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In this paper.we look at some of the ingredients and processes involved in the

understanding of mathematics. We analyze elements of mathematical knowledge,

organize them in a coherent way and take note of certain classes of items that share

- noteworthy roles in understanding. We thus build a conceptual framework in which to’

talk about mathematical knowledge. We then use this representation to describe the
acquisition of understanding. We also report on classroom experience with these ideas.

- The work reported in this paper was supported in part by the National Science Foundation
(under grant number 77-19083SE]) and conducted at the Artificial Intelligence Laboratory,
_Massachusetts Institute of ‘Technology, Cambridge, Massachusetts. The views and
conclusions contained in this paper are those of the author and should not be interpreted as
necessarily representing the official policies, either expressed or implied, of the National
‘Science Foundation or the United States Government. 3 Co

® Massachﬁsettsvf. :
nst
Technology 1978 'tute of




'i~’iii{§6&'ﬁéii6nm

Table of Contents .

2 An Eplstemology of Mathematlcal Knowledge

2.1 Examples, Results and Concepts
- 2.2 Dual Relations
2.3 Epistemological Classes

24A Representatlon Framework

3. Understandmg as an Actlve Processv

3. l Questmns that Probe and Prompt Understandmg
32 Knowledge Involved in Understanding

33 Understandlng A Theory as a Whole

4 Classroom Apphcatlons

4[ A Theorem Provmg Anecdote

4, 2 Some Comments on Problem Solvmg .‘

B, Understandmg Mathematlcs

L)

o Gta N

14

S YA

18

LA

21




E. R. Michener | I Understanding Under;taﬁding Mathematics

1. Introduction

__When a mathematician says he understands a mathematical theory, he possesses much more

knowledge than that which concerns the deductive aspects of theorems and proofs. He
knows about examples and heuristics and how they are related. He has a sense of what to
use and when to use it, and what is worth remembering. He has an intuitive feeling for the

- subject, how it hangs together, and how it relates to other theories. He knows how not to be
- swamped by details, but also to reference them when he needs them. '

This paper is concerned with this important extra-logical knowledge that is often outside of
_ traditional discussions in mathematics. The goal is to develop a conceptual framework in .
‘which to talk about-mathematical knowledge and to understand the understanding of

- mathematics, in order to improve how to learn, teach, and do mathematics.

Polya once remarked that, "A well-stocked and well-organized body of knowledge is an asset

to the problem solver. Good organization which renders the knowledge readily available »
may be even more important than the extent of the knowledge.” [18, p.85). The same is true

- for aspects of mathematics other than problem solving. Thus, our first task is to seek
.- answers to the questions: "What are the ingredients of mathematical knowledge, their types

e ~_ and their functions?”, "How can this knowledge be organized and represented?

- This section presents a conceptual framework for matherhatical knowledge that is based on = .

2. An _-Epistéﬁiolog& of Mathénis;tfcél K'no'wle'dvgié

the role of various kinds of knowledge in the understanding of mathematics in general and

~-of mathematical theories in particular. This epistemology is based on material found in-

textbooks, lecture notes, discussions, and protocols of neophyte and expert mathematicians; it

~ reflects the experience of teachers, students and practitioners of mathematics. Where there -
~ were alternatives for classifying and representing knowledge, the one choosen was that that

best fit the author’s- experiences in learning and in helping- students to learn mathematics.

- The reader is cautioned that this epistemology is not complete and exhaustive, that is, it does
- ot represent all aspects of mathematical knowledge. P o

~ When one analyzes the knowledge that mathematicians -~ students and professionals -- use

- when they do and explain mathematics, it becomes clear that there are several kinds of'_:

-~ mathematical knowledge: (1) clusters of strongly bound pieces of information, such as the

- statement of a theorem, its name, its proofls], an evaluation of its importance, which can be

taken together to comprise a single item, such as a theorem; and (2) relations between the

items; such as the logical connections between theorems.
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2.1 Exémples,v Resulté and Concepts

~ We can distinguish three major categories of items: results, which contain the traditional

logical-deductive elements of mathematics, i.e,, theorems; examples, which contain illustrative
“material; and concepts, which contain mathematical definitions and heuristic notions and
- advice. ' ' : s

Results can be organized by the relation of logical support in which A --> B means that
‘result A is used to prove result B. For instance in the theory of unique factorization [8],
before one can prove that every integer can be uniquely factored, one must first prove
supporting results on the Euclidean algorithm and the greatest common divisor. Results
- together with the relations of logical support comprise Results-space. - ' :

- The collection of examples also has a natural relation. Examples can be organized by the
relation of constructional derivation in which A --> B means that example A is used to -
construct example.B. For instance, the Cantor set is constructed from the unit interval by

the process of "deleting middle thirds™ [7, 22], and thus, unit interval --> Cantor set: '

L0 . 1 the unit interval U

~ define seqience of sets by -delg_ti'ng middle thirds

o ( 1

O

00000 0001

limiting set is the Cantor set

~_Cantor functions and higher dimensional Cantor sets can also be constructed from the unit
- interval and the Cantor set [4, 7, 22]. R ' ' o

- The following cluster of examples is familiar to everyone's arithmetic experience. One starts
with the natural numbers N, and then builds the integers Z by introducing non-positive
integers, say, by doing subtractions. Quotients then lead to the rational numbers 'Q, from
which one can build the real numbers R, by filling in the "gaps”. If one goes on to study -
elementary number theory, one then builds more examples, such as the Gaussian integers
Z[i], the field of integers modulo a prime Z/pZ, and the p-adic numbers Q. These -
examples cavn-bebrganized,according to their constructional relations: ’ L
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e The p-adic numbers have arrows coming from both Q and Z/pZ since either can be used to
. -construct Q.. (Q, can be constructed from Q by completion of Cauchy sequences with
- respect to a metric just like the construction of the reals R from Q, or from Z/pZ by an
~ algebraic construction involving “inverse limits” [2]). The point is that there are two
-~ constructional routes leading to Qp', and thus a directed graph, and not simply a tree, is

- needed to show the relations. ' ' ' ‘ ' S
Examples have some general properties worth noting: (I) pictures are an integral part of
-~ many examples; (2) constructions are like procedures; (3) the pictures need not be static; in -
~—~ . fact those shown for the Cantor set are merely a few frames from a sequence. - L

" The category of concepts includes both formal and informal ideas, that is, definitions and

heuristics. Definitions could alternatively be included in Results-space- since they are the

~ logical atoms from which the proofs are deduced. This approach was not adopted; rather,

- they are included in Concepts-space to highlight the interdependence of ideas and keep

. track of conceptual dependencies as one's network of ideas grows. Informal ideas, eg.
"mega-principles” and “counter-principles” (see Section 2.3), often evolve from more formal

- ones, e.g., definitions, under the forces of such "genetic” processes [5, 14] as paraphrase [12],
analogy, generalization, specialization [17], and "monster-barring” [10].

