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Introduction

Programming languages are usually organized around unilateral
computation. Programs perform predetermined operations on their inputs to
produce desired outputs or to evolve a desired process. Physical systems,
on the other hand, are usually specified as sets of constraints among
several variables. A constraint such as x*y+z=3 is no more about how to
compute X given y and z than it is about how to compute z given x and y.
Programs are often written to extract useful information from a set of
constraints. Such programs depend strongly on the forms of the constraints
and are committed to solving for particular variables. For example,
programs for electrical circuit analysis are usually not good for circuit
synthesis as well. ‘

We present an interactive system organized around networks of
constraints rather than the programs which manipulate them. We describe a
language of hierarchical constraint networks. It supplies a set of
primitive constraint types and a means of building compound constraint
- Systems by combining instances of simpler ones. Constraint networks of
this kind can often be used to elegantly describe the specifications of
ordinary programs and data structures as well as mathematical models of
physical systems.

‘We also describe one method of deriving useful consequences of a
set of constraints which we call propagation. Propagation automatically
takes advantage of the sparseness of most constraint networks. Propagation
is not prematurely committed to solving for any particular predetermined
set of uhknowns, nor is it committed to using any particular constraint in
a predetermined way. In fact propagation analysis may be freely intermixed
with the addition of new constraints and the deletion of old ones. This
requires that the system keep track of how its conclusions (and
intermediate results) are consequences of the particular constraints they
were derived from. Dependency analysis is also used to spot and track down
inconsistent subsets of a constraint set. Propagation of constraints is
most flexible ahd useful when coupled with the ability to perform symbolic
manipulations on algebraic expressions. Such manipulations are in turn
best expressed as alterations or augmentations of the constraint network.

The Language of Constraints

A language is a means of communication of ideas. A language
gencrally has a “"theme", the class of ideas which it is optimized for
communicating. For example, most computer languages are designed for
expressing algorithms. They are optimized for communicating imperative, ‘
procedural notions.{Other Languages) . . theme of the constraint language is

declarative. It is good for expressing descriptions of structural
relationships and physical situations.




‘Steele and Sussman 2 Constraints

Every language has a set of primitive entities which represent the
elementary notions of the domain, and rules of composition by which
compound entities are constructed.

Simiple Constraints

We will now proceed to illustrate the entities of the constraint
language by an annotated interaction with the constraint language
interpreter. Input to the interpreter is in lower case, following the
prompt "==)>", '

One kind of primitive (i.e., built-in) constraint we might have is
" an "adder" which constrains three numbers (called the addend, augend, and
sum of the adder) in such a way that the addend plus the augend must equal
the sum. Put another way, it constrains the augend to equal the difference
of the sum and the addend. (The point is that there is no preferred
direction of computation.) First, let's make an adder, called ZAP:

==> (create zap adder)
ZAP

I
ZAP

Every object in the constraint language has a type, and may have parts. We
can ask ZAP to tell us about itself:

==> (>> type? zap)

: A2
ADDER + SUM
==> (>> partnames? zap) Al i
(A1 A2 SUM) ) ZAP \

It seems that ZAP has three parts, the addend (A1), the augend (a2), and
the sum (suM). The parts also have types.

==> (>> type? al zap)
CELL

==> (>> partnames? al zap)
NIL

A cell is a primitive entity which hath no parts.(Elements) coy9¢ are used
for two things in the constraint language. They are used to hold
computational values, and (as we will see later) they can be connected
together when building compound constraints. We can use WHAT-IS to
discover the value in a cell:
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==> (what-is (>> sum zap))
Sorry, I don't know it. I need:
(>> A1 zapP)
(>> A2 zAP)
to use rule: (>> RULE#1 ZAP)

-

At this hoint, the system does not know a value for the suM of ZAP.
However, it has told us that if we had given it the Al and A2 it could have
computed a sum using a rule internal to ZAP. Instead, we now give the sum
a value. : ‘

==> (set-parameter (>> sum zap) 5.0)

5.0 . :+ @

==) (.what-is (>> sum zap)) ) . ZAP
(>> SUM ZAP) = 5.0 '

==> {why (>> sum zap))
Because you told me so.

Now that the system knows about the suM of ZAP, can it tell us about the
A1?

“==> (what-is (>> al zap))
Sorry, I don't know it. I need:
(>> A2 zap)
to use rule: (>> RULE#2 ZAP)

The A1 is not yet completely determined, but it could be determined if the
A2 were known. If instead we specify the a1, the A2 should be determined.

==> (set-parameter (>> al zap) -2.0)

7.0
-2.0 |
.==$ (whaf-is (3> a2 zap)) + @
(>> A2 zAP) = 7.0 : ZAP

==> (why (>> a2 zap)) .

I used rule (>> RULE#3 ZAP) on the following inputs:
(>> suM zap)
(>> A1 ZAP)

We have just illustrated the use of an adder, a typical entity of
the constraint language. A constraint enforces a relationship among
several entities. If enough information is known to immediately deduce
unknown cell values, those values are computed. These new values may
enable further deductions. We call this deductive process "propagation of
constraints”. - (Actually, it is values that are propagated, through a
network of constraints.) :
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“Networks of Constraints

Suppose we also have a kind of constraint called a "multiplier":

. _l!L— PRODUCT
==> (create foo multiplier) -
FOO M2
FooO

Neithgr an adder by itself nor a multiplier by itself is a
particularly fascinating device. The system provides a means for combinin
simple constraints into arbitrarily complicated networks. ' '

In typical algorithmic - computer languages a compound algorithm is
built from simpler ones by rules of temporal sequencing and data flow.
Algorithms can be temporally concatenated (sequencing), selected among
(conditionals), and iterated (do Toops). Data flow is indicated explicitly
by functional composition and implicitly by side effects on shared
variables,

In the constraint language, a compound constraint is bdilt from
simpler ones by linking some of their parts. The method of connection is a.
declaration that two entities are in fact the same.

