL the match fails. Such
expressions can have an atom beginning with a ¥ in it which becomes bound and then evaluated.
For example, the pattern "{greaterp ?n 33}" will match any number greater than 33 and n will be
bound to that number. An error will result if the corresponding element is not a number, however,
50 to be safe you should write the pattern as "{and {numberp 7} {greaterp ?n 23}}".

Global Variables

There are very few global variables, and even fewer worth knowing about. A few useful

ones follow,

:SELF ;: rhis ir bound fo the actor whe originally received the message

i even if the message has been passed alomg to an ancestor to handle
tMESSAGE ;; rhe message in guestion

: TVRTLE-FILE-NANE
Pi Phis is set fo the mormal (v turtle and should be reset if you want color for example

:PRINT-LOAD-MESSAGES ;; if NIL then no message is typed when a file is loaded

:MESSAGE-NOT-UNDERSTOOD
i s value is a function of the target and message and it should
i+ handles messages that are not undersrood. The default palue puts you in a break-point

:ACTOR-NOT-DEF INED
i a function of the target and message called when rarger is not defined

Vi This a very handy variable, wsually bound to some help 5o
i ATy fyping it whenever you meed some help or (?) te print ? more nicely

Page - 61

Director Guide Useful Lisp Functions and Macros Kennath Kabhn

Useful Lisp Funetions and Macros

T'o make life a little easier there is the "define” macro for defining new actors. For example
the definition of Poly is:

(DEFINE POLY OBJECT i
{SET YOUR ANGLE TO 60) !

(WHEN DRAWING USE DRAW-POLY OF (SIZE ANGLE)))

You type the name, its parent and then a list of messages to be sent to this newly created nr;:ur.l
There is a variant of defline called "Define-or-add-to-actor” that differs only in that if the actor
already exists it adds to it, while "Define” will clobber the old one,

The Lisp predicate "Exists?" of an actor returns NIL if the actor does not exist. “Actor-of”
returns the internal representation of an actor if you are curious. There are also slight variants of
the “ask” macro. They differ primarily in either how errors are handled or code is compiled.
They are

ASK-IF-EXISTS i just like ask except veturns NIL if target does nat exist
ASK=IF-UNDERSTOOD :; ask bur returns NIL if message not understood

ASK-IF-CAN ;; return NIL if either' actor not defined or message mot understood
UNCOMPILED-ASK ; mormal ash but is nof to be compiled

ASK=ALL ;; ask all actors whote name mafcher the target

i eg (ask-all (compiler-for 1) print memery) to get all the compilers to print
DO-AS-TF-YOU-WERE ;: has two targets, the first s the one to be used for compilation
i3 for example, (doe-as-if-you-were object body grow 100)

You can define your own abbreviations by using "define-abbreviation™ which itself is
abbreviated "da”. If you are often asking Sally lots of things then to abbreviate “ask sally” just
enter

(&da sal ask s5ally) ;; sal showld be an abbrepiation for ask sally
(&sal &pm) ;; Test & owr, this is same as typing (ask sally print memory)

Paga - B2

Director Guida Discussion of Why Direclor is the Way il ia " Kernrath Kabn

Discussion of Why Director is the Way it is

Director is the way it is mostly because T am a fan of object-oriented programming. For
graphics its seems the most natural way of thinking about what happens on a display screen. For
knowledge-based programming the association of a database with each actor and the inheritance
mechanism are very handy. More importantly, the ability to arbitrarily mix data and procedure
(and different forms of each) is a Ereal convenience for representing complex knowledge. For
knowledge-based programming the spectrum of flexibility is nicely spanned by the variables, the
database, the variable demons, the database demons, and the message receiving - all potentially
usable by the same actor. These feature lead naturally to very modular programs with all the
advantages that that brings.

The graphics in Director is very strongly influenced by turtles. Director's objects are
generalized turtles that can change appearance and remember things in addition to the usual turtle
actions. The pseudo-parallelism based upon ticks is in Director to ease the task of coord inating the
actions of several different objects “at once™. For more about ticks see [Kahn 1978) and among
many [Papert 1971a), [Papert 1971b], [Goldstein 1975], [Goldstein 1976], and [Kahn 1977b) are good
sources for learning more about turtles.

