3

MASSACHUSETTS INSTITUTE OF TECHNOLOGY .. .
ARTIFICIAL INTELLIGENCE LABORATORY

Al = 500 ‘ S T hugust 1981

CONSTRAINTS
A LANGUAGE FOR EXPRESSING ALMOST-HIERARCHICAL DESCRIPTIONS

BY

GERALD JAY SUSSMAN AND GUY LEWIS STEELE JR.

Abstract:

We present an interactive system organized around networks of constraints
rather than the programs which manipulate them. We describe a language of
hierarchical constraint networks. 'le describe one method of deriving useful
consequences of a set of constraints which we call propagation. Dependency
analysis is used to spot and track down inconsistent subsets of a constraint
set. Propagation of constraints is most flexible and useful when coupled
with the ability to perform symbolic manipulations on algebraic expressions.
Such manipulations are in turn best expressed as alterations or augmentatwons
of the constraint network.

Almost-Hierarchical Constraint Networks can be constructed to represent
the multiple viewpoints used by engineers in the synthesis and analysis of
electrical networks. These multiple viewpoints are used in terminal
equivalence and power arguments to reduce the apparent synergy in a circuit
so that it can be attacked algebraically.

This report describes research done at the Artificial Intelligence Laboratory
of the Massachusetts Institute of Technology. This work was supported in part

by the National Science Foundation under Grant MCS77-04828 and in part by Air
Force Office of Scientific Research Grant AFOSR-78-3593.

THIS PUBLICATION REPLACES AT MEMO 433 and 502

Y

AR IFICIAL INTELLIGENCE ' 1

CONSTRAINTS—A Language for
Expressing Almost-Hierarchical
Descriptions™

Gerald Jay Sussman** and Guy Lewis Steele Jr F**

Artificial Intelligence Laboratory, Massachusetts Institute of
Technology, Cambridge, Mass., U.S.A.

Recommended by Daniel G. Bobrow

ABSTRACT

We present an interactive sysiem organized around networks of constraints rather than the programs
which manipulate them. We describe a languaye of hierarchical constraint networks. We describe one
method of deriving useful consequences of a set of constraints which we call propagation. Dependency
analysis is used to spot and track down inconsistent subsets of a constraint set. Propagation of constraints
is most flexible and useful when coupled with the ability to perform symbolic manipulations on algebraic
expressions. Such manipulations are in turn best expressed as alterations or augmentations of the con-
straint network.

Almost-Hierarchical Constraint Networks can be constructed to represent the multiple viewpoints
used by engineers in the synthesis and analysis of electrical networks. These multiple viewpoints are used
in terminal equivalence and power arguments to reduce the apparent synergy in a circuit so that it can be
attacked algebraically. .

1. Introduction

Programming languages are usually organized around unilateral computation.
Programs perform predetermined operations on their inputs to produce desired
outputs or to evolve a desired process. Physical systems, on the other hand, are
usually specified as sets of constraints among several variables. A constraint such
as x*y+z = 3 is no more about how to compute x given y and z than it is about
how to compute z given x and y. Programs are often written to extract useful
information from a set of constraints. Such programs depend strongly on the

* This report describes research done at the Artificial Intelligence Laboratory of the Massachusetts
Institute of Technology. This work was supported in part by the National Science Foundation under
Grant MCS77-04828, and in part by Air Force Office of Scientific Research Grant AFOSR-78-3593.

** Jolly Good Fellow : v

=** Fannie and John Hertz Fellow

Artificial Intelligence 14 (1980), 1-39

Copyright © 1980 by North-Holland Publishing Company

Permission granted to reproduce this

from the AI Journal by wortn Holland on July 27, 1981.

2 G. J. SUSSMAN, G. L. STEELE JR.

forms of the constraints and are committed to solving for particular variables.
For example, programs for electrical circuit analysis are usually not good for
circuit synthesis as well. ’

We present an interactive system organized around networks of constraints
rather than the programs which manipulate them. We describe a language of
hierarchical constraint networks. It supplies a set of primitive constraint types
and a means of building compound constraint systems by combining instances of
simpler ones. Constraint networks can be constructed which violate hierarchy in
controlled ways. This is useful for representation of the multiple (perhaps re-
dundant) views of a system which characterize much of our understanding of
engineered systems.

The constraint language was developed for representing knowledge about
electrical circuits.! The ability to represent multiple redundant views is critical for
implementing SLICES, a device we invented for notating some of the strategies that
we observed are used by expert circuit designers. In circuit synthesis one problem
is to determine the component values in a circuit of known topology and given
specifications. This is in general a very difficult algebra problem. It is infeasible
to determine the component values by solving the set of equations and inequalities
which result from matching the symbolic analysis of a circuit with the given design
parameters. An expert circuit designer uses terminal equivalence and power
arguments to reduce the apparent synergy in a circuit and focus his attention. At
any instant an expert will only concentrate on a small portion of the circuit,
assuming that the rest will “work as planned”. This assumption is captured by
summarizing the behavior of the part of the circuit peripheral to the area under
attention as a set of equivalences. Equivalences are also used to summarize the
specifications of the behavior of the part under attention. This allows the designer
toreason about the details of one section of the circuit in isolation. Few assumptions
about the nature of adjacent parts of a circuit are allowed to migrate across the
boundary of equivalences. From the point of view of circuit analysis SLICES model
the way an experienced designer uses terminal equivalences to provide him with
multiple local views of a circuit.

We also describe one method of deriving useful consequences of a set of con-
straints which we call propagation.? Propagation automatically takes advantage

! This work is part of a larger effort to apply artificial intelligence methods to computer-aided design
at the MIT Al Laboratory. We are not solely interested in computer-aided circuit design {35, 36], but
rather in an understanding of the general epistemology of engineering. We are also engaged in a
substantial effort on the computer-aided design of software systems [27] and computer-aided design
of VLSI chips [37].

% ‘Propagation of constraints’ was originally invented as a generalization of ‘Guillemin’s method’
of analyzing electrical ladder circuits. It was used in the analysis programs EL [40] and ARs [38], and
in the synthesis program sy~ [8]. The basic idea of the method was first described in [2] as part of a
method for localizing faults in electrical circuits. De Kleer also used propagation analysis in his fauit
localizer [7). Sutherland [42] appears to have developed a similar technique (the “‘One Pass Method”")
for constraint satisfaction in Sketchpad. ’

CONSTRAINTS—EXPRESSING ALMOST-HIERARCHICAL DESCRIPTIONS 3

of the sparseness of most constraint networks. Propagation is not prematurely
committed to solving for any particular predetermined set of unknowns, nor is it
committed to using any particular constraint in a predetermined way. In fact
propagation analysis may be freely intermixed with the addition of new constraints
and the deletion of old ones. This requires that the system keep track of how its
conclusions (and intermediate results) are consequences of the particular con-
straints they were derived from. Dependency analysis is also used to spot and track
down inconsistent subsets of a constraint set. Propagation of constraints is most
flexible and useful when coupled with the ability to perform symbolic manipula-
tions on algebraic expressions. Such manipulations can be expressed as alterations
or augmentations of the constraint network.

2. The Language of Constraints

A language is a means of communication of ideas. A language generally has a
“theme,” the class of ideas which it is optimized for communicating. For example,
most computer languages are designed for expressing algorithms. They are opti-
mized for communicating imperative, procedural notions.> The theme of the
constraint language is declarative. It is good for expressing descriptions of
structural relationships and physical situations.

Every language has a set of primitive entities which represent the elementary
notions of the domain, and rules of composition by which compound entities are
constructed. '

Simple Constraints

We will now proceed to illustrate the entities of the constraint language by an
annotated interaction with the constraint-language interpreter. Input to the
interpreter is in lower case, following the prompt ‘==> "

One kind of primitive (i.e., built-in) constraint we might have is an ‘adder’
which constrains three numbers (called the addend, augend, and sum of the
adder) in such a way that the addend plus the augend must equal the sum. Put
another way, it constrains the augend to equal the difference of the sum and the
addend. (The point is that there is no preferred direction of computation.) First,
let’s make an adder, called ZAP:

==> (create zap adder) ::D—v
ZAP

2AP

* Some examples of languages which are less organized around the notion of procedure are such
simulation systems as DYNAMO, GPSS, and SIMULA.

4 G. J. SUSSMAN, G. L. STEELE JR.

Every object in the constraint language has a type, and may have parts. We can
ask ZAP to tell us about itself:

==> (>> type? zap)
ADDER A2

==> (>> partnames? zap)
(A1 A2 SUM)

It seems that ZAP has three parts, the addend (A1), the augend (A2), and the
sum (SUM). (A form such as (>> a bc) may be read as ‘the a of the b of c.’
Thus it constitutes a ‘pathname’ for selecting an item starting at the root c.)
The parts also have types:

==> (>> type? al zap)
CELL

==> (>> partnames? al zap)
NIL

A cell is a primitive entity which hath no parts.* Cells are used for two things in the
constraint language. They are used to hold computational values, and (as we will
see later) they can be connected together when building compound constraints.
We can use WHAT-IS to discover the value in a cell:

==> (what-is (>> sum zap))
Sorry, I don’t know it. I need:

(>> Al ZAP)

(>> A2 ZAP) .
to use rule: (>> ADDER-RULE#1 ZAP)

At this point, the system does not know a value for the SUM of ZAP. However,
it has told us that if we had given it the Al and A2 it could have computed a sum
using a rule (ADDER-RULE#1) internal to ZAP. Instead, we now give the sum
a value.

==> (set-parameter (>> sum zap) 5.0)
5.0

==> (what-is (>> sum zap))

(>> SUM ZAP) = 5.0

==> (why (>> sum zap)) zar
Because you told me so.

+ Euclid had a point here.

CONSTRAINTS—EXPRESSING ALMOST-HIERARCHICAL DESCRIPTIONS 5

Now that the system knows about the SUM of ZAP, can it tell us about the A1?

==> (what-is (>> al zap))
Sorry, I don’t know it. I need:
(>> A2 ZAP)
to use rule: (>> ADDER-RULE#2 ZAP)

The Al is not yet completely determined, but it could be determined if the A2
were known. If instead we specify the Al, the A2 should be determined.