- Concepts can be organized by the pedagogical judgement that concept A should be known
about before concept B, which we shall call the relation of pedagogical ordering. Sometimes
it simply reflects the fact that concept A enters into-the definition of concept B; at other
times, it reflects expository tastes. For instance in studying arithmetic properties of the
integers, one needs to know about division before being able to talk about primes; once one

knows about primes, one can go on to discuss prime factorizations.

A concept can be expressed either as a declarative statement - the familiar formulation of
‘most mathematical definitions -- or as a procedure or the result of a procedure. Some
concepts are most naturally expressed in declarative form, and others, such as the Gram-
“Schmidt process, Gaussian elimination, Newton’s method, are most naturally expressed as
_ - procedures. Some concepts can be expressed in either way, such as "eigenvalue” which can _
™ bedefined either as the A of Av=Av, or as a root of the characteristic polynomial det{(A - AI) =
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= 0. The concept of "square root of a number" has aspects involving both declarative and
procedural knowledge: it can be thought of either as an "x" whose square is that number, or

___as the outcome of an algorithm like that taught in high school.

Thus, mathematical knowledge can be structured by three major types of item/relation pairs
- examples|constructional derivation, results/logical support, and concepts| pedagogical
ordering -- which establish three representation spaces for a mathematical theory: Examples-
space, Results-space and Concepts-space. They are best shown as directed graphs where the
direction matches the predecessor-successor ordering inherent in the relations.

2.2 Dual Relations!

When considering a theory item, one can decide whether to classify it as a result, example or
concept and then fit it into the appropriate representation space by determining its
predecessors and successors. One can also consider items outside of the representation space
with which it is associated.. Dual relations concern these inter-space relations. They are
introduced to capture both the way in which one's attention moves easily between the three

- types of items, and the naturalness with which we associate items that often seem to be

-

- distantly related in the senses defined by the in-space relations. -

Sfaecﬁﬁcally, dual items are defined as folfowéz' R |

The dual items of an example are: the ingredient éoncept;s and results ’jne.e‘ded to

discuss or construct it, and the concepts and results motivated by it.

_Tlie dual items of a result consist of: the examples motivating it, the concep'ts' »
‘needed to state and prove it, and the concepts and examples that are derived
Srom it. - o ' : ‘ '

The dual items of a 'coﬁcept are: the examples motivating it, the results _laying‘
the groundwork for it; and the examples illustrating it and the results proving
things about it. - ' ST

Thus _tﬁe dual of an item contains sets of the 'other two kinds of ifems:
~dual(an example) = {re‘sult:-},'{concepts} _

dual(a result) = {examples}, {concepts}
dual(a concept) = {examples}, {results}

.. - The usc of the word dual here has no technical relation to its use in the theory of vector spaces. although there is a

metaphorical connection.
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The subset of examples in'the dual set of an item is called the examples-dual, the subset of -

results, the results-dual, and the subset of concepts, the concepts-dual.

" The dual of an item can alternatively be sub-divided into subsets containing items that

precede the item in the understanding or development of a theory, the pre-dual, those that
come after the item, the post-dual, and those that have neither a strong "pre” nor "post”
flavor. To use Polya’s words, the pre-dual items are "suggestive", and the post-dual,
“supportive” of an item [17, pp. 4-5]. For instance, concepts needed to prove a theorem
would be included in the pre-concepts-dual of the result. '

"~ Two items are said to be related via the dual idea if they share common dual items. The

mathematical world is full of dual relations: the examples of the real numbers and the p-

* adic numbers are related via the concept of completion; the concepts of measure and length

via the example of an interval (a,b), Pythagoras’s Theorem and the Law of Cosines, via an

~example of a right triangle; concepts of continuity and differentiability, via the example of
the absolute value function; concepts of countability and measure zero are related via the
- Cantor set; concepts of fixed points and the power of an operation, via the example of
cos"x. - T o S
~ One can defin'é_varibus equivalen{:e relations that are based upon the dual idea. For
_instance, two items are dual equivalent if their duals are equal. Two dual equivalent results

~ would share identical sets of concepts and examples, for instance. Dual equivalent items are o
~very similar and in many senses are the "same” and should be identified. . EETEERS

- Relation via the dual idea is extremely useful because it describes how we associate

knowledge that is not necessarily closely related in the sense of the three relations operating
within the three representation spaces. It also ties the spaces back together. o

e 2.3 Epistemol’ogic#l-Cla_'s'sés

Not all ex'amples,'results_ and ‘concepts are eqﬁally important or serve the same function in

“one's uhderstanding. We group those that play noteworthy roles in understanding into |

epistemological classes. These classes are not necessarily disjoint since an item may play more

than one role. .

For instance, when learning a theory for the first time, one can grasp certain perspicuous -

examples immediately and easily. These start-up examples help one get started in a new -
subject by motivating basic definitions and results, and setting up useful intuitions.

The “circles and. lines” exarﬁpile is such a start-up exémpie from differential geometry. The
following is a paraphrase of Spivak’s use of it [24] to introduce the theory of curvature of-
‘plane curves: E ' ‘ ' S '
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We begin by considering circles and lines. We can agree that circles curve and that lines
don’t. ‘Furthermore, small circles "curve more” than large circles. (This is consistent
- with our observations about lines, which are a limiting case.) Thus we note that
' curvature is.inversely related to the radius. So for a circle we define the curvature to be
‘the reciprocal of its radius. Now what about more general plane curves? Well, we lift
our circle-line definition to the general case by fitting circles onto the curves: .