One design decision that may strike many as peculiar is the verbose style of programming in
Director. The advantages are many. Programs need few comments since the code is itself close to
English. Debugging is aided by the bong, typically self-explanatory, messages that are traced or
seen at error break points. While someone unfamiliar with Director could not write any code,
compared to most languages there is a good chance such a person could read the code. The
obvious objection to such long messages that it necessitates too much typing is Just plain false,
The abbreviation feature in Director cuts down drastically the amount of typing needed while
retaining all the advantages since the abbreviation is expanded at read time. Al of the

Direclor Guida Oiscussgion of Why Director is the Way it is Kennalh Kahn

abbreviations are also available for use by Emacs’s abbreviation p11:kage.l This has the added
features of expanding as soon as a space or parenthesis is typed and that it requires no character
prefix. (This is why all the abbreviations that would be an English word have an "x” at the end.)
Another common objection to such English-looking syntax for programs is that users get confused
and expect paraphrases that are valid in English to be valid in the computer language. This does
not really apply to Director since the user learns about pattern matching very early on and that is
the only mechanism for “parsing”,

Diirector was built upon Maclisp so that | could fall back upon Lisp for memory
management, a garbage collector, debuggers, readers, printers, an evaluator, and a compiler (to
machine code). The running of Lisp at low levels of Director made it feasible to put in many
costly features in “Ask”, the basic transmission mechanism of Director, Tht_uverhﬂd of a
transmission is reasonable for events of the size typically dealt with by Director. A message-passing
definition ef factorial in Director, however, would be exceedingly slow (though it would compile
pretty well). This inefficiency need not be the case with message-passing languages --- witness
Smalltalk and Act 1. Ideally Director should have been built upon such a base to make things

more consistent === everything could then be an actor,
Discussion of Why One Might Want to Use Director

It's both fun and good for writing real programs (Le. long complex movies or large Al

programs).

1. Emacs is an excellent toxt editor developed at the MIT Artificial Intelligence Lab by Richard Stallman
and others. The abhreviation package in Emacs was develaped by Eugene O Cicearelli.

" Director Guide Gelting Started " Kennelh Kehn

Getting Btarted

" Couldn’t be easier (well almost). You type:!
sDIRECT

After you see the message "Welcome to Director” you can type, for example,
(DEFINE STAR POLY (SET YOUR ANGLE TO 144) (SHOMW))

and you should see a star appear on your TV. Type "(7)" for a little bit of help. If want to use
only part of Director or are running it in color (in which case you should type (run-color) before
doing anything on the screen) then type

:LISP KEN;DIRECT

and as you need things the appropriate files will be loaded. Have fun and report any problems to
KEN=2AL

Acknowledgem
I wish to thank Carl Hewitt and Henry Lieberman for the help and support they have

provided. Hal Abelson and Bill Kornfeld provided many important suggestions as to the form
and content of this guide. Jerry Barber, as Director’s first user, provided me with suggestions,
discovered bugs and noticed missing features. Ira Goldstein provided many ideas when Director
was first being developed. | wish T could acknowledge SmaliTalk as a direct source of ideas, but
unfortunately T was ignorant of its details and rediscovered many of their ideas on my own. The
Lehmin-g Research Group at Xerox Parc pioneered in the development of object-oriented
programming and graphics for which I am very indebted.

1. Daon’t do this il you are not on a TV or are planning to run Director in colar.

Page - BS

Diirector Guide P eferences

XII. References

Bibliography

1

[Abelson 1975]

Abelson, H., DiSessa A, Rudolph L.

"Velocity Space and the Geometry of Planetary Orbits,”
American Journal of Physics, July 1975

[Goldberg 1974]

Goldberg, A.