==> (set-parameter (>> al zap) —2.0)

=20

==> (what-is (>> a2 zap))

(>> A2ZAP) =170 "L"__

==> (why (>> a2 zap)) :
I used rule (>> ADDER-RULE #3 ZAP) on: zae

(>> SUM ZAP)

{(>> Al ZAP)

We have just illustrated the use of an adder, a typical entity of the constraint
language. A constraint enforces a relationship among several entities. If enough
information is known to immediately deduce unknown cell values, those values
are computed. These new values may enable further deductions. We call this

- deductive process ‘propagation of constraints.” (Actually, it is values that are
propagated, through a network of constraints.)

Networks of constraints
Suppose we also have a kind of constraint called a ‘multiplier’:

==> (create foo multiplier) ibr_-gggr
FOO Ch

Foo

Neither an adder by itself nor a multiplier by itself is a particularly fascinating
device. The system provides a means for combining simple constraints into
arbitrarily complicated networks.

In typical algorithmic computer languages a compound algorithm is built
from simpler ones by rules of temporal sequencing and data flow. Algorithms
can be temporally concatenated (sequencing), selected among (conditionals), and
iterated (do loops). Data flow is indicated explicitly by functional composition
and implicitly by side effects on shared variables.

In the constraint language, a compound constraint is built from simpler ones
by linking some of their parts. The method of connection is a declaration that
two entities are in fact the same. »

The ‘==" primitive allows us to identify any two constraint entities of the same
type. In particular, if two cells are identified they are effectively considered to be

6

G. J. SUSSMAN, G. L. STEELE JR.
the same cell—they are constrained to have the same value.

==> (== (>> product foo) (>> al zap))
IDENTITY

==> (== (>> ml foo) (>> a2 zap))
IDENTITY

We have linked various parts of our adder ZAP and our multiplier FOO.
The resoluting network looks like Fig. 1.

7.0

A2
=@
m [

pucT zAP

~3.0,
Fi1G. 1.

Now ZAP had some values in its cells when we linked them to FOO’s cells.
These values have already been propagated through FOO.

==> (what-is (>> m2 foo))
(>> M2 FOO) = —0.285714287
==> (why m2 foo))

I used rule (>> MULTIPLIER-RULE#5 FOO) on:
(>> PRODUCT FOO)

(>> M1 FOO)
We can chase these deductions to their ultimate reasons.

==> (why (>> product foo))
I used rule (>> 1<=2) on:
(>> Al ZAP)

The rule ‘1 <=2’ is a manifestation of the linkage between the PRODUCT of
FOO and the Al of ZAP.

==> (why (>> al zap))
Because you told me so.

==> (why (>> m! foo))
I used rule (>> 1<=2) on:
. (>> A2 ZAP)

==> (why (>> a2 zap))

I used rule (>> ADDER-RULE#3 ZAP) on:
(>> SUM ZAP)

(>> Al ZAP)

It is often convenient to be able to determine the ultimate antecedents of a deduced

COWSTRAINTS—EXPRESSING ALMOST-HIERARCHICAL DESCRIPTIONS 7

value. For example, we know the value of the M2 of FOO because of a chain of
deductions ultimately derived from our knowledge of the SUM and Al of ZAP.

==> (premises (>> m2 foo))
(>> SUM ZAP) = 5.0
(>> Al ZAP) = =20

If we change a premise all conclusions which depended upon it are automatically
retracted and new conclusions are drawn. In a large network only a few values
may depend on any one premise. The constraint language interpreter retracts
only those values and only the incremental new deductions are made (see Fig. 2).

—=> (change-parameter (>> al zap) 2.0)
2.0

==> (what-is (>> a2 zap))
(>> A2ZAP) = 3.0

==> (what-is (>> m2 foo))
(>> MS FOO) = 0.666666664

FiG. 2.

We cannot so easily change a parameter whose value is a consequence of other
known facts. One of the premises upon which the changing parameter depends
must be abandoned. The system automatically chases down only the relevant
premises and gives us a choice of which we want to retract.

==> (change-parameter (>> a2 zap) 19.0)

Which of the following assumptions will you change?
| (>> A1 ZAP) = 2.0
2(>> SUM ZAP) = 5.0

ANSWER:

Before allowing the system to change anything, we may want to investigate the
repercussions of changing it. (Note that the prompt has changed to ‘——>’
indicating that the system is waiting for an answer to its question.)

——> (results (>> sum zap))
Rule (>> ADDER-RULE #3 ZAP) got (>> A2ZAP) = 3.0

——> (results (>> al zap))
Rule (>> 1 <=2) got (>> PRODUCT FOO) =20
RULE (>> ADDER-RULE#3 ZAP) got (>> A2 ZAP) = 3.0

8 - G. J. SUSSMAN, G. L. STEELE JR.

We decide to retract assumption 1, that the A1 of ZAP is 2.0.

——> (answer 1)
19.0

The system finished changing the parameter to 19 and restored the prompt to
‘==>". The new value of the M2 of FOO is now:

==> (what-is (>> m2 foo))
(>> MS FOO) = —0.7368421

The new situation is as shown in Fig. 3.
—C2)
ZAP
N -14.0
=07,

Foo

FiG. 3.

Local constraint propagation cannot solve every problem of assigning values
tocellsin our network. Sometimes a more global analysis is necessary. For example,
if we change the value of the M2 of FOO to 1.0 and we release the premise con-
cerning the value of the A2 of ZAP, the only consistent value that either the Al
or the A2 of ZAP can take on is 2.5. (See Fig. 4.)

==> (changz-parameter (>> m2 foo) 1.0)

Which of the following assumptions will you change?
1(>> A2ZAP) = 190
2(>> SUM ZAP) = 5.0

ANSWER:

——> (answer 1)
1.0
==> (what-is (>> al zap))
Sorry, I don’t know it. I need:
- (>> PRODUCT FOO0)
to use rule: (>> 2<=1)
or, I need:
(>> A2 ZAP)
to use rule: (>> ADDER-RULE#2 ZAP)

’

ZAP
@ F :
00

Fic. 4.

CONSTRAINTS—EXPRESSING ALMOST-HIERARCHICAL DESCRIPTIONS 9

The problem is that neither the adder nor the M2 has enough information to make
any deductions by itself. However, if they could collaborate, they could come to a
correct conclusion. We will discuss this later.

Inasmuch as the constraint network cannot determine the PRODUCT of FOO,

we will specify a value explicitly.

==> (change-parameter (>> product foo) 17.0)
Contradiction . . . disputants are:
(>> PRODUCT FOO) = 17.0
(>> CHALLENGER :MULTIPLIER-RULE#3 FOO) = —12.0
Choose an assumption to change:
1 (>> M2FOO) =10
2(>> SUM ZAP) = 5.0
ANSWER:

CONTRADICTION!

FiG. 5.

Unfortunately, the very act of making the assumption that the PRODUCT of
FOO is 17.0 allows the deduction that the PRODUCT of FOO must (also) be
—12.0, given the other assumptions in force. This immediate contradiction is
noticed, and the system presents us with a choice of actions.

——> (answer 2)
17.0

We have chosen to discard assumption 2, and the network readjusts itself. (See
Fig. 6.)

==> (what-is (>> sum zap))

(>> SUM ZAP) = 340

==> (what-is (>> a2 zap))

(>> A2ZAP) =170

FiG. 6.

10 G. J. SUSSMAN, G. L. STEELE JR.

Now we have seen the rule of composition by which constraints arc combined
into networks of constraints by identification of parts. We have also seen how it is
possible to compute with constraints. The constraint interpreter maintains the
‘dependencies’ which describe how conclusions are drawn from their antecedents.
Besides the fact that the dependencies are important to the system for efficient
computation (as we shall see), they are useful for debugging purposes, and for
helping a user understand the behavior of his constraint network., We believe
that this is a good idea. A discipline should be developed for construction of
systems so that they are responsive to their users. They must be responsible for
their conclusions and able to explain how the conclusions were derived. This is
increasingly important as systems become more complex, thus exceeding the
understanding of any one person.

Abstraction and hierarchy

Using the ‘==" construction, we can build networks of adders and multipliers
which are arbitrarily large, and thus arbitrarily complex. In order to deal with
this complexity, we need a way to break up large networks into meaningful
pieces. If we are lucky, many of these pieces will be the same, and can be con-
sidered single building blocks at a higher conceptual level. We need a way to
define such building blocks in terms of smaller ones.

We would like these compound building blocks to behave in the same way as
the primitive entities of the language. This allows us to combine such building
blocks using the same construction methods. In this way we can build arbitrarily
complicated compound objects in a hierarchical manner. The hierarchy allows
the complexity at any one level to be limited.

In languages which permit this kind of hierarchical definition there is a rule of
abstraction, which specifies how a compound object is to be treated as a simple one.
Such a rule must specify a particular combination of simpler objects which is to
be abstracted, and an interface between the specified combination and the external
appearance of the abstraction as a single object.’

The constraint language provides a rule of abstraction which allows us to

associate a name with a pattern designating component constraints and ‘ =="
specifications for linking them. When a pattern is instantiated, the designated
components are recursively instantiated and then linked according to the ‘==’
specifications,

For example, we can combine adders and multipliers to produce a kind of
compound constraint called a ‘resistor.” An (ideal) resistor is essentially an object
which enforces numerical constraints among two node potentials, two currents,

* A simple example of such a rule is that of lambda-abstraction [4], in which a lambda-expression
packages up a possibly compound expression and an interface specification in the form of a variable
name (in LISP, variable names).