The "==" primitive allows us to identify any two constraint
entities of the same type. In particular, if two cells are identified they
are effectively considered to be the same cell -- they are constrained to

have the same value.

==> (== (>> product foo) (>> al zap))
IDENTITY

==> (== (5> ml foo) (>> a2 zap))
IDENTITY

We have linked various parts of our adder ZAP and our multiplier
FOO. ~The resulting network looks like:

7.0 A2

+ SuM 5.0

M Al

O\, PRODUET ZAP
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Now ZAP had some values in its cells when we linked them to FOO's'
cells. These values have already been propagated through FO0O.

==> (what-is (>> m2 foo))Q
(>> M2 FOO) = -0.285714287

==> (why (>> m2 foo))

I used rule (>> RULE#S FOO) on the following inputs:
(>> PRODUCT FOO)
(>> M1 FOO)

We can chase these deductions to their ultimate reasons.

==> (why (>> product foo))
I used rule (>> 1<=2) on the following inputs:
(> Al ZAP)

The rule "1<=2" is a manifestation of the linkage between the proDUCT oOF FOO
and the A1 of ZAP.

==> (why (>> al zap))
Because you told me so.

==> (why (>> ml foo))
I used rule (>> 1<=2) on the following inputs:
(>> A2 ZAP)

==> (why (>> a2 zap))

I used rule (>> RULE#3 ZAP) on the following inputs:
(>> suM zap)
(>> A1 ZAP)

It is often convenient to be able to determine the ultimate antecedents of
a deduced value. For example, we know the value of the M2 of FOO because
of ‘a chain of deductions ultimately derived from our knowledge of the suM
and a1 of ZAP. N

==> (premises (>> m2 foo))
(>> SUM ZAP) = 5.0
(> Al ZAP) = -2.0

If we change a premise all conclusions which depended upon it are
automatically retracted and new conclusions are drawn. In a large network
only a few values may depend on any one premise. . The constraint language
interpreter retracts only those "values and only the incremental new

deductions are made.
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==)> (change-parameter (>> al zap) 2.0)
2.0

==> (what-is (>> a2 zap))*
(>> A2 ZAP) = 3.0

==> (what-is (>> m2 foo))
(>> M2 FOO) = 0.66666666{

3.0
>
%z,sss... 40 | 2.0

We cannot so easily change a parameter whose value is a consequence of
other known facts. One of the premises upon which the changing parameter
depends must be abandoned. The system automatically chases down only the
relevant premises and gives us a choice of which we want to retract, '

==) (éhange-parameter (>> a2 zap) 19.0)
Which of the following assumptions will you change?
1 (>> A1 ZAP) = 2.0
.2 (>> SUM ZAP) = 5.0
ANSWER:

Before allowing the system to change anything, we may want to investigate
the repercussions of changing it. (Note that the prompt has changed to
"-->" indicating that the system is waiting for an answer to its question.)

--> (results (>> sum zap))
Rule (>> RULE#3 ZAP) got (>> A2 ZAP) = 3.0

--> (results (>> al zap)) .
Rule (>> 1<=2) got (>> PRODUCT FOO) = 2.0
Rule (>> RULE#3 ZAP) got (>> A2 ZAP) = 3.0

We decide to retract assumption #1, that the a1 of ZAP is 2.0.

--> (answer 1)
19.0

The system finished changing the parameter to 19 and restored the prompt to
"==>". The new value of the M2 of FOO is now:




Steele and Sussman 7 Constraints

==> (what-is (>> m2 foo))
{(>> M2 FOO) = -0.7368421

The new situation is:

@
H—9)
x\ ZAP

-i4.0

u
lq '.3“0073... Foa

Local constraint propagation cannot solve every problem of
assigning values to cells in our network. Sometimes a more global analysis
is necessary. For example, if we change the value of the M2 of FOO to 1.0
and we release the premise concerning the value of the a2 of ZAP, the only
consistent value that either the Al or the a2 of ZAP can take on is 2.5.

==> (change-parameter (>> m2 foo) 1.0)
Which of the following assumptions will you change?
1 (>> A2 zaP) = 19.0 -

2 (>> SuM ZAP) = 5.0
ANSWER: + @
| I~ ZAP
X

- (answerll)
1.0 “III’P-_--"igzrf

==> {what-is (>> al zap))
Sorry, 1 don't know it. I need:
(>> PRODUCT F00)
to use rule: (>> Z<=1)
or, I need:
{>> A2 7AP)
-to use rute: (3> RULE#2 ZAP)

-~

0

The problem is that neither the adder nor the M2 has enough information to
make any deductions by itself. However, if they could collaborate, they
could come to a correct conclusion. We will discuss this later.

Inasmuch as the constraint network cannot determine the prooucT of
FOO, we will specify a value explicitly.
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==> (change-parameter (>> product foo) 17.0)
Contradiction...disputants are:

{>> PRODUCT FOO) = 17.0

(>> CHALLENGER: RULE#B‘FOO) = -12.0
Choose an assumption to change:

1 (>> M2 Foo) = 1.0

2 (>> SuM zAP) = 5.9
ANSWER: '

4_— —‘2 lo

C \—9 N /) -i-ZAID 5.0

CONTRADICTION!

|
Unfortunately, the very act of making the assumption that the proDuCT of FOO
is 17.0 allows the deduction that the probucT of FOO must (also) be -12.0,
given the other assumptions in force. This immediate contradiction is
noticed, and the system presents us with a choice of actions.

--> (answer 2)
17.0

We have chosen to discard assumption 2, and the network readjusts itself.