"Smalltalk and Kids - Commentaries”

Learning Research Group, Xerox Palo Alto Research Center, 1974 Drait

[Goldberg 1976]

Goldberg, A, Kay A editors

“Smalhalk-T2 Instruction Manual®

The Learning Research Group, Xerox Palo Alto Research Center, March 1976

[Goldstein 1975]

Coldstein 1., Lieberman H., Bochner H., Miller M
"LLOGO: An Implementation of LDGG in LIE]’I
MIT-AI Memo 307, March 4, 1975

[Goldstein 1976a]

Godlstein, 1., Abelson H., Bamberger |..
"LOGO Progress Report 1973-1975"
MIT-AT Memo 356, March 1976

[Halas 1974]
ed, Halas, |.

Computer Animation
Hastings House, Mew York, 1974

[Hewitt 1975]

Hewitt C., Smith B.

“"Towards a Programming Apprentice”

IEEE Transactions on Software Engineering SE-I, March 1975

Page - BB

Kenneth Kahn

" Direclor Guide Referamces Kennath Kahn

[Kahn 1976]

Kahn, K.

“An Actor-Based Computer Animation Language”, Proceedings of the SIGGRAPH/ACM
Workshop on User-Oriented Design of Interactive Graphics Systems, October 14-15, 1976,
ed. Treu, 5, pp. 37-43

Revision of:

Kahn, K.

“An Actor-Based Computer Animation Language”

LOGO Working Paper 48, Al Working Paper 120, MIT, February 1976

[Kahn 1977a)

Kahn. K. "Three Interactions between Al and Education®

Machine Intelligence 8 Machine Representations of Knowledge,

eds. Elcock E. and Michie, D, Ellis Horwood Ltd. and John Wylie & Sons, 1977

[Kahn 1977b]

Kahn, K., Lieberman H.

“Computer Animation: Snow White's Dream Machine”

Technology Review, Volume 80, Number I, October/November 1977, pp. 34-46

[Kahn 1978]

Kahn, K. Hewitt C.

"Dynamic Graphics using Quasi Parallelism”
MIT Al Memo 480, June 1978

[Kay 1977)

Kay, A, Goldberg A

“Personal Dynamic Media®

Computer, IEEE, March 1977, v. 10, n. 3, pp 2I-41

[Moon 1974]

Moon, D.

“"MacLisp Reference Manual™
Project Mac MIT, April 1974

[Negroponte 1977]

Megroponte, M. .

“The Return of the Sunday Painter or The Computer in the Visual Arts”™
Future Impact of Computers and Information Processing

Dertouzos, M. and Moses J. ed.

in press 1978

Page - 67

Oirector Cuida Heferances

[(Mewman 1973])
Mewman W,

Principles of Interactive Computer Graphics
MeGraw-Hill, Mew York, 1973

[Papert 1971a)

Papert 5.

“Teaching Children Thinking”
MIT-Al Memo 247, Ocrober 1971

[Papert 1971b]

Papert 5.

“Teaching Children To Be Mathematicians vs. Teaching About Mathematics"
MIT-Al Memo 249

[Reynolds 1978]

Feynolds C

“Computer Animation in the World of Actors and Scripts”
Masters Thesis, MIT Department of Archecture, May 1978

[Smith 1975]

Smith B. and Hewitt C.

“A Plasma Primer"

MIT-Al Working Paper 92, October 1975

[Tilson 1975]

Tilson, M.

“Editing Computer Animated Film"

