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ABSTRACT

In a distributed systein where many processors arc connected by a network and
communicate using message passing, many users can be allowed to access the same facilities.
A public utility is usually an expensive or limited resource whose use has to be regulated.
A guardian is an- abstraction that can be used to regulate the use of resources by
scheduling their access, providing protection, and implementing recovery from hardware
failures. We present a language construct called a primitive serializer which can be used
to express efficient implementations of guardians in a modular fashion. We have de\eloped
a proof methodology for proving strong properties of network utilities e.g. the utility is
guaranteed to respond to each request which it is sent. This proof methodology is
illustrated - by proving properties of a guardian whuh manages two hardcopy printing

devices.
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1 -- INTRODUCTION

I.1 --- Semantics

Programs written for distributed systems with many processors can be plagued by
subtle errors arising in unpredictable situations. To limit these problems, it is necessary
that the primitives for dealing with concurrency provided by our programming languages
have simple intuitive interpretations and completely unambiguous definitions. They should
also be powerful enough to express simple solutions to simple or common problems and to
admit rigorous proof methods. For both of these reasons we have been looking for
primitives whose semantics are mathematically well defined. ~We want each - primitive
construct to denote a mathematical object which defincs the behavior of the primitive.
Our methods of proof are ultimately based on theorems about these mathematical objects.

In a similar vein mathematical semantics must be provided for any well defined
specification language. Ideally a specification language should be powerful enough so that
it is convenient to express both the. partial specifications of the abstractions of the user
(such as airline reservation systems and disk head schedulers) as well as the abstractions of
the programming language (such as monitors and serializers). '

This paper makes use of a description system in which the properties of actors

can be described. A distinctive feature of our description system is that it specifies the

required behavior of objects rather than their physical representation. Instead of using

- predicates to state the interface requirements between modules, descriptions are attached to

the data manipulated by each module. The idea is to allow properties of actors to be
specified in the form of descriptions that appear directly in the code.

L2 --— Guardians

Guardians are abstractions that can regulate the use of a resource by scheduling
its access, providing protection, and implementing recovery from hardware failures which
manifest themselves as time-outs. In this paper we develop partial specifications and proofs
for an hardcopy server for two printing devices. In a subsequent paper we will present
partial specifications and proofs for other guardians such as a readers-writers guardians
using different scheduling algorithms, a guardian for a disk spindle that optimizes head
motion, etc. '
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L3 -— Primitive Serializers

The guardians in this paper are implemented using primitive serializers which are a
further development of serializers [Hewitt and Atkinson: 1977, 1979} Primitive serializers
are more flexible than previous serializers in that they have less built-in machinery. . Their
more primitive character gives them the ability to efficiently implement the facilities (such
as queues) that were provided by previous serializers as well as to implement new facilities
that were not provided before. : :

Unlike previous serializers,  primitive serializers do not have any implicit
nondeterminism in the evaluation of synchronization conditions. Additional flexibility
comes form the fact that primitive serializers can explicitly deal with actors which act as
customers to whom replies should be sent. Our notion of a customer is a generalization of
the notion of a continuation to deal with the issues of concurrency, protection, and.
interrupts. Customers can be dealt with as any other actors. For instance they can be
put into queues for implementing scheduling policies.

At the same time primitive serializers maintain the advantages of serializers over

other published proposals for synchronization primitives such as monitors [Hoare: 1974;

Brinch-Hansen: 1973] and Communicating Sequential Processes [Hoare: 1978} The examples

considered in this paper are used to illustrate the advantages of using the actor model for
partially specifying and proving properties of guardians.
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IT -- A DESCRIPTION SYSTEM

IL1 --- Goals

The main goal of our description system is to conveniently use the followmg kmds
of descriptions:

PARTIAL descriptions are used to exprcss whatever properties of an object
happen to be known at particular point in time if they are incomplete. Partial descriptions
are important in partial specifications because it is impossible to arrive at complete

specnflcatmns for a large software system all at once. They are important in proofs because -

‘m a proof some properties are given whereas others must be derived.

INCREMENTAL descriptions which‘enable us to further describe objects when
more information becomes available and are a necessary feature for the use of partial
descriptions.  Incremental descriptions are important in proofs and incremental
specifications because all of the propemes are not available at one time but must be
derived and evolved with time.

MULTIPLE descriptions which enable us to ascribe multiple overlapping
descriptions to an_object which is used for multiple purposes. Multiple descriptions are
important in mulnplc specifications and proofs because different properties of an object
might be useful in different contexts.

We would like to point out the usefulness of description systems to describe partial
specifications for programs. In fact the assumptions and the constraints on the objects
manipulated by a program are an integral part of the program and can be used both as
checks when the programming is running and as useful information which can be exploited
by other systems which cxamine the program such as translators, optimizers, indexers, etc.
We believe that bugs occurring in programs are frequently caused by the violation of
_implicit assumptions about the environment in which the program is intended to operate.
Therefore many advantages can be drawn by a systemn that encourages the programmer to
state such assumptions explicitly, and by a system which is able to detect when they are
violated.

The fundamental axiom of our description system can be stated as follows:
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if (<descriptiony> is <descriptiony>) and (<descriptiony> s <description3>) ’
then (<descriptiony> Is <descriptiong>)
and is called the Axiom of Transitivity of Predication. It implies that inheritance holds
in our description system and that all descriptions are organized in a large tangled

hierarchy in some ways similar to the ones in Roget's Thesaurus and the Micropaedia of
the Encyclopedia Britannica.

Our description system is designed to allow us to provide multiple partial
descriptions of objects. For example (a Cartesian_complex [imaginary_part: 0)) is a description of
an instance of a Cartesian complex number whose imaginary_part is 0. Note that we have
used the indefinite article "a" to mark descriptions of instances of a concept. Descriptions
can in turn be multiply described. For example the following command describes
(& Cartesian_complex) as being (a Number) and as having two attributes, namely a real_part and
an imaginary_part each of which must be a Real.

The description below says that a Cartesian_complex is a Nu.mber’:
((a Cartesian_complex) is (@ Number))

A Cartesian_complex can be further described as follows:
((a Cartesian_complex) is (@ Cartesian_complex [real_part: (& Real)] [imaginary_part: (3 Real)]))
‘Note that by using the concept Cartesian_complex twice in the above description that we have
specified that every Cartesian_complex has two attributes real_part and imaginary_part which each
have as value a Real.