CONSTRAINTS—EXPRESSING ALMOST-HIERARCHICAL DESCRIPTIONS 11

and a resistance:
i
i +i, =0 R

i,Th,

(v,—v,)=1i,R

We notate this as follows:

==> (constraint resistor
((vl number) i
(v2 number) '
(il number)
(12 number) I
(resistance number)
(av adder)
(ai adder)
(m multiplier)) ‘l' I‘
(== vl (>> sum av))
(== v2 (>> al av))
(== (>> a2av) (>> product m)) "
(== il (>> ml m))
(== resistance (>> m2 m)) ,, &)
(== il (>> al ai))
(== 2 (>> a2 ai) ! L
(constant (>> sum ai) 0.0))

AV

RESISTOR

The keyword ‘constraint’ is followed by a name, a list of component names and
types. and a set of linkages. The expression (constant {something) {value)) is
an abbreviation for forcing (something) to have the given computational value.®

© Our method of specifying an object by a set of subparts and a set of identifications of sub-subparts
is essentially the same as that independently developed by Alan Borning. a graduate student at Stanford
University. In his Ph.D. thesis. Stantord University (July 1979), entitled *"ThingLab—A Simulation
Laboratory,” Borning develops an interactive system (written in Smalltalk [16]) for simulating the
effects of constraints. ThingLab provides a beautiful and convenient graphics interface controlled by
the constraint network. In contrast to the system described here, ThingLab does not retain dependency
information, and uses relaxation techniques (rather than algebra or multiple redundant views) to deal
with systems not directly amenable to simple propagation. In these respects ThingLab is very similar
to Sketchpad [42]. Unlike Sketchpad, ThingLab provides facilities for incrementally compiling con-
straints, as well as a non-graphical, programming-language notation for the constraints. [1] is a pre-
liminary description of ThingLab's capabilities. What we have referred to as identification of parts
Borning, following Sutherland. calls ‘merging.’ This is because in both systems data structures repre-
senting identified objects are actually merged internally to become a single data structure. This is not
done in our constraint svstem because the fact of such an identification must be explicitly recorded
for the sake of the dependency information (which is not included in the other two systems).

12 G. J. SUSSMAN, G. L. STEELE JR.

With this definition we can make a resistor in the same way that we make an
adder: .

==> (create r43 resistor)
R43

This causes R43 to be the name of an instance of the pattern RESISTOR. In
instantiating the pattern, instances of components such as adders and muitipliers
are also effectively created. We can use instances of resistor to build a voltage
divider:

==> (create r44 resistor)

R44

==> (create kcll adder) 7 ,'
KCL1 éu—
==> (== (>> v2143) (>> vl r44)) LY
IDENTITY L
==> (== (>> i2 r43) (>> al kcll)) # e
IDENTITY % ' 4
==> (== (>> il r44) (>> a2 kell)) '
IDENTITY

==> (constant (>> sum kcll1) 0.0)

0.0

It is silly to use adders and numerical connectors to hook together resistors.
We should not be mixing conceptual levels. In the world of electrical circuits,
elements like resistors have terminals which connect to nodes. A terminal has a
potential (‘voltage’) on it and a current into it, packaged up together. A node
connects two or more terminals 5o as to constrain their potentials to be the same,
and the sum of the currents into them to be zero.

==> (constraint terminal ((v number) (i number))) @
TERMINAL

The ‘terminal’ constraint is trivial. All it does is package up two numbers so
that they can be referred to as a unit.

== > (constraint 2-node

- ((t1 terminal) X
(t2 terminal)

+"’- (kcl adder))]ov -;9'
(== (>> vtl) (>> v 12) D)
(== (>> itl)(>> al kcl)) bv ib

== (>> 1t2) (>> a2 kcl))
(constant (>> sum kcl) 0.0))

2-NODE

| a1 TOA ITY WNHON

1A

CONSTRAINTS—EXPRESSING ALMOST-HIERARCHICAL DESCRIPTIONS 13

A “2-node’ is a two-terminal node. It has an adder for enforcing the sum-of-
currents constraint (Kirchoff’s Current Law). The equal-potentials constraint
(Kirchoff’s Voltage Law) is enforced by direct identification.

==> (constraint resistor
((t1 terminal)
(t2 terminal)
(resistance number)

%ﬂ (av adder)
—r

(ai adder)

(m multiplier))
| == (>> v tl) (>> sum av))
% . (== (>> v t2)(>> al av))

== (>> a2 av) (>> product m))
= == (>> itl) (>> ml m))

== resistance (>> m2 m))

(== (>> itl)(>> al ai))

(== (>> 112) (>> a2ai))
(constant (>> sum ai) 0.0))

This definition is as before, except that terminals are used.
Now we can simply create two resistors and a 2-node, and connect them up by
identifying the terminals of resistors with terminals of the node.

==> (create r43 resistor)

R43

==> (create r44 resistor)

R44 RY3
==> (create n2 2-node)

N2

==> (== (>> tl r44) (>> t2n2))
IDENTITY

==> (== (>> t2143) (>> tl n2))
IDENTITY

RYY o

In the constraint language, it is possible to identify compound constraints,
using ‘== in exactly the same way that primitive objects like numbers are
identified. The meaning of equality for compound objects is that two objects are
equal if their corresponding components are equal. Thus when two terminals are
made equal, their voltages are identified. and so are their currents.

(In the examples involving electrical components we have been, and will be,
carefully skirting a difficult issue regarding the directions of currents. In the
constraint language. things ‘connected together’ are identified as being the same
thing. In the electricui world, while electrically connecting two electrical terminals
makes their voltages the same (Kirchofi"s Voltage Law), it does not make their

14 G. J. SUSSMAN, G. L. STEELE JR.

currents the same. The currents are instead subject to the more complex constraint
that they must sum to zero. This is the reason we use nodes as an intermediate
connector for enforcing Kirchoff’s Current Law. Nodes must be used carefully
to keep the current directions straight. Two constraints describing electrical
devices cannot be directly connected, but must be connected through a node.
Additionally, two nodes cannot be directly connected, except through a constraint
representing a device. The examples we give here are correct, but it is very easy to
misuse the language.)

We can use this structure to compute parameters of the circuit. The two resistors
form a voltage divider. We can, for example, specify the voltages at the ends and
middle of the divider, and the resistance of one resistor. The algebraic constraints
of the circuit will then permit the deduction of the resistance of the other resistor:

==> (set-parameter (>> v t2 r44) 0.0)
0=-O=> (set-parameter (>> v t1 r44) 3.0)
i()=> (set-parameter (>> v tl r43) 10.0)
f£> (set-parameter (>> resistance r44) 9.0)
9——'-O=> (what-is (>> resistance r43))

(>> RESISTANCE R43) = 21.0

This is similar to computations we have already seen. The ‘real work’ is being
done by adders and multipliers which are part of the description we have provided
of resistors.

As before, there can be problems with not being able to compute something
with constraints for which we in principle have enough information. For example,
given the voltage at the top and the bottom, and the resistances of both resistors,
it should be possible to compute the voltage at the midpoint (the ‘divided voltage’):

==> (forget-parameter (>> v tl r44))
NIL
==> (set-parameter (>> resistance r43) 21.0)
21.0
==> (what-is (>> v tl r44))
Sorry, I don’t know it. I need:
(>> VT2 N2)
to use rule: (>> 1 <=2)
or, I need:
(>> SUM AV R44)
to use rule: (>> 1 <=2 R44)

Forgetting the voltage at the midpoint caused the system also to forget the resistance

CONSTRAINTS—EXPRESSING ALMOST-HIERARCHICAL DESCRIPTIONS 15

of R43, which had been deduced from this voltage. Reinstating the resistance
value should permit the deduction of the midpoint voltage, but as before this
cannot be done by the constraints. There are several ways around this problem.
One is to introduce multiple views of the circuit; we will examine this technique
in the next section. Another is to use symbolic algebra in the computations; this
will be examined later.

3. Almost-Hierarchical Systems

To be powerful, a description must impose a conceptual structure on a system for
the purpose of limiting the complexity in understanding or designing it. If a system
cannot be immediately understood in its entirety (by ‘Gestalt’) then it must be
understood in pieces. The descriptive structure directs attention to sets of com-
ponents of the system which together constitute a single conceptual piece.

Often a system can be partitioned into pieces which are more or less disjoint
and which together cover the entire system. The total system can be understood
by understanding the pieces and by understanding the composition by which the
pieces constitute the system. Similarly, each piece may be similarly partitioned.
In this way we derive a single tree-like decomposition of the system. Such a tree
we call a hierarchy.

It is likely, however, that at any stage there is more than one useful partitioning
of a piece. If so, then a single hierarchy does not suffice to indicate all the con-
ceptual pieces of interest in the system. Pieces whose sub-pieces are localized
within one hierarchy will probably have its sub-pieces widely dispersed throughout
another.

For example, a mechanical timepiece has among its major parts a mainspring,
several wheels or ‘gears’ (main, center, third, fourth, hour, minute, and escape
wheels), a lever, a balance/hairspring assembly, and hands. (See Fig. 7.) These
parts are usually grouped into sets which are physically connected : the mainspring
and main wheel together form the barrel; the center, hour, and minute wheels
plus the hands form the motion works; the main, center, third, fourth, and escape
wheels form the wheel train; and so on. Also, some of the parts are themselves

DIvive

e\
=
LEVER

LY
FOURTH TH2RP
<! EScAPE W WEEL)g WHEEL whEEL S%;“

WNECL TRAIA _/_/

F1G. 7. Structural decomposition of a watch.

16 G. J. SUSSMAN, G. L. STEELE IR.

ENERSY
Enener _{'msnwm.; osczicaror [y scarzng % DIsrcay

> 3

7 — rd
Energy Information

Fi1G. 8. Functional decomposition of a watch.

complicated assemblies, for example the balance. Notice that there is some over-
lap between the main structural groupings where they interface.

A timepiece also may be functionally described as a fivefold decomposition,
as in Fig. 8. Conceptually these five functional parts are disjoint. In every real
mechanical timepiece, however, the same physical part may serve in more than
onc functional unit. The wheel train which transmits energy from the mainspring
to the escapement also performs part of the scaling between the escapement’s
oscillations and the display (dial); but the wheel train is not part of the oscillator
~ module which appears between the transmission and scaling modules. The escape
wheel is part of both the oscillator module and the wheel train. Other parts are also
shared among modules.

