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A major component in the process of design is synthesis, the determination of the
parameters of the parts of a network given desiderata for the behavior of the network as a
whole. Traditional automated synthesis techniques are either restricted to small, precisely
defined classes of circuit functions for which exact mathematical methods exist or they
depend upon numerical optimization methods in which it is difficult to determine the basis
for any of the answers generated and their relations to the'design desiderata and
constraints'. We are developing a symbolic computer-aided desigh tool, SYN, which can be
of éssistance‘ to an engineer in the synthesis of a large class of circuits. The symbolic
methods produce solutions which are clear and insightful. The'depe'ndence of each
parameter on the individual desigh desiderata and circuit constraints can be easily traced.

It is an obvious idea to try to determine the compornent values by solving the set
of equations and inequalities which result from matching a symbolic analysis of the circuit
with the given design desiderata. Unfortunately, this is algebraically infeasible in general.
A complete symbolic analysis of even simple circuits containing nonlinear components is
usually difficult?. But even for circuits whose behavior is linear in voltages and currents,
the equations are nonlinear in the component parameter values.

Qur synthesis aid is based on analysis by propagation of constraints®. This
analysis method guides the use of symbolic algebraic methods® in combining constraints
which describe circuit elements and their interconnections to determine the behavior of a
circuit. In this paper we show how propagation analysis can be inverted to detéermine
constraints on the individual parts from the desired behavior of the circuit. The method is

- based on the observation that locally, analysis and synt'hesis are very similar: The problem
of finding the resistance which permits a given current flow at a given potential is
equivalent to the problem of determining the current that flows given a resistance and a
potential.

- Our method is successful for several reasons. It does not try to invert a complete
analysis. The method of propagation of constraints deals with only a small part of the
problem at a time. It is an incremental deductive method which first solves whatever
subproblems can be solved easily. After picking off the easiest parts, the remainder has
been reduced, leaving new easy parts to be picked off next. If there remain unsolved parts
of the problem because there is not enough information to uniquely specify a solution or
because the remaining constraints are too hard to solve, the method can accept advice from
the user which will break the impasse. This advice can be formalized as additional
algebraic constraints which encode “rules of thumb" similar to those used by human
designers. In addition, our method can use information deduced from several different
models of a circuit, each constraining only a portion of its behavior. '
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An Fxamplc of Symbolic Analysis

In order to illustrate the method we present a detailed annotated interaction with
SYN. After this we will give a general discussion of the methods involved in the techniques
illustrated. In the following example, input to the computer is in lower-case, and its
response is in upper-case. '

In this example we will deal with the cascode amplifier of figure 1.

-+

Ce

A

&,

Qs ¢

| o
W WY
o)
-~
B

Figure I. A Cascode Amplifier

We communicate this circuit diagram to the computer by declaring the nodes in
the diagram and specifying the components connected between them.
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(diagram cascode
' (in vce g el bl cl b2 c2) ; These are the nodes.
{({bat (battery vcc g)) ; A battery betueen vcc and g.
(s~gen (signal-generator in g)) ‘
{cc (capacitor in bl} coupling)
(cb (capacitor b2 ¢g) buypass)
(ce (capacitor el g) bypass)
{gl (transistor el bl cl)) ; gl is the input transistor,
(g2 (transistor cl b2 c2)) ' '
{rbl {resistor vee b2))
{rb2 {resistor b2 bl))
(rb3 (resistor bl g}
{rl (resistor vecec c2})

{(re (resistor el g))))
CASCODE

The capacitors C, C, and C, are declared to be coupling or bypass capacitors.
This information will be used in the modelling process. We next ask SYN to construct a
new instance of a cascode. This is necessary since a designer may be working with many
cascodes at once. The result of this operation is a particular cascode called CASCODE-1.

{(cascode)
CASCODE-1

Rather than dealing with the complexities of the circuit as a whole, an engineer
simplifies his problem by constructing models which describe aspects of the behavior of the
circuit being designed. A circuit model is a new circuit related to the circuit being modeled
in that the voltages and currents in the model represent components of the voltages and
currents in the original circuit. ;

' For example, a bipolar junction transistor is a three terminal device with badly
nonlinear behavior. The problem can be simplified by decomposing the behavior of a
transistor into several parts. If a transistor is to be used as an amplifier it will be operated
in the forward active region. In that region, we can approximate the quiescent behavior of
the transistor by a simple circuit model (see Figure 2).
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Figure 2: Transistor Bias Model