Note that the /s statement is asymmetric so that it ﬁwbuldv be incorrect to say -

{a Cartesian_complex) /s (a Real)

since a Cartesian complex number is not always a real number. Furthermore it would also
‘be incorreci to say : : : _

{4 Cartesian_complex) js~(aReal)

- 'since some Cartesian complex numbers are Real.
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Our description ‘system successfully deals with an important distinction that has
plagued most previous systems which rely on inheritance. Given that 3+4i is a
Cartesian_complex and that Cartesian_complex is an -Algebrai;_ﬁeld, one is not allowed to conclude -
that 3+4i is an Algebraic_field. Note that this mistake will not occur in our system because
the rule of transitivity of predication does not apply to the following two descriptions:

3+4i is (a Cartesian_complex)

Cartesian_complex is (an Algebraic_field)
While Cartesian_complex is described as being an Algebraic field, an instance of Cartesian_complex
such as (a Cartesian_complex) cannot be considered as an Algebraic field. Logicians as long ago
as Aristotle have known that Cartesian_complex must not be confused with (a Cartesian_complex).

However, a good notation was lacking in which to axiomatize the difference.

The user can describe a Real x as being a Cartesian_complex with realpart x.and
imaginary part o:

({(a Real) which_is =x) is (a Cartesian_complex [real_part: =x] [imaginary_part: 0))
The character = is used to mark local identifiers.  Local identifiers play a role in the
description system similar to the role played by free identifiers in formulas in the
quantificational calculus:they can be bound to any object. For example since

(3 /s (a Real))
it follows that

(3 is (a Cartesian_complex [real_part: 3] [imaginary_part: om

The user can partially describe a Cartesian_complex with real_part x and imaginary_part 0
as being x which is a Real: :

((a Cartesian_complex [real_part: =x] [imaginary_part: 0]) which_is =x) is (a Real)
Notice that we have just established a mutual dependency among our descriptions because

we have described Real in terms of Cartesian_complex and vice versa. This will enable us to
view either one as the other in the appropriate circumstances. '
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The above descriptions express some of the relations between Real and
Cartesian_complex numbers. We believe that it is important that a description system allows
information to be presented in an incremental fashion.  For example it should be possible
for the user to later further describe Cartesian_complex numbers relative to other kind of
numbers.

(a Cartesian_complex [real_pért: =x] [imaginary_part: =y]) is
(a Number) and - '
(a Polar_complex [magnitude: =r (& Real)])
such_that B '
(v is (x2 + y2)(1 1 2)y

It is important to realize that in giving the above descriptions the user is not
making any commitnents as to the physical representation of complex numbers. The
possibility is still open that complex numbers will be physically represented in Cartesian,
Polar form, some mixture, or still some other alternative physical representation. It is even
possible that both physical representations will cohabit the same system. This last
*possibility is especially important in distributed systems where the autonomy of nodes on

the network must be respected.. ' : -

L2 - Descriptions of Communications

Messages are sent-to guardians in communications. A request is a communication

which always contains a message and a customer:

(a Request) is
N
{a Communication)
(a Request [message: (@ Message)] [customer: (& Cuslomer)]))

The concept of a customer generalizes the notion of a continuation in the fambda calculus
- programming languages (A. Church, C. Strachey, L. Morris, C. Wadsworth, J. Reynolds, C.
Hewitt, Sussman and Steele, etc.]  When an actor receives a message M and customer C, it
has the right to negotiate with C for the funds necessary to process the message M. This
negotiation process implements the notion of bankers proposed in [Hewitt, Bishop, and

Steiger: 1973]1  Eventually the customer C should be sent a Response which is either a Reply

or Complaint for the message M.

o
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Another kind of communication is a Response whxch 1s either a reply or a
compldmt : :

(@ Response) /s
. (@ Communication) and
(w S
(@ Reply [message: (a Meséage)])
(a Complaint [message: (a8 Message)]))

IIAI. -- PRIMITIVE SERIALIZERS ,

, ‘The design goals for monitors is 1hat they were mtended to be a structuring
construct for implementing operating systems. There have ‘been some attempts to develop
useful proof rules for monitors [Howard: 1976; Gjessing: 1977; Hoare: 1974; Owicki: 1978]
Serializers [Atkinson and Hewitt: 1977, 1979] are a further step toward these goals.
However the language construct developed by Hewitt and Atkinson may be too complicated
to be useful both as a formal foundation and as a basis for the proof methodology. In the
study we present here the approach has been reversed. Instead of designing a desirable set
of primitives and then trying to describe their semantics in a formal way, we started with a
basic primitive with a suuple semantics.

The syntax of a simple primitive serializer in Actl is:
(create_serialized_actof B)

A primitive serializer can be used to create an actor S whose behavior can change
as a result of the communication which it receives. At: any given time S is either locked
or unlocked. It has a current behavior (which is another actor). When S is created it is
unlocked. When the first communication arrives, the <er|ahzer becomes locked and the
communication received is sent to B.

Executing a command of the form

(transmit_to t c)

- will result in the transmission of the communication actor ¢ to the target actor t.
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_ In addition to possibly transmitting some communications, B computes a new
behavior NB using a command of the form

(become NB)
The actor NB is installed as the next behavior of S. The actor § then becomes unlocked
and thus able to accept the next message. An important consideration in the design of

efficient serializers is that they should remain locked for as brief a time as possible.

A behavior will typically be implemented using create_unserialized_actor expression
‘which has the following syntax:

(create_unserialized_actor __
(pattern_for_communication; received bodyy) -

(pattern_for_communication; received body "

If an actor created by a create_unserialized_actor expression receives a communication C
which matches any of the pattern_for_communication;, then the corresponding body; is executed
to produce the next behavior. If C matches more than one of the pattern for communication;,
then an arbitrary one of the corresponding body; is selected to be executed.

Note that there are three separate events which must occur before a
communication C can be accepted by a serialized actor T. First it must be transmitted in
a transmission event of the form | |

(a Transmission [target.:"_rj [communication: C])
Next it must arrive in an arrival event of the form
(an Arrival [target: T] [communication: CJ)

Hardware modules called arbiters arc used to establish an arrival ordering for all
communications sent to T. ‘Finally it must be accepted in an acceptance event of the
- form : ' '

(an Acceptance [recipient: T] [communication: C])

- Communications are accepted in the order in which they arrive. The acceptance marks a
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transition in which the target ch.mgcc from unlocked to locked. Thus if a serialized actor
becomes locked then no more messages can be- 1ccepted until it unlocks.