In Fig. 9, the structural and functional hierarchies are (partially) shown to-
gether. Notice that each not is a strict hierarchy, but almost is; and that the two
almost-hierarchies are not the same, but are similar. In some places a single unit
in one hierarchy is the same as a single unit in another (for example, the wheel
train and transmission coincide). In other places what is a single unit in one
hierarchy is spread out in the other (for example, the single functional idea of
scaling is spread out in the structural hierarchy, while the wheel train and motion
works structural units each have various purposes in the functional hierarchy).

It would be possible to design a timepiece which exhibited much less structural
overlap between functional units, so that the structural and functional hierarchies

would be almost identical. While such a timepiece would certainly exhibit ‘struc- -

tured’ design, in the sense of ‘structured programming,’ it would be much less

WATCH
w‘”’:‘{ WATCH

Function STAUCTURE

-

-
IS ~-a
-

-
— - —————
-

MENT TRAW | WORKS!
Trens- 1 8 “
missfon) miwore [Her
WHEGL | wiEeLy '

’ ¢
mxaurg HOUR 4
Havd HAxD | S

pd - . \
Oscillator Digpley !
~
/ ; '
’ - '
) / ’
/ s ’ i
/ - N V2 o't
BALANGE - - .} MOTIon 1
ESCAPE WHEEL V x ,‘BARREL H
]
1
1

HAzR BALAvCE
SPRING WHEEL

THIRD
WHEEL

FoUrTH CENTER
ScREWS STAFF LEVER WHEGL WHEEL

F1G. 9. Overlapping decompositions of a watch.

ESCAPE
WHEEL ROLLER WHEEL

CONSTRAINTS—EXPRESSING ALMOST-HIERARCHICAL DESCRIPTIONS 17

reliable (due to unnecessary duplication of parts to avoid overlap), and would be
very difficult to make small enough to ride comfortably on one’s wrist.

Other engineered systems, such as electrical circuits and computer programs,
exhibit a similar sharing of parts among uses. A strictly hierarchical description
can be only an approximation to the true structure of an object. Conversely,
when designing an object, a good engineer may start with a hierarchical plan, but
will then slightly destroy the hierarchy when interfacing the substructures. This
occurs because any particular hierarchical description emphasizes some groupings
of features at the expense of other equally valid or important ones. A given
hierarchy may be violated because of constraints not visible within that hierarchy.

A good description explicitly acknowledges the sharing of structure in engineered
devices. This can be captured as a locally hierarchical structure in which each
feature is described and related to ‘lower-level’ features which implement that
feature, even though those sub-features may be spread throughout some other
(also locally hierarchical) part of the description and used to implement other
features as well.

The constraint language naturally permits one to express almost-hierarchical
descriptions, because its rules of composition are explicitly stated in terms of the
sharing of parts. The rule of abstraction is hierarchical, but the rule of composition
permits one to violate the hierarchy in a controlled manner.

In fact, we have already used this feature to describe the connection of two

resistors. One terminal of each resistor is shared with a terminal of the node.
Terminals are not very interesting as they have no non-trivial internal structure.
However, let us extend that example to formalize a more interesting almost-
hierarchy.

Equivalence slices ,

Electrical Engineering has provided us with the key concept of an equivalent
circuit and several theorems which tell us about some useful types of equivalence’
but it does not supply us with a notation for drawing the simultaneous multiple
views of a circuit that make the use of equivalence so powerful. The best that one
ever sees in engineering books is block diagrams, but the boxes we wish to draw
would be so overlapped as to be difficult to draw in that way. We now introduce
SLICES, a notation for formally describing these simultaneous views, so that
they can be communicated to either a person or a computer involved in the design
or analysis of circuits.®

7 In electrical engineering, most equivalences, such as the Thevenin/Norton theorems and the two-
port results depend critically on the linearity of the circuits they summarize. Thus they are severely
limited in applicability. Engineers often compensate for this limitation by considering perturbations.
This ‘small signal analysis’ is critical to the design of complex signal processing systems.

® One difficulty with current teaching in Electrical Engineering (and other displines) is the lack of
formal ways of communicating ‘intuitive’ knowledge. Much of this knowledge is procedural in nature.
The spread of ‘computer culture’ will enhance our ability to express this kind of knowledge. Slices are a
way of expressing more traditional intuitive knowledge about how a circuit works.

18 G. J. SUSSMAN, G. L. STEELE JR.

Usually in thinking of electrical networks we only consider one kind of con-
nection—Terminals of components are ‘soldered’ together to form nodes which
have definite node voltages and which conserve current. If we want to specify, ina
schematic diagram, both a circuit and its equivalent, we cannot just connect them
with the usual kind of solder because they would indicate that they are connected
in parallel. We are forced to introduce a new kind of connection: Let us define
2 ‘wires’ as being identified if they have the same voltage and the same current (in
corresponding directions). Thus, we can indicate that two circuits are equivalent
by identifying the corresponding terminals. For example, Fig. 10 indicates that
network N has a Thevenin equivalent.

F1G. 10. Thevenin equivalent.

Any particular circuit diagram may contain several slices.® Each slice involves
two or more identifications of wires. Thus, to keep things straight, we label each
identification with the name of the slice it is part of. Thus network N may have
both a Thevenin (slice a) and Norton (slice b) equivalent. (See Fig. 11.)

F1G. 11. Thevenin and Norton equivalents.

® Stallman and Sussman [38] introduced the ‘grey box,’ a predecessor of the slice idea. Grey boxes
also attached to a circuit diagram by identification of terminals. Grey boxes are additional ‘laws’
which bypass the deductive machinery and present the answer for certain otherwise unfeasible de-
ductions. For example, the incremental gain of an emitter-coupled pair is impossible to deduce without
exponential algebra. These additional laws allow EL to ‘know’ some facts about a circuit construct in an
implicit manner. Grey boxes, however, have no substructure so they cannot really provide an alternate
electrical view of a circuit. Slices, on the other hand are ‘real’ electrical subdiagrams. They can contain
further slices describing their structure. In addition, slices can share parts and can identify wires in two
different other slices.

CONSTRAINTS—EXPRESSING ALMOST-HIERARCHICAL DESCRIPTIONS 19
Parameter slices '

Identifications of wires is not enough to express many constraints. Sometimes
we need to be able to say that two circuit parameters are to be identified. For
example, if two resistances are constrained to be the same or if the power dissipated
in one part is the same as the power dissipated in some other part. We use dotted
lines to express identifications between parameters. For example, to express the
truth that Ry = Ry in our network above we would draw Fig. 12. -

FiG. 12. Shared parameters.

Here we have an identification which spans two slices. This is perfectly legitimate.
Once we have placed a slice on the circuit diagram it becomes part of the diagram
and further slices can include parts from it. We cannot construct, however, two
distinct slices, each of which refers to parts ‘inside’ the other.

The problem of nodes

There is another problem in standard electrical circuit notation which has to be
overcome. In formal network theory the diagrams of Figs. 13(a) and 13(b) are
considered identical. This identity is not reasonable to one who is interested in the
current, i, indicated on diagram a. The topological abstraction of a node which
conserves current and which has a definite potential is not the correct representa-
tion of the circuit from his point of view. We thus consider connection points to be
components with simple laws, and we give wires formal status. Thus we may have
several equivalent circuits of the ‘same’ (network theoretic) node which are used
when we wish to talk about different groupings of the currents.

FiG. 13.

20 G. J. SUSSMAN, G. L. STEELE JR.

Slices as constraint diagrams

We can express the idea that two resistors in series are equivalent to a single
resistor:

==>> (constraint series-resistors

((r1 resistor) , d-d

(r2 resistor) =

(req resistor) " =
(a adder)) : —
(== (>t (>> tlreq)) ™| §4

I

(>> t2r2) (>> t2req))

(>> al a) (>> resistance rl))
(== (>> a2 a) (>> resistance r2))
(== (>> suma) (>> resistance req)))

SERIES-RESISTORS

(Remember: This does not say that (>> tl req) is electrically connected to
(>> tlrl). It says that (>> t1 req) is (>> t1 rl). This differs from the situation
where two resistors are connected through a node. Here we are talking about two
views of the same terminal.)

This definition does not express the fact that we ordinarily apply it only to resis-
tors which share a common node. This is a restriction on usage of the constraint,
rather than a restriction to be enforced by the constraint. If it is used properly,
however, it will enforce the desired series constraint. We now construct an instance
of the constraint, and use it to describe the resistors R44 and R43 connected earlier.

(=
(=

I

==> (create srl series-resistors)

SR1

==> (== (>> rl srl) 143)

IDENTITY

==> (== (>> r2srl) r44)

IDENTITY
Now there are two simultaneous, redundant descriptions of what is going on
between the upper and lower terminals of the circuit. Neither description is
regarded as being ‘more real’ than the other; we merely say that one or the other
is more useful for some purpose. Both descriptions, as one resistor and as two, are
equally valid. We can speak of (>> resistance req srl), the resistance of the
resistor in the single-resistor description, just as well as of (>> resistance r43)
or (>> i tl r44), which are quantities of the two resistor description.

These redundant descriptions have important computational applications. For
example, in the voltage divider circuit the alternative description of the divider as
a single resistor permits the deduction of the current through the divider. This in
turn permits the deduction of the voltage at the midpoint!

==> (what-is (>> v tl r44))
(>> VTIR44) = 30

CONSTRAINTS—EXPRESSING ALMOST-HIERARCHICAL DESCRIPTIONS 21

What we have done here is to introduce an alternative point of view of the circuit.
While in principle it contains no extra information, the new viewpoint is better
organized for certain purposes (such as determining the current through the
divider). The constraint language permits us to introduce many such redundant
viewpoints so that they can cooperate in solving a problem.
Let us add another resistor R45 to our circuit:
— NN

R43 ReY RYS

We can describe various series combinations within this circuit—see Fig. 14.

FiG. 14.

In this manner the flat three-resistor circuit can be hierarchically decomposed
in at least three different ways: (1) as three separate resistors; (2) as the series
combination of the upper two, in series with the lowest; (3) as the uppermost, in
series with the series combination of the lower two. In a given circumstance one
point of view may be more useful than another. Moreover, the various points of
view do not fit neatly into a single hierarchy. They can be organized into an ailmost-
hierarchy.