"

~ This simple example suggests how one can approach the study of curvature; when .
formalized, this example becomes the osculating circle definition of curvature. It providesa =
strong pictorial representation for curvature (circles) and a handle (the osculating circle) for -

This example exhibits many properties that a start-up example should have: (1) it motivates

fundamental concepts; (2) it can be understood by itself; (3) it is projective, ie., its specific

situati_on‘ can be lifted to the general case; and (4) it prbvides a simple and suggestive

Reference examples are another important class of examples. They are examples that one

. refers to over and over again. They are basic, widely applicable and provide a common

| _point of contact through which many results and concepts are linked together.

“Reference examples are used as standard cases to check out one’s understanding. For

instance, no matter where one is in the study of real analysis, one invariably refers to R? to
see how things really work. In elementary number theory as well as algebraic number
theory, one always looks at the integers Z. In linear algebra, a very useful reference example
is what Michener [11] calls the Basic 16; it is the collection of the sixteen 2X2 matrices whose

~entries aré 0's and I's. This collection contains examples illustrating many of the "good” as

well as the "bad” things that occur in eigenanalysis; it is also a rich source for counter-
examples. These matrices seem to be ubiquitous throughout mathematics.

Model examples are paradigmatic, generic examples. They suggest and summarize

expectations and default assumptions about results and concepts. They are indicative of the
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general case.

For instance, in the study of real-valued functions, the following diagrams indicate the

general kind of behavior a function has at a point where it has a simple discontinuity. The
diagram on the left represents a function with an "aberration” discontinuity at x, ie., the
right and left hand limits exist and are the same, but the function has the "wrong” value at

‘X, and the diagram on the right represents a "jump” discontinuity, i.e., right and left limits

exist but are not the same:

TR e—— a—————— oy L e U AT L G AR e b ks

—_— X

Observe that the specific measurements in these pictures are unimportant; ‘what couhts is

 that they capture the essence of the situation.’

“Because of their generic nature, model examples are often closely related to without loss of

generality arguments. For instance, the model examples for conic sections are usually

T . pictured as having their major axes aligned with the x- and_y-,aftes (see any calculus book,
. ~eg, [26]); these diagrams are completely general because one can always use the coordinate
~ transformations of translation and rotation to change variables in order that the axes are so -
-~aligned.}»~" ST ’ - .

‘Model examples are flexible and manipulatable structures which usuaﬂy must be fine-tuned .
- to meet the specifics of a problem. For instance, to capture the fact that a function has a

"big" jump discontinuity, the lines in the above example could be made very far apart. -

‘Counter-examples are familiar_to everyone as examples that show a statement is not true.

‘Some counter-example are referenced frequently. For instance, the Cantor set is used
repeatedly in the study of measure and integration as a counter-example in connection with
-items whose concepts-dual includes the concept of "measure zero". A specific use is with the

result "countable sets have measure zero” whose converse is refuted by the Cantor set which

is an example of an uncountable set that has measure zero [7, 21, 22). The factorization of 2
as (1-i)(I+i) is often used as a counter-example to show that not all rational primes (i.e., -
numbers which are primes in Z) are prime in the setting of the Gaussian integers Z[i].

- Other counter-examples are used once to establish a pt'Jvint énd then are ébanc_iéﬁedQ Such a ,
hapax legomenon (3] has a limited use in the theory and memory of it is often very short-

lived, perhaps because it has so few connections to the rest of one’s knowledge. -
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In summary, major epistemological classes of Examples-space are: start-up examples,
reference examples, model examples, and counter-examples. : :

Concépis-space has two major ep_istemolbgical classes in addition to the obviously important
class of definitions. These other classes contain the heuristic advice that we give to ourselves.
and to others, while working in a theory 2 mega-principles and counter-principles.

Mega-principlei (MP’s) are kernels of wisdom in the form of powet;ful suggestidnsvor
generally valid statements. For instance, the MP: Look at extreme points is a very powerful

- heuristic in calculus and analysis. Symmetric matrices are nice is a mega-principle from :
- linear algebra; it is a synopsis of many results that show symmetric matrices are well- - - ..

behaved, eg., diagonalizable and numerically stable [13, 25). T'ry the 2X2 case is powerful
advice in the study of matrices. Another useful suggestion in this and other domains is the
MP to Try special cases involving only 0’s and I's. o

- ‘Ro'yden's analysis book presehts "Littlewood’s Three Principles” which are striking examples

of mega-principles; Royden quotes from Littlewood (21, Chapter 3, Section 6}

" "There are three principles, roughly expressible in the_fol]owing terms: Every
(measurable) set.is ncarly a finite union of intervals; every (mcasurable)
* function is nearly conlinuous; every convergent sequence of (measurable)
. _: functions is nearly unifoimly convergent. Most of the results are fairly
" intuitive applications - of tliesevideas.'.. If one of the principles would be. the
- obvious means to settle the problem if it were 'quite” true, it is natural to ask = -
if the ’n'carly’ is near cnough, and for a problem that is actually solvable it
o generally is." _ ’ C : ' o :

~ In summary some MP's provide imperatives or advice while others give an idea of what to

expect. Mega-principles express broad "flavors” of a theory that are often remembered long
after the details have been forgotten. Like model examples, they provide broad, suggestive, -

~initial descriptions and expectations.

Counter-principles (CP's) alert one to possible sources of blunders or troubles. For instance,
eeveryone knows about the CP: Watch out for division by 0. In linear algebra and numerical -

~ analysis, the counter-principle M ultiple roots are troublesome warns of potential trouble when

multiple roots occur, eg., in diagonalizing or numerical computations. The CP from calculus
-~ when changing the variable of integration, don't JSorget to calculate the new differential:
dv=v'(x)dx - is a word of warning familiar to all calculus students. S ‘

2 ' - - . . - S .
* “Polya |16] and Schoenfeld |23} deal with more general, domain-independent strategies, whereas our concern . is
. with heuristics that are relevant to a pé_rucular domain, although some might indeed be usefu! In a larger context




e s s T

theory; reference examples and key results are important and frequently used.
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CP’s are distillations of mény results, counter-examples, and failed attempts. Like counter-

~ examples they add focus and limits to one’s intuitions. They are often related to MP's as

cavaets to warn of misapplications of the MP. For instance, related to the MP(n=2) is the
CP that suggests being careful about jumping to (inductive) conclusions without checking

~out the case of n=3. o -

Results-space also has several epistemological classes.