IV -- A SIMPLE EXAMPLE

IV.1 --- Descriptions of Messages for Checkihg Account

As a simple example of how primitive <ermhzers can be used we gne the
lmplementahon of a very simple checking account gudrdl'm

There are two kinds of messages which must be dealt wnh by the guardlan' g
Withdrawal and Deposit which can be described as follows: :

(& Withdrawal) is
(a Message) and
(a Wnthdrawal [amount: (& Non negahve US _currency)])

(a Deposit) is

(a Message) and
~ (a Deposit [amount: (a Non_ne'ga(ive_US_i:urrency)])

which says that both I\mds of messages have an attribute named amount which must be a
non—negatxve US currency. ' :

(a Transaction_completed_report) is (a Reply)
(8 Transaction_not_completed [reason: overdraft]) is (a Complaint)
~1V.2 — A Concurrent Case Expression

Clearly some kind of - conditional test is needed in implementations. Use will be
made of select_case_for expressions of the following form:

(paﬂernl produces b°d21)

(pattern, produces body,)
[none_of_the_above: avllernaﬁve__bodx )
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which when evaluated first evaluates expression to produce a value V If the value V matches
any of the pattern; then the corresponding body; is executed and its value is the value of the
select_case_for expression. If the value V matches more than one of the pattern, then an
arbitrary one of the corresponding body; is selected to be executed. This rule has the
advantage that it makes body; more modular since it depends only on pattern, making it
easy to add more selections later. Thus the rule of concurrent consideration of cases
encourages the construction of programs which are more modifiable. The programs are
also more robust since the addition of new cases is less likely to introduce bugs in already
existing cascs. R -

We shall say that two activities are concurrent if it is possible for them to occur at
the same. The concurrent case statement facilitates efficient implementation by allowing
concurrent matching of expression against the patterns.  This ability is important in
applications where a large amount of time is required to determine whether or not
conditions hold. Thus the rule of concurrent consideration of cases enables some programs
to be implemented more efficiently. : o

| If the value V doés not match any of the pattern; then alternative_body is executed.
This rule provides the ability to have the patterns represent special cases leaving the
alternative_body to deal with the general case if none of the special cases apply.

IV.3 —— A Simple Guardian

In this section we present an implementation of a checking account guardian® which
guards a checking account to ensure that timing errors do when concurrent = attempts are
made to deposit or withdraw money. An implementation of the checking account guardian
is given below: - ’

(describe (create_account [initial_balance: =i (a Non_négative_US_currency)])
- [is: (& Serialized_actor [responds_to: (') (a Deposit) (a Withdrawal))])]
" ;responsos to deposit and withdrawal messages are guaranteed
[implementation:
(create_serialized_actor
{an Account [balance: i]))])

The behavior of an Account is defined below:
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(descrlbe (an Account [balance: (& Non negatlve us currency)])
[implementation:
(create_unserialized_ actor : : :
({2 Request [message: (a Withdrawal [amount: =a))] [customer: =c]) recelved
(select_case_for balance :
(> a) produces .
(transmit_toc (a Transaction_completed_ repori))
(become (an Account [balance' (balance - a)])))
((< a) produces : _
(transmit_toc (a Transaction not completed [reason: overdraﬂ])))))
((a Request [message: (& Deposit [amount: =d])] [customer: =c]) received
(transmit_to'c (a Transaction_completed_report))
(become (an Account [balance: (balance + d)]))))])

V -- IMPLEMENTING A HARDCOPY SERVER

Implementing a hardcopy server on a distributed system provxdes a concrete
example to illustrate the advantages of primitive serializers. The following definition shows
a program to create a guardian for two hardcopy devices. The example illustrates how a
primitive serializer can be used to implement a guardian that protects more than one
resource. Fm.nll), the program below illustrates the use of nondeterminism in primitive
serializers since if both devices are idle, then a nondeterministic choice is made which
should serve the next Hardcopy_request since it doesn't matter which one is chosen.

V.l — A Concdr'_rent Conditional'Expression
The implemematibn of the hdrdco’py server given below makes use of a conditional
construct of the following form:

(select_one_of
(if condition; then body)

(if condition,, then body,)
[none_of_the_above: alternative_body])

If any condition; holds then the corresponding body, is executed. If more than one of

‘the condition; hold then an arbitrary one of the corresponding body; is selected to be

executed. The user will be warned if more than one of the condition; can hold
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simultaneously and the execution of the corresponding body; do not have equivalent effects.
The rule of concurrent consideration of conditions encourages programs which are more
robust, modular, easily modifiable, and efficient than is possible with the conditional
expression in LISP for the reasons which are enumerated in the discussion of the
select_case_for expression. If none of the condition; hold then alternative_body is executed.

The reader will probably have noticed that the select_one_of construct is very
similar to the select_case_for construct which we introduced earlier in this paper. ‘The
reason for introducing both constructs is that whercas the select_case_for construct is
often quite succinct and readable there are cases such as the implementation below in
~ which it is desirable to concurrently test properties of more than one actor in a single

conditional expression making the use of select_one_of preferable. -

The select_one_of expression is different from the conditionals of McCarthy,
Dijkstra, etc. in several important respects. The conditions of select_one_of have been
generalized to allow pattern matching as in the pattern directed programming languages
PLANNER, QA-4, POPLER, CONNIVER, ctc. Notice that our concurrent conditional
expression is different from the usual nondeterministic conditional in that if any of the
conditions hold then the body of one of them must be selected for execution even if the
- evaluation of some other condition does not terminate (cf. [Manna and McCarthy: 1970,
Paterson and Hewitt: 1971, Friedman and Wise: 1978). ’

V.2 Implemeﬁtation of a Ha_rdcopy Server

Below we give the implementation of the hard copy server.
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(describe (create_hardcopy_server =device; =dévice2) .

[is: (8 Serialized_actor »
- [responds_to: (@ Print_request)]
[accepts: ' :
(U
(a Complehon [dewce (1 dewcel davtcez)])
(a Breakdown report [devcce (L deviceq dewcez)]))])]

[implementation:
(label the_hardcopy_server ithe hardc0py server is the name of the actor rrmtnd by serialize
(create_serialized_actor

(a Hard_copy_server [queue: (an Empty_queue)] [device_state 1% idle] [device_'staiez: idle}))
where sthe following is lexically nested in the above

(describe (a Hard_copy_server [queue: (a Queue [each_element: (a Print_request)])]
[device slaiel (U idle prmhng broken)]
[devnce statez (Lt idle printing broken)]) .
[precondlhons (implies
{queue /s ~(a Queue [sequence: []]))
(and (dewce_stalel s -idle) (device_state, /s idle)))]

[implementation:
(create_unserialized_actor
((a Print_request) =the_request received
(ponder (a Hardcopy_server [queue: (a Queue [all_but_rear: queue] [rear Qhe requesl])])))
sinvoke the ponder transition with the requesl at the rear of the queuc '

((a Completion [device: device_;] [response: =r] [customer: =c]) received -
sthis communieation notifies the serializer that device_; has completed printing

sthe value returned by that opcmuon isr and was expected by ¢
(transmit_toc r)

(ponder (& Hardcopy_server. [devi'ce_stat‘ei: idie])))

((a Breakdown_report [request: =r] [device: device_;]) received
{ponder (a Hardcopy_server .
[queue: (a Queue [front: r] [all_but front: queue])]
[device_state;: broken]))))]))])
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We have adopted in this code and in our language a useful convention for giving
default values to mtssmg attributions in a descrlpnon For instance in the above code the

expr ession
s

i

(a Hardcopy_server [queue: (8 Queue [all_but_rear: queue) [rear: the_request])])
is considered to be equivalent to

(a Hardcopy_server
[queue: (& Queue [all_but_rear: queue] [rear: the_request))]
[device_statey: device_statey] '
[device_state,: device_state;])

This convention allowsi_.us to shorten our notation by avoiding the repetition of all the
attributions that are left unchanged.