>

> (what-is (>> sum zap))
> SUM ZAP) = 34.0

> (what-is (>> a2 zap))
>

A2 ZAP) = 17.0

(
(>

17.0

Now we have seen the rule of composition by which constraints are
combined into networks of constraints by identification of parts. We have
also seen how it is possible to compute with constraints. The constraint
interpreter maintains the "dependencies" which describe how conclusions are
drawn from their antecedents. Besides the fact that the dependencies are
important to the system for efficient computation (as we shall see), they
are useful for debugging purposes, and for helping a user understand  the

+ 34%.0
ZAP
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behavior of his constraint network. We believe that this is a good idea.
A discipline should be developed for construction of systems so that they
are responsive -to their users. They must be responsible -for their

‘conclusions and able'to*explain how the conclusions were derived. This is

increasingly important as systems become more complex, thus exceeding the
understanding of any one person.

Abstraction and Hierarchy

, Using the "=zv construction, we can build networks of adders and
multipliers which are arbitrarily large, and thus arbitrarily complex. 1In
order to deal with this complexity, we need a way to break up large
networks into meaningful pieces. If we are lucky, many of these pieces
will be the same, and can be considered single building blocks at a higher

conceptual level. We need a way to define such building blocks in terms of
smaller ones. :

We would like these compound building blocks to behave in the same
way as the primitive entities of the language. This allows us to combine
stich building blocks using the same construction methods. In this way we
can build arbitrarily complicated compound objects in a hierarchical
manner. The hierarchy allows the complexity at any one level to be
limited. '

In languages which permit this kind of hierarchical definition
there is a rule of abstraction, which specifies how a compound object is to
be treated as a simple one. Such a rule must specify a particular
combination of simpler objects which is to be abstracted, and an interface
between the specified combination and the external appearance of the
abstraction as a single object.{tambda)

The constraint language provides a rule of abstraction which allows
Us to associate a name with a pattern designating component constraints and
"==" specifications for linking them. When a pattern is instantiated, the

" designated components are recursively instantiated and then linked

according to the "==v specifications.

For example, we can combine adders and multipliers to produce a

. kind of compound contraint called a "resistor". An (ideal) resistor . is

essentially an object which enforces numerical constraints among two node
potentials, two currents, and a resistance:
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A
. b
(V-v)=iR
" '3
L,+1, =0 >
i1l

We notate this as follaws:

==> (constraint resistor
((vl number)
(v2 number)

(i1 number)

(i2 number)

(resistance number)

I I (av adder)’
v 1} {ai adder)
" {m multiplier))
R =='v1l (>> sum av))
1v; 12 == v2 (>> al av))
] l == (>> a2 av) {>> product m))

il (O> ml m))

resistance (>> m2 m))
il (>> al ai)) : .
i2 (3> a2 ai)) Vi I

constant (>> sum ai) 0.0))

"
n

u
1

"
"n

" RESISTOR

The keyword "constraint" is followed by a name, a list of component names
and types, and a set of linkages. The expression (constant <something> <valued)

is an abbreviation for forcing <somethingd to have the given computational
value.{ThingLab)

With this definition we can make a resistor in the same way that we
make an adder: - N :

==> (create r43 resistor)
R43

This causes R43 to be the name of an instance of the pattern ReSISTOR. In
instantiating the pattern, instances of components such as adders and
multipliers are also effectively created. We can use instances of resistor
to build a voltage divider:
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Constraints
==> (create r44 resistor) | l
R44 v 1,
==> (create kcl1l adder) . RI—
KCL1 .
==> (== (>> v2 r43) (>> vl ra4)) Vi 12
IDENTITY %_’_
==> (== (3> 12 r43) (5> al kcll)) = m
IDENTITY : v, 1,

=> (== (5% i1 rdd). (>> a2 kel1))
IDENTITY

==> (constant (>> sum kc11) 0.0) v 12
0.0

It is silly to use adders and numerical connectors to hook together
resistors. We should not be mixing conceptual levels. In the world of
electrical circuits, elements like resistors have terminals which connect
to nodes. A terminal has a potential ("voltage") on it and a current into
it, packaged up together. A node connects two or more terminals so as to
constrain their potentials to be the same, and the sum of the currents into
them to be zero. '

[ ]
==> (constraint terminal ((v number) (i number))) 6 ,6
TERMINAL v 1

The "terminal" cdnstraint is trivial. AlY it does is package up two
numbers so that they can be referred to as a unit.

T
==> (constraint 2-node
((t1 terminal)
I _‘ (t2 terminal) OV i?
(kc1 adder)) =
(== (O> v t1) (> v t2)) + m
T2 (== O> 9 t1) (> al kel)) =
F (== (00 1 t2) (O a2 ke1)) v ib
* (constant (> sum kcl) 0.0))
2-NODE )
' T2

A "2-node" is a two-terminal node. It has an adder for enforcing the sum-
of-currents constraint (Kirchoff's Current Law). The equal-potentials
constraint (Kirchoff's Voltage Law) is enforced by direct identification.
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T

==)> (constraint resistor
((t1l terminal)

AL (t2 terminal)
(resista;ce number)
R (av adder)
. T2 :

(ai adder)

{m muitiplier))

== ())lv tl) {>> sum av))

(>> v t2) (>> al av))

(>> a2 av) {>> product m))
(>> 7 t1) (O> m1 m))
resistance (>> m2 m))

= (> 1 t1) (>> al ai))

== (>> i t2) (>> a2 ai))

| (constant (> sum 8i) 0.0))
RESISTOR - ' T2

i}
i

|t

n
"

.3

|72

"
1]

This definition is as before, except that terminals are used.

Now we can simply create two resistors and a 2-node, and connect

them up by identifying the terminals of resistors with terminals of the
node.

==> (create r43 resistor)

R43 ,
==> {create r44 resistor) RY3 P, %
R44 : 5
==> (create n2 2-node) - N2 |
N2 :
==> (== (>> t1 r44) (>> t2 n2)) R &=
IDENTITY !
== (== (>> t2 ra3) (> tl n2))
IDENTITY :

In the “constraint language, it is possible to identify compound
constraints, using "==", in exactly the same way that primitive objects
like numbers are identified. The meaning of equality for compound objects
is that two objects are equal if their corresponding components are equal.
Thus when two terminals are made equal, their voltages are identified, and
so are their currents.