A complex example

The preceding examples show how alternative points of view can help us avoid
algebra in simple cases. Here we show a more substantial problem whose solution
can be facilitated with redundant descriptions. Consider a problem which we have
used in class.!®

10 Sussman has been in charge of the introductory subject in Electrical Engineering at MIT, Intro-
ductory Ne;wdrk Theory. He finds the relationship between teaching introductory engineering subjects
and research in Artificial Intelligence rewarding. Teaching novel ideas to humans is like teaching them
to machines. Often a new way of explaining an old idea becomes a program and the reverse is also true.
Observing expert circuit analyzers solve networks, so that students could be taught their expert methods,
led to the development of analysis by propagation of constraints. This became EL. EL style analysis
is now being taught to our students.

22 G. J. SUSSMAN, G. L. STEELE JR.

WEEI-AM (590 kHz) needs a ‘dummy load’ for use in the maintenance of their 50 kW
transmitter. A dummy load is a resistor, connected to the output of a transmitter in lieu
of an antenna, to allow adjustments and measurements to be made on the transmitter
under controlled conditions without radiating the test signals (which might interfere with
other services). The only resistor they have which is capable of dissipating 50 kW is a
1 Ohm graphite block in a drum of oil (used to carry off the heat). The transmitter, however,
needs a 50 ohm resistive load—it is to be adjusted to operate into a 50 Ohm antenna.
Design a circuit to match the transmitter to the 1 Ohm resistor.

(Hint: You need just one inductor and one capacitor.)

The first difficulty here is understanding the problem. Ignoring the difficulties
of natural language and the side issues which make the problem ‘real’ to the
student, how can we formally specify the desired construct?

Just as we have summarized the behavior of the antenna at 590 kHz as a pure
resistance of 50 Ohms we specify the behavior of the desired network in terms of an
equivalent circuit. We want to construct a 2-port network, N, such that if it has a
1 Ohm resistor connected to its second port, the resulting 1-port network, N,
is equivalent to a 50 Ohm resistor at 590 kHz. A further reasonable constraint
is that N dissipates no power itself.

N %RZ = %Rl

N

FiG. IS.R; = 50,R, =1

The failure of analysis
Let’s ignore, for the nonce, the problem of finding a candidate topology. Suppose
that somehow we are told that an appropriate circuit for N is an L-network:

b (T0)
I

Tc

The problem is now reduced to one of determining values of L and C for which
N displays the behavior desired.

Since the frequency is a constant of the problem, we can simplify things by
working with the reactances rather than with frequency-dependent impedances.
We define:

1

X, =Lo, Xe= o
U

Thus the real problem is one of finding the reactances.

CONSTP AINTS—EXPRESSING ALMOST-HIERARCHICAL DESCRIPTIONS ‘ 23

We analyze the network N’ to determine the impedance it presents. .

Z(ju)? L R
o=omf~37x10e8 ——
i S€C

We can combine the impedances in series and parallel to get:
_ —Xd(Xij+R,)
R, + (X, —Xoi
Simplifying, we obtain:
_ XXi—R X
T R+ X —X0)j
Separating the real and imaginary parts, we get:
R, X2 XX+ XX, -RX,.
R;+(X—Xc)? R} +(X.—Xc)?

Our problem statement required the impedance to be R ; . Using our given numbers
for R, and R,, we get:

V4

7 =

X2 —X X+ XEX —Xc .
1+ (X —Xo)? 1+ (X —X)?

50+0j =

Our complex equation reduces to two nonlinear equations in the two unknowns

(X, and X.). Most engineering students can solve these, but we have only two
undetermined parts. Suppose we were trying to design a T-section filter? The
problem is hopeless, even with a powerful algebraic manipulator,!! without
some better idea. Analysis for voltages and currents is often easy because of
linearity but the component values are nonlinearly related to the specifications.

Knowing how it works

The solution to this problem lies in the knowledge of how an L-network ac-
complishes the goal of matching the impedances. Each part in the L-network
contributes to accomplishing the goal. The key idea can be seen by looking at the

!* Although there are some very powerful algebraic manipulators available [21], it is unreasonable
to expect them to help us out by symbolically inverting the equations of analysis. Suppose that the
problem was an 8-section lattice filter (32 part values to determine—nonlinearly related to each other
and to the specifications)? In general, it is more helpful to have knowledge which tells us how to avoid
manipulation than it is to have powerful manipulators.

Believing in the ultimate power of mathematical manipulation is one of the most common difficulties
encountered by students learning electrical circuit analysis. Students often grind out ‘impossible”
algebra in the course of solving a homework problem, even though a little thought will reveal an
algebraically feasible approach which depends upon a small insight into the operaticr of the network
being analyzed. They then complain that we give them too much homework!

o

24 G. J. SUSSMAN, G. L. STEELE JR.

parallel equivalent of a series combination. Consider just the inductor-load
combination:

N
2 LU % 7' = R, +X,j
B ——— 7 R2

If we look at the admittance rather than the impedance, we obtain:

1 __ R, X
R,+X;j RI+X? RI+X2

Yl} —_

1 .
VA J
This admittance is the sum of two terms. We can view this as a parallel combina-
tion of two admittances: a frequency-dependent conductance and a frequency-
dependent inductive susceptance. At any particular frequency there is a resistor
and an inductor whose parallel combination is equivalent to N”:

o x - Ri+Xi
R
— R = RE+XE
R2

Note that the equivalent parallel resistance R” can be made larger than R, by
addingin inductive reactance. In fact, we can make this apparent parallel resistance
the 50 Ohms (R ;) required by the problem.

Now we see the purpose of the parallel capacitor in the L-network. If we use
it to resonate out the parallel inductance L" at the specified frequency, all that will
be left is the 50 Ohm parallel resistance we constructed with the series inductor
and load resistor combination.

RII — I{1
c L" R" Xe = Xiu

(parallel resonance)

(The parallel combination of the capacitor and the apparent inductor is equivalent
to an open circuit at the resonant frequency!)

With this understanding, the problem of finding appropriate values of L and
C is significantly simplified. We can have algebraic manipulators, both human
and mechanical, which can solve the problem.

If we set R” = R, we can easily solve for X, in terms of R, and R, at our
desired frequency.

X, = /R,R,—-R?

CONSTRAINTS—EXPRESSING ALMOST-HIERARCHICAL DESCRIPTIONS 25

We then plug this result in to get the net parallel inductive reactance of network N”.
R,R '
X L, = 142
L~ /RR,-R2

We must provide an equal capacitive reactance to balance this inductive reactance
at the desired frequency. This condition determines the value of C.

X _ RlRZ
¢~ JRR,-R?

Notice how smoothly the equations solve themselves. The trick is not being

~ good at algebra but rather knowing what algebra to do. Each component in a

circuit is used to provide for only part of the goal of that circuit. It is necessary
to look at each part in its restricted context. In electrical circuits, thlS is often
conveniently specified by means of equivalent circuits.

Power and phasors
Another point of view which explicates the operation of our L-network involves
power arguments and reasoning with phasors. We intend that N be such that N”
looks like a 50 Ohm resistor R, . But no power is dissipated in N; in fact all of the
power apparently dissipated in R, is really dissipated in the 1 Ohm resistor R,.
Now suppose the RMS voltage across N’ is |V,|. Then the power dlssxpated
is]V |*/R . But this power is really going into R, hence the RMS voltage across
R, is: :
2
JEm

R, and L are in series so the RMS voltage across L is:

/ R
ViP- g2 VA2
1

In addition, the current through R, (and L) is:

I
\/ WIVJ

Hence, we can derive the reactance:

X, = \/R1R2<1-§%> =\/R1R2—R§
1

We could continue to extract the capacitive reactance . . . but later.

Expressing this with slices
The moral of this story is that the activity of assigning component values for the
parts of a circuit whose topology is known is not a simple task. To be able to

26 G. J. SUSSMAN, G. L. STEELE JR.

accomplish it without unobtainable algebraic power requires an understanding
of how the circuit works. This combines a diverse set of reasoning strategies and
overlapping points of view. Some of these points of view are expressed by useful
electrical port equivalences, and some are more global statements about the
identity of parameters. We now use these techniques to present the complete set
of slices which constitute the rationale for the design of an L-network impedance
matcher.

B T

FIG. 16. L-network and explanatory slices.

We have tried to capture in Fig. 16 all of the basic relationships which explain
how the L-network is intended to work. We see the following facts indicated:

The network is expected to be connected on its right to a circuit which is
equivalent to a resistance R, .

The network presents a resistance R, to the port on its left.

The series combination of L and R, is equivalent to the parallel com-
bination of L” and R".

R” has the same value as R .

The parallel combination of L” and C is equivalent to a current source
of zero current (an open circuit).

The power dissipated in R, is the power dissipated in R,.

Some of the slices express information not available from the basic circuit
diagram. For example, the slices a and b, which attach the equivalent resistances
R, and R, to the circuit form the specifications of the L-network. The power
relationship and the parallel equivalence are redundant as they could be deduced
by a sufficiently powerful circuit analyzer.

Synthesis by analysis .
Aided by the slices we can now determine the component values of the L-network
by propagation. We terminate the L-network with a 1 Ohm resistor on its right
and we specify that its input impedance be a 50 Ohm resistance. (See Fig. 17.)

am—

e

3

CONCTRAINTS—EXPRESSING ALMOST-HIERARCHICAL DESCRIPTIONS 27

—_— O

D S

—fe - - ——

- - - - e e e -

F1G. 17. L-network and specifications.