University of Toronto, Technical Report CSRG-66, January 1976

Pege - 68

Kennath Kohn

" Director Guide Index of Patterns Kenneth Kahn

XIII. Index of Patterns

.. 8
(MAKE INTERNED OFFSPRING) ...o....ooooiiiiiioisinsioeeoo mio 8
(HAKE UNINTERNED OFFSPRING) ...o.viieiiieicanrmiiisieiss o e - muo B
{ IF NEW MAKE name) ...l R R e R e b s e e e s g e e nn inm 7 9
(MAKE COPY 75iD19n0) .o e me 7 9
(MAKE SYNONYN 0aM€)ooocimrmmrmnisses e oo S 7 ®
(00 WHEN RECETVING Tpattern Xaction)oooceoivroeimemiimsssisoooosoeesoo dwr T % 10
(EXTEND BEHAVIOR WHEN RECEIVING 7pattern BY DOING Xsome-action) ebwr 7 bd 10
{(PRINT ¥option) B KA F 4 n w04 8 0e ne e e Bt P e ps OR pm OR pv OR pdb 1l
(SAVE Xfile-name) L L LT LT 12
CHELP XpaBLEIM] et 12
(RECALL CLAUSE FOR XSampTe-MeSSAMR)ooooiiiiineiiieeeeeee oo sesse o ref 7 2
(REHOVE CLAUSE FOR XSample-mesSSBE)oooooeeiiiiiinmrieiiee e 12
(TRACE 7pattern Xaction) ...t iresees oo 13
CUNTRACE PRATLEFN) o seste s ers s s sttt e e 13
{{or CHANGE SET} YOUR Tvariable TO Tnew-value) Sy Tto TORcy ? to 7 14
(RECALL YOUR Pvar iaBTR) ..o oo ry 7 14
(RECALL EACH OF YOUR 7variable-pattern)cccoooeeiieiemrssississismsssnnnsens, reay T 15
(INCREMENT YOUR Tvariable BY Tamount}ccocoooovveeeeeeoiseoossoosessnn iy Thy T 16
(ADD Pnew-item TO YOUR LIST OF ?1ist-name) v . add T tylo ? [

" (ADD 7new-1item TO YOUR LIST OF 711st-name REGARDLESS) add 7 tylo 7 reg 17
(REMOVE Told=-item FROM YOUR LIST OF Tlist=-nama)oovvireinnnnns remove 7 fylo 7 17

Page - 689

Director Guide index of Patiarna Kannath Kabn

(LIST ALL YOUR VARTABLE NAMES) ..ovviiiiiinimrnissisiesesos oo Taywn 17
(FORGET YOUR Twariable-patbern)ccooooiiimnoeieisesosoossoes oo fy 7 7
(HEMORIZE THEEM) oo e e e et mem ¥
(RECALL IF ANY TTEMS MATCH Rattern]ocoooeieeiimeeeeeeeeeoooo riaim ¢
(RECALL AN ITEM MATCHING ?pattern THEN faction) oo, raim 7 then ¥
(COLLECT ITEMS HEMORIZED HATCHING TPattern) ... cimm 7
(FORGET ITEHS MATCHING pattern)oiiiiiiiioiessese oo Fim 7
CPLAN NEXT RBELTON) 1ottt pn %
(PLAN AFTER Tnumber TICKS X8CE100) oot ssssiseoeeee oo pa ¥ ticks X
(PLAN AFTER ?number SECONDS ZMmeSSage)ooooooeoeeeeeosios pa T seconds %

(PLAN AFTER RECEIVING fevent-pattern TO tmessage-form) parx 7 to 7

(PLAN AFTER RECEIVING 7event-pattern TO ALWAYS tmessage-form)parx 7 ta 7

@ Y BREBERRRER 2R NN R B 3

(REPEAT Tmessage Taumber TIMES)ooooiiiiieeeee s esses s oo
(REPEAT Tmessage Tnumber TIMES EVERY 7so-many TICKS) repeat 7 7 te 7 ticks
(REPEAT ?message FOREVER) ...
T K) i et e s et st sam s e rtsreem e e e e et s e etttk e s
(ASK YOUR ?variable TO ¥message)coeeens R ay T to X
{ASK EACH OF YOUR ?variable TO Ymessage) Frnrnsrmssnas i ssmrenrensennnns asoy T to %
(ASE Tanother TO ¥message)ocoooocoverennn... lr .. p—
(DO THE FOLLOWING: XMESSAGES) ..ooiviiiiniiiniiisiieeeeeee s dif X
(KEEP DOING UNTIL Tpredicate XmESSAOE)occoceiiieieireireresresssessssssnnns kdu 7 X

Patterns that Object Handles

{WHEN DRAWING USE 7draw-procedure OF BAraw=-args]oovveiieiinneen, SITPPPR wdu T of X a0
O) et e et et 3z
{HIDE) 32
({and Pcommand {or FD FORWARD RT RIGHT LT LEFT BK BACK}} tamount)) a2