(In the examples involving electrical components we have been, and
will be, carefully skirting a difficult issue regarding the directions of
currents. In the constraint language, things "connected together" are
identified as being the same thing. In the electrical world, while
electrically connecting two electrical terminals makes their voltages the
same (Kirchoff's Voltage Law), it does not make their currents the same.
The currents are instead subject to the more complex constraint that they
must sum to zero. This 1is the reason we use nodes as an intermediate
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- connector  for enforcing Kirchoff's Current Law. Nodes must be used

carefully to keep the current directions straight. Two constraints
describing electrical devices cannot be directly connected, but must be
connected through a node. Additionally, two nodes cannot be directly
connected, except through a constraint representing a device. The examples
we give here are correct, but it is.very easy to misuse the language.)

" We can use this structure to compute parameters of the circuit.
The two resistors form a‘voltage divider. We can, for example, specify the
voltages at the ends and middle of the divider, and the resistance of one
resistor. The algebraic constraints of the circuit will then permit the
deduction of the resistance of the other resistor:

==> (set-parameter (>> v t2 ras) 0.0)
=> (set-parameter (>> v t1 raa) 3.0)

(set-parameter (>> v t1 ré3) 10.0)
10.0 .

==> (set-parameter (> resistance r44) 9.0)
9.0

==> (what-is (>> resistance r43))

(>> RESISTANCE R43) = 21.0

This is similar to computations we have already seen. The "real work" is
being done by adders and multipliers which are part of the description we
have provided of resistors.

As before, there can .be problems with not being able to compute
something  with constraints for which we in  principle have enough
information. For example, given the voltage at the top and the bottom, and
the resistances of both resistors, it should be possible to compute the
voltage at the midpoint (the "divided voltage"):

.==> (forget-pafameter (>> v t1 raq))
NIL .
== (set~pa}ameter (>> resistance r43) 21.0)
21.0
==> (what-is (>> v t1 rdaq))
Sorry, I don't know it. 1 need:
(>> Vv 12 N2)
to use rule: (>> 1<=2)
or, I need:
(>> SUM AV R44)
to use rule: (»> 1¢=2 R44)

Forgetting the voltage at the midpoint caused the system also to forget the
resistance of R43, which had been deduced from this voltage. Reinstating
the resistance value should permit the deduction of the midpoint voltage,
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but as before this cannot be done locally by the constraints. There are
several ways around this problem. One is to introduce multiple views of
the circuit; we will examine this technique in the next section. Another

is to use. symbolic algebra in the computations; this will be examined
later.

Almost-Hierarchical Systems

To be powerful, a description must impose a conceptual structure on
a system for the purpose of limiting the complexity involved in
understanding or " designing it. If a system cannot be immediately
understood in its entirety (by "Gestalt") then it must be understood in
pieces. The descriptive structure directs attention to sets of components
of the system which together constitute a single conceptual piece.

Often a system can be partitioned into pieces which are more or
less disjoint and which together cover the entire system. The total system
can be understood by understanding the pieces and by understanding the
composition by which the pieces constitute the system. Similarly, each
piece may be similarly partitioned. In this way we derive a single tree-
like decomposition of the system. Such a tree we call a hierarchy.

It is likely, hovever, that at any stage there is more than one
useful partitioning of a piece. If so, then a single hierarchy does not
suffice to indicate all the conceptual pieces of interest in the system.
Pieces whose sub-pieces are localized within one hierarchy will probably
have its sub-pieces widely dispersed throughout another.

For example, a mechanical timepiece has among its major parts a
mainspring, several wheels or "gears" (main, Center, third, fourth, hour,
minute, and escape wheels), a lever, a balance/hairspring assembly, and
hands. These parts are usually grouped into sets which are physically
connected: the mainspring and main wheel together form the barrel; the
‘center, hour, and minute wheels plus the hands form the motion works; the
main, center, third, fourth, and escape wheels form-the wheel train; and
S0 on. Also, some of the parts are themselves complicated assemblies, for
example the balance. '
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Notice that there is some overlap between the main structural groupings
where they interface.

A timepiece also may be functionallz described as a fivefold
decomposition:

5:5:3:. %Tuusnxssron .% OScILLATOR {scu:,ve -{DISPLAY

A AN

E ner-j y 7 I r:for'm ation

Conceptually these five functional parts are disjoint. In every real
mechanical timepiece, however, the same physical part may serve in more
than one functional unit. The wheel train which transmits energy from the
mainspring to the escapement also performs part of the scaling between the
escapement's oscillations and the display (dial); but the wheel train is
not part of the oscillator module which appears between the transmission
and scaling modules. The escape wheel is part of both the oscillator
module and the wheel train. Other parts are also shared among modules.




Steele and Sussman 16 Constraints

. WATCH

"”
"
"
Watch WATCH
Function STRUCTURE
<
etk —— -

s :D ‘ ¥
e replay |
Oscillator :
P '
/ - ]
"l e N mse'Ll :MOTI";‘ {BARREL :

NCE EScCAPE-~ w ' WORKS!
BALA MENT ] TRAZN IW/\,’ ' ‘\ \ H

Trans ~ ' LAY
f mINUTE | NOUR I
4’11551071) nggg" WHEGL'I ]
MAINV
IR BALAwCE ! HoUR /
SEQI NG WHEEL PEMCTE pAND | SRRING
ESCAPE (Ene:gg)
C
WHEEL ROLLER WHEEL
FourTH = CENTER Ay
WHEEL WHEEL

ScREWS STAFE LEVER WHEEL

In this diagranm, the structural and functional hierarchies are
(partially) shown together. Notice that each not is a strict hierarchy,
but almost is; and that the two almost-hierarchies are not the. same, but
are similar. In some places a single unit in one hierarchy is the same as
a single unit in another (for example, the wheel train and transmission
coincide). In other places what is a single unit in one hierarchy is
spread out in the other (for example, the single functional idea of scaling
is spread out in the structural hierarchy, while the wheel train and motion
works structural units each have various purposes in the functional
hierarchy). ) 7

It would be possible to design a timepiece which exhibited much
less structural overlap between functional units, so that the structural

and functional hierarchies would be almost identical. While such a
timepiece would certainly exhibit "structured" design, in the sense of
"structured programming", it would be much less reliable (due to

unnecessary duplication of parts to avoid overlap), and would be very
difficult to make small enough to ride comfortably on one's wrist.