Suppose we knew the voltage-amplitude, V, (relative to the ground indicated)
at the top of the 1 Ohm load, then the current (amplitude) flowing down throngh
the load is V,. This same voltage and current appear on the terminals of R, so
we can deduce in one step that R, = 1 Ohm. This current also flows through the
inductor, L; it enters the left side of L. (Thus the parallel slice has this same current
entering it.) Now the power dissipated in R,, P, = |V,|2. This power must be
dissipated in R . Suppose we also knew the voltage V, at the top of R, . Thus by a
similar argument to the one above, we can deduce that R; = 50 Ohms. Since we
know the power dissipated in this 50 Ohm resistance, we can deduce that the
magnitude of the voltage at the top of R, is SQRT(50) * [V,

At this point we know the voltage amplitude at the right of the inductor L,
the current amplitude through it, and the magnitude of the voltage on its left.
From this we deduce its reactance:

X, = 7 Ohms,

Using this we can get the full voltage amplitude on the left of L in terms of that

on the right:
Vi = Vaox(1 4+ 7%j)

This voltage also appears at the top of R,. We use this to get the current through
R, (which is the same as the current into N'). It is:

V,#(1/50 4+ (7/50)%))
From this we compute the current into the capacitor:
V,*(—49/50+(7/50)%j)

But we know the voltage across the capacitor and the current through it; hence
the reactance ' '

Xc = 50/7 Ohms.

28 ‘ " G.J.SUSSMAN, G. L. STEELE JR.

Note that we didn’t use the parallel slice. Other interesting derivations pass
through that route. The slices are redundant descriptions—the same truths from

~avariety of viewpoints. The way that the slices do their job, however, is by providing
redundant paths for information to travel in the process of analysis. Thus, in the
power argument above, the power dissipation slice, though redundant (It is
derivable using only the local knowledge that inductors and capacitors dissipate
no net power.), made it possible for enough information to get from the right
side of the inductor to its left side to determine the inductive reactance.

Knowing the form of the answer
We have shown how slices can be used to express some of the knowledge of how a
circuit is intended to work by describing alternate views of sections of the circuit.
We have shown how this knowledge can help in the process of synthesis if we know
the topology and the correct slices to use. Where does this information come from?
To answer this question in detail requires describing a theory of the design
process. We can outline such a theory in general terms. The key idea is that of
knowing the form of the answer. When presented with a simple problem, like a
radio frequency impedance match, an engineer is likely to be able to retrieve such
plausible solutions as the L-network and the transformer directly. If a more
complex problem is posed, such as a 30 dB gain broadband amplifier with an
input and output impedance of 600 Ohms, capable of output signals with 1 Volt
of swing, the engineer does not retrieve a detailed answer but rather a high-level
plan such as in Fig. 18.

O

LL STAGE 1

STAGE 2

‘8
———0
&

600
<

F1G. 18. 2-stage plan.

This has the effect of decomposing the problem into a set of relatively inde-
pendent subproblems. In fact, there are aiways complex interactions among the

wnuAN

Tew

A

TehT

TIA

WNHON

Iy

-1 100

Tan

CONSTRAINTS—EXPRESSING ALMOST-HIERARCHICAL DESCRIPTIONS 29

parts which lead to bugs and debugging.!? But the form of the answer is set. The
problem is reduced to one of finding a feasible solution for each subproblem
represented by the boxes. Each subproblem is constrained by the laws of electricity
and the slices present on the plan. Each subproblem is further expanded until one
gets to atomic problems.’?

We believe that the slices are an integral part of the forms of solution for the
different problem classes stored in the engineer’s bag-of-tricks. When solutions
to subproblems are combined, as above, the slices on the subsolutions are com-
bined with the slices on the higher level plan. In addition, new patterns are formed
by debugging of designs and by certain window optimizations. For example, if
the solution of each of two subproblems leads to an inductor in series with a port,

] NS R (o o) NN

Ly L,

and the two subsolutions are combined according to a Cascade plan it is recognized
as an optimizable pattern and replaced by one inductor which performs the duties
of both subinductors:

The old circuit remains as a set of slices explaining the new part!
Knowing the form of the answer is not unique to engineering problem solving.

'2 We believe that many bugs are just manifestations of powerful strategies of creative thinking—
that creation and removal of bugs are necessary steps in the normal process of solving a complex
problem. Following the work of Polya [26], recent research [12, 17, 33] predicated on this belief has
resulted in the development of a paradigm for problem solving which we call Problem Solving by
Debugging Almost-Right Plans (PSBDARP). We believe that the PSBDARP theory is a good foundation for
building expert problem-solving systems for such diverse kinds of engineering as circuit design [35, 36]
and computer programming.

'3 The idea of successive refinement of plans appears as a key dogma of ‘Structured Programming
[5, 9. 43], although it also appears in the Artificial Intelligence problem-solving literature. The idea of
relaxation of a hierarchy of constraints comes from Freeman and Newell [15]. There are also versions
of Gps [11] which were purported to do reasoning in a hierarchy of abstraction spaces. ABSTRIPS [28]
showed how refinement of abstract plans could be used to guide a problem solver past problems which
would otherwise be combinatorially explosive. Recently the NOAH system [29] has developed this idea
to great depth.

30 G. J. SUSSMAN, G. L. STEELE JR.

It is very common in mathematics.!* For example, if we have a Homogeneous
Linear Differential Equation with Initial Conditions we know that the form of the
‘answer is e cos(wt + p). We can plug this in and solve for 4, k, w, p. The algebra
is, however, pretty rough. If we know how the parts of the answer are related to the
problem—that w and k are functions of the differential equation only and 4, p
are derived from the effects of the initial conditions—things are algebraically
more feasible. These facts can be represented as ‘algebraic slices.’

4. Constraints and Algebra

It might seem that in writing down and using constraints we are just writing
algebraic expressions in a different and not even convenient form. This is true to
some extent, but it is not the entire picture. The constraint language is 1 kind of
‘structured algebra’ in that we have almost-hierarchical structures which allow us
to manufacture and combine systems of algebraic constraints to make larger
systems. Additionally, we will see that networks of contraints are more funda-
mental than the algebraic notation used to describe them, in that there may be
many equivalent sets of equations which describe any given constraint diagram,
but there is precisely one constraint diagram for any given set of equations.
Algebra has two components of interest. One is a notation for expressing

constraints, and the other is a set of transformation rules which permit the derivation
of consequences of the constraints,

The reader may have noticed that the constraint language is rather verbose.
In defining the numerical constraints in the RESISTOR constraint definition, we
had to write out eight lines:

(== (>> vtl) (>> sum av))
(== (>> vit2)(>> al av))

(== (>>; a2 av) (>> product m))
== (>> 1tl) (>> ml m))

== resistance (>> m2 m))
(== (>> itl)(>> al ai))

== (>> 1t2) (>> a2 ai))
(constant (>> sum ai) 0.0))

Using an algebraic notation, we might have written simply:

(>> vitl)—(>> v12) = (>> itl) * resistance

(>>1th)+(>>1t2) =00
Algebraic convention normally dictates that simpler variable names than (>> vtl)
be used. We have used the same long names in the algebiaic equations not only

'+ Perhaps the best example of a program which uses The Method of Knowing the Form of the
Answer is sIN [25]. This symbolic integration program classified an expression to be integrated according
to certain criteria which ailowed it to select a general form for the answer and then solve for the details
of the undetermined coefficients. siN did not, however, use slices to help in the solution process.

——

CONSTRAINTS—EXPRESSING ALMOST-HIERARCHICAL DESCRIPTIONS 31

for the sake of a ‘fair’ comparison, but because names of this form are critical to the
almost-hierarchical composition of the constraints. '

Algebraic notation is expression-oriented. It achieves conciseness through the
use of functional composition. The relationship of arguments to function is
implicitly expressed by position, permitting the elimination of explicit description
of the connections. For example, in expressing an addition constraint in the
constraint language, we explicitly mention the three ‘pins’ A1, A2 and SUM of the
adder, and explicitly specify what they are linked to. In algebraic notation we
simply write ‘e+b.” The + denotes an adder constraint. The three connections
to the adder constraint are expressed by position. Whatever is to the left of the +
is connected to the Al pin; whatever is to the right of the + is connected to the
A2 pin; and the SUM pin is connected to the pin of whatever operator of which the
entire expression stands as an argument. If we write ‘(a+b) * ¢,” then the SUM
pin of the adder constraint is connected to the M1 pin of the multiplier constraint.

The connections indicated in an algebraic expression form a tree, with con-
nections to identifiers at the leaves, and a single loose connection coming ‘out the
top.’ To connect the loose ends of two expressions, we use the equality symbol =.
An equation, unlike an expression, is a constraint network with no loose ends (or
rather, the loose ends are explicitly indicated by the presence of identifiers).

The advantages of algebraic notation are obvious. What do we pay for concise-
ness? Asymmetry. To a mathematician, the following three statements say the
same thing:

E=K+U K=FE-U U=FE-K

Each ‘binary’ operator must in principle have three forms, one for each of the
three connections that may come ‘out the top’ as opposed to being connected to
‘arguments.’ (In the case of addition and subtraction two forms suffice because
one of them is commutative. Consider, however, the triplet of equations
x =y y=\7; z =log, x

each of which expresses the same constraint in a different form. More generally,
an m-ary operator with no symmetries on its pins requires n+ i distinct forms.)
The constraint language preserves symmetry of expression and economizes on
primitive notations: both additions and subtractions are expressed by the same
constraint. The cost of this symmetry and economy in the constraint language is
verbosity.

Algebra provides rules for transforming among equivalent representations of
a constraint. Given this, in some sense it doesn’t matter how they are written
down. Equations express truth.

Given a set of equations, we can easily draw the (unique) constraint diagram
which they represent. For example, for the set

2xX4+3xY =3 5*X+4xY =7
we draw the diagram of Fig. 19.

32 G. J. SUSSMAN, G. L. STEELE JR.

FiG. 19.

Each equation represents a piece of the network which is an unrooted tree, the
result of connecting two rooted trees at their roots. The purpose of the identifiers
X and Y in the equations is to cut the loops in the network in order to make them
printable as (necessarily tree-like) expressions. When the separate tree-like pieces
are printed, the identifiers indicate the cross-branch and inter-tree connections.

For any given network, there may be more than one way to cut the loops.
For example, we could use another variable U—see the diagram of Fig. 20.