Basic results establish ‘e'lementary but important properties of concépts and examples. For
example, the result: A is an eigenvalue of the matrix A (i.e., Av=Nv) iff det(A-NI)=0 is a result

- basic to the study of eigenvalues. It relates the procedural formulation of the eigenvalue

concept (solving the characteristic equation) with the declarative (existential) formulation.
Other basic results link concepts with examples, such as The outer measure of an interval is

its length which links the concepts of measure and length via the reference example of an
~ interval as well as relating the concept of measure to the interval example. - -

Key results establish fundamental facts of a theory which are used repeatedly once tﬁey have

- been proved. For instance, the "Side-Angle-Side” theorem is a key result from plane
- ‘geometry. ‘ . ' Gt e o

" Culminating results are the goal results towards which a theory drives. The test of a
- culminating result is to ask, "If this result is omitted has the main point of the theory been
missed?” If the answer is yes, the result is a culminating result. ‘For example, the
Fundamental Theorem of Calculus is a culminating result from calculus. The Jordan

Normal Form Theorem, the Cauchy Integral Formula, the Riesz Representation Theorem,

- and many other "name” fesult_s are culminating results of their theories. 'Many culminating
- results are equivalency or classification results that connect alternative descriptions,

definitions and approaches, such as the theorem showing that all real vector spaces of a -

different formulations of projective modules [9). ‘ o

Less important than basic, key and culminating results are transitional and technical results
Wwhich provide logical stepping-stones and work out technical details for a theory. '

There are many analogies between the epistemological classes: model examples, mega-
principles, and culminating results are all important items within their categories which are -

usually remembered for a long time; counter-examples and counter-principles serve a

limiting function; basic ‘results and start-up examples provide easy starting points in a

It should be remarked here that scattered throu‘ghOUtPona’s books [17, 18] are hints at some
of the elements of this epistemology. For instance, in Induction and Analogy [17], he mentions

- three special kinds of examples --"extreme", "leading”, and "representative” - in several

_ given dimension are isomorphic, or Wedderburn's Theorem which gives a large number of
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exercises (17, pp. 23-25]. The latter two are very similar to the start-up and model examples
. discussed in this section. In Mathematical Discovery, Polya speaks of the. importance of
~— . certain "key" facts [I8, p. 85]. While he does touch on some of the elements of this
' episterhology, he does so peripherally to his main points and does not pursue their analysis
or use further. : ~ ' :

Other authors also single out elements of an epistemology. For instance, Rudin in his classic

analysis book Principles of Mathematical Analysis uses four headings to organize the

presentation: “definitions”, "theorems", "examples”, and "discussions” [22). Many authors
~ display some sort of concepts-graph to describe the organization of material, eg. [21, p4).

2.4 A Repx_*esentation Framework

- In addition to knowledge of how an item relates to other items, we also have the clusters of
~ information which comprise the item itself. All three of our item types -- results, examples,
- and concepts -- contain similar pieces of information. For instance, each has a setting which
“is the mathematical context in which the item is known. Each can have a declarative aspect
or statement: for a concept, a formal mathematical definition; for a result, a (if-then) .
statement; for an example, a caption, describing what it shows. Each can have a procedural
~ aspect: for a concept, a procedural formulation; for a result, a proof; for an example, a
- construction. An item:may have both procedural and declarative aspects (eg., the eigenvalue -
. concept), or just one (eg., the Gram-Schmidt process); it may have more than orie of either i
or both aspects (e.g., a result with several proofs). In addition, each item has certain other
. - features such as a worth rating, eg., the "Michelin" rating [Il] which indicates importance by
e T vas.ssigm'nent of from zero to four v's 3. L o R A

s

We tie these clusters of information together in our representation by amalgamating them
- into one data structure which has slots for the various component aspects and attributes. Al
~three item types can be represented by the same fundamental framework. This L
- representation framework is then modified slightly for the three item classes of our
epistemology -- examples, results, concepts -- to reflect information and features special to
‘them. For instance in the case of results, the representation includes pointers to the converse
or more general or stronger results or pointers to counter-examples where these are not
possible. . - T e : - N

:Briefly, the rating scheme is: » for interesting results, worth noticing: e+ for important results, worth a “stop”;
~*=s for very important résults, worth a “detour”; wess for extremely important results, worth a “journey~ in
R themselves,” ‘
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‘Figure | shows some of the representation frame for the Cantor set example. Instead of

‘pointers or ID’s, 'we'showf the name or the statement for item listed in the various pointer
fields. : ‘ i

‘ Figum 1 , , S
’ ‘AID E333 CLASS Rcfcmnce, Counler-e;amplc RATING = % % YNAME @ncqr Set
 STMNT __SETTING R | . |

~ CAPTION The Cantor set is an example of a perfect, nowhere dense set that has
‘measure zero. It shows that uncountable sets can have measure 0. '

LTI DEMON- AUTHOR standard =~ . o o .
S "~ STRA- ‘MAIN-IDEA Delete "middle-thirds" ’ :
TION CONSTRUCTION .
- 0. Start with the unit interval [0,13; .
1. From [0,1], delete the middle third (1/3,2/3); . o
2. From the two remaining pieces, [0, 1/3) & [2/3, 1), delete their middle thirds,
(1/9, 2/9) & (1/9, 8/9); :
3. From the four remaining pieces, delete the middle thirds; :
N. At Nth step, delete from each of the 21 pieces its middle third,
. The sum of the lengths of the pieces removed is I; ' h
 what remains is called the Cantor set.

- PICTURE L S
e 0. 1

() 1

() ()1

Limiting set is Cantor set

- REMARKS Cantor set is éoqd for making things happen almost everywhere or almost nowhere.

