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Introduction

"Non-monotonic” logical systems are logics in which the introduction of new
axioms can invalidate old theorems. Such logics are very important in modeling the
beliefs of active processes which, acting in the presence of incomplete information, must
make and subsequently revise predictions in light of new observations. We present the
motivation and history of such logics. We develop model and proof theories, a proof
procedure, and applications for one important non-monotonic logic. In particular, we
prove the completeness of the noh-mongtonic predicate calculus and the decidability of the
non-monotonic sentential calculus. We also discuss characteristic properties of this logic
and its relationship to stronger logics, logics of incomplete information, and truth
maintenance systems. ' '

The Problem of Incomplete Kno’wlédge

The relation between formal logic and the operation of the mind has always
been unclear. Some of the more striking differences between properties of formal logics
and mental phenomenology occur in situations dealing with perception, ambiguity,
common-sense, causality and prediction. One common feature of these problems is that
they seem to involve working with incomplete knowledge. Perception must account for the
noticing of overlooked features, common-sense ignores myriad special exceptions, assigners
of blame can be misled, and plans for the future must consider never-to-be-realized
conti'hgencies. It is this appérently unavoidable making of mistakes in these cases that
leads to some of the deepest problems of the formal analysis of mind.

Some studies of these problems occur in the philosophical literature, the most
relevant here being Rescher's [1964] analysis of counterfactual conditionals and belief-
contravening hypotheses. In artificial intelligence, studies of perception, ambiguity and
common-sense have led to knowledge representations which explicitly and imp‘liciﬂy
embody much information about typical cases, defaults, and methods for handling
mistakes. [Minsky 1974, Reiter 19781 Studies of problem-solving and acting have
attempted representing predictive and causal knowledge so that decisions to act require
only limited contemplation, and that actions, their variations, and their effects can be
conveniently described and computed. [Hayes 1970, 1971, 1973, Doyle 1978] Indeed, one
of the original names applied to these efforts, “heuristic programming”, stems from
efficiency requirements forcing the use of methods which occasionally are wrong or which
fail. The possibility of fajlure means that formalizations of reasoning in these areas must
capture the process of revisions of perceptions, predictions, deductions and other beliefs.

In fact, the need to revise beliefs also occurs in deductive systems working within
traditional logics.. Much work has been done on mechanized proof techniques for the



first-order predicate calculus. [J.A. Robinson 1965, Nevins 1974, Moore 19751 Incomplete
information is represented in these systems as disjunctions of the several possibilities where
the individual disjuncts may be independent of the axioms being used, that is, cannot be
proven or contradicted by arguments from the axioms. Thus, proof procedures engage in
case-splitting, in which disjuncts are considered in a case-by-case fashion. At any given
time, the proof procedure will have some set of current assumptions, from which the
current set of formulas has been derived. If failures in the proof attempt lead to
investigating new splits, and so change the set of current assumptions, the current set of
derived formulas must also be updated, for it is the current set of formulas on which the
proof procedure bases its actions. '

Classical symbolic logic lacks tools for describing how to revise a formal theory
to deal with inconsistencies caused by new information. This fack is due to a recognition
that the general problem of finding and selecting among alternate revisions is very hard.
(For an attack on this problem, see Rescher [1964]. Quine and Ullian [1978] survey the
complexities.) Although logicians have been able to ignore this problem, philosophers
and researchers in artificial intelligence have been forced to face it because humans and
computational models are sub ject to a continuous flow of new information. One important
insight gained through comp'utatipnal experience is that there are at least two different
problems involved, what might be called "routine revision" and "world-model
reorganization”.

World-model reorganization is the very hard problem of revising a complex
.model of a situation when it turns out to be wrong. Much of the complexity of such
models usually stems from parts of the model relying on descriptions of other parts of the
model, such as inductive hypotheses, testimony, analogy, and intuition. An example of
such large-scale reorganization would be the revision of a Newtonian cosmology to account
for perturbations in Mercury's orbit. Less grand examples are children's revisions of their
world-models as discovered by Piaget, and the revision of one's opinion of a friend upon
discovering his dishonesty.

Routine revision, on the other hand, is the problem of maintaining a set of facts
which, although expressed as universally true, have exceptions. For example, a program
may have the belief that all animals with beaks are birds. Telling this program about a
platypus will cause a contradiction, but intuitively not as serious a contradiction as those
requiring total reorganization. The relative simplicity of this type of revision problem
stems from the statement itself expressing what revisions are appropriate by referring to
possible exceptions. Such relatively easy cases include many forms of inferences, default
assumptions, and observations.

" Classical logics, by lumping all contradictions together, has overlooked the
possibility of handling the easy ones by expanding the notation in which rules are stated.
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That is, we could have avoided this problem by stating the belief as "If something is an
animal with a beak, then unless proven otherwise, it is a bird." If we allow statements of
this kind, the problem becomes how to coordinate sets of such rules. Each such statement
may be seen as providing a piece of advice about belief revision; for our approach to
make sense, all the little pieces of advice must determine a unique revision. This is the
sub Ject of this paper. Of course, even if we are Successful the world-model
reorganization problem will still be unsolved. But we hope factoring out the routine
revision problem will make the more difficult problem clearer.

Approaches to Non-Monotonic Logic and the Semantical Difficulties

The study of the problem of formalizing the process of revision of beliefs has
been almost completely confined to the practical side of artificial intelligence research),
where much work has been done. [Hewitt 1972, McDermott 1974, Stallman and Sussman
19717, Doyle 19781 Theoretical foundations for this work have been lacking. This paper
studies the foundations of these forms of reasoning with revisions which we term non-
monotonic logic.

Traditional logics are called monotonic because the theorems of a ‘th'eory are

- always a subset of the theorems of any extension of the theory. (This name for this

property of classical logics was used, after a suggestion by Pratt, in Minsky's [1974]
discussion. Hayes [1973] has called this the "extension" property.) In this paper, by
theory we will mean a set of axioms. A more precise statement of monotonicity is this: If
A and B are two theories, and A € B, then Th(A) € Th(B), where Th(S) = {p: Skp} is
the set of theorems of S. We will be even more precise about the definition of F later.

Monotonic logics lack the phenomenon of new information leading to a revision
of old conclusions. We obtain non-monotonic logics from classical logics by extending

~ them with a modality ("consistent") well-known in artificial intelligence circles, and show

that the resuiting logics have well-founded, if unusual, model and proof theories. We
introduce the proposition-forming modality M (read "consistent"). Informally, Mp is to
mean that p is consistent with everything believed. {See [McCarthy and Hayes 19691.)
Thus one small theory employing this modality would be

(1) noon A MCsun-shiningd > sun-shining
(2) noon

(3) eclipse ® -sun-shining,

in which we can prove

o '(4-) sun-shining.



If we add the axiom
. (5) eclipse
then (4) is inconsistent, so (4) is not a theorem of the extended theory.

The use of non-monotonic techniques has some history, but until recently the
intuitions underlying these techniques were inadequate and led to difficulties involving the
semantics of non-monotonic inference rules in certain cases, We mention some of the
guises 'in which non-monotonic reasoning methods and belief revising processes have
appeared. k

In PLANNER [Hewitt 19721, a programming language based on a negationless
calculus, the THNOT primitive formed the basis of such reasoning.” THNOT, as a goal,
succeeded only if its argument failed, and failed otherwise. Thus if the argument to
THNOT was a formula to be proved, the THNOT would succeed only if the attempt to
prove the embedded formula failed. In addition to the non-monotonic primitive THNOT,
PLANNER employed antecedent and erasing procedures to update the data base of
statements of beliefs when new deductions were made or actions taken. Unfortunately, it
~was up to the user of these procedures to make sure that there were no circular
dependencies or mutual proofs between beliefs, Such circularities could lead to, for
example, errors of groundless belief (due to two mutually supporting beliefs) or non-
terminating programs (a more technical but no less irritating problem).

Two related forms of non-monotonic deductive systems are those described by
McCarthy and Hayes [1969] and Sandewall [1972). McCarthy and Hayes give some
indications of how actions might be described using modal operators like "normally” and
"consistent", but present no detailed guidelines on how such operators might be carefully
defined. Sandewall, in a deductive system applied to the frame problem (which is
basically the problem of efficiently representing the effects of actions; see [Hayes 19731)
used a deductive representation of non-monotonic rules based on a primitive called
UNLESS. This was used to deduce conditions of situations resulting from actions extept in
those cases where properties of the action changed the extant conditions. Thus one might
say that things retain their color unless painted.