Once we know the quiescent behavior of a transistor in a circuit, we proceed to consider
small deviations from that quiescent behavior due to the signals being processed. The
voltages and currents in the hybrid-pi model of a transistor (see Figure 3) approximate the
incremental voltages and currents in the actual transistor.
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Figure 3: Hybrid-pi Incremental Transistor Model

Parameters in one model may depend upon the behavior of the circuit described
by another model. For example, the small signal transconductance of a transistor depends
upon the bias current®. In design, a desired value of circuit gain may constrain the
transconductance. This constraint must eventually be used to constrain the bias current.
We will later discuss how one can specify models for devices and the constraints among
their parameters. :

The models for devices in a circuit can be combined to form a model for the
behavior of the entire circuit. Thus the small signal behavior of a transistor amplifier may
be modelled by a circuit in which all bias sources are set to zero, and in which the
transistors are represented by their hybrid-pi descriptions. The voltages and currents in the
model circuit are then an approximation to the deviations of the voltages and currents from
their bias values in the modelled circuit.

Often it is useful to construct a model of a model which approximates its behavior
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in a limited context. For example, the midband behavior of an amplifier may be
approximated by removing all coupling, bypass, and parasitic capacitances from a small
signal model.

We now ask SYN to construct various models of the cascode amplifier. First we
request an ac model.

(make-model {ac cascode-1)}
CASCODE-2

CASCODE-2 is the resulting model circuit. The schematic diagram is shown in Figure 4.
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Figure 4: The Incremental (ac) Model of CASCODE=1

The circuit will be specified to have a particular midband gain, so we request a midband
model of the incremental model.

{(make-model (midhand ac cascode-1})
CASCODE-3

CASCODE-3 is the midband model that was constructed (see Figure 5). The parasitic
capacitances (C; and Cp,, of each transistor) have been modelled by open circuits and the
bypass and coupling capacitances have been modelled as short circuits.
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Figure 5: The Midband Model of CASCODE-1
We next proceed to define the small signal gain of the amplifier in the midband model.

(constraint cascode-gain (midband ac cascode-1) (gain)
{{vi (voltage in g})
{vo (voitage c2 g}}
{gain (parameter-value gain)))
(+ gain {: vo vi))}
CASCOBE-GAIN

A constraint is specified to have a name, a model to which it applies, a list of new variables
used in the rule, a definition of the variables being related by the rule, and finally an
algebraic expression which is constrained to have value zero.

Now that the gain is defined, we can ask SYN for the value of the gain. Because
the size of the symbolic expressions increases very quickly with the number of symbolic
quantities they contain, we cannot expect SYN to be able to perform a complete symbolic
analysis for a case much more complex than this one. (We will discuss the algebraic
limitations later.) However, here we are in luck.

{uhat-is (parameter-vaiue gain cascode-1))
R-P1_01 GM_01 R-P1_02 GM_Q02 RL

( R-X_Q1 + R-PI_Q1 ) R-PI_Q2 GM_0Z + R-X_Q1 + R-PI_Q1

Some of the specifications of the circuit will be in terms of the bias (dc) model, so
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we request the construction of that model as well.

(make-model f{dc cascode-1))
CASCODE -4

Figure 6: The Bias (dc) Model of CASCODE-1

The resistances of the various resistors appearing in the original circuit appear in
the individual models as well. This is another way in which information is shared among
the models. Constraints imposed on the aspects of the behavior of the circuit represented
by each of these models will combine to constrain the values of the shared parameters. In

fact, constructing the bias model caused SYN to refine its view of the gain of the cascode
amplifier,
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{what-is (parameter-value gain cascode-1))

R-P1_Ql GM_Q2 RL

R-X_01 + R-PI_Q1
The new gain expression is considerably simpler than the previous one, in fact,
neither gm; nor r-pip appears in this new expression. Looking only at the schematic
diagram of the midband model (see Figure 5), one would expect the gain expression to
include these variables. In order to help understand what happened we may examine gm,.

(uhat-is (parameter-value gm gl cascode-1})

R-PI_02 GM_02 + 1

et o sl e B g

The value of gm; was determined from other parameters. This was deduced by

consideration of the dc model. If this value is substituted into the original gain expression,

r-pip cancels out. A more extensive analysis of the dc bias model would have determined
even more about the gain, but SYN is currently concentrating on the signal characteristics
of the system. Interactions of this kind demonstrate the extensive communications between
models that are possible in SYN.