Below we define the function ponder which maps behaviors onto behaviors:

(descrlbe (ponder (a Hardcopy_server
[queue: (a Queue [each_element: (& Print _request)])]
[device_slateq: (Ul idle printing broken)] o
[device_state,: (U idle printing broken)]))
[is: (a Hard_copy_server)]
[implementation:
(select_one_of
(if (queue is (& Queue [front: (& Request [message: =r] [customer: -'c])]
[all_bu!_front =all_but_front_q]))
and (device__state(._:i which_is ({11 2)) Is idle)
then ' B
(transmif_to device;
(a Requesl [me",age r)
[customer: (create transaction manager
[reques! r}
[device: device;]
_ [customer: ¢])]))
(become (a Hard_copy;server [queue: all_but_front_q] [device_state;: printing])))

(If (devnce _statey is broken) and (device. _state, is broken) then
(traismit_to operator "Both printers are broken?")
(become (a Hard_copy_server)))

[none_of_the_above: v
(become (a Hard _copy_ server))])])
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Note that a new transaction manager is created to manage each printing request
for the hardcopy device. : : _

The actor * create_transaction_manager (defined below) creates a serialized actor §
wrapped inside a time__oul_if_no_respon'se_after"expression: - S :

(time_out_if_no_response_after (10 minutes)
s) :

~which forwards to s any message it receives and also sends s a Time_out message after 10
minutes if it has not received a response in the meantime. Requests for more funding are
not considered to be responses and are passed through to s. Of course if the time-out
expires after a response ‘has been forward to s, then s is not bothered with a Time_out
message. B | ' -

Note that if a manager receives a Time_out message then it sends the hardcopy
device an abort_printing nessage waiting 1 minute for the device to respond using the
following expression: ' '

(send_to d abort,printing [time_out_if_no_response_after: (1 minute)]) -

If the device responds - with a Ready_for_next_request_report- within 1 minute then
the_hardcopy_server is told that the transaction has completed with a response which is a
complaint that the allotted time has been exceeded. If the device does not respond to an
abort_printing message within 1 minute, then the_hard_copy server is sent a breakdown report
for the device and the operator 1s informed that the device is broken.

The definitions '-given_ below are assumed to be inside the lexical scope of the above
serializer thus making the_hardcopy_server lexically visible, o
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(descrlbe (create_transaction_manager [request: =r] [device: =d] [customer: =c])
[is: (a Serialized_actor [accepts: (U] (@ Response) (@ Time_out))])]
[implemontation: (create_serialized_actor (a Transaction_manager [timed_out: false]))])

(describe (a Transaction_manager [timed_out: (& Boolean)])
[implementation:
~ (time_out_if_no_response_after (10 minutes)
(crea!e_unserlalrzed___aclor
((a Response) =the_response received
(if (not timed_out)
then (transmit_to the hardcopy server :
{a Completion
[device: d]
[response:‘ the_response]
[customer: ¢])))
(become (a Transaction_manager)))
((a Time_out) Iece/ved
(select_case_for (send_to d (an Abort,prmhng_request)
[time_out_if_no_response_after: (1. mmuie)])
{(a Ready_for_next_request_report) produces
(transmit__to the_hardcopy_server
(a Completion '
[device: d]
[response: (a Complaint [message: alloﬂed time exceeded])]
[customer: c]))
(become (a Transaction_manager [timed_out: true])))
((a Time_out) produces :
(transmit_to operator (a Breakdown_report [dewce d))
(transmit_to the_hardcopy_server (@ Breakdown_report [request: r] [device: 47y
(become (a Transaction_manager [timed_out: true])))N])

The statement
(bacome (a Transaction_manager [timed_out: true]))

‘has the effect of causing the timed_: out state component of the transaction manager to
become true. Therefore any response addressed to fhdf actor after its termination will be

' dnscarded since the code specifies

.
. S
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(if (not timed_out)
~ then (transmit_to the,hardcopy_éerver
(a8 Completion. o
[response: the_response]
[device: d] .
, [customer: ¢])))
(become (a Transaction_manager))

In particular a response forin a device will not be considered after a time_out has been

generated. : '

VI -- PARTIAL SHECIFIC;\TIONS OF A HARD-COPY SERVER
) | . : !

Using primitive serializers, we have been able to deal with. an important problem in
the specification of guardians which allow time out. The problem is that if a guardian is
allowed the possibility of time out in a partial specification how is it possible to rule out a
trivial implementation which always times out. Our solution to this specification problem is
to require that a guardian which receives a Print_request PR which satisfies the following
description: ' ' "

(a Print_request
[message: PR]

[customer: C))

must eventually send one of the hardcopy devices a communication which satisfies the
description '

(a Request v.
[message: PR}
[customer: M)

where M is a transaction manager. Furthermore if M receives a response before it receives
a time out message then the response must be sent to C.

This specification forces the hard copy server to at least try to satisfy the print
request PR. It cannot simply wait 10 minutes and then transmit a time-out complaint to
the customer C. ' '
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VII -- PROOFS FOR THE HARD-COPY SERVER

The proofs here assume that if both printing devices break down then at least one
of them will eventually be revived by the operators.

We first show that the preconditions on the behavior of the hard-copy server are
always met. These preconditions are useful in the rest of the proof.

The second part- of the proof shows that the serializer completes each transition
from a. state in which it is unlocked to a state in which it is again unlocked. This will be
a preliminary result for proving that the preconditions for the hard-copy server always hold.
Finally we prove that the guardian always replics to the requests which it receives.:

, VIL_I ---  Checking the Preconditions of the Behavior

First we verify that the preconditions on the behavior of the hard-copy server
always hold, namely: ' .

‘(queue /s (8 Queue [each_eleménl: (@ Print_request)]))
(device_statey is (Ul idle printing broken))

(device_state, is (LI idle printing broken))
The proof that these 'prccond:itions always hold is by induction. |

1. Show that the preconditions are met when the hard-copy server is created.

2. Assuming that the preconditions are true, show that, whatever communication is

received, the next become statement will produce a hard-copy server which meets the
~ preconditions.

It is clear by inspection that cach of the three preconditions is true when the
serializer is created. After a communication is received, the function ponder is called with
arguments satisfying the preconditions in creation of a behavior for ponder. This description
can be used and gives us the fact we needed to complete the proof. Now to show that the
implementation of ponder corresponds to its description, a similar technique can be used. In
this proof we will have to use the descriptions for the operations called by ponder.

~ This part of the proof is not very different from the kind of static type checking
“usually performed by a compiler. '
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VIL2 --- Proof of the Preconditions

We want to show that whcne\cr the guardian is unlocked, its state scmsfles the
precondition: :

(implies
(queue Js =(an Empty,_queue))
(and (devlce_sta!el is -idle) (device_stalez is -vidle)))

It is immediate that this precondmon holds vacuously  at the . creatlon of the
hard Lop) server since the queue is empty.