F1G. 20.
We can then write this cut of the network as
6=U+3*((7T-5+*(U/2)/4)

Even for a given assignment of identifiers, one can write many different equations
by choosing which (two-ended!) connection to use for the equality; the two parts
of the equation tree are considered to be rooted at the ends of the chosen con-
nection. Using the connections marked [a]-[e] we get these equations:

[a] U =2x((7-4*(6-1)3))/5)
[b] Uj2 = ((7T—4x((6—-U)/3))/5)
[e] 5*(Uj2) = (7T-4*((6—1)/3))
[d] (7-5=*(U/2) =4x((6-U)/3)
le] 3 =(6-U)((7-5%*(U/2))/4)

All of these equations represent the same network of relationships.

)

S

CONSTRAINTS—EXPRESSING ALMOST-HIERARCHICAL DESCRIPTIONS 33

It is of course possible to use more identifiers than necessary. One (U) suffices
for our example, and it could have been put in any of six places. We originally
derived the diagram from two equations in two identifiers X and Y. We could
use more than two if we desired to, for some reason; we could also assign more
than one identifier to a connection, and equate the redundant identifiers. Taken
to the extreme, this approaches the connection specifications of the constraint
language, wherein each quantity has multiple names which are equated.

In some diagrams a single connection may have more than two ‘ends’; i.e.
the same quantity is constrained in more than two ways. This occurs in the
RESISTOR definition above. Now the implicit connections in expression notation
have only two ends. When a diagram with many-ended connectors is to be printed
as a set of equations, such connectors must have identifiers assigned to them,
because only identifiers can express multiple-ended connections in algebraic
notation. After such identifiers have been assigned, additional ones may or may
not be needed to cut remaining loops. ‘

The various ways of algebraically notating a set of relationships are equivalent,
A network of relationships simply exists. It is in this sense that we mean that
constraint diagrams are more fundamental than sets of equations. Many algebraic
laws (but not all) simply provide for transformations among sets of equations
which represent the same diagram.

When we begin to use the network for some computational purpose, however,
then the point of view becomes important. If we wish to compute some ‘output’
value(s) given certain ‘input’ values, where all the values are related by some
network of constraints, we must organize an information flow within the network.

“Intermediate computations must proceed along an acyclic path from inputs to

output(s). }

So-called ‘algebraic’ programming languages find algebraic notation a conven-
ience because the tree implicit in the functional composition is guaranteed acyclic,
and there is an asymmetry to each connection (from ‘out the top’ to ‘into an
argument slot’) which can be construed to imply the direction of information flow.
The notation therefore requires the programmer not only to express relevant
relationships but also simultaneously to specify the particular computational use
to which the relationships will be put. Thus, for example, Ohm’s Law is the
equation “V = IR”, but the user of an ‘algebraic’ programming language cannot
simply write this algebraic equation; he must put it in a particular form (for
example, I := V/R) which explicitly directs the computation. ' '

This may serve as a definition of the distinction between ‘imperative’ and
‘declarative’ languages. An imperative language requires the programmer to
explicitly break loops in the network of constraints, and to explicitly organize the
information flow within the network. A declarative language requires only the
statement of relevant relationships, and the computational organization is
specified separately or performed more or less automatically.

Besides requiring the programmer to specify the computational flow as a tree,

34 G.]. SUSSMAN, G. L. STEELE JR.

most ‘algebraic’ programming languages require expressions to denote single
results.'® For example, there is generally no way to define an integer division
“function” which returns both quotient and remainder (which is a shame, because
typical algorithms for computing either actually compute both, particularly
those used in many contemporary computers) and embed a call to such a “function”
in an expression. This is an inherent property of trees.

We pointed out earlier that algebra provides transformation rules for “shifting
perspective” on a relationship, for example transforming E = K+ U into
K = E—U. Not all algebraic transformations are this simple. Some do not merely
view the same network in a different way, but produce a different network which
has the same meaning by virtue of non-trivial relationships between the meanings
of the component constraints. A good example of this is the distributive law of
multiplication over addition:

X = AB+AC < X = A(B+0O)

The networks for these two equations look as shown in Fig. 21. These networks

X x

FiG. 21.

are topologically distinct: one has a loop, and the other does not. Consider now
trying to compute 4 given X, B and C. The second network can be used straight-
forwardly, because a spanning tree can be imposed on it, rooted at A, with all
leaves given, specifying a complcte romputational flow. Such a tree cannot be
imposed on the first network. Any spanning tree rooted at 4 has 4 as a leaf (a
spanning tree rooted at a connection extends out only one end of the connection),
and so is unsuitable for computing 4.

This is why the voltage divider failed to compute the midpoint voltage given
the endpoint voltages and the two resistances. The constraints imposed by the

!5 There are a few languages which permit a routine to return more than one value (other than by
side effect of a reference parameter as in FORTRAN). In SLS every expression implicitly carries two values:
an ‘ordinary’ value and a success/failure flag. Languages such as por2 and FORTH are stack-based, and
routines both receive arguments and return values on the stack. APL and LIsP do not have muitiple-
valued expressions. A common trick is to construct a data structure (an array or a list) which contains
several distinct values to be returned: but the called routine must explicitly construct this structure,
and the caller must then explicitly decompose it.

P\

CONSTRAINTS—EXPRESSING ALMOST-HIERARCHICAL DESCRIPTIONS 35

resistor definition contained loops which prevented the system from finding an
effective computational flow within the network. Imposing the” SERIES-
RESISTORS equivalence introduced extra paths which provided an effective
spanning tree for the network in terms of the particular givens. (See Fig. 22.)

Similarly, when we ‘solve an equation’ by using the distributive law, we in
effect impose another piece of network on the original network which preserves
the semantics of the relationships but permits a spanning tree to be found.

10.0 —>
b \—¢
oA
+
X 210 M
-+ 0,0 L { v
v o1 +
' mbes =
3.0 o {l
T 0.0 R 4=
v)
T ;
1/3 > Ot v
1 3
X
. . /
/3
79
0.0 —3

FiG. 22. Constraints for series resistors.

5. Computing with Constraints

All of the computations we have performed with constraint networks can be
described as simple propagation of known values. Values are propagated through
primitive constraints and through equalities by ‘one-step deductions.” Primitive
constraints are processes containing local cells which ‘continually’ monitor the
cells. A cell may at any time have a value associated with it. A primitive constraint
will notice if any of its cells gets a value, and if it can locally determine the value
of one of its cells from the values of its other cells, it will associate the deduced

36 G. J. SUSSMAN, G. L. STEELE JR.

value with that cell. A cell can also get a value by being equal to another cell which
gets a value. Finally, a cell can be arbitrarily assigned a value by the user or by a
CONSTANT declaration (cf. RESISTOR above).

If a cell has an associated value, it also has associated with it a reason.!® If the
value was obtained from other cells through a primitive constraint, then the
reason mentions those other cells and the particular rule of the primitive constraint
used to make the deduction. If the value was obtained through an equality with
another cell, the reason mentions that cell. If the value was arbitrarily assigned,
the reason points to the user or to the system (CONSTANT). These reasons
(‘dependencies’) are easily constructed as the deductions are made; they are
essentially simple markers indicating the direction of information flow within the
network. These markers can be traced at any time for such purposes as finding the
antecedent assumptions of a deduced value, or locating the consequences of a
value. These may be in turn used for explanation or incremental forgetting of a
user-supplied assumption and all of its consequences (as we have seen). In addition,
if one traces from a value back to its antecedent assumptions, the part of the
network thus traced, with the directionality of path imposed by the dependency
markers, constitutes an algebraic formula for computing the value.!’

It is possible that a cell be assigned a value for more than one reason. If two values
collide at a cell they must be the same. If they are not, and if the network represents
a satisfiable set of constraints, there is an inconsistent set of assumed values.
The dependencies can be used to determine which subset of the set of assumed

values is inconsistent. This can be helpful in dealing with very large networks with _

!¢ TopLE [23] was an early attempt to record the interactions among deductions for the purpose of
maintaining consistency in a data base when newly introduced facts conflicted with existing ones.
The SRI Computer Based Consultant [13] made use of dependencies to determine the logical support
of facts, but did not use them to control search. MycIN [6, 31, 32] used dependency information to
produce explanations, but did not use it for any control purposes. EL [40] used dependencies to produce
explanations and also to limit the recomputation required in response to incremental changes in the
assumptions. Stallman and Sussman described a general means of limiting combinatorial search by
the analysis of dependency chains and the use of muitiple logical supports for facts [38]. This method,
called ‘dependency-directed backtracking,” was independently discovered by Jim Stansfield (unpub-
lished Ph.D. thesis draft, University of Edinburgh—the idea was edited out of the final thesis for
unknown reasons). This method is superior to the more familiar ‘chronological backtracking,’ intro-
duced by Floyd [14] and best known for its use in Al languages beginning with PLANNER [18] and
Micro-PLANNER [41], in that it avoids the irrelevant dependencies assumed by the system on the basis
of accidental chronological orderings of assumptions [38, 39). Doyle [10] developed a portable ‘Truth
Maintenance System’ which encapsulates a careful theory of dependencies, dependency-directed
backtracking and non-monotonic inference. A simpler system for dependencies and backtracking was
developed in [22]. McDermott and Doyle have produced an elegant semantic theory of noh-monotonic
inference which is described in [24]. Phil London of University of Maryland has used dependencies to
aid in keeping track of assumptions in the world model used by a problem-solving system [20].

7 The idea of extracting procedures for computing specific values from a constraint network is
being pursued by Richard Brown [3). Borning [1] has also done work in this area. (See also footnote 6,
p. 11.) .

e

o~

CONSTRAINTS—EXPRESSING ALMOST-HIERARCHICAL DESCRIPTIONS 37

many assumed values, where any one contradiction typically depends on only a
small subset of the many assumptions.