Rules of Thumb for Synthesis

One value of our synthesis system lies in its ability to combine constraints
inherent in the structure of the circuit with constraints imposed by the user on the
behaviors of the models of the circuit to produce constraints on the device parameters. In

the next few expressions we enter several rules of thumb for stable biasing of this circuit.

The first hint is that the current in the bottom resistor of the base bias voltage
divider chain be one tenth of the current in the emitter bias resistor. The rationale behind
this rule (which SYN doesn’t know) is that we want the base bias chain current small so
that the input impedance of the circuit is high, but we want it large enough so that
variations in base currents into the transistors due to variations in transistor beta do not
cause significant variations in the base voltages set up by the bias voltage divider.
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{constraint bias-rule-1 (dc cascode-1} ()
{(ibb (current #1 rb3))
(ie {current #1 re)))
{- ie (x ibb 18)1})
BIAS-RULE—l

Next, we constrain the voltage across the emitter bias resistor to be 5 times the
specified intrinsic voltage drop of the transistor’s base-emitter junction. This rule is to
ensure the bias stability of the circuit by making the voltage at the top of the emitter
resistor (which determines the emitter current of the transistor) big enough to be relatively
independent of variations in intrinsic voltage drop of the transistor’s base-emitter junction.

{constraint emitter-bias (dc cascode-1) ()
({ve (voltage el g))
{vbe (parameter-value vbe ql)))
(- (% 5 vbe) ve))

EMITTER-BIAS

Finally, we specify that the base of the output transistor of the cascode be
suspended halfway between the positive supply rail and the bias voltage for the base of the
input transistor.

(eonstrdint separation (dc cascode-1) ()
({vl (voltage b2 bl})
{(v2 (voltage vece b2)))
(- vl v2)) ‘

- SEPARATION

At this point SYN has computed some of the consequences of these constraints
and will be able to use them later. In a purely analytic context the values of circuit
parameters are unconstrained. Any resistor may have any resistance. But here, the
constraints inherent in the circuit diagram have been combined with the new constraints
bias-rule and emitter-bias to make some circuit parameters depend upon others. Thus, -
for example, the resistance of rb3 is now linked to the resistance of re:

{uhat-is {(parameter-value resistance rb3 cascode-1))
12 RE
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Other new relationships are not quite so simple. For example, the relationship
between various elements of the bias-chain depends upon properties of the transistors which
are currently unspecified:

(uhat-is (parameter-value resistance rbl cascode-1))

( R-PI_Q1 R-PI1_02 GM_QZ + 11 R-P1_Q2 + R-PI_Q1 ) RBZ

. e e o W S Sl it W o i M A i i A et A e i sl

R-P1_Q1 R-PI_Q2 GM_Q2 + 11 R-P1_02 + 11 R-PI_Q1

These new constraints will be useful in determmlng the parameter values when more
information becomes available.

A Specific Design

Now that all the general rules of thumb have been specified, we engage in the
design of the particular circuit. First we enter some of the detailed specifications of the two
transistors we are using. The transistors are identical; with beta = 100, vbe = 6 Volts, and
r-x = 50 Ohms. ‘

{use-parameters {cascode-1)
(188 (beta gl)) (.6 (vbe gl)) (58 (r-x ql))
(188 (beta ¢g2)) (.6 {vbe g2)}) (58 (r-x g2))))
USE-PARAMETERS '

Whenever SYN discovers a constraint among a set of unknowns, it chooses one

-and solves for it in terms of the others. Any subsequent reference to that variable is then

treated as a reference to the expression which was determined to be its value. This
informal elimination procedure is equivalent to Gaussian elimination when applied to linear
equations, though analysis by propagation of constraints takes advantage of the sparseness
of the equations. It produces fewer equations in fewer unknowns than traditional analysis
methods. The informal elimination method is not limited to the solution of linear equations.
It slowly reduces the set of unknowns in terms of which other values are represented.
Indeed, if we now look at SYN’s opinion about rbl we find that the parts of the expression
which depended upon the properties of the transistors have ksimpliﬁed to a numerical value.
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(uhat-is {parameter-value resistance rbl cascode-1))

11211 RB2

We see that rbl is represented in terms of rb2 only. If we were to ask for the value of rb2
SYN would respond with an uninformative RB2. This is not indicative of a lack of
constraints among rb2 and other unknowns; it is just that rb2 is a member of that subset
of the set of unknowns which the other unknowns are described in terms of. There are no
solvable constraints yet available among members of this residual subset.