Sandewall's interpretation of UNLESS was in accord with then current intuitions:
UNLESS(p) is true if p is not deducible from the axioms using the classical first-order
inference rules. Unfortunately, this definition has several problems, as pointed out by
Sandewalil. One problem is that it can happen that both p and UNLESS(p) are deducible,
since from a rule like "from UNLESS(C) infer D" D can be inferred, but at the same time
UNLESS(D) is also deducible since D is not deducible by classical rules. These problems
are partly due to the dependence of the notion of "deducible" on the intention of



deduction rules based on "not deducible”, This question-begging definition leads to
perplexing questions of beliefs when complicated relations between UNLESS statements are

~ present. For example, given the axioms

A
A A Unless(B) o C
An Unles;(C) D,B?

we are faced with the somewhat paradoxical situation that either B or C can be deduced,
but not both simultaneously. On the other hand, in the axiom system

A

A A Unless(B) o C
A A Unless(C) 2 D
A A Unless(D) o E,

one would expect to see A, C and E believed, and B and D not believed.

One mlght be tempted to dlSI'mSS these anomalous cases as unmterestmg In fact, -
such cases are not perverse; rather, they occur naturally and are very important in many
applications. One common way they are introduced is by employing assumptions which
require further assumptions to be made. Of course, such hierarchical relations between
choices can be avoided in any fixed theory by rephrasing the system in terms of one
universal state variable, but such a solution is practically undesirable and inefficient.
Instead, it is necessary to employ systems which allow such patterns of dependency
relationships to occur.

Spurred by Sandewall's presentation‘of the problems arising through such non-
monotonic inference rules, Kramosil [1975] considered sets of inference rules of the form

"From Fp, Hq, infer Fr",

where I and  are tokens of the meta-language and the number of antecedents can be
arbitrary. Kramosil defined the set of theorems in such a system as the intersection of all
subsets of the language closed under the inference rules. He noted that this set may not
itself be closed under the inference rules, and showed that in the special case in which the
inference tules p}eserve truth values (tha\_t is, are effectively monotonic) that if the set of
theorems of the monotonic inference rules alone is also closed with respect to the non-
monotonic inference rules, then this set is the set of non-monotonic theorems. Kramosil's
conclusion was that a set of inference rules defines a formalized theory {one in which all
formulas have a well-defined truth value) if and only if this same theory is that of the

monotonic inference rules alone, which he interprets to mean that the non-monotonic rules



are either useless or meaningless.

As we will show in this paper, Kramosil's interpretation was too pessimistic with
regard to the possibility of formalizing such rules and their unusual properties. As we
have argued above, the purpose of non-monotonic inference rules is not to add certain
knowledge where there is none, but rather to guide the selection of tentatively held beliefs
in the hope that fruitful investigations and good guesses will result. This means that one
should not a priori expect non-monotonic rules to derive valid conclusions independent of
the monotonic rules. Rather one should expect to be led to a set of beliefs which while
perhaps eventually shown incorrect will meanwhile coherently guide investigations.

In recent work, McCarthy and Reiter have discussed some particular forms of
non-monotonic reasoning. McCarthy [1977] outlines a procedure called "circumscription”,
in which the current partial extension of some predicate is assumed to be the complete
extension. Of course, new examples of the predication can invalidate previous
completeness assumptions. Reiter [1977] analyzes the related technique of assuming false
all elementary predications not explicitly known true. He outlines some conditions under
which data bases remain consistent under this "closed world assumption”, and shows
certain forms of data bases to be naturally consistent with this assumption. However, the
closed ‘world assumption does not seem to allow for any locality of definition of defaults,
since it applies this assumption to all primitive predicates, and does not allow defaults
applied to defined predicates. Circumscription, on the other hand, would seem to be
applicable to any predicate whatever. Although they describe tools for non-monotonic
reasoning, neither McCarthy nor Reiter discuss the problem of revision of beliefs.

These problems were mostly resolved in the Truth Maintenance System (TMS) of
Doyle [1978] and subsequent related systems [London 1977, McAllester 19781 in which
each statement has an associated set of justifications, each of which represents a reason for
holding the statements as a belief. These justifications are used to determine the set of
cutrent beliefs by examining the recorded justifications to find well-founded support
(non-circular proofs) whenever possible for each belief. When hypotheses change, these
justifications are again examined to update the set of current beliefs. This scheme
provides a more accurate version of antecedent and erasing procedures of PLANNER
without the need to explicitly check for circular proofs. The non-monotonic capability
appears as a type of justification which is the static analogue of the PLANNER THNOT
primitive. Part of the justification of a belief can be the lack of valid justifications for
some other possible program belief. This allows, for example, belief in a statement to be
justified whenever no proof of the negation of the statement is known. This
representation of non-monotonic justifications, in combination with the belief revision
algorithms, produced the first system capable of performing the routine revision of
apparently inconsistent theories into consistent theories. Part of this revision process is a
backtracking scheme called dependency-directed backtracking. [Stallman and Sussman



19771 We will analyze this system in more detail later, but first we provide some
theoretical foundations for this work.

in outline, our analysis of these questions will proceed as follows. We first

define a standard language of discourse including the non-monotonic modality M
("consistent"). The semantics of the language is based on models constructed from fixed
points of a formalized non-monotonic proof operator. Provability in this system is then
. defined, and a proof of ‘completeness for this system is presented. This is augmented by a
proof procedure for a restricted class of theories and an analysis of some of the structure
of models of non-monotonic theories,

Linguistic Preliminaries

We settle on a language L which will be the language of all theories mentioned
in the following, L has an infinite number of constant letters, variable letters, predicate

letters, and propositional constant letters. The formation rules of the language are as
follows: ‘ ' '

The atomic formulas of L are the propositional constant letters and the strings of
the form g(xl,...,x"]) for predicate letter g and variables or constants X1y = 5 X The
formulas of L are either atomic formulas or, for formulas p, q and variable letter x,
strings of the form Mp, -p, p2q, and Yxp. We use the usual abbreviations of pAq for
~[p>-~ql, pvq for -p2q, Ixp for ~¥x-p, and abbreviate “M-p as Lp. A statement is a
formula with no free variables. The usual criteria for determining free variables apply
(see [Mendelson 19641). In addition, a variable x is free in Mp if and only if x is free
in p.

In this paper, the letters G, D, E and F will be used as syntactic variables
ranging over propositional constant letters. The letters p, q and r will be used for
formulas. Implicit quasi-quotation is used throughout. That is, if p and q are formuias,
p>q is the formula obtained by concatenating p, the implication symbol, and q. This
notation extends to handle finite sets of formulas in the following way: if Q is a finite set
of formulas, and Q appears in a quasi-quoted context, it always stands for the
con junction of its elements. For example, Q>p means the formula obtained by con joining
all the elements of Q and following the result with the implication symbol and p. (If Q is
empty, it stands for Cv-C). Since syntax is not a preoccupation of this paper, the
presentation is not rigorous in specifying the number of arguments of predicate letters,
parenthesization, etc,

The inferential system used defines a first-order theory to be a set of axioms
including the following infinite class of axioms: ' '
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For all formulas p, q and r:
(6) (i) poIq>p]

(ii) [poLqorllolipoqlnlqor]]

(iii) [~g=2-~ploll~qoplagl

(iv) Yxp(x)op(t)
where p(x) is a formula and t is a constant or a variable free for x in p(x) and p(t)
denotes the result of ‘substituting t for every free occurrence of x in p(x), and

(v) ¥xlpoqlalpoVxql
if p is a formula containing no free occurrence of x. (These axioms are from [Mendelson
1964].) These are the logical axioms, All other axioms are called proper, or non-logical
axioms. The theory with no proper axioms is called the predicate calculus (PC). (Note
that this theory also contains strings containing the letter M, so it is actually not strict PC.)
The sentential calculus (SC) consists of axioms which are instances of (i), (ii) and (iii)
only. A theory consisting only of the sentential calculus plus a finite number of statements
is called a statement theory.

" In this paper, the letters A and B will be used to stand for theories.