The gener.rl result can be esmblished by case analysis for each communication
received. For instance if the guardian receives a Print_request r in a state where the receipt
preconditions hold, then the request r will be added to the rear of the queue and ponder
~will be called wrth a . non empty queue ds an argument. There are two cases to be
consrdered (we are assuming the absence of breakdowns):

1:  One of , the devices is idle. Therefore by the
- precondition the queve contains only the request r. The request r
is removed from the queue and the appropriate message is sent to
the idle device. This reestablishes the precondition because the
queue is once again empty.

2: None of the conditions in the ponder transition is true,
so that the none_of_the_above clause applies. Since the queue was
not empty, this means that none of the devices was idle. Then
the guardian unlocks becoming a hard-copy server with the state
of both devices being not idle. Therefore the precondition wrll'
hold again alsq in. this case. |

The proof that the receipt preconditions hold when the guardian is unlocked is
similar for the Completion communications and the Breakdown_report communications.
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VIL3 -— Proof of Guarantee 6f ‘Service

v We can prove that service is guaranteed to all printing requests. If the guardian
receives a request when one of the devices is idle, the request will be immediately passed
on, since the queue will be empty according to the precondition for the hard-copy server:

If none (if the devices is idle, then the request will be queued.

- The following assertion is proved by induction on'n

ifn requesfs precede a réqueét R in the queue, then R will be
passed to one of the devices after n completion communications have
been received by the guardian.

A completion is either one of the following communications:

(a Completion [device: deviceq] [response: ..] [customer: )
(a Completion [device: device,] [response: ..] [customer: ..])

The implementation of the guardian has the property that the hardcopy server will always-
receive a communication back for each of the requests it sent to a device. By the
precondition for the hard-copy server we know if R is in the queue, then there is a request
outstanding for either device; or device;, and a completion or a breakdown report will be
received by the guardian. . ' -

The first such communication will be received after a nu.mbe,rp of print requests
have been received by the guardian. p is finite because ‘of the law of finite chains in the
arrival ordering of actor systems [Hewitt and Baker 1977}

We can show that each of these p print request will leave unchanged the first n
elements in the queue and will not alter the state of the devices. Consider then the effect
of the next completion received by the guardian. We show that either the number of
requests preceding R is decreased by one in the next unlocked state or the request R is
sent to one of the printing devices. Clearly one effect of the completion is that one of the
devices will become idle.  Therefore the next request will be removed from the queue and
passed to the free device. Therefore if n is 0, the request R is served. On the other hand
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(if n is bigger then o, then removing the first element from the queue reduces by one the
‘number of elements preceding R in the queue.

CVIIT -- ADVANTAGES OF PRIMITIVE SERIALIZERS

We would like to. dlscuss some of therr advantages over prevrous proposals for
language constructs for synchromzatxon

VILD --- Coatrol Flow follows Text

Each activity of the serializer is initiated by the receipt of a communication which
* causes the serializer to become locked. After a new receiver has been computed, it

becomes unlocked and is ready to receive another communication. Unlike monitors,
serializers have no -explicit wait or signal command which cause the executron to be
suspended and resumed from different points within the program .

VIIL.2 --- Absolute Containment

Prrmmve serializers make it easy to implement guardians which do not glve out the
resources being protected. Instead a guardians passes messages from the users to the
resources implementing a property which we call absolute containment which was proposed
by [Hewitt: 1975] and further developed in [Hewitt and Atkinson: 1977] and [Atkinson and
Hewitt: 1979] (cf. [Hoare: 1976] for a similar idea using the inner construct of SIMULA).
The idea is to pass a message with directions to thc resource so that it can carry out the
directions instead of giving out the resource to the user. An important problem with the
usual strategy of gwmg the resource out is that retrieval of the resource from a process
that has gone amuck is often messy.

We have found that absolute containment produces more modular implementations
than schemes which actually gives out resources protected by guardians. Note that the
proof that all requests will receive a re ponse from a network utility that implements
absolute containment depends only on the behavior of the resource and the code for the
serializer which unplements the guardian, but not on the programs which call the guardian. -
In the usual scheme of giving out the resource, it is necessary to prove that each process
which can use the resource will gwe 1t back.
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Our hardcopy server implements absolute containment by never passing out either
of its hardcopy devices to the external environment. Thus there is no way for others to
“depend on the number of physical devices available. Furthermore there is no problem
retrieving the devices from users who have seized them since they are never given out.

VIL3 - Modularity in State Change

Primitive serializers directly support a scheduling strategy of receiving each
communication and then deciding what actions the communication requires. The possible
actions include changing state and sending messages to other actors. i

The only way to cause a state change in the programming language used in this
paper is to use a primitive serializer. State change can be encapsulated within a serializer

in a much more modular fashion than is accomplished by individual ASSIGNMENT and

GOTO commands. In serializers state change and transfer of control are encapsulated in a
single primitive that accomplishes - them concurrently. ~ We have found that this
encapsulation increases the readability and modularity of implementations that require state
change. ‘ S ’

CVIIL4 =~ Generality

In our applications we want to be able to implement guardians which guarantee
that a response will be sent for each request received. This requirement for a strong
guarantee of service is the concurrent analogue to the usual requirement in sequential
* programming that subroutines must return values for all legitimate arguments. In our
~ applications it would be incorrect to have implementations which did not guarantee to

respond to messages received. ' ' : g :

The SIMULA subclass mechanism was desiéned for sequential and quasi—‘paral.lél 7

programming. It needs substantial revision for concurrent programming. The monitors of
Hoare and Brinch-Hansen represented a substantial step towards generalizing classes for use
in concurrent systems. ‘However the use of explicit wait and signal commands on fifo queues
or priority queues makes the “scheduling structure of monitors somewhat inflexible.
Furthermore it is difficult to prevent deadlock if monitors are nested within monitors. One
strategy for implementing guardians with monitors is to use an ordinary SIMULA class

whose procedures invoké a monitor which is local to the class. For example a hardcopy

s

s
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server could be implemented as an ordinary class with a PRINT procedure which invokes
REQUEST_PRINT, START_PRINT, and STOP_PRINT procedures in the momtor Primitive serializers
avoid the two level structure of monitor within class by exphc:tly dealing" with the actors
which act as customers to whom replies should be sent.  No special commands like wait and
signal are needed because the customers are ordinary actors which can be remembered and

manipulated usmg the same techniques that work for all actors. -

The utility of the extra generdlny in primitive sermhzers is 1llustrated by our
implementation of the hardcopy_server in which we place a request which is not serviced
"because of the breakdown of a printer at the front of the queue of requests to be serviced.
~Many synchronization primitives with more built-in structure (such as momtors) ‘permit
addmons to queues only at the rear.