The gain expression is also somewhat simplified in the light of the new

information.
{uhat-is {parameter-value gain cascode-1))
120680008 RL
10201 AE + G06a00
Next we entef the constraint that the power-supply has 15 volts.
(constraint vee-supply {dc cascode-1} ()
{({vecc (voltage vee gl)))

- (=15 veel)
VCC-SUPPLY '

This constraint on vce allows SYN to determine rb2 in terms of re.

{what-is (parameter-value resistance rb2 cascode-1))

1913 RE

If we ask for the resistance of rbl again, SYN will substitute in this value for rb2.




de Kleer & Sussman 13 ' Synthesis

{what-is (parameter-value resistance rbl cascode-1)})

193819 RE

Now we enter the constraint that we desire that the amplifier have a gain of 100.

{constraint desired-gain (cascode-1) ()

{(g {parameter-value gain}))
{- g 188))
DESIRED-GAIN

We ask whether the system can tell us the value of the collector resistor.
{(What-is (‘parameter—value resistance rl cascode-1))

10281 RE + 5868208

20 e e e s i e e S i S S

All of the resistances are now known in terms of re. In order to determine re,

one more constraint is required. We know that the particular transistors we are using
operate best at 1 ma.

{constraint ic-current (dc cascode-1)} ()
((i {current c g2)))

(- .801 i))
IC-CURRENT

At this point, we see that the emitter resistor is known.

(what-is (parameter-value resistance re cascode-1))
2940.83815

Thus all the other resistances are known.
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{uhat-is {parameter-value resistance rl cascode-1})
2558.5

(uhat-is (parameter-value resistance rb3 cascode-1))
35298.6577

(that-is (parameter-value resistance rb2 cascode-1))
50842,9224

(uhat-is (parameter-value resistance rbl cascode-1))
46679.2236 o

How it Works

SYN is based on propagation of constraints. Abstractly, there are cells each of
which represent an electrically interesting quantity, such as a voltage, current or resistance.
Each cell participates in one or more constraint expressions each of which represents an

electrical circuit law. A constraint expression involves several cells -- thus the voltage across
a-resistor, the current through it, and its resistance are related by a constraint expression
which is an instance of Ohm’s law for that particular resistor (see Figure 7).

(D

Figure 7. A Resistor as a Constraint Diagram

When a model is made of a circuit diagram, a network of cells and constraint
expressions is constructed. For example, consider the simple circuit in Figure 8:
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Figure 8: A Simple Circuit

This circuit may be represented by the constraint diagram of Figure 9. (This is a
simplification, SYN'’s constraint diagram is more complex.)
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Figure 9: A Constraint Diagram for the Circuit of Figure 8

Some of the cells in the constraint diagram for one model may be shared with the
constraint diagrams of other, previously constructed models. For example, the resistance of
a resistor is a cell shared among its ac and its dc models. So far, this network is just a way
of representing the set of algebraic equations describing the circuit’s behavior. Propagation
of constraints is a way of interpreting this network to combine the local constraints into
global ones, thus analyzing it.

Each cell may have a value (in SYN this is more complicated). The value may
come from the user or it may be deduced from other values by constraint expressions.
When a cell is assigned a value, each constraint it participates in is considered, to determine
if enough information is available for it to be possible to use that constraint to deduce a
value for another cell. Discovering a new value may thus determine many other values,
thus “propagating the constraints”. This could be accomplished in a parallel fashon, but in
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our machine, the parallelism is simulated with a queue.

Sometimes, two constraints can produce a value for the same cell. This condition
is called a coincidence. If a coincidence occurs the values destined for the cell the
coincidence occurs at must be the same for the set of constraints to be satisfiable. If the
values are constant there are only two outcomes. If the constants are equal no new
information is deduced, and if the constants differv,_a contradiction has been found. A
contradiction indicates that some faulty assumption has been made in that part of the
design process not covered by this paper®. Sometimes, for symbolic analysis (and for
overcoming simultaneity in the constraints), a value is a symbolic expression. In the case of
a coincidence equating symbolic quantities, there is a third possible outcome. One symbolic
quantity may be eliminated by solving for it in terms of the others, We will discuss the role
of algebra later.

Consider an example: Suppose SYN knew the voltage of the source, V., the
current into the source, I, and the resistance, Ry, in the circuit of Figure 8. Looking at the
constraint diagram in Figure 9, we see that the only constraint which can make a deduction

- is the voltage-source law. Thus cell V is assigned a value equal to the value of cell V.