Proof-Theoretic Operators
The monotonic rules. of inference we will use (aiso from [Mendelson 1964]) are

(7 Modus Ponens: from p and p2q, infer g
Generalization: from p, infer Yxp.

If S is a set of formulas, and p follows from S and the axioms of A by the rules (7), we
say Skpp. We abbreviate Fpg, by I alone. We define Th(S) = {p: Skp}

The particular inference rules (7) are not very important. Later in the paper,
" when we concentrate on statement theories, the rule of generalization will be dropped
without much fanfare. All that is important is that the operator Th have the following
properties, which together are called monotonicity:

(8) (i) A = Th(A) :
(i1) If A € B, then Th(A) € Th(B),

and the property (9) of idempotence
(9) ' Th(Th(A)) = Th(A).

Clearly, any classical inference system satisfies these conditions. Condition (9) can also be
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viewed as a fixed point equation, stating that the set of theorems monotonically derivable
from a theory is a fixed point of the operator which computes the closure of a set of
formulas under the monotonic inference rules. A well-known property of the monotonic
inference rules is that Th(A) is the smallest fixed point of this closing process; in fact,
that Th(A) is the intersection of all S such that A € S and Th(S) = §

In order to deal with non-monotonic logic, we need a new inference rule like this
one { which we will take back immediately) :

(10) "If ¥ -p, then k4 Mp."

That is, if a formula's negation is not derivable, it may be inferred to be consistent. As it
stands, however, this rule is of no value because it is circular. "Derivable” means
"derivable from axioms by inference rules", so we cannot define an inference rule in terms
of derivability so casually.

Instead, we retain the definition of I as meaning monotonic derivability, and
define the operator NM as follows: for any first-order theory A and any set of formulas
SciL (L recall is the entire language) Iet

an NM(S) = Th(A U AsA(S))
where As, (S), the set of assumptions from $, is given by
(12) . Asy(S) = {Mg: q € L and ~q ¢ S} - Th(A).

Notice that theorems of A of the form Mg are never counted as assumptions. NM, takes a

set S and produces a new set which includes Th(A) but also includes much more:
everything provable from the enlarged set of axioms and assumptions which is the
original theory together with all assumptions not ruled out by S. We would like to define
TH(A), the set of theorems non-monotonically derivable from A, by analogy with the
monotonic case as

(13) "TH(A) = the smallest fixed point of NM,."

This "definition™ tries to capture the idea of adding the non-monotonic inference rule {10)
to a first-order theory A. This is plausible, since it demands a set such that all of its
elements may be proven from axioms and assumptions not wiped out by the proofs.
Unfortunately, there is in general no appropriate fixed point of NM,. It can happen that
a theory has no fixed point under the ‘operator NMA. Even if there are fixed points,
there need not be a smallest fixed point.
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For example, consider the theory T1 obtained as

(14) ~ Ti=PCu{MCo-D, MD>-C }, :

where C and D are propositional constants. NMy; has two fixed points, which can be
called F1 and F2. F1 contains ~C but not ~D, and F2 contains -D but not -C. Since -D is
not in F1, MD is in F1, and so ~C is in Fl. Similarly, the presence of ~D in F2 keeps ~C
out and MC in F2. The problem is that neither FInF2 nor FIuF2 is a fixed point of
NMrj. Since neither ~C nor -D is in F1nF2, MC and MD are both in NM(F1nF2), so
~C and -D are in NMp(F1nF2), so F1nF2 # NMp;(F1nF2). Similarly, both ~C and ~D
are in NM-{(F1UF2), so applying NM7 to the union results in a smaller set. So in this
case there is no natural status for ~C and -D.

‘An example of a theory with no fixed point of the corresponding operator is the
theory T2 obtained as.
(15) _ T2=PCu { MCo-C }.
In this case, NMyq has no fixed point, since alternate applications of the operator to any
set produce new sets in which either both MC and -C exist or neither exist.

Therefore, we must accept a somewhat less elegant definition of TH. Let us
define TH as follows:

(16) TH(A) = O({L) U {S: NM4(S) = S}).

That is, the set of provable formulas is the intersection of all fixed points of NMA, or the

entire language if there are no fixed points. We will use the abbreviation Alp to indicate
that-p € TH(A). With this definition, neither MC nor MD is a theorem of T1 in (14),
but MCVMD is. In the following, we will abbreviate {S: NM, (S) = S} as FP(A), and

(somewhat abusing the terms) call the elements of this set fixed points of the theory A.

This definition of the provable statements is quite similar in some respects to the
definition of compatibility-restricted entailment given by Rescher [19641. In that system, a
set. S of formulas is said to CR-entail a formula p if p follows in the standard fashion
from each of one or more "preferred" maximal consistent subsets of S. In the present case,
we obtain the preferred subsets of formulas as fixed points of the operator NMA (the

"compatible subsets"), but in contrast to normal deducibility where the empty set always
suffices, there need not be any such subsets. This case produces the entire language as the
set of provable formulas by vacuous fulfillment of the condition of derivability.

. One unusual consequence of this definition of provability is that the deduction

theorem does not hold for non-monotonic logic. For example, while { C } I MLC, it is
not true that Ik CoMLC. This failure of the deduction theorem is to be expected,
however, since the non-monotonic provability of a formula depends on the completeness
of the set of hypotheses, that is, on the fact that no other axioms are available. The
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deduction theorem, however, would if valid produce implications valid no matter what
other axioms were added to the system, even if these axioms would invalidate the
completeness condition used in the derivation of the implication. One should note that
although the deduction theorem does not hold in general in non-monotonic logic, there are
many particular cases in which it does hold, For instance, if some conclusion follows
classically from some hypotheses, then the expected implication will also hold. In
addition, not all properly non-monotonic theories are such that the deduction theorem
fails. It is an interesting open problem to characterize the precise cases in which the
deduction theorem is valid in non-monotonic theories.

So far, we have defined "provability” without defining "proof". For a formula
to be provable in a theory, it must have a standard proof from axioms and assumptions
in each fixed point of the theory, and, as yet, we have no way of enumerating fixed
points or even of describing one. It is worth note that when a theory has more than one
fixed point, the fixed points are inaccessible in the sense that the sequence Th(A),
NM,(Th(A)), NM(NM,(Th(A))), .. does not converge to a fixed point. We have a
proof, which we do not present here, that if NM, has exactly one fixed point, then the

fixed point is the limit of successive applications of NMA to the sequence of sets starting

thh A. We will eventually attend to defmmg non- monotomc proof but flrst we turn our
attention to the topic of semantics,

Model Theory

The semantics of non-monotonic logic is built on the notion of model, just like
the semantics of classical logic. In fact, the definition of model for a non-monotonic
theory depends directly on the usual definition.

An interpretation V of formulas over a language L is a pair <X, U>, where X is
a nonempty set, and U is a function which associates relations and values over the domain
X with each predicate, variable, constant and propositional constant letter in the usual
fashion. That is, for each n-ary predicate letter P, U(P) € X"; for each variable or
constant x, U(x) € X; and for each propositional constant letter C, U(C) € {0, 1}.
Using this mapping function U we define the value V(p) of a formula p in the
interpretation. V to be an element of {0, 1} satisfying the following conditions: For an
atomic formula p(xy, ., x,), the value is 1 if <U(xy), -, Ulx,)> € U(p), and is 0
otherwise. V(-p) = 1 if V(p) = 0, and is 0 otherwise. V(p>q) = 1 if either V(p) = 0 or
V(q) = 1, and is 0 otherwise. V(Vxp) = 1 if for all y € X, V'(p) =1, where V' = <X
Ly / xJU>, where [y / xJU is the mapping derived from U by changing its value at the

point X to the value y. V(¥xp) = 0 otherwise. If V(p) = 1, we say that V satisfies p, and
write VEp.
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A monotonic model of a set of formulas S € L is an interpretation V which
satisfies each formula in S, that is, V(p) = 1 for each formula p €S. A non-monotonic
model of a theory A is a pair <V, S, where V is a monotonic model of §, and § € FP(A).
When the context makes the intended meanmg clear, we will use the term model of A to
mean either a non-monotonic model, a- monotonic model, or an element of FP(A) for the
theory A. :

Although unorthodox, this definition prowdes a meaning for formulas Mp
which reflects the proof-theoretic property that "p is consistent with what is believed".
This notion is made precise by including in the model a set of “current assumptions”
(namely, As,(S)). A model for a theory must assign 1 to all of these assumptions, so the

effect is that Mp is assigned 1 in a model if ~p is not derlvable and ~Mp is not derivable
from the current assumptions and the original theory, that is, if p is consistent with what

“believed" in the model. Unfortunately, Mp may be assigned 1 in some model even
when ap is derlvable (fot example, when no axiom mentions Mp at all). This indicates
that the Ioglc is too weak. We will discuss this question later. '

A more elegant approach towards the definition of non-monotonic models might
involve the definition of a notion of "stable" models, followed by a demonstration of a
connection between stable models and fixed points of theories. This would give the model
theory some independence from the proof theory. We have developed such an approach
for a stronger non-monotonic logic, as discussed later, but this sort of approach seems
doomed to failure in the present weak Ioglc

Much of the unorthodoxy of this semantics stems from the nature of non-
monotonicity itself. Because the intended meaning of the operator M makes reference to
the other formulas of the theory, an unusual holistic semantics results in which the
meanings of formulas involving M depend on the theory as a whole. Thus the semantics
is quite unlike the Kripkean semantics developed for the standard modal logics. In a later
section, we will examine such differences in more detail.