Other engineered systems, such as electrical circuits and computer
programs, exhibit a similar sharing of parts among uses. A strictly
hierarchical description can be only an approximation to the true structure
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of an object. Conversely, when designing an object, a good engineer may
start with a hierarchical plan, but will then slightly destroy the
hierarchy when interfacing the substructures. This occurs because any
particular hierarchical'description emphasizes some groupings of -features
at the expense of other equally valid or important ones. A.given hierarchy
may be violated because of constraints not visible within that hierarchy.

A good description explicitly acknowledges the'sharing of structure
in engineered devices. This can be captured as a locally hierarchical
structure in which each feature is described and related to "lower-level"
features which implement that feature, even though those sub-features‘may
be spread throughout some other (also locally hierarchical) part of the
description and used to implement other features as well.

The constraint language naturally permits one to express almost-
hierarchical descriptions, because its rules of composition are explicitly
stated in terms of the 'sharing of parts. The rule of abstraction is
hierarchical, but the rule of composition permits one to violate the
hierarchy in any desired manner.

In fact, we have already used this feature to describe the
connection of two resistors. One terminal of each resistor is shared with
a terminal of the node. Terminals are not very. interesting as they have no
non-trivial internal structure. However, let us extend that example to
demonstrate a more interesting almost-hierarchy.

We first express the idea that two resistors in series are
equivalent to a single resistor:

==> {constraint series-resistors

((rl resistor) Oal)

(r2 resistor) -

(req resistor) . RI REQ
(a adder)) e

T== (> t1rl) (0> t1 req))
(== (5> t2 r2) (>> t2 req))
(== (>> al a) (>> resistance rl)) R2
(== (>> a2 a) (>> resistance r2)) -
(== (>> sum a) (> resistance reg)))

SERIES-RESISTORS

(This does not say that (»> t1 req) is electrically connected to (>> t1 r1).
It says that (>> t1 req) is (>> t1 r1). This differs from the situation where
two resistors are connected through a node. Here we are talking about two
views of the same terminal.)

This definition does not express the fact that we ordinarily apply
it only to resistors which share a common node. This is a restriction on
usage of the constraint, rather than a restriction to be enforced by the
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“constraint. If it is used properly, however, it will enforce the desired
series constraint. We now construct an instance of the constraint, and use
it to describe the resistors R44 and R43 connected earlier.

==> (create srl series-resistors)
SR1

==> (== (>> r1 srl) ra3)
IDENTITY .

=> (== (>> r2 srl) r44)
IDENTITY

f

Now there are two simultaneous, redundant descriptions of what is going on
between the upper and lower terminals of the circuit. Neither description
is regarded as being "more real" than the other; we merely say that one or
the other is more useful for some purpose. Both descriptions, as one
resistor and as two, are  equally valid. We can speak of
(> resistance req srl), the resistance of the resistor in the single-resistor
description, just as well as of (>> resistance rd3) or (>> i t1 r44), which are
quantities of the two-resistor description.

Tﬁese redundant descriptions have important computational
applications. For example, in the voltage divider circuit the alternative
description of the divider as a single resistor permits the deduction of
the current through the divider. This in turn permits the deduction of the
voltage at the midpoint! ‘

==> (what-is {>> v t1 r44))
(>> V T1 R44) = 3.9

What we have done here is to introduce an alternative point of view of the
circuit. While in principle it contains no extra information, the new
viewpoint is better organized for certain purposes (such as determinihg the
current through the divider). The constraint language permits us to

introduce many such redundant viewpoints so that they can cooperate in
solving.a problem. '

Let us add another resistor R45 to our circuit:

We can describe various series combinations within this circuit:
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In this manner the flat three-resistor circuit can be
hierarchically decomposed in at least three different ways: (1) as three
Separate resistors; (2) as the series combination of the upper two, in
series with the lowest; (3) as the uppermost, in series with the series
combination of the lower two. In a given circumstance one point of view
may be more useful than another. Moreover, the various points of view do
not fit neatly into a single hierarchy. They can be organized into an
almost-hierarchy.

Constraints and Algebra

It might seem that in writing down and using constraints we are
Just writing algebraic expressions in a different and not even convenient
form. This is true to some extent, but it is not the entire picture. The
constraint language is a kind of "structured algebra™ in that we have
almost-hierarchical Structures which allow us to manufacture and combine
systems of algebraic coristraints to make larger systems. Additionally, we
will see that networks of constraints are more fundamental than the
algebraic notation used to describe them, in that there may be many
equivalent sets of equations which describe any given constraint diagram,

but there is precisely one constraint diagram for any given set of
equations. - :

Algebra has two components of interest. One is a notation for
expressing constraints, and the other is @ set of transformation rules
which permit the derivation of consequences of the constraints.