The constraints attached to cell V are now examined to determine if any other deductions
can be made. Ohm's law for the rightmost resistor cannot make a deduction because
neither R, nor I are known. But Ohm’s law for the other resistor can combine the values
of V and R to produce a value for I|. I; can be now combined with I, (which was known
originally) using KCL (Kirchoff’s current law) to produce a value for I,. This value can
now be used by Ohm's law to produce a value of R, This simple example illustrates the
local similarity of analysis and synthesis. The problem of deducing the resistance is no
different from the problem of deducing a voltage or a current.

The method does not always work so easily. Suppose that in the circuit of Figure
8 SYN was told R, instead of the voltage, V5. No local constraint expression would have
enough information to make any deductions by itself, though the behavior of the network
can be totélly determined from the given information. The problem involves an inherent
simultaneity in the constraints. This can be overcome by introducing a symbolic quantity
and propagating it as if it were known. In this example, SYN could give cell I, the value .
Then it is possible to use KCL to deduce that [, is I;-« and it is also possible to use Ohm's
law to deduce that V is a:R,. These new values can be further propagated. Using Ohm's
law on the other resistor allows us to determine that V is (IR . But SYN already knows
a value for V. Hence there is a coincidence, thus the algebraic equation: (Ig-a):R p=ctR
must be solved. It can be solved: o=(R,/(R;+R,)):ls. The value of V is now known in
terms of given parameters. That value can be propagated by the voltage-source law to give
a value for V ' '
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Examples like the second one illustrate the need for symbolic algebraic
manipulation in a program which performs analysis by propagation of constraints. The
simultaneity is apparent in the constraint diagram (see Figure 9) because there is a loop of
constraints containing only unknown quantities. In the first example, the Ioop was broken
when V was determined by propagation from V, outside of the loop. In the second
example, a symbolic unknown, o, was used to break the loop. The unknown could have
been introduced anywhere in the loop, and the coincidence could have happened anywhere
in the loop. The particular place is determined by the pseudo-parallelism of the queué. In
essence, propagation is a means of constructing a small, dense set of equations from a large
but sparse set. Propagation is applicable to nonlinear constraints as well as linear ones
(assuming that the algebraic manipulator which receives the equations can handle them).
Unfortunately these examples are too small to see this phenomenon.

Device Models

In this section we describe how devices are defined and modelied in SYN. We

will see how parameters are specified and how they are shared among alternate models of

the device. We will see how models may contain various hints on how they are to be used.
The first information that must be specified about a new device type is its set of
terminals. These terminals are referred to by name inside the models of the device. They
are also referred to by position when the device is wired into a larger circuit (as in the
diagram construct used to make the cascode amplifier).
Thus we describe a transistor as a three terminal device with terminals named e,
b, and ¢ for emitter, base, and collector:

{device transistor (e b c))

We now define several models of the transistor. For example, the bias
characteristics of the transistor can be modelled in its active region by assuming that the
base-emitter voltage of the transistor is a device parameter, and by assuming the collector
current is a finite multiple, beta, of the base current. The bias model is described as
follows. The model has a name, beta-fini te, a list of applicable viewpoints, (dc), a list of
parameters which may be shared with other models, (Vbe Beta Ic Polarity), and a
body describing the constraints. In this model there are three constraints specified as
equations. In addition, there are two hints we supply for the use of the variables. Some
vanables for example Vbe, have been declared as opaque. This means that these variables

s
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should not be solved for unless forced to. This suggestion helps guide the choice of
symbolic quantities which appear in the symbolic expressions. The current in the collector
terminal of the transistor is declared to be key. This is a good place to put an unknown if
it is necessary to break simultaneity.

{model transistor heta-finite (dc) (Vbe Beta Ic Polarity)
{equation active ((v (voltage b e)))
{- v (x Polarity Vbe)))
(equation beta-finite ({Ib (current b))} (Ic (current c)))
{- Ic (x Beta Ib))) '
(equation Ic-identify ((I {current ¢}))
(- e 1))
(opaque Vbe Beta Polarity)
{key (current c}})