VIII.S_ - "C_onvenien'tly Engendering Parallelism

Primitive ser mllzers provide a very convenient method for causmg more parallelism:
simply transmitting more communications. The usual method in other languages for
creating more parallelism entails creating processes (cf. ALGOL-68, PL-1, Communicating
Sequential Processes etc).  The ability to engender parallelism by trdnsmlttmg
communications is one of the prmcxple differences between actors and the usual processes in
other languages. For example in the implementation of the transaction manager in this
paper, borh the operator and the_hardcopy_server can be notified that a prmter has broken
down by simply transmitting the appropriate commumcanom

VIIL6 --- Unsynchronized Communcation

In actor systems it is not necessary to know whether the intended recipient is ready
to receive the communication; a guardian implemented using primitive serializers can’
transmit communications and then receive more messages before the communications which -
it has transmitted have been received. In our application involving the implementation of a
distributed electronic office system, it is highly desirable that the sending of commumcatlonA
be unsynchromz:_d from the receipt of the communication. '




24 ‘ . Guardians
VIIL7 --- Behavior Mathematically Defined

The behavior of primitive serializers can be read directly from the code. These
mathematical denotations are intended provide a solid mathematical foundation on which to
develop proof techniques and to provide a direct link with the underlying actor model of
computation. Mathematical denotations have not yet been developed for the serializers in
[Hewitt and Atkinson: 1977] or monitors because of the complexity of these constructs.

~ VIIL3 A—'—— Encouraging the use of Concurrency

Primitive serializers permit implementations to use near maximum concurrency. In
particular in contrast to the usual process model which only allows sequential execution
within a monitor or critical region, primitive serializers encourage the use of concurrency in
handling messages received. The only limitation on parallelism in systems constructed using
ACT]1 derives from communications received by serialized actors when they are locked.

VIILY  --- Abs,cncé of Deadlock

Primitive serializers have the important advantage that it is possible to guarantee
absence of deadlock in ‘actor systems by simply assuring that each individual actor will
unlock after it receives a message. Absence of starvation (e.g. that every request received
will generate a response) is more difficult to prove. ' B

VIILI0 -- Ease of Proof

We have found the above advantages of primitive serializers quite helpful in proving
properties of implementations. Furthermore the structure of our proofs follows naturally
- from the syntactic structure of a primitive serializer. The proof given in this paper that
the hardcopy’ server will always respond to requests which it receives illustrates how
primitive serializers facilitate proofs. ' \ '
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IX -- FUTURE WORK

We are encoumged with the experience of using our descrlpnon system to describe
each of ‘the programming problems considered in this paper. However it clearly needs
‘much further development in pragmatic and behavioral descriptive power -

One important areca in which \mrk remains to be done is to demonstrate that
primitive serializers can be 1mplemented as efficiently as other synchronization primitives as
semaphores, monitors, etc. We have designed primitive serializers with this goal in mind.
On the basis of 'some preliminary investigation we believe that they can be implemented at
least as efficiently as monitors and communicating sequentml processes. The third author
has constructed some preliminary implementations in a dialect of the ACTI language
described in this paper which runs on the PDP-10. .In the course of the next year, we will
continue to work to improve this implementation and to transfer it to the MIT CADR
machine where ultimately it can be supported by_ micro-code.

Another area in which work remains fo be done is automating proofs such as the
‘one in this paper. We feel that we are getting close to the point where a Programming
Apprentice can do most of such proofs under the guidance of expert programmers. Russ
Atkinson is working on automating the proofs for the version of serializers in [Atkinson
and Hewitt: 1977] and [Hewitt and Atkinson: 19791 We hope to be able to use some of
the techniques which he has developed in our svmbohc evaluator.
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X -- CONCLUSIONS

We are encouraged with our initial experience in working with primitive serializers
and plan to develop them further. They appear have a number of important advantages
over previous proposals for modular synchronization primitives. These advantages include
ability to delegate communications [Hewitt, Attardi and Lieberman: 1978] and compatibility
“with the implementation of unserialized actors [Hewitt 1978] Event oriented specification
and proof techniques are readily adapted to proving properties of guardians implemented

using primitive serializers. These properties. include the guarantee that a response is sent

for each request received and a guarantee of parallelism [Atkinson and Hewitt: 1978]
Note that the property of guaranteed response for each message sent cannot be proved in
many models of computation because it implies the possibility of unbounded
nondeterminism [Hewitt: 1978]} In this paper we have shown how previous work on event
oriented specifications and proofs can be extended to deal with time outs.

Partial descriptions like the ones given in this paper are illegal in almost all type
systems. The desire to be able make incremental multiple descriptions such as these has
been one of the driving forces in the evolution of our description system. The SIMULA
subclass mechanism is probably the most flexible and powerful type mechanism in any

widely available programming language. However, as a ‘description system, it has some
important limitations. It does not support interdependent - descriptions or multiple

descriptions. Also it does not permit instance descriptions to be qualified with attributions.
Furthermore it does not permit descriptions to be further described thus disallowing any
possibility of incremental description. ' - =
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concurrency as the core of the language. It was developed in an attempt to synthesize a
unified system that combined the message passing, pattern matching, and pattern directed
invocation and retrieval in PLANNER [Hewitt: 1969; Sussman, Charniak, and Winograd:
1971; Hewitt: 1971}, the modularity of SIMULA [Birtwistle et. al.: 1973, Palme: 1973], the
message passing ideas of [Kay: 1972], the functional data structures in the lambda calculus
based programming languages, the concept of concurrent events from Petri Nets (although
the actor notion of an event is rather different than Petri's), and the protection inherent in
the protected entry points of capability based operating systems. The subclass concept
originated in [Dahl and Nygaard: 1968] and adapted in [Ingalls: 1978] has provided useful
ideas. R ' -

The pattern matching implemented in PLASMA was developed partly to provide a
convenient efficient method for an actor implemented in the language to bind the
components of a message which it receives. This decision was based on experience using
message passing for pattern directed invocation which originated in PLANNER [Hewitt:
T1JCAI-69] (implemented as MICRO-PLANNER by [Charniak, Sussman, and Winograd:
1971). - A related kind of simple pattern matching has also be used to select the
~ components of messages by [Ingallss 1978) and by [Hoare: 1978] in a design for
Communicating Sequential Processes. However CSP uses assignment to pattern variables
instead of binding which was used in PLANNER, SIMULA, and PLASMA.