LIFTINGS Construction of ‘g\zutvzr_:eral Cambr sets,

IN-SPACE POINTERS:
o BACK unit interval : , : : : _
FORWARD Cantor function, general Cantor sets, 2-dimensional Cantor set -

" DUAL-SPACE POINTERS: L o
T CONCEPTS: countable, measure zero, closed, perfect, geometric series )
- "RESULTS: “"Perfect sets are uncountable”, "Coqntable sets have measure 0" »

BIBLIOGRAPHIC REFERENCES: o
v See Gelbaum and Olmstead for details of general Canl_or sets.
: Scc Royden for Cantor functions. :

PEDAGOGUES Rudin, Iioffman, Royden ' - o SR
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To organize mathematical knowledge by means of our conceptual framework, we must make .
o ~ several judgments. For instance, recall our arithmetic examples of Section 2. First, we must -
— .. choose the representation space for an item (eg. Q, the rational numbers example, could
' - -alternatively be classified as a definition), and second, the item must be tied into its chosen
space by determining its predecessors and successors (eg., Q points back to Z, and ahead to
R and Qp). Third, we must link an item to its dual items (e.g., Q can be linked to concepts

of division, completeness, density, and cardinality, and to results on the irrationality of (2)"/2,

and the Archimedian properties of the real line). Fourth, we can sort the dual items into
~ pre- and post-duals.. While the specific representation we build reflects certain personal,
- pedagogical, historical and esthetic biases, the representation scheme is perfectly general.

In summary, our conceptual framework for a mathematical theory includes: '

, (1 Knbwledge of the items themselves: for each we know its statement, diagram,
... proof, construction or procedural formulation, etc.; ' -
(2) Knowledge of the individual representation spaces and their predecessor-
successor relationships; : o
: (3) Knowledge of inter-space relations, such as the dual idea;

~ (4) Epistemological knowledge of the functional role of items in understanding, -
such as start-up, reference examples, etc; ' : : AR
- The reader is reminded. that this epistemology is neither exhaustive, exclusive nor static. .
Rather, it represents some important aspects of mathematical knowledge which is a -
- constantly evolving structure. One can view mathematical knowledge as a many-faceted
- polyhedron that can be held in the hand, rotated, examined from many perspectives, and

. sliced through along many different planes; our representation tries to capture some of these.
- cross-sectional views, such as its illustrative, pedagogical and inferential aspects. o

Also, a particular representation reflects the state of one’s knowledge base at a -particular
~moment in time. As long as one keeps learning and thinking, this knowledge base will.
-change and adapt to reflect new knowledge and understanding. Knowledge is not frozen.
~While it may appear similar for long stretches of one's intellectual time, it is not static.
Points of great change or re-organization probably ‘suggest that something important is
happening in one’s'understanding. These aspects are worth looking at further.. ' :

3. Understanding as an Active Process

- Understanding mathematics is a very active process. While at first glance it may not seem
4 . = so, especially in comparison with problem solving, it does involve significant effort on the
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part of _thé understander. To understand a theory, one must explore and manipulate it on
many levels, from many angles, with facility and spontaneity. One must be able to travel
freely through it, experiment with its items, survey its overall mathematical topography, shift

" the level of concern from detail to broad overview and vice versa, and be able to ask
. questions. One gains understanding by examining relevant examples, perturbing settings

and_ statements, and fiddling around numerically and pictoriall. To discover what makes
an individual item or a whole theory really work, one must do quite a bit other than
passively waiting for understanding to happen. -

_"Oﬁe should try to understand everything: isolated facts by colléting Fthcm

already assimilated, the unfamiliar by analogy with the accustomed, special

results through gencralization, general results by means of suitable

,spccializatién, ‘complex situations by. dissecting them into their constituent *
' - parts, and details by comprehending them within a total picture”. . [20]

Understanding is a complementary process tovproblem solving. In many ways it is more
difficult to describe than problem solving since, as Polya points out, it is a matter of "more

or less and ot yes or no” [19). That is to say, understanding has many levels and is never
. really totally finished. Actually, understanding, in our sense of building up a knowledge
- base with all its links and structures, can be taken together with problem solving expertise to

‘comprise a farger view of understanding.

There are many senses and degrees of understandving. .'Polya abstracts four "levels” of -

understanding a “rule” from his readings of Spinoza [I8, p.134}: (1) "mechanical” when one
has memorized the rule and can apply it correctly; (2) "inductive” when one has tried it out

- in simple cases and is convinced that it works in these cases; (3) "rational” when one has .

accepted a demonstration of it; and (4) "intuitive” when one is convinced of its truth beyond

~adoubt.

Poir:‘i“care"a{iso has 7writtﬂé:n aborixtnuhd.erstand'ing. kIn‘ particular, hé points out the need for A
going beyond the rational level [15, p.240}: ' B ' ‘

"What is it, to understand?..To understand the demonstration of a theorem, is

that to examine sucessively each of the syllogisms composing it and to

ascertain its correctness, its 'confo'rmity to the rules of the game? Likewise, to *

understand a definition, is this mercly to recognize that one already knows the
- meaning of all the terms cmployed.... ' B )

- For some, yes; -when they have done this, they will say: I understand. For the
majority, no.” o '

Clearly then, a deep understanding of a theory involves fnore’ than knbwing just the details

‘with related facts, the newly discovered through its connection with the
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of theorems and proofs; it goe's beyond simple in-space links. But what should we dernand

for full understanding? And how should we go about achieving it?

..':-.I-lavrng deep understandmg ol‘ a body of mathematncs has been lnkened to knowmg one’s

way around a landscape Polya and Szego describe it [20]:

‘"There is a-similarity bclwecn knowing onc’s way about a town and mastering
“a field of knowledge; from 'any given point onc should be able to reach any"
other point. Onc is even better informed if one can immediately take the most
convenient and quickest path from the onc point to the other. If one is very

oo well informed indeed, onc can even exccute special feats, for example, to carry

out a journey by systematically avoiding certain paths which are customary...