The incremental model for a transistor illustrates an additional means of
specifying a model. In this case we have a circuit model. The transistor is described as
containing a wiring diagram similar to the ones produced by the diagram construct. The
hybrid-pi model has one internal node and five parts connected among this node and the
transistor terminals. Parameters of the internal devices, such as the capacitance of C,; are
identified with parameters of the transistor model. In addition, there are several equations

also specified. The third equation, gmr-pi=Beta, relates parameters from this incremental
model to beta, a parameter from the bias model.
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{mode! transistor hybrid-pi (ac)
{c-mu c-pi r-pi r-x gm Ic Beta Ft Polarity)
{uire (n)
{{r-r-pi (resistor ne) (resistance r-pi))
{c-c-pi (capacitor n e) parasitic (capacitance c-pi))
(r-r-x (resistor b n) (resistance r-x))
{c-c-mu (capacitor n c) parasitic (capacitance c-mu))
{s-gm (voltage-controlled-current-source n e ¢ e) {gm gm}))
(equation gm-lc () N ' ' /
(- gm (% lc gq:kxT Polarity)})
{equation c-pi-cal ()
(- c-pi (- (: gm (% tuo*pi'Ft)) c-mu)))
{equation beta-gm-rpi ()
(- (x gm r-pi) Beta))
{opague c-mu c-pi r-pi r-x gm Beta Ft Polarity)
{key (voltage n e)))}) '

Frequency Domain Behavior

In the cascode synthesis we considered the midband model in order to avoid
dealing with the capacitors. In the midband model, the coupling capacitors are short-
circuited and the parasitic capacitors are open-circuited. SYN is also able to do s-plane
analysis to determine the transfer functions of simple circuits. The difficulty is that the size
of the symbolic expressions grows quickly with the size of the circuit. Even when it can fit
in the computer, a three page expression is not very illuminating.

After finishing the midband and dc synthesis, all parameter values except for the
coupling and bypass capacitances are numerically determined. (The parasitic capacitances
in the transistors are determined by the dc bias conditions.) A complete ac analysis at this
point would be somewhat more managable because the numerical constants would combine
and simplify. Unfortunately, the expressions are still too complicated to deal with easily.
The incremental model of the cascode amplifier has seven poles! So the transfer function
has a seventh degree polynomial in its denominator. This is awful even if the coefficients
were entirely numerical. One source of the complexity is that unnecessarily detailed models
are used in the analysis. For example, r, is often irrelevant; its presence considerably
complicates the resulting expressions. If r, were zero, at least one of those seven poles would
go away. We currently have no idea for how to automate the choice of the simplest model
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appropriate for solving a problem.

Even when we can obtain the factored transfer function, we are constrained to
specify the desired frequency response in terms of the poles and zeros of the circuit. But
given the specification in terms of poles and zeros, we have no reason to believe that the
algebraic solution for the capacitance values in the coefficient equations are tractable.

Specification in terms of poles and zeros is not very convenient for simple
amplifiers.. Designers usually specify the frequency reponse of an amplifier in terms of the
dominant characteristics such as the 3 db points. This type of specification leaves some
degrees of freedom unspecified, to be further constrained by rules of thumb. For example,
the designer usually tries to minimize the total capacitance. One common rule of thumb is
to first determine the value required for each coupling and bypass capacitor to achieve the
required low frequency 3 db point (assuming all the other low frequency capacitors were
infinite). The largest capacitor is then used at a slightly higher value. All the other
capacitors are given ten times the value computed. ' ' '

Algebraic Manipuolation

SYN’s algebraic manipulator is an adaptation of the rational canonical simplifier
of MACSYMA. It reduces expressions built from a limited class of operators to a canonical
form. The class of operétors is addition, subtraction, multiplication, and division of
symbolic quantities. It does not include transcendental functions. Although the complete
description of the behavior of a diode or a transistor involves exponential expressions, this
limitation is not serious because SYN always deals with models of the behavior of a device
which avoid these exponential expressions. Rational canonical form is complete in its
domain in that any two expressions that are algebraically equal have the same canonical
form. In the canonical form of an expression, no symbolic quantity is mentioned which does
not have a material effect on the value of that expression.

A rational expression is represented as a ratio of two relatively prime multivariate
polynomials. Each polynomial is represented by a univariate polynomial in a selected
variable with coefficients which are polynomials in the other variables. Each variable has
unique global priority. No variable in a coefficient of a polynomial is of higher priority
than the main variable of that polynomial. This guarantees a canonical form for
polynomials. The fact that the polynofnia?s of a rational expression are relatively prime
guarantees a canonical form for rational expressions. For example, if the variables are
ordered: C1 > C2 > C3 > Rl > R2 > R3, the following expression is in rational canonical
form:
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Cl R1 R2Z R3 + C2 R1 RZR3 + C3 R1 R2 R3

e o e

Rl (R2 + R3) + RZ R3

Although the expressions that are generated by SYN are nonlinear in device
parameters, the algebraic manipulator is almost never forced to eliminate a variable which
occurs in higher than first degree. In fact, a theorem due to Lin” ensures that if the only
parameter variables in a linear, time-invariant network are ratios of voltages and currents
(they may be impedances, admittances, voltage transfer ratios, etc), then any network
function may be expressed as the ratio of two polynomials of degree one in each variable
parameter. ‘