.
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" APPENDIX I --- Impleméntation of Cells using Se‘rial'izer's

In this appendix we present an unplementatlon of cells [Greif and Hetht' ‘
POPL-75, Hewitt and Baker: IFIP- 77} usmg prnmtwe serldhzers B S

(descnbe (create_cell =initial contenls) :
[lS’ (a Serialized_. aclor [responds_to: (U (a Contents_query) (an Update))])]
[implementation: : :
(create_serialized_actor
(a qul [c'urre'nl,_con!ents: initial__'conlents]))])

(describe (a Cell [current_contents: (an Actor)])
[implementation:
(create_ unser:a/:zed actor :
((a Request [message: contents?] [customer =c]) received
(transmit_to c (a Reply [message: current _contents])))
sreply :mulm;z to the customer the current contents
sunlock the serializer for the next message without changing the behamor
((an Update [next_contents: =n}) received
(transmit_to ¢ (a Reply [message: (an Update_performed_ report)]))
(become (a Cell [current_contents: n]))])
sunlock the serializer with the current contents heing n

The above definition shows how serializers subsume the ability of cells to efficiently
implement synchronization and state change in concurrent systems.
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APPENDIX II --- Implementation of Semaphores using Serializers

Guardians

Semaphores are an unstructured synchronization primitive that are used in the
implementation of some systems. The definition below shows how pnmltlve serializers can

be used to efficiently unplement semaphores.

(describe (create 'semaphore)
[is: (@ Serialized_actor
o [accepts: (U (a Request [message‘ P (a Request [message- V]))])]
[implementation:
(create_serialized_actor
(a Semaphore » '

[queue: (an Emply._queue)]b sinitially there are no waiting P requests
{capacity: 11)))) ;the capacity is initially 1 '

(describe (a Semaphore
' [queue: (8 Queue [each_element: (a Customer)))]
[capacity: (a Non_negative_integer)])
“[preconditions: ' '
(implies
(queue /s ~(an Emply_queue))
(capacity /s 0))] '
[implementation:
{create__ unsenal/zed actor
({a Request [message: P] [customer: =c]) received
(select_case_for capacity :
(> 0) produces
(transmit_to c [reply: (a Completed_P_report)])
- (become (a Semaphore [capacity: (capacity = 1)])))
(0 produces (become (a Semaphore [queue: (queue enqueue c)])))))
;become a semaphore with ¢ enqueved at the rear l;f queue

((a Request [message: V] [customer: =c]) received
(transmit_to ¢ [reply: (a Completed_V_report)])
(select_case_for queue :
‘({(@ Queuve [front: =c] [all_but_front: =rest_waiting_customers]) produces
(transmit_to c [reply: (a Completed_P_report)])
(become (a Semaphore [queue: rest_waiting customers])))
((an Empty_queue) produces
(become (a Semaphore [capacity: (capacity + 1)]))N))

In [Hoare: 1975] there is an elegant construction showing that monitors can be implemented
~using semaphores and cells. His technigue can be adapted to show that pr:mltwe serializers

can also be implemented using semaphores and cells.
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APPENDIX III --- Thumbnail Sketch of ,the. Descriptibn'System

This appendix presents a brief sketch of the syntax and semantics of our description
system. A paper which more fully presents the description system and compares it with
other formalisms which have been proposed is in preparation. .

The description system is intended to be used as a language of communication with
the proposed Programming Apprentice. Its syntax looks somewhat like a version of
template English [Hewitt: 1975, Bobrow and Winograd: 1977, Wilkss 1976] Thus for
example we write (anInteger) in this paper instead of writing (integer) as was done in
PLANNER-71. However we also allow the use of instance descriptions such as
(the Integer [>: 0] [<: 2]) to describe the Integer which is greater than 0 and less than 2.

We feel that it is quite important that a description expressed in template English
correspond in a natural way with the intuitive English meaning. For this reason we use.

the indefinite article in attribute descrlptlons such as the one below:

(4 is(an element of {246})

“where the bmary relation element can occur mulnply in an mstance descnptlon such as

(({2 4 6} is (a Set [element: 2] [element: 4])))

- Note that ~(a Set [element: 2] [element: 4]) is a partial description of {2 46}. Attribute

descriptions only make use of the definite article in cases like the one below

((the imaginary_part of (a Real)) is 0)
where the bmdry relation imaginary_part projectively selects the imaginary part of a Real. In.
this' case the relation |magmary_,par| might be inherited from Complex via the following
descrlptnon :

((a Real) /s (a Complex [imaginary_part: 0]))

For the purpose of describing mappings, I prefer' the syntax

[=xt x.]

- [cf. Bourbaki: Book I, Chapter II, Section 3] to the syhtax
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of the lambda calculus. For example the mdppmg cubes Wthh takes a number to its cube
~can be descnbed as follows:

(describe cubes
- [ist [=n> 03]

XIl.1 --- Examples

XILl.a -— Articulation
‘Articulation is an important capability of a description system. For example

(describe cubes :
' [ns' (a Mapping [=n+—> n3])])

- can be articulated as fo_llows: o R | . L [
(cubes is (a Mapping [1+ 1] (2 8] [3—> 27] (4> 64 [5— 125] .. )

- where .. is ellipsis.

XILLb -— Sets and Multisets

, - Sets and multisets can be described in terms of mappings using the usual
mathematlcal 1somorphlsms._ For example

‘ (descrlbe {a b} :
' {is: (@ Mappmg [+ 1] [bl—> 1] [~a M =b—> O]

descnbes the: set {ab} as a mappmg from a and b onto 1 since they are present in the set
and everything else maps to 0 since there are no occurrences of other elements. Extendmg
the same 1dea to multisets glves the followmg example.
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(describe {la b a|}
' [is: (a Mapping [a+t— 2] [bl—-> 1] [-ua n wb*—% 0])])

which says that {la b al} can be viewed as a mapping in ‘which a occurs wnth multiplicity 2 b
~occurs with multiplicity 1, and all other elements occur w1th mult1p11c1ty 0

XII.l.c --- Transitive Relatibns

If (3 /s (an Integer [<: 4)) aﬁdﬂ(4 is (an Intégor-[« 5))), we can immediately conclude
that ' ’ : '

(3 is (an Integer [<: (an Integer [<: 5])]))

by the transitivity of predication. From this last statement, we would like to be able to
conclude that (3 is (an Integer [<: 5]). This goal can be accomplished by the command

(describe <
[is: (& Transitivé_relation [for: Integer])])

which says that < is a transitive relation for Integer and by the command below which says
that if x is an instance of a concept which has a relationship R with something which is the
same concept which has the relationship R with m ‘where R is a transitive relationship for-
concept, then x has the relationship R w1th m. o '

(descrlbe (a =concept [=R: (a =concept [-R =m))]) _
[preconditions: (R is (a Transitive_relation [for: concept]))]
[is: (& concept [R: m])])

- The desired conclusion can be reached by using the above descrlptlon with concept bound to
Inieger R bound to <, and m bound to 5.
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XIL1l.d --- Projective Relations
If zis (a-Complex [real_part: (> 0)))) and (z is (@ Complex [real_part: (an Integer)])) then by
merging it follows that (z is (a Complex [realpart: > 0)) [real_part: (an Integer)])) However in
order to be able to conclude that (z is (a Complex [real_part: (> 0) (an Integer)})) some additional

information is needed. One very general way to provide this information is by

{describe real_part
[is: (a Projeclive_relation [concept: Complex])])

and by the command
(describe (a =C [=R: =description1] [=R: =description2})

[preconditions: (R /s (@ Projective_relation {concept: CIN]
fis: (@ C [R: descriplionl description2])])

|
|
¢

“The desired conclusion is reached by using the above description with € bound to Complex, R
bound to real_part, descriptionl bound to ¢ 0), and description2 bound to (an Integer).