The reader may have noticed that the constraint language is rather
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~verbose. In defining the numerical constraints in the RESISTOR constraint

definition, we had to write out eight lines:

(> v‘tl) (>> sum av))

(>> v t2) (>> al av))

(>> a2 av) (>> product m))
(>> 3 t1) O>m m))
resistance (>> m2 m))

== (5> 1 t1) (>> al ai))

== (3> i t2) (>> a2 ai))
constant (>> sum ai) 0.0))

(
(
(
(
(
(
(
(

Using an algebraic notation, we might have written simply:

(O> v t1) - (O> v t2)
(> i t1) + (> 1 t2)

{(>> 3 t1) * resistance
0.0

Algebraic convention normélly dictates that simpler variable names than
"(>> v t1)" be used. We have used the same long names in the algebraic
equations not only for the sake of a "fair" comparison, but because names

of this form are critical to the almost-hierarchical composition of the
constraints. ’

Algebraic notation is expression-oriented. It achieves conciseness
through the use of functional composition. 'The relationship of arguments
to function is implicitly expressed by position, permitting the elimination
of explicit description of the connections. For example, in expressing an
addition constraint in the constraint language, we explicitly mention the-:
three "pins" a1, A2, and suM of the adder, and explicitly specify what they
are linked to. 1In algebraic notation we simply write "a + b". The "+

-denotes an adder constraint. The three connections to the adder constraint

are expressed by position. Whatever is to the left of the "+" is connected
to the Al pin; whatever is to the right of the "+" is connected to the a2
pin; and the suM pin is connected to the pin of whatever operator of which
the entire expression stands as an argument. If we write "(a + b) % c",
then the suM pin of the adder constraint is connected to the M1 pin of the

.multiplier constraint.

The connections indicated in an algebraic expression form a tree,
with connections to identifiers at the leaves, and a single 1loose
connection coming "out the top". To connect the 1loose ends of two
expressions, we use the equality symbol "=", Ap equation, unlike an
expression, is a constraint network with- no loose ends (or rather, the
loose ends are explicitly indicated by the presence of identifiers).

The advantages of algebraic notation are obvious. What do we pay
for conciseness? Asymmetry. To a mathematician, the following three
statements say the same thing:
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E=K+U K=E-U U=E-K

Each "binary" operator must in principle have three forms, one for each of
the three connections that may come "out the top" as opposed to being
connected to "arguments". (In the case of addition and subtraction two
forms suffice because one of them is commutative. Consider, however, the
triplet of equations

X = y? y =“z/x z = log, x

each of which expresses the same constraint in a different form. More
generally, an n-ary operator with no symmetries on its pins requires n+l
distinct forms.) The constraint language preserves symmetry of expression
and economizes on primitive notations: both additions and subtractions are
expressed by the same constraint. “The cost of this symmetry and economy in
the constraint language is verbosity.

Algebra provides rules - for transforming among  equivalent
representations of a constraint. Given this, in some sense it doesn't

matter how they are written down. Equations express truth.

‘Given a set of equations, we can easily draw the (unique)
constraint diagram which they represent. For example, for the set

2*xX+3%xY=6 5% X+4xY =7

we draw the diagram

+

7

Each equation represents a piece of the network which is an unrooted tree,
the result of connecting two rooted trees at their roots. The purpose of
the identifiers X and Y in the equations is to cut the loops in the network
in order to make them printable as (necessarily tree-like) expfessions.
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When the separate tree-like pieces are printed, the identifiers indicate
the cross-branch and inter-tree connections.

.For any given nétwork, there may be more than one way to cut the
loops. For example, we could use another variable U:

We can then write this 6ut of the network as
6=U+ 3% ((7-5%(U/2))7/a)

Even for a given assignment of identifiers, one can write many different
equations by choosing which (two-ended!) connection to use for the
equality; the two parts of the equation tree are considered to be rooted
at the ends of the chosen connection. Using the connections marked {a},
{b}, {c}, {d}, {e} we get these equations: '

{a) U=2x%((7-4%((6-U)73))/5)
“Ab} U/ 2= ((7-4%((6-1U)/3)) /5
{e} 5% (U/2)=1(7-4x%((6-U)/3))
{d} (7 -5%(U/2))=4x%((6-U)/3)
{e} 3=1(6-U)/((7-5%(U/2)/a)

All of these equations represent the same network of relationships.

It is of course possible to use more identifiers than necessary.
One (U) suffices for our example, and it could have been put in any of six
places. - Ve originally derived the diagram from two equations in two
identifiers X and Y. Ve could use more than two if we desired to, for some
reason; we could also assign more than one identifier to a connection, and
equate the redundant identifiers. Taken to the extreme, this approaches
the connection specifications of the constraint language, wherein each
quantity has multiple names which are equated.
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In some diagrams a single connection may have more than two "ends";
i.e. the same quantity is constrained in more than two ways. This occurs
in  the RESISTOR definition above. Now the implicit connections in
expression notation have only two ends. When a diagram with many-ended
connectors is to be printed as a set of equations, such connectors must -
have identifiers assigned to them, because only identifiers can express
multiple-ended connections in algebraic notation. After such identifiers
have been assigned, additional ones ‘may or may not be needed to cut
remaining loops. ) )

The various ways of algebraically notating a set of felationships
are equivalent. A network of relationships simply exists. It is in this
sense that we mean that constraint diagrams are more fundamental than sets
of equations. Many algebraic laws (but not all) simply provide for
transformations among sets of equations which represent the same diagram.

When we begin to use the network for some computational purpose,
however, then the point of view becomes important. If we wish to compute
some "output" value(s) given certain "input" values, where all the values
are related by some network of constraints, we must organize an information
flow within the network. Intermediate computations must proceed along an
acyclic path from inputs to output(s).

So-called "algebraic" programming languages find algebraic notation
a convenience because the tree implicit in ‘the functional composition is
guaranteed acyclic, and there is an asymmetry to each connection (from "out
the top" to "into an argument slot") which can be construed to imply the
direction of information flow. The notation therefore requires the
programmer not only to express relevant relationships but also
simultaneously to specify the particular computational use to which the
relationships will be put. Thus, for example, Ohm's Law is the equation
"W = I R", but the user of an "algebraic" programming language cannot
simply write this algebraic equation; he must put it in a particular form
(for example, "I := Vv / R") which explicitly directs the computation.