In a satisfiable constraint network, the values which will be assocmted with cells
are independent of the order of propagations through the network. Thus we may
think of them as occurring in parallel, though they are implemented by means of a

queue or agenda in our current system.
As we have seen, there are simple networks for which propagation fails to
assign all of the values one might desire. For example:

+:un @

ZAP

We have already discussed how redundant descriptions may be used to bypass
such loops by superimposing an equivalent tree structure. Another, related
strategy involves the use of symbolic algebraic manipulation. If we enable the
primitive constraints to propagate symbolic expressions as well as numerical
values, we can use powerful algebraic manipulators to propagate past loops. If
for example, in the problem above, we put the symbolic value X on (>> Al
ZAP) then ZAP may deduce that its A2 is 5—X. ‘Simultaneously’ FOO may
deduce that its M1 is X/1. These values are on cells declared to be equal; thus an
equation may be formed, X/1 = 5—X, and solved algebraically. Once the value
of X has been determined, then the numerical values for the propagated symbolic
expressions can be computed (or at least expressions involving X and possibly
other variables can perhaps be simplified).

Algebraic techniques of this sort were used in such systems as EL. ARS, and
SYN.!8 It is easy to see, however. that propagation of symbolic expressions in
effect make copies of tree-like portions of the network ; each expression is a history
of the portion of the network through which its pieces were derived. The algebraic
techniques applied to these expressions might as well have been applied directly
to the network. Instead of applying the distributive law to an algebraic expression,
for example, one might as well just attach that extra point of view to the network.
The implications of this idea have just barely begun to be explored.

8 We have used propagation of algebraic expressions in our work on analysis and synthesis of
circuits. (See also footnote 2. p. 2.) Although we have used algebraic manipulation techniques (ex-
tracted from MacsyMa [21]) far more powerful than people generally use. we have found that these
techniques are not. by themselves. powerful enough to solve many interesting problems which people
can solve. People generally solve these problems by organizing the solution so that only simple algebra
is required (often by using canned theorems) whose proofs perhaps required tremendously complex
algebra (done once and for all by a clever person whose name is probably attached to the theorem).
but whosc application does not require complex algebra). To avoid tremendous symbolic computations.
computers must also have good methods of avoiding doing all except the most trivial algebra problems.
We have used multiple redundant descriptions {35. 36] to encapsulate ways of looking at a problem
which are organized so as to obviate the need for extensive algebraic manipulation.

38

G. J. SUSSMAN, G. L. STEELE JR.

ACKNOWLEDGEMENTS

We would like to thank the many people who helped us. Original ideas about propagation and grey
boxes were developed jointly with Richard M. Stallman. Significant ideas have also come from Drew
McDermott, Allen Brown, Johan de Kleer, Jon Doyle, and Marvin Minsky. Danny Bobrow, Allen
Borning, and Randy Davis made suggestions which improved the presentation. One of us (Steele) is
supported by a Fannie and John Hertz Foundation graduate fellowship.

13,
14,

IS5,
16.

20.

REFERENCES

. Borning, A., ThingLab—an object-oriented system for building simulations using constraints,

Proc. Fifth International Joint Conference on Artificial Intelligence (1IJCAI-5), MIT, Cambridge
(August 1977), 497-498.

. Brown, A. L., Qualitative knowledge, causal reasoning, and the localization of failures, Ph.D.

thesis, MIT, Cambridge (September 1975). Also MIT Al Lab Technical Report 362, Cambridge
(March 1977).

. Brown, R., Automatic synthesis of numerical computer programs, Unpublished Ph.D. thesis

proposal, MIT, Cambridge (September 1978).

. Church, A., The Calculi of Lambda Conversion, Annals of Mathematics Studies Vol. 6 (Princeton

University Press, Princeton, 1941). (Reprinted Klaus Reprint, New York, 1965.)

. Dahl, O. J,, Dijstra, E. W., and Hoare, C. A. R., Structured Programming (Academic Press,

London, 1972).

’
. Davis, R., Applications of meta level knowledge to the construction, maintenance and use of large

knowledge bases, Stanford University, AT Lab Memo AIM-283 (Stanford, July 1976).

. de Kleer, J., Local methods for localization of faults in electronic circuits. MIT Al Lab Memo 394

(Cambridge, November 1976).
de Kleer. J.. and Sussman, G. J., Propagation of constraints applied to circuit synthesis, MIT Al
Lab Memo 485, Cambridge (September 1978).

. Dijkstra, E., Structured programming, in: Ruxton, J. N., and Randell, B., Eds., Software Engineering

Technigues (Nato Scientific Affairs Division, Brussels, Belgium, 1970).

. Doyle, J., Truth maintenance systems for problem solving, M.S. thesis, MIT, Cambridge (May

1977). Also MIT AI Lab Technical Report 419, Cambridge (January 1978).

. Ernst, G. W., and Newell, A., GPS: 4 Case Study in Generality and Problem-Solving (Academic

Press, New York, 1969).

. Fahiman, S., A planning system for robot construction tasks, M.S. thesis. MIT, Cambridge

(May 1973). Also MIT Al Lab Technical Report 283, Cambridge (May 1973).

Fikes, R. E.. Deductive retrieval mechanisms for state description models, Stanford Research
Institute, Menlo Park, California, Al Technical Note 106, (July 1975).

Floyd, R. W., Nondeterministic algorithms, .J. ACM (October 1967).

Freeman, P., and Newell, A., A model for functional reasoning in design, Proc. IICAI I1 (1977).
Goldberg, A.. and Kay A., (Eds.), Smalitalk-72 Instruction Manual (Xerox Palo Alto Research
Center, SSL 76-6. Palo Alto, California. 1976).

- Goldstein, 1.;-Summary of MYCROFT: a system for understanding simple picture programs,

Artificial Intelligence 6 (1975), 249-288.

. Hewitt, C. E., Description and theoretical analysis (using schemata) of PLANNER: a language for

proving theorems and manipulating models in a robot, Ph.D. thesis. MIT, Cambridge (January
1971). Also MIT Al Lab Technical Report 258, Cambridge (April 1972).

. Lacombe, J-C., Artificial Intelligence in computer-aided design: the tropic system, Stanford

Research Institute, Al Center, Menlo Park, CA, Technical Note 125 (1976).

London, P. E., Dependency networks as a representation for modelling in general problem solvers,
Ph.D. thesis, University of Maryland, Dept. of Computer Science, College Park. MD., Technical
Report 698 (September 1978). :

CONSTRAINTS—EXPRESSING ALMOST-HIFRARCHICAL DESCRIPTIONS 39

21.
22.
23.
24,
25.
26.
27.
28.
29.

30.
31

34.

35.

36.
37.
3.
3.
4.
a1,
2.

43.

Mathlab Group, MACSYMA Reference Manual, Version Nine (MIT Laboratory for Computer
Science, Cambridge, December 1977).

McAllester, D. A., A three-valued truth maintenance system, MIT, Al Lab, Cambridge, Memo 473
(May 1978).

McDermott, D. V., Assimilation of new information by a natural language-understanding system,
B.S./M.S. thesis. MIT, Cambridge (1973). Also MIT, Al Lab, Cambridge, Technical Report 291
(February 1974).

McDermott, D. V., and Doyle, J., Non-Monotonic Logic 1, Artificial Intelligence, To appear.
Moses, J., Symbolic integration, MIT, Cambridge, Project MAC, Technical Report 47 (1969).
Polya, G., Mathematical Discovery: On Understanding, Learning, and Teaching Problem Solving,
Vols. I and II. (Wiley, New York, 1972).

Rich, C., Shrobe, H. E., and Waters, R. C., Computer aided evolutionary design for software
engineering, MIT, Cambridge, Al Lab, Memo 506 (January 1976).

Sacerdoti, E., Planning in a hierarchy of abstraction spaces, Proc. IJCAI 111 (August 1973).
Sacerdoti, E., A structure for plans and behavior (Elsevier, New York, 1977).

Simon, H., The Sciences of the Artificial (MIT Press, Cambridge, 1969).

Shortcliffe, E. H., MYCIN—A rule-based computer program for advising physicians regarding
antimicrobial therapy selection, Stanford University, Al Lab, Memo AIM-251 (October 1974).

2. Shortcliffe, E. H., MycIin: Computer-based medical consultations (Elsevier, New York, 1976).
33.

Sussman, G. J., A Computational Model of Skill Acquisition. Ph.D. thesis. MIT (1973). Also 4
Computer Model of Skill Acquisition (Elsevier, New York, 1975).

Sussman, G. J., The virtuous nature of bugs, Proc. Artificial Intelligence Simulation of Behavior
Conference (Sussex, U.K., 1974).

Sussman. G. J.. SLICES: At the boundary between analysis and synthesis. MIT, Al Lab, Cambridge,
Memo 433 (July 1977). Also in: IFIP W.G. 5.2, Working Conference on Artificial Intelligence and
Pattern Recognition in Computer-Aided Design.

Sussman, G. J., Electrical Design—A Problem for Artificial Intelligence Research, MIT, Al Lab,
Cambridge, Memo 425 (June 1977). Also Proc. IJCAI V (August 1977).

Sussman, G. J., Holloway, J., and Knight, T. F. Jr., Computer aided evolutionary design for
digital integrated systems, MIT Al Lab, (Cambridge, Memo 526, 1979).

Staliman, R. M., and Sussman, G. J., Forward reasoning and dependency-directed backtracking
in a system for computer-aided circuit analysis, Artificial Intelligence 9 (1977), 135-196.
Sussman, G. J., and McDermott, D. V., From PLANNER to CONNIVER—A genetic approach,
Proc. AFIPS 1972 FJCC (AFIPS Press. Montvale, N.J., 1972), 1171-1179.

Sussman, G. J., and Stallman, R. M., Heuristic techniques in computer-aided circuit analysis.
1EEE Transactions on Circuits and Systems CAS-22 (11) (November 1975).

Sussman, G. J., Winograd, T., and Charniak, E., Micro-PLANNER Reference Manual. MIT, Al
Lab, Cambridge, Al Memo 203A (December 1971).

Sutherland, 1. E., SKETCHPAD: A man-machine graphical communication system, MIT, Lincoln
Laboratory, Cambridge, Technical Report 296 (January 1963).

Wirth, N., Program development by stepwise refinement. C. ACM, 14 (4) (April 1971).

Received 17 September 1979 revised version received 25 September 1979