With this definition of model, we can justify the definition of provability.
T heorem 1. (Soundness) 1f Abp, then VEp for all models <V, $> of A.
Proof: Assume Abp. If there ‘are no models of A,> the theorem follows trivially.
Otherwise, p is a member of every fixed point of A.. But since every model of Ais a
monotonic model of a fixed point of A, every model asslgns 1top. B

T heorem 2. (Completeness) If VFp for all models <V, $> of A, then Abp.
f

Proof: Assume that it is not true that Abp. Thus there is a fixed point S of NM,
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which does not contain p. Now Th(S) = $ by idempotence, so Skp. But the predicate
calculus is complete, so some monotonic model V of S has V(p) = 0.

It is not surprising that we have completeness, since the definition of truth
makes reference to provability. The proof was for first-order theories, but it can easily be
generalized to any complete formal logic. For example, if we take care not to confuse M
with the S5 operator "possibly", we can easily get a complete non-monotonic extension of
S5. However, none of these observations are very interesting unless we have some
assurance that provability is decidable. We will shortly present a proof procedure for
non-monotonic statement theories.

Fixed Points of Theories

This section will try to analyze the structure of fixed points for non-monotonic
theories. We investigate the number of fixed points of theones, and their relation to the
provable statements.

Non-monotonic theories may have varying numbers of fixed points. Classically
inconsistent theories have just one fixed point (the entire language L) and thus no
models. The theory T2 in (15) also has no models due to the lack of a fixed point.
Theories formulated in strictly classical |anguage have exactly one fixed point, as does the
theory
(17) ' : T3=PCu { MCoC }.

Some theories have several fixed points, eg. T1 in (14). It is also possible for a theory to
have an infinite number of fixed points. This is exemplified (we assume equality and an
infinite domain of unequal constants) by

(18) T4 = PC u { Yx[Mp(x)olp(x)AVylx#y>-p(y)IN }.

Even in theories having only one fixed point, the non-monotonically provable
statements need not coincide with the classically provable statements. Theory T3 above is
an example, for G € TH(T3), but C ¢ Th(T3). Some statements will be provable in
theories with multiple fixed points, but will have different proofs in each fixed point. For
example, MCvMD € TH(T1), and 3xMp(x) € TH(T4).

The classical results concerning truth and provability for logical languages are
that, for a given theory A, a formula is valid in A (true in all models of A) if and only
if it is provable in A, and that the theory has a model if and only if it is consistent
(cannot be used to derive a contradiction). In non-monotonic logic, somewhat different
circumstances obtain. As Theorems 1 and 2 have shown, validity in a theory remains.
equivalent to provability. However, from the definition of models of non-monotonic
theories, it follows that a non-monotonic theory A has a model only if the operator NM,
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has a classically consistent fixed point. Non-monotonic theories can lack fixed points (eg.
the theory T1), but we have defined such theories to be inconsistent.

The basic structure theorem states that all fixed points of a non-monotonic
theory A are (set inclusion) minimal fixed points.

“ Theorem 3. If Sy, Sg € FP(A) and §; € Sy, then §; = Sy,

Proof: If §; € Sy, then Asp(Sy) € Asp(Sy), so by the monotonicity of Th,
NM,(Sg) = NM,(Sy). But since S; and Sy are fixed points of this operator, Sy €5y, 5o
Sl = 52 '

This result suggests that ‘strict set-theoretic minimality is not a particularly interesting
distinction among fixed points. In the following sections we will make steps towards more
interesting classifications, but without a fully satisfactory solution. Important ‘applications
of this theorem are the following two corollaries.

Corollary 4. If L is a fixed point of A, then it is the only fixed point of A.

Proof: If S € FP(A), thenS € L, s0S = L by Theorem 3. H.

Note that if L is a fixed point of A, then A is classically inconsistent, that is, Th(A) = L.
Corollary 5. 1f p, =p € TH(A), then TH(A) = L.

Proof: If A has no fixed points, the theorem follows by definition. If both p and -p
are members of a fixed point S of A, then since fixed points are closed under monotonic
deduction, S = L. But then FP(A) = {L}, so TH(A) = L. B

With these results, we can study the notion dual to provability in non-monotonic
theories. We say that a formula p is arguable from A if p € UFP(A), that is, if some
fixed point of A contains p. Clearly, all provable formulas are arguable. Our next
theorem shows that in consistent theories, provability and arguability are almost dual
notions.

T heorem 6. If A is consistent and p is provable in A, then -p is not arguable.

Proof: If p is provable in a consistent theory A, then any § € FP(A) containing -p
would be inconsistent, which is impossible by Corollary 4. B

Unfortunately, the converse of this theorem is not true. For example, in the theory with
no proper. axioms, ~C is not arguable, but G is not provable, We will term the notion
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dual to provability conceivability. Thus all arguable formulas are conceivable, but not vice
versa. We say doubtless p if and only if -p is not arguable. In PC, C is doubtless yet not
arguable, and in the theory

(19) TS = PC u { MCoC, M-C>-C }

C is arguable yet not doubtless. Summarizing, we have the following diagram of sets of
formulas with these properties, where all inclusions are proper. '

CONCEIVABLE

~ DOUBTLESS ARGUABLE

~ PROVABLE

It is worthy of note that the provable and arguable statements of a consistent
theory cannot be classified as the monotonic theorems of the theory augmented by some set
of assumptions. That is, the set of arguable statements may be inconsistent yet not sum to
the entire language L, and the set of provable statements may involve assumptions that
vary from fixed point to fixed point, as in the theory ‘T2 above, where neither the
assumption MC nor the assumption MD is present in both fixed points,

_ Another natural classification is that of "decisipn". We say that p is decided by a
consistent theory A if and only if for all $ € FP(A), either p € S or ~p € S. The dual to

this notion is just its negation. In this case we say that A is ambwalent about p if p is not

decided by A.

Corolla?y 7. 1If p is doubtless yet decided by A, p is provable.

Proof:. For each S € FP{A), either peESorp€S;yetp¢S,sopeS. B

The Evolution of Theories

« We now turn to analyzing mter—theory relatnonshlps These are important in
descnbmg the effects of incremental changes in the set of axioms, and this is the task of
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practical systems like the TMS [Doyle 19781, which has the task of maintaining a
description of a model of a changing set of axioms. As we shall see, there are many
unusual phenomena which occur when theories change. The most striking result shows
that the analogue of the compactness theorem of classical model theory does not hold for
non-monotonic theories. This has important repercussions on the methods useful in
constructing "models" of theories incrementally.

T heorem 8. There exists a consistent theory with an inconsistent subtheory.

Proof: Consider the consistent theory ‘
(20) T6 = PC u { MC>-C, -C }.
The subtheory PC u { MC2-C } is inconsistent. B

Note, however, that the theory T6 in (20) has as a thesis the formula -MC, which makes
it quite different than some previously considered theories. We will discuss this type of
theory in more detail later. '

In many cases, the changes in fixed points induced by changes in theories is less
drastic than those apparent in the previous theorem. The simplest cases are as follows.