This may serve as a definition of the distinction between
"imperative" and "declarative" languages. An imperative language requires
the programmer to explicitly break loops in the network of constraints, and
to explicitly organize the. information flow within the network. A
declarative language requires only the statement of relevant relationships,
and the computational organization is specified separately or performed
more or less automatically.

Besides requiring the programmer to specify the computational flow
as -a tree, most "algebraic" programming languages require expressions to -
denote single results.(Mi1tiple Values) For example, there is generally no way
to define an integer division "function" which returns both quotient and
remainder (which is a shame, because typical algorithms for computing
either actually compute both, particularly those used in many contemporary




Steele and Sussman 24 éonstraints

- Computers) and embed a call to such a "function" in an expression. This is
an inherent property of trees.

We pointed out earlier that algebra provides transformation rules
for "shifting perspective" on a relationship, for example transforming
"E = K + U" into "K = E - U". Not all algebraic transformations are this
simple. Some do not merely view the same network in a different way, but
produce a different network which has the same meaning by virtue of non-
trivial relationships between the meanings of the component constraints. A
good example of this is the distributive law of multiplication over
addition: '

X=AB+AC <{=> X=A(B+C)

The networks for these two equations look like this:

X | X

These networks are -topologically distinct: one has a loop, and the other
does not. Consider now trying to compute A given X, B, and C. The second
network can be used straightforwardly, because a spanning tree can be
imposed on it, rooted at A, with all leaves given, specifying a complete
computational flow. Such a tree cannot be imposed on the first network.
Any spanhing tree rooted at A has A as a leaf (a spanning tree rooted at a
connection extends out only one end of the connection), and so is
unsuitable for computing A. '

This is why the voltage divider failed to compute the midpoint
voltage given the endpoint voltages and the two resistances. The
constraints imposed by the resistor definition contained loops which
brevented the system from finding an effective computational flow within
the network. Imposing the SERIES-RESISTORS equivalence introduced extra
paths which provided an effective spanning tree for the network in terms of
the particular givens.
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Computing with Constraints

All of the computations we have performed with constraint networks
can Dbe described as simple propagation of known wvalues. Values are
propagated through primitive constraints and through equalities by "one-
step deductions",{Propagation) Primitive constraints are processes containing
local cells which "continually" monitor the cells. A cell may at any time
have a value associated with it. A primitive constraint will notice if any

of its cells gets a value, and if it can locally determine the value of one
Cof its cells from the values of its other cells, it will associate the
deduced value with that cell. A cell can also get a value by being equal
to another cell which gets a value. Finally, a cell can be arbitrarily

assigned a value by the user or by a consTanT declaration (cf. RESISTOR
above).

If a cell has an associated value, it also has associated with it a
reason.‘0ependencies) e oo value was obtained from other cells through a
primitive constraint, then the reason mentions those other cells and the
particular rule of the primitive constraint used to make the deduction. If
the value was obtained'through an equality with another cell, the reason
mentions that cell. If the value was arbitrarily assigned, the reason
points to the user or to the system (CONSTANT) . These reasons
("dependoncies") are easily constructed as the deductions are made; they
are essentially simple markers indicating the direction of information flow
within the network. These markers can be;traced at any time for such’
purposes as fihding the antecedent assumptions of a deduced value, or
locating the consequences of a value. These may be in turn used for
explanation or incremental forgetting of a user-supplied assumption and all
of its consequences (as we have seen). In addition, if one traces from a
value back to its antecedent assumptions, the part of the network traced,
with the directionality imposed by the dependency markers, constitutes a
formula for computing the value.(c"""”“ng Constraints)

It is possible that a cell be assigned a value for more than one
reason. If two values collide at a cell they must be the same. If they
are not, and if the network represents a satisfiable set of constraints,
there 1is an inconsistent set of assumed values. The dependencies can be
used to determine the subset of the set of assumed values is inconsistent.
This can be helpful in dealing with very large networks with lots of
assumed values, where any one contradiction typically depends on only a
small subset of the many assumptions.

In a satisfiable constraint net:wbrk, the values which will be
associated with cells are independent of the order of propagations through
the network. Thus we may think of them as occurring in parallel, though
they are implemented by means of a queue or agenda in our current system.

As we have seen, there are simple networks for which propagation
fails to assign all of the values one might desire. For example: :
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We have already discussed how redundant descriptions may be used to bypass
such loops by superimposing an equivalent tree structure. Another, related
strategy involves the use of symbolic algebraic manipulation. If we enable
the primitive constraints to propagate symbolic expressions as well as
numerical values, we can use powerful algebraic manipulators to propagate
past loops. If for example, in the problem above, we put the symbolic
value. "X" on (>> Al zAP) then 17Ap may deduce that its a2 is 5-X.
"Simultaneously" Ffo00 may 'deduce that its M1 is X/1. These values are on
cells declared to be equal; thus an equation may be formed, X/l = 5-X, and
solved algebraically. Once the value of X has been determined, then the
numerical values for the propagated symbolic expressions can be computed
(or at least expressions involving X and possibly other variables can
perhaps be simplified).