- Paega - 70

Oirector Guida Index of Patterns Kearnnalh Kabn

(BRADUALLY ?command amount]ocoveeeoveeeronsconmssisesonsosossooe o grad 7 7 n
(RIGHT-REVOLVE TAOOreS) ..o e rr 7 33
(LEFT-REVOLVE Tdegrees) ... cese e e 7 31
(GRADUALLY RIGHT-REVOLVE 7degrees) R B R R B e e s B o grr ? n
(GRADUALLY LEFT-REVOLVE 78eGrees)ocoooooivesievrsrosesesossensosoeoosoeoo gir 7 I
[,':'.ETJ".‘I'_ TNeW=X TIBW=X) oo e e 34
CSETX PREw=X] it e e oo 34
USETY TRew-¥] et 34
(SETTURTLE { 7new-x Trew=y Tnew-heading))oocoooocvieeieeeoossiisss sett (7 7 1",I_ 34
(SETHEADING Pnew-heading)cooccoiomnmnmemieiinsiasoes e oo 34
(DELXY PAelta-x PARTRA-Y) oot oo 4
(DELX PARTLA=X) oot st e 34
(DELY PARTLA-Y] it et 34
{CHANGE YOUR STATE TO Tnew=state) ..o..ooooccoeeieioeeeeeonieeiesesos cyst T 4
(CHANGE YOUR POSITION TO TReW=-pOSIEION] i cypt T 34
(CHANGE YOUR HEADING TO Pheadimg) ...ooooovorvvrmerioesisosssoesossseees oo cyht 7 34
{CHANGE YOUR XCOR TO TREW-XCOM) .oovviirieiiiieinieeeee e cy=t 7 34
(CHANGE YOUR YCOR TO PREW-YEOF) ..ooiiimiiiiueiesoieeseeee oo seoes e cyyt 7 a5
(RECALL YOUR STATE) ..ooriniiiiiiiiiiiieiceain it ae e e s e e s e e rys 35
(RECALL YOUR POSITION] .ottt se e s se st s e ryp 15
(RECALL YOUR HEADING)ocooiiiiiiiinonieeie i ryh 35
(RECALL YOUR XCOR) B 8 8 A A RS S S e e S S e e s mm e e e Fyx 35
(RECALL YOUR YCOR) ettt e ee e ryy 35
(GRADUALLY DELX PAeTEa=st) ...oooiiiiiiiiiciee e eesses s e oo gdelx T a5
(GRADUALLY DELY PARTEA-Y) ooovinimiiiiies it pdaly 7 a5
(GRADUALLY DELXY ?delta-x PdeTa=¥) .oooooeinornmoeiieiiioe gdelxy 7 a5
(GRADUALLY SETTURTLE TRew=-SEabe) ...ooooooiiiiiriieeesssissesosss oo gsett 7 36

Oirector Guide Index of Patlerns ' Kanneth Kahn

(GRADUALLY SETHEADING Tnew-heading) ...o.ooooveiemunereeseosoee oo gsh 7
(GRADUALLY SETX TREW-X) .ovovvovovoveoorsoess oo eeeeses oo setx 7
(GRADUALLY SETY TREW-F) s rsrsm s e ses s ses s s st s essnsons gsety T
(GRADUALLY SETXY Tnew-X Thew=¥] ..o iiiiierreerresieees oo s oo gsatxy 7
CBROW TAMOUNT Y oo e e e e e e e e et e e o
(SHRINE TAMOUNT] st e e e e e e e e
(GRADUALLY GROW Pamount) ' .. gg 7
CGRADUALLY SHRINK TamOURE] ..ot iee e seeesee s e gs 7
(GRADUALLY CHANGE YOUR 7variable TO Tnew-value) gcy 7 to 7
(GRADUALLY INCREMENT YOUR ?variable BY 7addition)coveerveniinnnnss giv by T
(CHANGE YOUR COLORS TO ?colors IN Tnumber TICKS)ococoveronins cyct 7 in 7 ticks
(PREPARE TO HIX COLORS WITH 70EREr-c0Tors) ..ooooeceooeoveressenesensinnn ptmew 7
(MAKE 7name INTERPOLATION TO Tanother-obJect)oocoooorsommmmsoeeoes oo
(MAKE INTERPOLATION TO 7another-obJect]ovoiiiieieieeseiiss s s sinesieeonns mitx ¥
T s T
Patterns that Screen Handles
CSTLENT RUNNING Y ooooiinniiiiiieiaiiee s s s e e s e e e e e e e e s e e sr
(NORMAL RUNNING) T A B B B B B e e e e ek nr
[0 13 O S e :
(CLEARSCREEN) T T cs
Fatterns that Universe Handles
(RUN FOR 7length TICKS) E RS EAE e e R RSt s praesasiaseaasaans
Fatterns that Movie Handles