As Lin points out, this theorem is invalid of such parameters as a gyration
resistance or a transformer turns ratio. More seriously, Lin’s theorem is invalid if
constraints on a parameter come from two circuits which share parameters (e.g. the dc and
ac models of an amplifier), or from two gedanken experiments on the same circuit.
Consider for example, the problem of determining the resistances in an L-network for
matching impedances. Suppose we want the following L-network to match 75 Ohms on the
~left and 50 Ohms on the right: ‘ ‘ o ‘ -

Figure 10: an L-network
We get con1s§r‘aints on the resistances from each of two gedanken experiments as follows:
(Ry +75) | R = B0
(R 150) + Ry =75

These equations simplify to:
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R2 =2 R] and R] Rz = 3750
These equations are irreducibly quadratic; in fact we get:

R% = 1875 hence R, =433, R, = 866

Problems with Algebra

Unfortunately, SYN's ability to deal with large circuits is severely limited by

practical difficulties. SYN spends most of its resources, both time and space, in algebraic
manipulations. For circuits it can handle it is reasonably efficient. But the line between
circuits it can handle and those it cannot is very sharp. For circuits it fails on, it runs out of
address space for storing temporary results during elimination of one variable. In fact, the
final answer could easily fit. ‘

One problem seems to be the use of rational canonical form. The canonical form
is not necessarily the most compact form of the expression either for storage in a computer
oi for displaying for a user. For example, our canonicalized expression in resistance and
capacitance (in the previous section) has 16 operators and multiple occurances of the lower
priority variables. A more succinct and natural representation of the same quantity is:

(C1 + C2 + C3)

-

This form of the expression has only eight operators and no multiple occurances of the
variables. In this form it is obviously interpretable as the time constant of three resistors
and three capacitors in parallel.

Although there is a unique canonical form relative to an ordering of the
variables, there is a degree of freedom in the choice in the priorities of the variables. The
apparent complexity of an expression can be very sensitive to the ordering. For example, if
the variable ordering was chosen to be R1 > R2 > R3 > C1 > C2 > C3 this expression
would only require ten operators to represent in rational canonical form:

B
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R1 R2Z R3 (C1 + C2 + C3)

o e ot Yol e v i e e o

Rl (R2 + R3) + R2 R3

When SYN is working on those circuits it eventually fails on, it is not uncommon
to see expressions in seven or eight variables which take a couple of pages to print out.
These expressions would be tractable if the drdering of the variables were different, but a
global reordering would result in other simple expressions becoming prohibitively large.
Perhaps we should abandon converting all expressions to a uniform canonical form.
Instead, we should have a variety of possible representations for algebraic expressions and
means for converting from one to another. We should then represent each expression in
that form which is most economical.

When we examine how the algebraic manipulator spends it resources, we find
that most of the effort (time and space) is used in computing the greatest common divisor
(ged) of the polynomials. In cases where SYN fails to complete a problem, it is always
because just one gecd computation fills up the entire address space of the computer. In more
detail, computation of a polynomial ged involves computation of numerical gcd on the
numerical coefficients. The actual limiting problem is that the sizes of the numerical
coefficients in the intermediate results of the polynomial gcd get extremely large.

There is probably no uniform answer to the algebra problem. Human engineers
never do as complicated algebra as SYN's package can in fact do. In general, it is more
helpful to have knowledge which tells us how to avoid manipulation than it is to have
powerful manipulators. What additional knowledge do engineers use to guide the use of
algebraic manipulation?

In order to avoid excessive algebraic manipulation, SYN uses electrical knowledge
to guide the manipulations that are done. Propagation of constraints determines which
expressions are considered at all. The other source of control SYN has over the algebraic
manipulator is the variables it uses in the expressions. The choice of which variables to
use, which to solve for, and which to substitute for can affect the amount of resources
required to solve a circuit by as much as a factor of ten. The complexity of the algebraic
- expressions is very sensitive to which unknown quantities are used to express the others,
Whenever propagation of constraints gets stuck it introduces a new algebraic variable to
break a loop. SYN has considerable fatitude to choose which cell in the loop recieves the
new symbolic quantity. The key declarations in the model definitions suggest good places
to break loops. For example, the voltage across r-pi, if known, determines most of the
other voltages and currents in a hybrid-pi model of a transistor.
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When a coincidence results in an equation, SYN obtains a value for one of the
unknowns in the equation. Although references to this variable now refer to its solved
- value, the expressions often remain much simpler if the algebraic substitutions are not done.
* In the cascode example, SYN always substituted for solved values. SYN also has available
a strategy which decides whether to substitute on the basis of the estimated complexity of
the resulting expression. This complexity is measured in terms of the number of variables
in the resulting expression. This strategy is computationally more efficient but the
intermediate results generated are often obscure. '