Theorem 9. If A is consistent, and p is arguable in A, then A' = Au{p} is consistent, and
FP(A')nFP(A) # 2. :

Proof: Since p is arguable, there is some S € FP(A) such that p € S. But clearly, S is
then aiso a fixed point of NM,.. @

Unfortunately, this theorem cannot be strengthened to conclude that FP(A'") is contained
in FP(A), since in the theory

(21) T7 = PC u { MC=-D, MD>-C, ~CoE }

there are two fixed points, call them F1 and F2, with -G € F1, E € F1 and -D € F2,
E ¢ F2. Extending this theory by adding the axiom E produces a theory also with two
fixed points, one of which is F1, but the other fixed point F3 differs from F2 in that
E € F3 and M-E ¢ F3.

T heorem 10. It A and A' = Au{p} are consistent and FP(A)nFP(A') # &, then p is
arguable in A,

Proof: Since p € A', p €S for every S € FP(A'). Thus p €S for some S € FP(A). B

Theorem 11. If A and A' = Au{p} are consistent, then p is provable in A if and only if
FP(A') = FP(A).
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Proof: If p is provable in A, p €S for every S € FP(A), so each member of FP(A) is
also a member of FP(A'). If FP(A) = FP(A'), then since p € S for each S € FP(A ),
p €S foreach S € FP(A) SO p is provable in A. B

The import of these theorems is that if a new axiom is already implicit in the
current axioms, either no change of fixed point is necessary, or a simple shift to a
different fixed point of the previous axioms is allowable. When considering changes
which delete axioms from theories, the basic problem is the non-compactness result
mentioned above. Other mterestmg questions are of the form "how few axioms must be
added or removed to remove p". Answers to these questions will in general depend on the
specific theory in question.

Another important phenomenon is the "hierarchy of assumptions™ [Doyle 19781,
in which some non-monotonic choices depend on others. This manifests in terms of fixed
points as the addition of new axioms increasing the number of fixed points of the theory.
For example, adding the axiom E to the theory
(22) T8 = PC u { [EAMCI>-D, [EAMDI>-C } ,
increases the number of fixed points from one to two. In this case, E can be interpreted as

the reason for choosing between -C and -D.

To get a global view of theory evolution, we consider the set of all consistent
theories containing a consistent theory A as a subtheory For a formula p, we can
consider the evolution of the properties of p of being arguable, provable, or decided over
sequences of extensions of the theory A. The evolution of arguability is malnly a question
of control structures; this is the point of the encoding of control primitives in non-
monotonic dependency relationships given by Doyle [1978]. We have at present no way of
describing the evolution of decision.” However, analysis of the relationships between the
theories and their extensions will shed light on how our semantics for Mp matches the
intuitive notion of "p can be added consistently to the theory".

We say that p is assumable in a consistent theory A if the theory Au{p} is also
consistent. We name the dual notion by saying that p is uncontroversial in a theory if ~p
is not assumable in the theory. The matching of the semantics of non-monotonic logic
with this more standard notion of consistency will be apparent upon examining the
correlation between assumability of p and the arguability of Mp in a theory, since this
latter condition would seem to say there is a coherent ‘interpretation of the axioms in
which p is consistent. Our logic is weak, however, and so this correlation is weak. (The
correlation is much stronger in the stronger logics mentioned later.) As an approximétion,
we note that Mp is arguable if p is arguable, and so instead attempt to correlate
arguability of p with assumability of p. This correlation is as foliows. By Theorem 9 the
assumable formulas includes the arguable formulas, but not vice versa since C is assumable
but not arguable in PC. The assumable formulas are lncomparable with the conceivable
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formulas, since C is conceivable but not assumable in

(23) T9 = PC u { ColDALMD>-D1] },

and -C is assumable but not conceivable in the theory T3 of (17). Also, the assumable
formulas are incomparable with the uncontroversial formulas, since C is assumable but not

uncontroversial in PC, and G is uncontroversial but not assumable in
(24) T10 = PC u { CoIDALMD>-D11, ~ColEALME®-ETT ).

We specify another classification by saying that a formula p is safe in a
consistent.theory A if and only if p € TH(A') for all consistent A’ such that A € A', and
‘that p is forseeable if and only if =p is not safe. Let Safe(A) = {p: p is safe in A}. We
then can characterize the set Safe( A) as follows.

T heorem 12. If A is consistent, then Safe(A) is the least set such that the following three
conditions hold: )

(i) A < Safe(A)

(ii) Th(Safe(A)) = Safe(A)

(iii) If p € Safe(A), then Mp € Safe(A).

Proof: The first two cases are correct because all formulas classically deducible from safe
formulas (in particular the axioms) will remain classically deducible when the set of
axioms is enlarged. The case of interest is (iii), which declares that "covered"
assumptions are safe. That is, if p € Safe(A), then ~p cannot be a member of any
consistent extension of A, so Mp will be a member of every consistent extension; thus Mp
is safe. ' : '

‘ It is clear that all safe formulas are both assumable and uncontroversial, and
that these inclusions are proper. Elementary considerations show further that the
forseeable formulas include the assumable and uncontroversial formulas, but again, not
vice versa. Also, the provable formulas properly include the safe formulas with theory T3
in (17) as the example, and the forseeable formulas properly include the conceivable
formulas via the same example.

A weakened version of assumability is produced by saying that p is realizable in
a cohsistent theory A if there is some consistent theory A' such that A € A’ and p € A'.
We also say that p is undeniable if and only if ~p is not realizable. Clearly, the realizable
formulas include the assumable formulas, but the converse does not hold as MC3-C is not
assumable in .PC but is an axiom of the consistent theory T6 in (20). The forseeable
formulas obviously include the realizable formulas, but not vice versa since C is forseeable
but not realizable in the theory 19 of (23). Also, the realizable formulas are
incomparable with the conceivable formulas, since C is conceivable but not realizable in
T9 of (23), and ~C is realizable but not conceivable in T3 of (17). The example of T10
in (24) provides an example of what following Kripke might be called the paradoxical
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formulas of a theory, formulas (in this case C) such that neither they nor their negations
are realizable. The example of T9 in (23) provides an example of what might be called
the intrinsic formulas of a theory, formulas (in this case ~C) which are realizable and
undeniable.

Putting all these observations together, we arrive at the following diagram of
inclusions,.

FORSEZABLE

CONCETIVABLE

DOUBTLESS REALIZABLE

ASSUMABLE

UNDENTABLE ARGUABLE -

PROVABLE

This illustrates the distinction between arguability and assumability, that arguability does:
not completely capture the notion of assumability. This is probably to be expected from
the Tarski-Cddel results on the indescribability of consistency within consistent theories. [t
would be interesting to see a more careful analysis of this situation. One goal of such an
analysis might be to connect the logic of incomplete information implicit in non-monotonic
logic to other logics of incomplete information, such as the S4 interpretation of the
intuitionistic predicate calculus CHeyting 1956, Kripke 19651, Kripke's theory of truth

- [Kripke 1975; cf. Martin and Woodruff 1976, Takeuti 1968], and Lipski's theory of

incomplete models [Lipski 1977; c¢f. Van Frassen 1966, Robinson 1965). The S4
interpretation of IPC tries to describe the gradual accumulation of mathematical truths,
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and seems closely related to our notion of safety. Kripke's theory of truth has strong
similarities to the current theory, for it develops models for the truth of self-referential
and theory-referential statements which are fixed points of a certain operator on partially
defined truth-predicates. Since the acceptable models of truth are restricted to be fixed
points of this operator, there can be never-decided paradoxical statements. The logic of
the natural notions of possibility and necessity thus are not dual, but instead form a
diamond relationship similar to the case for non-monotonic assumability and safety.
Lipski's theory of incomplete models is considerably simpler and stronger than either
Kripke's theory or non-monotonic logic, for his incomplete models can be constructed from
any partial extensions of the predicates of the language, thus producing a certain
comipleteness in the set of possible models. This logic is particularly interesting in that it
allows for the truth value of formulas to change arbitrarily often upon successive
extensions of models. :

In the above we have been concerned only with ways of describing the evolution
of theories upon the addition of new axioms. One might also define descriptors for the
case of removing axioms, or for the past history of provability. For example, assuming
that all subtheories of A are consistent, we might say that p is untested if p is conceivable
in every subtheory of A. (Cf. [Heyting 1956, p. 1151) Are there interesting descriptors of
this kind? If so, what are their properties? We have not investigated these questions, but
suspect they may be fruitful. ' i

A Proof Procedure for Non-Monotonic Statement Theories

In this section, we demonstrate a proof procedure for the non-monotonic
statement logic. This procedure is based on the semantic tableau method for the ordinary
sentential calculus. [Beth 19581 In this method, a systematic attempt is made to find a
falsifying interpretation for a formula under test. The formula is labeled "false” or "8",
and semantic rules guide further labeling in an obvious way. For example, to show

- IC>DI=[-Cv D]
start by labeling the formula false:

[C>D1 > i-CvD
P

For it to be false, its antecedent must be true and its consequent false:

[C>0 > [-C v D)
1 B B

and similarly for disjunction and negation. In order to proceed further, the tableau must
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split into two cases to handle the embedded implication:

I. IC>0 > I[-CvD

g1 e 010
I1. €501 > (-CvD]
111 @ Bleo

In case L., C is labeled both 1 and 0. In case Il., D is labeled both 1 and 0. Thus there is
no falsifying model, and the formula is valid.