(FILH THE NEXT FFiTm=Tength TICKS) ..o iesreieee e s een e ftn ¥ ticks
(FILH SECRETLY THE NEXT 71ength TICKS) ovvoooeoeoooeoovoooo fstn 7 ticks

2 2 49 9 ¥ 8 8 & & & 5 5

+4

=

47

Oirecior Guide Index of Patlerns Kennath Kohn

EPROJECT) ottt et 48
(PROJECT FRAMES ?hegin TO 7end SHOWING EVERY Tso-many) prs 7 to se 7 48
(PROJECT FRAMES 7begin TO Tend) ..o pj Tto 7 18
(PROJECT STARTING AT FRAME 7begin SHOWING EVERY Tso-many) psat T se 7 4B
(PROJECT SHOWING EVERY TSO-MANY)D .ovveroriremiansisisronsesoseseos oo pse 7 48
(PROJECT FRAME PUMBEI] ..ot et pf 7 48
[SMART Il:ll:I'Il"ILE EFATE-NAME] e sc X 19

Director Guide index of Special Variables Kernneth Kahn

XIV. Index of Bpecial Variables
Variable PAtEErn ...t res s ee s et e Abbreviation Page

Variables Treated §pecially by Something

{ Pvariable-name ACTIONS=IF=RECALLING)ooooovvmenrnennn, it e seeetnrenrn e (? airz) I8
(?variable-name ACTIONS-IF=CHANGING]oooomiimmrineessiseee oo (* aic) 19
(?first-element IF-RECALLING=ITEMS) _.ooiiiiiiiiiieiieee e ieeeresssesseeens (Piri) 20
(Trirst-element ACTIONS-IF-MEMORIZING) ...o.oooooviiinineiesiiesresssssiins (? aimx) 22
TEAME it e e et nans LIRS PPP PP SRR 28
1L L 29
L =L T TR offz 29
B B AN OS e e e e e ettt e et ees e sib 29
DESCENOBNLE e e e es e mrrre e e e nrtn o rnetnensns des 20
ERITdTess-desCendaNtS ... e e et cd 29
L BT B oo iirnterinmiens e mie cherr s e o a R4 80 50 55 5t e e 8 8 B £ B8 58 0508 £ m s oo uni 29
L T L R LT ttdn 20
Variables Treated 5 pecially by Ob ject
BFLEr=Show=ACTT0N et e e e e e e et r e asa 18
after-hide-action .. e e aha 38
B ASAb T T by i et et et et et e eras 38
center-offset T e N e AL R RS 858 5 co 29
Varighles Treated 3 pecially by Screen
LT T+ L : 45
widthciiiienis FAAE LA i e e 6 fressssras s s s 45
VISTDTR-0bJREES o i e e e e vo 45

Director Guide . Index of Special Verinblaa Kennath Kahn

Variables Treated 3 pecially by Universe

BOCOTETLOTUNRENL oot oo atrn 46
Variables Treated S pecially by Movie

IMARESTDOF OO0 oottt s fps 47

FHEKEPOT LS bttt tpf 47

BB e 418

MEMTIPARETECEION oottt e nfa 49

Page - 75