There is an analogy between the task of constructing a well-integrated body of
knowledge from acquaintance with isolated truths and the building of a wall
~ out of unhewn stoncs. One must turn cach new insight and each new stone
- over and over, view it from all sides, attempt to join it on to the edifice at all_“'
possible points, until the new finds its suitable place i in the alrcady established,
in such a way that the areas of contact will be as large as possrble and the
e gaps as sma]l as poss:blc, unul thc whole forms one frrm structure :

. Thus if understandmg is a matter of "more or less”, then clearly deep understandlng is a e
o matter of " more A richness of knowledge is needed for deep understandmg T
3. 1 Questxons that Probe and Prompt Understandlng

'A_‘V—'Desplte the lack of wrdely used well defmed stages and criteria for understandxng, we should
‘not be detered from trying to explicate the understanding process. In this section we offer

some questions to help make the process and levels of understandmg more crisp and o
accessrble : : '

. When one understands an mdlvxdual result concept or example item, one is obvxously in

command of much information about it. The following questions probe one’s understanding

“of an individual item in the context of a mathematical theory. At the same time, they

represent a general strategy for understanding. ‘Being able to answer them is evidence of
understanding an item.in a thorough way. Being able to ask them mdlcates knowledge of

" how to. learn

" The intent of this series of questions is not only to make explicit some of the ingredients and

~ processes necessary in the the acquisition of understanding, but also to present them in such

a way that a student can learn Aow to go about understandmg Thus the goal is similar to

'7 ‘ Polya s for problem solvmg [16] for which his list of How To Solve It Questlons is offered
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in the hope of aiding the problem Solving process.

' '_3.__,What js a prcture or diagram for this item? ,'

_ The questions are:

L What is the statement of this item. The setting’

2 Do I understand the statement> Should I review or examine the ingredient

concepts, especially the important ones and those to which 1 have prevrously

- not done Justlce’

4 Am 1 reasonably ‘comfortable with this item's immedlate predecessors? Are' ‘
there any predecessors on whlch I should bone up? Or remember to come
back to? : : .

5. Do I know any of dual items for this item, such as counter-examples.
‘model examples, reference examples, culminating results, basic results, etc.?

- Am I aware of the |mportant ones? Should I peruse some of the others’ B

G T G Can I say what is . the glst of thls item? of its statement? Of its',
',_"demonstratlon’ L R R T

o 7. What is 1t good for’ Why should I bother with it> What is its signifrcance |

to the theory as a whole’

‘-1_8 What is the main idea of its proof constructlon or procedure’ Are the o
o .detalls rmportant’ If so, can I summarize them? »

, :, ‘9. Is there some way I can flddle w1th this rtem’ Perhaps checlc out a few
~ _test cases’ : : :

. 10 What happens if I perturb its statement’ Does it generahze’ Is it true m'

other settings? Can it be strengthened by dropping some hypotheses or
~adding some conclusions. If not, why not: can I cite a counter-example and

can I pinpoint what goes wrong? If so, is the new demonstration similar or
different from the original. Is it much harder? Should I just be aware that
1t exists, and forget about the details until I need them’ ‘

L Can I see how this item flts im with the development of the theory as"

developed in the approach I am taking? What about other approaches? Is
this item important or critical or is it simply a steppmg-stone or a perrpheral
embelhshment’ : ~ :
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12.- Can I close my eyes and visualize 6r’describe this item’s connections to
other items in the theory, to the theory as a whole, to other theories> Have I
__seen anything like it before? : :

'Cleérly this list of questions is rather long and one should not be attempt to answer all of

them at once. But one should try to pick off as many questions as possible on an initial try,
and if the item is important and worth the effort, come back to the list several times.
Through work directly with the item and indirectly with other items, one eventually answers
most of the questions. The last question is a keystone to understanding in a deep way and
should be given a try during the very first exposure to an item and repreatedly thereafter.

At first, the answer given will be very shaliow, but later it will become more global and

encompassing. It-might take two or three passes over the material over several years time
perhaps, to be able to expound upon these questions, but that is the fuliness of
understanding that a mathematician strives for in his work and a student should also set as
his goal. - x : o SRR :

The acquisition of full understanding is often a. three pass process. On one’s first exposure

1o a ‘subject, which often occurs while one is taking a course, one tries simply to become
- familiar with an item and its immediate neighbors (predecessors, successors, pre-dual items).
- One tries to learn the definitions, read through demonstrations, often checking' them out on

‘- a step-by-step basis. This first phase is mostly concerned with items one at a time; it is very o o
~ .~ minimal and local in outlook. R i o B e ST e e e

R

On the second pass, which often comes in reviewing a course, one tries to get a more overall

- feeling for the subject and the flow of its development. At the least one tries to be able to
. recall definitions, examples, theorems, and their _demonstrations, to see what are the essential -
' ‘assujmptions and culminating items, and to know how to get from one item to another. This -

second phase is concerned with items and relations within the representation spaces and the
theory as a whole; it is more giobal in outlook than the first pass. .

N ‘ The third basé often comes after the course is oAvver, perhap's on another exposure to the

material through a different presentation or context, for instance, when listening to a series

of lectures "for culture”. One starts to see connections between several subjects. One

recognizes that the raison d’etre of the subject is to address certain questions and that the

" whole development hinges on certain underlying ideas, axioms or examples; that the subject
- is very similar to another subject; that many of its items are shared by another subject and

are in some sense "the same” as items in another subject. The third pass'thusA has a

perspective that can encompass several theories.

~We can correlate these observations and Polya’s idea of levels in 'Spvindza.' Our first pass is -

similar to the "mechanical” and "rational” levels; the second

i pass, to the "inductive” level;
and the third pass, to the “intuitive” level of understanding. - T -
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3.2 Knowledge Involved in Understanding
oo .. Many of the answers, and the processes needed to find the answers, to these questions can be
' - described in terms of our epistemology. Briefly put, the following information is involved in.
the answers: ' '

1. the statement and setting of the item;

2. the concepts used in the statement, especially those in the pre-concepts-dual;

3. a picture or diagram for the item;

- 4. review of predecessor items; tagging of items on bases such as worth or

placement on an agenda of items to be examined in future;
~ . . B.the item's dual with empbhasis on epistemological classes;

6. a paraphrase, synopsis or outline of statement and demonstration. |

7. look-ahead through the in-space successor and post-dual items with an eye for
. important items and epistemological classes. S A

- 8. overall structure of dembﬁstratjon: “main idea, plan and skeleton; .