On the other hand, consider the tableau for [C v D15 [C A DI:

(25) © IC v D), ICADI
1 8 8

(CvDl o>ICAD}
11 %] o]

11 9 PO
{CvDl > ICAD] _OF’EN
110 2 108

[CvDl >ICAD

118 @
iCvDl >ICaD  OPEN
211 8 001
ICvDl >ICAD  CLOSED
111 ¢ 168

This tableau has been split twice, for a total of four branckes. Two branches are closed as

before, that is, some formula is labeled both true {1) and false (8). But two are open,

that is, there is an exhaustive consistent labeling of formulas. This means that there are
two falsifying models, so the formula is not valid. (Notice that we could have been more
clever in labeling the lines of this tableau. In the second line, for instance, we could have
labeled both C's at once, forcing the D's to be labeled 0, and arriving at an open branch
immediately.)




24

We will extend this procedure to handle non-monotonic statement theories.
Without going into details, we assume an implementation of the algorithm just alluded to,
which takes a goal and generates the complete tableau for it. (E.g., the goal of (25) is
- [CvDIoICAD]) A tableau has several branches, each a consistent labeling of
subformulas if one exists (when the branch is open), else a partial labeling (when it is
closed), The tableau is the result of applying all rules to the goal. Two tableaux are
equal if and only if they have the same goal. The tableau of a formula is obviously
computable, since the number of branches is no greater than 2N, where N is the number
of subformulas of its goal.

We state without proof the following properties of the tableau method:

The procedure is complete in the sense that a formula is provable if and only if
its tableau has all closed branches.

The procedure is exhaustive in the following sense: if X and Y are sets of
formulas such that X €Y and Ykgep but Xleep, then in the tableau for p, in every

open branch there is some element of Y-X labeled 0.

For non-monotonic logic, we need to generalize to tableau structures. If A is a
statement theory, and p is a formula whose provability is to be tested, then <A, p, t, X>
is an A-tableau structure if and only if t is the tableau with goal A2p; and X is the
smallest set such that t € X, and if t' € X, then if Mg appears labeled 0 in some branch b
of t', then t" € X, where t" is the tableau with goal AD>~q. In this fast situation, we say
that t' mentions t" in branch b. :

In the classical procedure, a tableau is closed if all its branches are, and this can
" be determined unambiguously. In the case of a tableau structure, we can't tell whether a
tableau is closed until we have determined the status of the tableaux it mentions, and
there may be loops to contend with, '

Therefore we introduce the notion of an admissible labeling of a tableau
structure, an assignment of one label, either OPEN or CLOSED, to each tableau in the
structure, such that:

(a) If the tableau with goal A>~q is labeled OPEN, then every occurrence of Mgq is
labeled 1 in every tableau, and

(b) A branch is labeled CLOSED if and only if some formula is labeled both 0 and 1
in that branch. -

The proof procedure creates tableau structures and labels them, as follows.
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Civen A and p, the first step is to construct the tableau with goal ADp. All other tableaux
needed are then constructed. That is, if some constructed tableau has a formula Mg
labeled 0 in an open branch, then construct the tableau with goal A>-q if that tableau
was not previously constructed. The tableau structure is then checked for admissible
labelings by examining all possible labelings of the tableaux for labelings satisfying the
admissibility test. This test consists of first labeling with 1 each occurrence of Mg in the
tableau structure provided that the structure contains the tableau with goal A>2-q labeled
OPEN. Then the labeling is admissible if all tableaux labeled OPEN have some open
branch, and all tableaux labeled CLOSED have every branch closed. If in all admissible
labelings the initial tableau with goal A2p is labeled CLOSED, then p is provable, and
otherwise is unprovable. We will shortly prove the correctness of this algorithm.

We first present some examples. In the theory
(26) T1l = SC v { MC>-D, MD>-E, ME>-F }

(see- [Sandewall 1972]) the T11l-tableau structure for ~F has only one admissible Iabeling:.

TI1L =MC>-D |t ~F | £ |t -D |t €
g R T | 81 | 81| 1 | 231
MO>-E | ME | MD | MC|
. . o | 6 | 0|
ME>—F | - I e R
1 | CLOSED | OPEN | CLOSED | OPEN

Notice that we don't bother to copy the axioms in each tableau, but only those parts that
become relevant. The tableau structure shows that ~F € TH(T11), but -C ¢ TH(T11).

Another example is the T12-tableau structure for ~C, where

(27) T12 = SC u { MC>-D, MD>-C }.
TiI2 =M>-D |t -C |t D
1o o1 | o1
MD>-C | MO | MC
O e | 8

This tableau structure has two admlsslble labelings. lf t' is labeled OPEN, t is labeled
CLOSED and vice versa. So there is an admissibie labeling in which t is Iabeled OPEN,
and -C is not provable,

On the other hand, the T12-tableau structure for MCvMD looks like this:
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TI2 =MC>-D |t MovD |t -C |t -D
1| g oo | o1 | 81

MD>-C | | Mo He
1 | o | 8

Again, there are two admissible labelings, but in both of them t is labeled CLOSED, 50
MCvMD is a theorem of T12. ’

(The tableau structures just given are not really complete. It is left as an
exercise for the reader to show that using the axioms to split each tableau into branches
will not change the outcome.)

leeorehz 13. The proof procedure always halts and finds all admissible labelings of the
tableau structure for its goal.

Proof: The theorem is easily seen true by noting that because the set of proper axioms
of the theory is finite, only a finite set of tableaux can be constructed. Once this is done,
there are only finitely many labelings to cycle through, with trivial checks for
admissibility and provability. B ‘ '

The next two lemmas gu{arantee the correctness of the approach.

Lemma 14. 1f S is a fixed point of NMy, there is an admissible labeling of the tableau

structure for A>p such that p € S if and only if the tableau is labeled CLOSED in that
labeling. .

Proof: Let S € FP(A). We will construct the admissible labeling. In the tableau
structure for ADp, label a tableau OPEN if the goal of the tableau is A>q and q € S.
Consider one of the remaining tableaux, with goal Adr. There must be a minimal set of
elements X = {Mqy, .., Mq,}, such that X € Asp(S) and XFjr. If X = &, then the
tableau for A>Dr is closed no matter how assumptions are labeled. Otherwise, by
exhaustiveness, every branch of the tableau has some Mq; € X labeled 0. So there will be
a tableau for each such A>-q;. But these tableaux will be labeled OPEN (because
q; ¢ S), so the corresponding branch of the tableau for Aor will be CLOSED. So the
whole tableau for A>r will be CLOSED. Further, no open tableau will be labeled
CLOSED, because then there would be a proof of its goal from assumptions. Thus, if the
tableau for Aop is labeled CLOSED, it can be proved from assumptions in Asp(S), so
p €S. Ifitis OPEN, p ¢ S by construction. B

Lemma 15. If there is an admissible labeling for the tableau structure for Aop, there is a
fixed point § of NM, such that, for every tableau with goal ADq, the tableau is labeled

CLOSED if and only if g € S.
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Proof: We construct S from the labeling. Let Ry be the set of formulas Mq such that the
tableau for A>-q is labeled OPEN. Let S = Th(AuRy), and let Mqy, Mgy, .. be an

‘enumeration of all the formulas of the form Mq in L-Ry, with the property that if Mgq; is

a subexpression of’qu, theni < j (Eg., MCisa subexpressim of M-MC.)
Define Rid‘and Sjapp fori=0,1, .. as follows:

Risy . R, if g4 €S, else B'l-.= RiU{,Mqifl]? and

Sie1 = Th(AUR,).