)

Algebraic techniques of this sort were used in such systems as EL,
ARS, and SYN.{Algebraic Propagation} p¢ g ‘easy to see, however, that
propagation of symbolic expressions in effect makes copies of tree-like
portions of the network; each expression is a history of the portion of
the network through which 1its pieces were derived. The algebraic
techniques applied to these expressions might as well have been applied
directly to the network. Instead of applying the distributive law to an
algebraic expression, for example, one might as well just attach that extra
point of ‘view to the network. The implications of this idea have just
barely begun to be explored.
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Notes

{Algebraic Propagation}. We have used propagation of algebraic expressions
in our work on analysis and synthesis of circuits.{Propagation) Although we
have wused algebraic manipulation techniques (extracted from MACSYMA
[MACSYMA]) far more powerful than people generally use,. we have found that




Steele and Sussman 28 | Constraints

"these techniques are not, by themselves, powerful enough to solve many
interesting problems which people can solve. People generally solve these
problems by organizing the solution so that only simple algebra is required
(often by using canned theorems, whose proofs perhaps required tremendously
complex algebra (done once and for all by a clever person whose name is
probably attached to the theorem), but whose application does not require
complex algebra). To avoid tremendous symbolic computations, computers
must also have good methods of avoiding doing all except the most trivial
algebra problems. Ve have used multiple redundant descriptions [Sussman
19777 to encapsulate ways of looking at a problem which are organized so as
to obviate the need for extensive algebraic manipulation.

{Compiling Constraints}. The idea of extracting procedures for computing
specific values from a constraint network is being pursued by Richard Brown
[(Brown 1978]. Borning has also done work in this area.{Thinglab}

{Dependencies}. TOPLE [McDermott 19747 was an early attempt to record the
interactions among deductions for the purpose of maintaining consistency in
a data base when newly introduced facts conflicted with existing ones. The
SRI Computer Based Consultant [Fikes 1975] made use of dependencies to
determine the logical support of facts, but did not use them to control
search. MYCIN [Shortliffe 19741 [Davis 1976] [Shortliffe 1976] wused
dependency information to produce explanations, but did not use it for any
control purposes. EL [Sussman & Stallman 1975] used dependencies to
produce explanations and also to 1limit the recomputation required in
response to incremental changes in the assumptions. Stallman and Sussman
described a general means of limiting combinatorial search by the analysis
of dependency chains and the use of multiple logical supports for facts
[Stallman & Sussman 197717. This method, called "dependency-directed
backtracking", was independently discovered by Jim Stansfield (unpublished
Ph.D. thesis draft, University of Edinburgh -- the idea was edited out of
the final thesis for unknown reasons). This method is superior to the more
familiar "chronological backtracking”, introduced by Floyd [Floyd 1967 ] and
best known for its use in Al languages beginning with PLANNER [Hewitt 1972]
and’ Micro-PLANNER [Sussman, VWinograd, & Charniak 19717, in that it avoids
the irrelevant dependencies assumed by the system on the basis of
accidental chronological orderings of assumptions [Sussman & NcDermott
19727 [Stallman & Sussman 1977]. Doyle [Doyle 1977] developed a portable
"Truth Maintenance System" which encapsulates a careful theory of
dependencies, dependency-directed backtracking and non-monotonic inference.
A simpler system for dependencies and backtracking was developed in
[McAllester 1978]. McDermott and Doyle have produced an elegant semantic
theory of non-monotonic inference which is described in [McDermott & Doyle
19781. Phil London of University of Maryland has used dependencies to aid
in keeping track of assumptions in the world model used by a problem
solving system [ London 1978].

{Elements}. Euclid had a point here.
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{Lambda}. A simple example of such a rule is that of lambda-abstraction

[Church 19417, in which a lambda-expression packages up a possibly compound
expression and an interface specification in the form of a variable name
(in LISP, variables names).

{Multiple Values}. There are a few languages which permit a routine to
return more than ene value (other than by side effect of a reference
parameter as in FORTRAN). 1In SL5 every expression implicitly carries two
values: an "ordinary" value and a success/failure flag. Languages such as
POP2 and FORTH are stack-based, and routines both receive arguments and
return values on the stack. APL and LISP do not have multiple-valued
expressions. A common trick is to construct a data structure (an array or
a list) which contains several distinct values to be returned; but the
called routine must explicitly construct this structure, and the caller
must then explicitly decompose it.

{Other Languages}. Some'examples of languages which are less organized
around the notion of procedure are such simulation systems as DYNAMO, GPSS,
and SIMULA.

{Propagation}. “Propagation of constraints" was originally invented as a
generalization of "Guillemin's method" of analyzing electrical ladder
circuits. It was used in the analysis programs EL [Sussman & Stallman

19757 and ARS [Stallman & Sussman 19777, and in the synthesis program SYN
[de Kleer & Sussman 19781]. The basic idea of the method was first
described in [Brpwn 1975] as part of a method for localizing faults in
electrical circuits. De Kleer also used propagation analysis in his fault
localizer [de Kleer 1976]. Sutherland [Sutherland 1963] appears to have
developed a similar technique (the "One Pass Method") for constraint
satisfaction in Sketchpad.

{ThingLab}. Our method of specifying an object by a set of subparts and a
set of identifications of sub-subparts is essentially the same as that
independently developed by Alan Borning, a graduate student at Stanford
University. In his Ph.D. thesis (forthcoming), entitled "ThingLab -- A
Simulation Laboratory", Borning develops an interactive system (written in
Smalltalk [Goldberg & Kay 1976]) for simulating the effects of constraints.
ThinglLab provides a beautiful and convenient graphics interface controlled
by the constraint network. In contrast to the system described here,
ThinglLab does not retain dependency information, and uses relaxation
techniques (rather than algebra or multiple redundant views) to deal with
systems not directly amenable to simple propagation. In these respects
ThingLab is very similar to Sketchpad [Sutherland 1963]. Unlike Sketchpad,
Thinglab provides facilities for incrementally compiling constraints, as
well as a non-graphical, programming-language notation for the constraints.
[Borning 1977] is a preliminary description of ThinglLab's capabilities.
What we have referred to as identification of parts Borning, following
Sutherland, calls "merging". This 1is because in both systems data
Structures representing identified objects are actually merged internally
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to become a single data structure. This is not done in our constraint
System because the fact of such an identification must be explicitly

recorded for the sake of the dependency information (which is not included
in the other two systems).
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