9. experimentation with variable elements in statement or picture; - -

10. perturbation of setting and statement: search and conjecture in more gen’efal -

settings; addition and/or deletion and/or alteration of elements in the statement;" o

 look up in references; retrieval of known counter~examples; o

1. relations with successors and motivated post-dual items; dependence on

predecessors and motivating pre-dual items; knowledge of the (pedagogical).
~ exposition; knowledge of the topography: detours around, direct routes between,
“and well-worn paths to certain items. : - ' :

I2. intra-space, inter-space, and trans-theory connections; investigation of
sameness relations through dual and analogy relations. ’ o

- Thus to understand an item in a deep way, one ought to know about: (I) the item itself; (2)
its intra-space relations to other items of the same type; (3) its inter-space relations to other -

. items of different type; (4) dual refations to other items of like type; and (5) relations to
items in other theories. ' ' : o :
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3.3 Undersféndixig A Theory As A Whole

- Understanding a theory as a whole is more than just understandmg 1ts parts. In addition to
~ understanding member items, it includes understanding the ties that bind the theory
_together and to other theories. Understanding a theory, like understanding an individual

. item, involves information about items and connections. In addition, it has a perspective

which always seeks to view the item in relation to the whole theory.

_Brieﬂy, understanding a theory as a whole involves:

1 knowledge of the eplstemologlcal classes: knowmg whlch are the start-up,,.:
- reference and model examples, the MP’s, the CP's, the basic, key and
:culmmatlng results, etc.: epzstemologzcal knowledge :

2. knowmg the " 'pros” and cons” of items: which items are good for what;
whnch items are appropriate and when; how to use them what thelr llmltatwns_ :
- are: annotatwe knowledge : :

‘3 seemg the overall mtra-space relatlons of the mdtvidual representatlon spaces L
~ knowing routes and detours (eg., "from this item I can get to that one”; "this
~ string of items doesn’t lead anywhere™; “the following is a quick and dlrty way to’

: _;derlve item X"): knowledge of a map[nng nature. o

4 knowrng the mter-space relatxons such as the items used in recurrmg dual_ :
* . relations; which items are the basis for striking dual relations; knowing which - -
© items are dual equivalent, or nearly so; knowing which items are strikingly

similar in the dual sense but are riot so within their own representation graphs:

'knowledge of. sameness and clasenes: especnally in the sense of the dual idea.’

5 abstractmg and naming the " arrows”, or intra- and mter-space relattons (eg
Q;->R construction is called completton process)

6. recognmng dual and analogy links between items in other theones and
: theorles asa whole knowledge of trans tlzeory links. '

' 7 recogmzmg clusters of items general:zmg or sharing common features and

perhaps ellmmatmg common redundancies and elevating them to the default
common sense” or "foundation” knowledge

. 4. | 'Clla'ésr"obom “ Applic_ations

" The ideas presented. here were used in a seminar with six MIT freshmen. The purpose of
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this seminar was two-fold: (1) to teach and explore the rich theory of eigenvalues (eg., the
. perturbation and location of eigenvalue theorems such as found in Ortega’s book [13]); and
(2) to make young mathematicians aware of the ingredients and processes involved in

understanding mathematics. ' ‘ ‘ :

" The epistemological and organizational ideas seemed natural to the students, especially in
discussions in which the students worked out their ideas about keeping track of what they
knew and wanted to know. They essentially asked for a representation that included

examples, results and definitions, with orderings, and cross-space, i.e, dual, connections: 4
" These ideas were also a source of homework problems. For instance, a standard type of

_pfobiem,in the seminar was:—— - .. e — i i e e Db

List the dual items for a given item.
-_Andther_ was:
CTell everything you can about this item.

. After the discussion on representation % the students were asked as a homework assignméht
- to map out the knowledge domain of the seminar according to our representation scheme; -
- about a month later, they were asked to update their representations. In the seminar we all
- worked ‘together to meld our representations. While there were some lively debates on how =~
* . toweave an item into the representation, these sessions always seemed to benefit the students T
<. by making them aware of larger issues of how the subject hung together. Thus the -
_ organizational process, itself, proved very helpful for developing understanding. - S

‘Another type of problem which they enjoyed involved thé‘-tdnipérison of "the.'orfems»
. addressing a similar topic (e.g., the location of eigenvalues in the Gerschgorin Circle,
- Symmetric Perturbation, and Hoffman-Wielandt Theorems [13, Chapter 3)): :

A

: _4Aner ahoﬁt a month. the sm_d-ent_s wanted to review and catalogue what had thus !nr‘been covered in the'seminar.
At first, ﬂle); attempted to list all t_he' ltems in chronological order. Next. they split this list into two lists’
(de"nltpoﬁs and theorems) aﬁd then, ‘a 1ﬁ|rd (exainplcs). they tried to order these accdrdlhg to when llems'occurred,
. This, they found unsatisfactory since items came upv more than once and chronoiogy seemed to have very littie to
do with an_yllﬁng. Next. they re-ordered resuits according to whai@e here have called “logical support", and
examples. by a mixture of chronology and increasing complexity; concepts remained in chronologlcai order (which
was eésenually this author's pedagogical order). This author then told !ho;-tn about directed graphs and trees and
with a lﬁlle prbmptlﬁg; they adoptéd the threc representation graphs -of this paper. They were then happily
proceeding to organize e'veryihlng this way in three colors of chalk, when one of the students jumped up. grabbed
‘ _ ) “ another color chalk, and pounding his fist on the blackboard, said, "But that's not all there is: each of these results
) p} ; should be connected to some example& and definitions.” And so entered the dual Idea. R
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W hich theorem is easiest to use, and when?
: Which provides the best results, and when? o .
. Cook up at least three (2X2 or 3X 3) examples to illustrate your answers.