Now let S = UZj S;, and R : Uit R;. Clearly, §; €S,y and § = Th(AuR).
Since NM,(S) —Th(AUAsA(S)) we can show that NMA(S) S by showing that
R = As,(S).

First, to show As,(S) € R. Let ~q ¢ S. We will show Mq € R. If Mq € Rp, then
since Ry € R, Mg € R. Otherwise q must be some q; If ~q ¢S, then ~q ¢ Si-1» SO
Mq GRl,soMqGR

Second, to show R AsA(S), that is, if Mq € R then ~q ¢ S. There are two
cases. If Mgq € Ry, then there is an OPEN tableau for A>-q. Assume that ~q € S. Then
there must be a k21 such that ~q € S, and ~q €8, ;. So Ry Fp~q and Ry ¥ ,-~q. But
then by exhaustiveness, Mq, is labeled 0 in the tableau for A>~q. So there is also a

tableau for Ao~q,. If this tableau is OPEN, then Mg, € Rg. If this tableau is CLOSED,

- € §p, and hence Mqy €S, _;. Either way, R, = R, _;, which is impossible.
0 k - k-1 k™ k-1

In the other case, q will be some q;, so Mq € R;, and ~q ¢ 5, ;. Assume that
~q € S, that is, ~q is an element of some Sk, k2i, and ~q ¢ ) _;. Then Ry I-A q but

Ry -1 VA -1q, o {qu}URk-l Faq

Now, qu does not occur as a subexpression of g = q; (since k2i), so qu must
occur in the axioms A. So in some branch of the tableau for A>-q, qu must be labeled
0. But this means that Mq, must be labeled 0 in some branch of the tableau for A2p, for
any p. So any tableau structure must have a tableau for A>-q,. This tableau must be
OPEN, or ~q; would be a member of Sy, and hence a member of §; _;. So Mq, € Ry, so
Ry = Ry -1, which is a contradiction.

It remains to show that the labels agree with the fixed point. If the tableau for

A>-q is OPEN, then Mq € S by construction. If it is CLOSED, there is a proof of ~q

from Ry, so ~q € Sy But § € S, so the final labeling agrees as well.
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T heorem 16. If A is a statement theory (a finite extension of the sentential calculus), then
non-monotonic provability in A is decidable, '

Proof: Let <A, p, t, X> be the tableau structure for a formula p. If the procedure labels
t CLOSED in every admissible labeling, then there is no fixed point of NM, which does
not contain p, since there then would be an OPEN labeling. So p is in all fixed points, -
and hence provable, If the procedure labels t OPEN in some admissible labeling, there is
a fixed point of NMA which does not contain p, so p is unprovable, ] '

The proof procedure extends a previous procedure due to Hewitt [1972], and
embodied in Micro-PLANNER [Sussman, Winograd and Charniak 19711, a computer
programming language for (among other things) mechanical theorem proving. A practical
implementation of this procedure would interleave the building and labeling of tableaux,
and would avoid building a complete tableau structure when unnecessary, We invite you
to compare this procedure with, for instance, the tableau-structure method for S5. [Hughes
and Cresswell 19721 One difference between these procedures is that the present procedure
splits tableaux into branches before generating alternatives, while the S5 procedure splits
the whole set of alternatives into branches.

The Truth Maintenance System

- The only known adequate solutions to the handling of non-monotonic proofs are
Doyle's [19781 TMS program and its descendants [London 1977, McAllester 1978]. With
our theoretical results in hand, we can present an approximate description of what this
program does. The TMS has two basic responsibilities:

(a) It maintains a data base of proofs of formulas generated by an independent
proof procedure or perceptual program. In our terms its goal is to avoid the presence of
both ~q and Mq in the data base simuitaneously.

(b) It detects inconsistencies, and adds axioms to a theory in order to eliminate them.

The TMS keeps track, for each formula in the data base, of the formula's
Jjustifications. A justification of a formula p is a set {pl, pn} of formulas which entail
p. Such a justification may be viewed as a fragment of the tableau for ADp; that is, for
each branch of p's tableau, the justification contains a ‘formula p; labeled 0 in that
branch.

"The basic TMS algorithm searches for a labeling of formulas involved in
justifications. It obeys two principles; p is labeled 1 if and only if all the formulas in
some justification of p are labeled 1, and Mp is labeled L if and only if ~p is labeled 0.
When the TMS finds a labeling satisfying these conditions, it arranges the data base so
that only formulas labeled 1 are "visible" to the higher-level proof procedure or program.
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Thus, from the point of view of a program using the TMS, it chooses a subset of formulas
to "believe". These formulas are said to be in; the other formulas are out.

This is reminiscent of our proof procedure's search for admissible tableau
labelings, but there are some important differences. The TMS operates on partial sets of
tableau fragments, so its decisions may require revision as new fragments ( justifications)
are discovered. But there is a more striking difference between our proof procedure and
the TMS. The TMS searches for just one admissible labeling of its tableau fragments, not
all such labelings. The most it can hope to find is one fixed point (actually, a finite
subset of one), not all of them. In the terminoclogy we developed earlier, it finds some of
the arguable formulas rather the than provable formulas. For example, consider its
behavior on the theory T12 in (27). In this theory, MC is arguable, and so is MD, but
neither is provable (only MCvMD is provable). Nonetheless, the TMS, given the
justifications {MC} of -D and {MD} of -~C, will pick one of {MC MD) to be in, and the
other to be out.

There are several justifications for such jumping to conclusions. One is that
since all arguable formulas are also assumable, these decisions may at worst lead to later
shifts in fixed points. That is, since arguable formulas might be added consistently later
‘oh, it cannot hurt much to act on the assumption that they will be added. A more
pressing rationale for this behavior is that the program or proof procedure using the TM3S
typically depends on beliefs of certain types to decide what to do, and cannot abide by
suspended judgement; even if there is a choice of possible circumstances, the program
expects the TMS to decide on one so that action may be taken

Of course, jumping to conclusions in this manner introduces the problem of
having to choose between fixed points of the theory. In many cases this problem solves
itself because of the way the TMS is typically used. Usually a program using the TMS is
attempting to discover which fixed point of a theory corresponds to the real world. The
best way to do this is to pick one model and stick with it until trouble arises, and then
salvage as much information as possible by making as few changes as necessary.
"Trouble" can take the form of new information or new deductions from old information
conflicting with old information or assumptions. Either way, the response is the same; to
switch to a new fixed point. Programs frequently try to organize their use of the TMS so
as to ensure the case of a single fixed point being the usual case. However, it is usually
not possible or desirable to completely determine in this fashion how the TMS should
decide between alternate fixed points. One way even more information of this sort might
be used would be to employ Rescher's [1964] suggestion of modal categories as a method
for selecting among the various fixed points generated by a theory. That is, suppose the
formulas of the language are segmented into n+l modal categories L = Mqu.uM, .. Then

given fixed points of a theory A as §y, ., Sm, with correspondlng sets of assumptnons Al'

Yoy Am, we can segment the Ai into components Al o - Al m o A vy A in

m,0? m,n
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concordance with the modal categories. We can then rank the fixed points by schemes
involving orderings on the vectors of assumption components. Adding such devices to
TMS-like systems is an interesting topic for future research.