When solving an equation, SYN has a choice of which variable to eliminate. The
engineer prefers to see his answers in terms of certain quantities. These prefered variables
are called opaque. If possible, SYN will not eliminate an opaque variable. If applying this
restriction does not result in a unique variable to solve for, SYN chooses to solve for that
variable whose value would have minimal complexity.

Notes and Relation to Other Work

I. There are other approaches to the automation of the process of synthesis of general
circuits. One approach uses numerical optimization of the unknown parameters relative to
a given objective function. Though the method depends upon having a network of linear
elements, it is possible to extend this method to synthesis of nonlinear circuits by iterating
this process on models linearized to an operating point [TABLEAU] There are many
specialized programs which synthesize particular classes of topologies, especially for filters
made up of ladder or lattice structures. For example, [Ladder] describes algorithms for
optimal synthesis of a small class of passive bandpass filters. Modern specialized synthesis
techniques can even generate new topologies for very specific situations. For example [Volt
Mult] explains how to generate and analyze novel voltage multiplier circuits.

2. Most computer-aided circuit analysis programs are purely numerical. These have been
used as a basis for user-oriented systems of great versatility and convenience, for example
[MINNIE] augments numerical circuit analysis methods with impressive graphics. On the
other hand, many people have realized that considerable insight can be gained by
examining the symbolic expressions for circuit behavior. '[S'urvey] surveys the applications
of symbolic network functions in which some network element parameters, in addition to the
complex frequency, are represented as symbolic variables. One efficient means of
constructing the symbolic network function is by interpolation for the coefficients of the
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network function polynomials [Interp), this can even be done in the light of symbolic
parameter values, though with less efficiency [Graphl In [NAPPE), the method of
parameter extraction is used. This is much more like the symbolic algebraic manipulation
which we use, though it still depends upon numerical techniques which may lose precision
and which may be untraceable.

3. Propagation of constraints is a method of circuit analysis which was derived by
generalizing Guillemin's informal method for solving ladder networks. Propagation
analysis uses one-step deductions to derive as much as possible about a circuit without the
introduction of any algebraic unknowns. If there remain values to be determined, a
symbolic quantity is postulated as the value of an unknown and is further propagated.
This process resuits in the construction of a small number of algebraic equations.
Propagation is described in greater detail in [WATSON], [EL], INTER], [ARS]. The best
description of propagation analysis can be found in [ARS]. The application of propagation
to synthetic reasoning is discussed in [SLICES]. '

4. As described in the section Problems with Algehra we have adapted the rational canonical
simplifier of MACSYMA [MACSYMA], a powerful algebraic manipulation system
developed by the MIT Mathlab group led by joel Moses. S

5. The smali-signal transconductance of a transistor is proportional to the collector bias
current: gm = (q/kT)lc. The parameters of a transistor are also related in other ways, for
example: gm Rpi = beta.

6. This work is part of a larger effort to apply artificial intelligence methods to computer-
aided design at the MIT AT Laboratory. An overview of the work is in [Overview]. Drew
McDermott [NASL] has made considerable progress on the problems of rephrasing problem
descriptions and proposing plausible designs. Allen Brown [WATSON] and johan de
Kleer [INTER] have investigated the problems involved in troubleshooting circuits -- with
and without access to a plan. Richard Stallman and 1 have designed and implemented
some novel circuit analysis programs [EL] [ARS]. Johan de Kleer [JdK Prop] is considering
the problem of qualitative causal analysis of a circuit. We are not solely interested in
computer-aided circuit design, but also in an understanding of the general epistemology of
engineering [Prog Engl '

7. This theorem is stated and proved in a beautiful paper by P. M. Lin [Survey]. We had
noticed that SYN was never forced to eliminate variables of higher than first degree and
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were terribly confused by this for some time. Lin's theorem helped considerably and will
probably be quite useful in our improvements to our algebraic manipulator.
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