-

Most students used reference examples (eg., the identity, Basic 16) and model examples (e.g.,

diagonal, upper triangular) in their answers. Together we investigated more complicated
- - ‘matrices with less simple entries (eg., non-symmetric matrices, matrices with entries of €'s and
107, the Hilbert matrix). : ’

, . In general, the students displayed a level of mathematical maturity that one would be happy

S _to see.in advanced students. They became excellent question askers and idea generators; -
* = discussions often left the areas of the author's expertise and entered areas where all were on
s * "hands and knees" together. In short, they became active. ' : :

41 A Theéfem Provihg An.ecd‘o.té :

-~ Even though the emphasis of this course was not on proving theorems but on
~~ - understanding them, the following anecdote shows how natural some of the ideas of this
.. . . paper were to them. One of the students, Ken, requested that we prove the Cayley-Hamilton
" Theorem (CHT) which states that every matrix A satisfies its own characteristic polynomial,
_ det(A-AD)=0. The students agreed to try to find a proof, but they did not want to work out a
- purely computational proof involving manipulation of 2x2 and then 3x3 matrices with an
... induction argument for the general case. Also, we did not want to.become involved in
" considerations of the . "minimal polynomial” and its attendant algebra. The following is a
-~ nearly verbatim report of the dialogue that ensued when the students were asked to suggest
~~ aplanofattack:. - o ' T - -

o :]OI—_]N lee g(;éo}em- is :c;eridiﬁl.y true f;nr tﬁé i?ier?tity ma?n‘ﬁc.'
DAVID Check | Furtlzer zf thé CHT is ?rue in‘gvene;:";zl‘, .it‘jmu:‘t be;trAueT for
diagonal matrices. Right? ' o - _ .
| ERM Rig
| J‘OHN Tﬁat case is éa;ty. »
= DAVID OK. S6 now e ':ho;tld be able 1o show if's true Sor diag'onalz;zable:',

- matrices, by using the similarity transform S7IDS, on diagonal matrices and

- hoping that the algebra goes away.
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 DAVID So, then maybe we can get the general case by doing the same thing on
upper triangular matrices and using the fact, ie., the Jordan Normal Form
Theorem, which we haven't proved, but know about and all believe, that all
matrices are similar to upper triangular matrices with their eigenvalues on the

 main diagonal. ‘ : . ‘ '

KEN ‘»I_'lxat' sounds good to me.

JOHN Does all the algebra' come out right?

- ERM '. Let’s trj_;‘t and see. . . o I * S s

- And so we developed David’s plan by establishing the theorem in the upper triangular case
- ([25, p. 224] gives an approach to this) and it did indeed lead to a proof of the theorem.
.. There are several noteworthy features about this episode: (1) the line of reasoning parallels
‘- exactly the direction of constructional derivation of one branch of the examples-graph we ,
. built: Identity --> Diagonal --> Upper Triangular; (2) they strongly used reference and
- model examples (eg., identity, diagonal and upper triangular matrices) of the eigenanalysis
domain; (3) the whole interchange was completely spontaneous and took but a minute. The

.- rest of the seminar was truly amazed at the speed at which David formulated his plan, and - _
- also how pretty it was. David commented that it seemed the “obvious” thing to do. Ken . L
. chose to write about this theorem, its proof and the importance of examples as his term =~

* paper.

e ,432“53_‘_",“:". C'otﬁmen;ts on VPx'-o’ble:n,l Solvxng'

s During the semester, the students met to work on some selected problems in a one-on-one
‘manner. The ground rules were that: these sessions were not tests; they could look up

“ . .anything they wanted in our notes and references; they could always ask for suggestions and -
~advice; there were no time constraints; and if possible, they would try to think out loud
while they worked. : - ) o

_ All the sessions were tape-recorded. The problems ranged in dif;ficuity and style from -
’ .standard'.qpes_tions_with a stated goal, such as: o o , o

- Show that the possible gigénvaldes of aﬁ involution'(Uzél) are+l and <I.

or: o e : L .
_ Give a counter-example to show that interchanging rows of a matrix does

not leave its eigenvalues unchanged.

: m} ,. .' e to mdfe’ \":ag'ulely_-:pqsgd pr.qblem‘si, such as: .
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~

W hat can you say about the spectrum of a permutation matrix?

_._Most all of the students handled the first question by using the declarative definition for
"eigenvalue™.  All the students answered the second question by examining the reference
~collection of the "Basic 16". Most attacked the third question. by examining the 2X2 cases to-

form a preliminary conjecture and then some of the 3X3 cases to test and refine it; not all
started out this way, but those that tried to attack the problem through more general
arguments found they could not get a handle on the problem and thus followed the heuristic
- of examining the two-dimensional case. To this author’s delight they handled these
problems with great poise and enthusiasm.’ They were, for the most part, completely
.~ undaunted by the fact that they had to decide how to attack the open-ended problems. Asa ... .
~ bonus their answers were very complete. o S - ' '
5. Understanding Mathematics
Understanding mathematics is a process that can be understood and to some exténtv taught.
- In our view of understanding, a good part of the process is concerned with building and

- enriching a knowledge base. This includes creating associations of many kinds as well as
. items. It also involves differentiating between various kinds of items according to their:

'fqryc’_ti'cm_ in acquiring knowledge, familiarity, and expertise. =~
CIn Serﬁérf,j some of the ingredients of the process of understanding mathematics are: .

1. Knowledge of items and relations: general types such és the item/relation pairs L |
. of the three representation spaces and dual relations, as well as particular ones

- such as generalization and specialization; = ' L

_ - 2 General strategic or control knowledge such as: knowing to restrict the
.- situation under consideration to the particular case of an example, such as a
- reference example; in particular, restricting the situation under consideration to
“the case of an example of known generality, such as a model example, analysing
. how things work, and then lifting back up; knowing to fool around with
- -examples, especially reference or models, when out of ideas; knowing to perturb

statements and settings; , S . » s

3. Meta-knowledge such as: knowing to keep one's eyes open.for items of special
note such as models, references, MP’s, etc; and knowing that keeping track of
links by mapping out one’s knowledge base (at least thinking about trying to do
- this) can be a useful not only to keep track of what one knows but to build
- global understanding; . - '

m . I TR, | - 4. Epistemological knowledge : knowing that certain items serve pérticular
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~ functions in understanding; and that some ideas and processes, such as the
, . "group” idea [1] or the "divide and conquer” technique (1] are very general and
. pervasive through all of mathematics. -~~~ "7 —
‘5. Representational knowledge of knowing: how to organize and keep track of
- what one knows such as through maps and networks of items.and relations, and
through representation schemes, such as frameworks for individual items.

Thus, to understand an item or a_theory fully, one must be able to examine it at different

levels ‘of detail and from several points of view; follow infra-space and inter-space

associations; perturb and fiddle with items; and survey the overall topography of the spaces . . - -
~individually and together; and link them with other theories. In short, to achieve a deep '

. sense of understanding one must have established many links ofall kinds. =~

T e s e et et
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