The two goals of the TMS, to prevent both -p and Mp being in, and to prevent
both p and -p being in, give rise to two different types of activity. in the first case, when
a new justification is discovered for some formula which then invalidates some current
assumption, the TMS must reexamine the current labeling to find a new labeling
consohant with the enlarged set of justifications. This process is fairly straightforward,
although there are impbrtglnt special cases concerning circular proofs which require special
care. This process thus takes on the appearance of a relaxation procedure for finding an
acceptable labeling, and then determination of non-circular proofs for all formulas
labeled 1. ‘

The second type of inconsistency handled by the TMS, that of p and ~p being
in, requires somewhat different treatment. In the first type of process just described, the
TMS uses justifications in a unidirectional manner, determining labelings of formulas from
the labelings of the formulas of their justifications, and not vice versa. In the second case,
the TMS must traverse these justifications in the opposite direction, seeking the
assumptions underlying the conflicting formulas. This is why the non-circular proofs are
important tools. To resolve the inconsistency of these assumptions, the TMS converts the
problem to one of the first type by producing a new justification for the denial of one of
the assumptions in terms of the other assumptions. This might be viewed as the TMS
sharing the weakness of our logic; it cannot rule out an assumption Mp by deriving ~Mp,
but must instead produce a derivation of ~p. This second process is called dependency-
directed backtracking [Stallman and Sussman 19771, '

For example, the existing theory may be { MC2E } in which both MG and E
are believed. Adding the axiom MD>-E leads to an inconsistent theory, as MD is assumed
(there being no proof of -D), which leads to proving -E. The dependency-directed
backtracking process would trace the proofs of E and -E, find that two assumptions, MG
and MD, were responsible. Just concluding ~MCv-MD does no good, since this does not
rule out any -assumptions, so the TMS adds the new axiom E2-D which invalidates the
assumption MD and so restores consistency.: There are many subtleties involved, as
discussed in [Doyle 19781,

Of course, with non-monotonic logic there is also another kind of inconsistency,
that due to there being no fixed point at all. It can be shown [Charniak ez al. 1979] that
the TMS will always find a fixed point of a theory if every subset of the theory is
consistent, Unfortunately, the TMS program can loop forever if given a theory with an
inconsistent subtheory, as the check which could prevent this failure is quite expensive
and only rarely needed in practice, and thus has been omitted from the program.
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As. we mentioned, this description of the behavior of the TMS is only
approximate. The TMS is incomplete in a certain practically unimportant way; it will not
conclude D from the axioms CoD and -C>D. This type of reasoning is the responsibility -
of the program or proof procedure employing the TMS. The above description is slightly
inaccurate in other ways as well, in that the logic of the TMS does not seem to be precisely
the non-monotonic logic we have developed here. For example, the TMS really deals with
only four formulas for each real formuta p; Mp, M-p, Lp, and L-p. It does not allow
contradictions of the form LpAM-p, but does tolerate inconsistencies of the form LpaL-p
if no assumptions can be found underlying these formulas. This suggests a somewhat
different logic than that previously described, or at least a different interpretation of the
TMS in terms of non-monotonic logic. This type of logic is reminiscent of Belnap's [1976]
four-valued logic of belief. It would be interesting to pursue the connections between non-
monotonic logic, the TMS, and Belnap's logic of belief and relevance logics. [ Anderson
and Belnap 1975 Other ways the description of the TMS might be improved would be to
study its algorithmic efficiency to perhaps improve that efficiency, and to guarantee that
the TMS will always find a consistent extension of a theory when one exists.

Discussion

“In contrast to classncal logics, the non-monotonic logics examined in this paper
have the property that extending a theory does not always leave all theorems of the
ongmal theory intact. Such logics are of great practical interest in artificial intelligence
tresearch, but have suffered from foundational weakness. We have tried to repair this
weakness by providing analyses of non-monotonic provability and semantics. Our
definitions lead to proofs of the completeness of non-monotonic logic and the decidability

" of the non-monotonic sentential calculus.

The area of non-monotonic logic is ripe for further research. Some open
problems have been mentioned in the preceding sectlons ‘In the following, we list some
further-interesting topics.

The major problem for non-monotonic logic is. deciding provability for more
general cases than statement theories. Unlike classical logic, it appears that the non-
monotonic predicate calculus is not even semi-decidable. That is, there seems to be no

procedure which will tell you when something is a theorem. If there were, then we could

use it to decide whether p was a theorem of number theory by trying to prove p and M-p
simultaneously, since one of these must be a theorem (as there is only one non-monotonic
fixed point of number theory).

; Are there special cases in which provability is decidable or semi-decidable? We
con jecture that many theories of interest to artificial intelligence are asymprotically
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deadable, in the following sense: there is a procedure which is allowed to change its
answer an indefinite iumber of times about whether a formula is provable, but changes
its answer only a finite number of times on each particular formula.. (See for example the
problem solving procedures given in [de Kleer et al 1977). Note also that classical first-
order provability is asymptotically decidable by a procedure that changes its answer only
once; answer "unprovable” and then call any complete proof procedure, changing the
answer if the proof procedure succeeds.}) Asymptotic decidability is a fairly weak property
of a predicate, but it isn't vacuous since there are predicates (such as totality) which are
not decidable even in this sense. Furthermore, a procedure of this kind could be useful in
spite of the provisional nature of its outputs, since a robot always has to act on the basis
of incomplete cogitation. Unfortunately, it appears that even for some finite first-order
theories, provability is not asymptotically decidable. We must look for useful special cases.

We have presented a formalization of non-monotonic logic which, although very
weak, captures most of the important properties desired, especially with regard to the
structure of models of non-monotonic theories and their behavior upon extension by new
axioms. The logic seems to be adequate for describing the TMS, an ability following
naturally from the structure and evolution properties just mentioned. The logic also
admits a proof of completeness and a proof procedure for the case of statement theories.

Unfortunately, the weakness of the logic manifests itself in some disconcerting
exceptlonal cases which, while essentially irrelevant to the structure and evolution
properties, indicate that the logic fails to capture a coherent notion of consistency. For
example, the theory
(28) . T13 = PCu { MC2D, -D }
~ is inconsistent in our logic because although -MC foliows from -D and MC2D, -C does’
not follow, thus allowing MC to be assumed; and so the theory fails to have a fixed
point. This can be remedied by extending the theory to include -C, the approach taken
by the TMS, but this extension seems arbitrary to the casual observer. As it happens,
axioms like MG2D are much less common in applications than the unproblematic MC>C,
but it would be nice to get rid of this problem. Another incoherence of our logic is that
consistency is not distributive; MC does not follow from MICAD]. Our logic tolerates
axioms which force an incoherent notion of consistency, as in
(29) T14 = PCu { MC, -C }.

A stronger logic might not allow this by forcing such theories to be inconsistent.

We will remedy this situation a forthcoming paper, wher we present a
strengthened logic such that each fixed point of a consistent theory in the logic will possess
a coherent notion of consistency. This is achieved by augmenting the logic to contain
extensions of S4 in each fixed point. This fixes the problems mentioned above on the
exceptional cases, and preserves the behavior of the logic on the vast majority of cases, in
that all of our results concerning the structure, interrelationships, and evolution of models
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of non-monotonic theories carry over to the new logic. In addition, some new results
permit a very elegant description of the logic of theory evolution. This strengthing of the
theory is not quite as drastic as it may seem, for parts of S4 are already present in the
current logic. For example, all instances of the schema Lp>p (or poMp) are provable,
and hence true in all models of any theory in the current logic; the difficulty is that some
of these theories are inconsistent, but would be consistent in the S4 extension. These
improvements have their price, however. Since the new logic includes extensions of S4,
the definition of model must be revised, and a new proof of completeness must be
presented. For the same reason, the proof procedure for statement theories must be
altered, thus requiring a new proof of correctness. As a bonus, however, the stronger
logic has a more elegant model theory, in which the notion of a “stable” model is
correlated with the proof-theoretic notion of a fixed point of a theory.

There are several problems of a mathematical nature raised by non-monotonic
logic. What are the details of the relationship between non-monotonic logic and the logics
of incomplete information? What are the effects of different rules of inference on the
construction of non-monotonic models? What are the details of the evolution of the
properties of decision and provability? Are there interpretations of non-monotonic logic
within classical logics? Are there connections between non-monotonic logic and logics with

statements of infinite length? Is there a topologiéal interpretation of non-monotonic logic

in analogy to the topological interpretation of the intuitionistic calculus?

There are also a number of more speculative and long range topics for
investigation raised by non-monotonic logic. The revision of beliefs performed by
artificial intelligence programs can be viewed as a micrascopic version of the process of
change of scientific theories. (For a figurative description of such processes which is very
close to a true description of non-monotonic logic and the TMS, see the beginning of
section 6 of Quine's Two Dogmas of Empiricism.) Can the ideas captured in non-
monotonic logic be used to describe the general process of scientific discovery? How are
the holistic semantics of non-monotonic logic related to changes in meanings? (Cf.
particularly [Dummett 19731) What are the trade-offs involved in jumping to

" conclusions? How costly is the suspension of judgement? Can non-monotonic logic be

used to effectively describe and reason about actions, commands, counterfattuals, causality
and explanation?

A
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