This example cannot be done in most type systems; the above solution makes use
of the w-order capabilities of our description system. '
XILl.e --- Self Description
Self description provideé the ability for the programming Apprentice to reason
about its ‘own procedures. However we must beware of paradoxes. For example the
following sentence clearly holds in w order logic: :
P Vx (P x) if_and_only_if (P x)
From the above sentence, we obtain the following by the usual rules for quantifiers:
VP 3Q Vx (Q x) if_and_only_if (P x)
Substituting the following mapping
{=s +> (not (s s)))

for P, we get
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3Q Vx (Q x) /f and, only_lf (not (x x))
Usmg 3-elimination with Qq for Q we get
Vx (Q°~x) if_and only_zf(not (x x))
Substltutmg Qo for x we obtain Russell’s paradox:cal formula
(Qg Qp) lf and_only_if (not (Qq Qo))

However the above formula is a COﬂtfddlCtIOﬂ in our descnptlon system only lf
Qo Qo) is 1 Boolean which are desmbed as_follows: it

(descnbe (& Boolean)
is: (U true false)])

(describe true
[is: ’
- =false
(a Boolean)])

(describe false
[is: '
=-true
(a Boolean)))

We propose to restrict the rules of logic to statements which are Boolean. For example the
rule of double negation elimination can be expressed as follows:

(describe (not (not =p))
[precondition: (p /s (a Boolean))]
lis: p])

In this way we hope to avoid contradictions in our descrlptlon system. In the course of
the next year we Wl“ attempt to adapt one of the standard proofs to demonstrate its
consistency.
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XIL2 --- Axioms

The description system is defined by its underlying behavioral semantics. The
axiomatization given below is significant in that it represents a first attempt to axiomatize a
description system of the power of the one described here. As far as I know previous to
the development of this one, snmlar axiomatizations for FRL, KRL, OWL, MDS, etc. did
not exist.

, ‘The most fundamental axiom is Transmwty of Predication which says that for any
<descnpt|on3> v :

Transitivity of Predlcatlon
(lmphes
“(and
(<descriptiony> is <descr|phon2>)
(<descriptiony> is <descriptions>))
(<description;> /s <descriptiong>))

~The descriptions in our system are completely intentional. lLe. the fact that the
extension of two descriptions is the same does not force the conclusion that the descriptions
are coreferential.  Suppose we .define snarks to be set of all animals: which are both
herbivores and carnivores. Then in Zermelo—Frdenkel set theory it follows that (snarks I cows)
because the empty set is a subset of every’ other set. From the following statements

{(a Snark) is(a _Carnivpre))
{(a Snark) /s (a Herbivore))
. {(a Carnivore) is (a Herbivore)) -

“we can conclude that

{(a Snark) is ~(a HerBivore))
by transxtmty of predlcatlon Thus we can conclude that nothing is a Snark because
anything which is a Snark would necessarily be both a Herbivore and not a Herbworo
However this does nor force the conclusion that

{(a Snark) is (a Cow))

Another important axiom is
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Reflexivity
(<description> /s <description>)

b"

~which says that everv descrlptxon descnbcs nself
Other 1mportant axioms are Commutdtlvny, Deletlon and Mergmg

Commutativity - ‘ -
((a <descriptiony> <attributions> <attr|buhon2> Caltributions 3> <aﬂrlbut|on4> <aﬂnbutton35>) ls
(@ <description;> <attributions> <attributiong> <attributions3> <attributiony> <attributionsg>))

which says that the order in which attributions of a concept are written is irrelevant. Note
that <cattributions> is a string of zero or more elements of category <attribution>,

Deletion
((a <descr|ph0n1> (aﬁnbuhonsl) <aﬂr|buhon2> <atlnbuhon53>) is
(@ <descriptiony> <altributionsy> <attributions>))

which says that attributions of a concept can be deleted, and .

Merging
(implies
(and _
(<descriptiony> is(a <descriptiony> <altributionsy>))
(<descriptiony> is (a <descriptiony> <attributions>)))
(<descriptiony> is(a <descriptiony> <attributionsy> <attributions,>)))

which says that attributions of the same concept can be merged.
Additional axioms! are given below for other descriptive mechanisms: -

Coreference
(<description;> coref (descnphon2>) if_and_only_if
(<descriptiony> is <descriptiony>) and (<descriptiony> s <description;>)

l:  We are grateful to Dana Scott,Maria Simi, and Jerry Barber for helpmg us to remove
some bugs from these axioms
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Criteriality
(implies
(and _ .
' (<descriptiony> fs (the_only <description3>))
(<descriptiony> is (the only <descr|phon3))))
(<descnphon1> coref <descr|phon2)))

Constrained Description

. (<descriptiony> /s (<descriptiony> such_that <statement>)) if_and_only_if
(implies :

<statement>

(<descriptiony> is <descriptiony>)) -

Qualified Description
(<description;> is (<descriptiony> that_is <description3>)) if_and_only_if
(and
((deccnphonp is <descr|phon2>)
(<descriptiony> is <dpscnphon3)))

" View Point
f((<descnpt|onl) wewed as <descnphon2)) is

Cuardians

(<descriptiony> such_that (<descnphon1) is <description,>)))

- Shift in Focus

(<descr|phon1> is (a <descriptiony> [<descr|phon3> <descnpt|on4>])) if_and_only_if
(<descr|pt|on4> is (& <descriptiong> of ((descnphonp viewed_as (a (descnphon2>))))

, 'Definite Selection

((lhe <descr|phon1> of (a <descnphon2> [(descnphonp <descnphon3>])) is (descnphon3>)

Complementation
(~~<description> coref <description)

(<descriptiony> Is ~<descriptiony>) if_and_only_if (<descripiion2> is ~¢descriptiony>)

{{<description,> is ~<descriptiony>) implies
-V =d
(implies
{d /s <description{>)
(not (d is <description,>)))))
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Meet

(<description> is (I <description,> <descrophon3>)) If and _only_if
(and

(<descriptiony> is <descnphon2>)
(<description> is <descriptions>))

(M <description> <description,>) is <descriptiony>)
(~(N <des-cription1> <descriptionp> coref (U ~<descriptiony> ﬂ(dascrip!ionzﬂj)

Join

((U <description,> <descriptions>) is (descnphonp) if_and_ only_lf
(and :

(<description,> /s <descriptiony>)
(<descriptiong> is <descriptiony>))

(<descriptiony> is (L} <descriptiony> <descrip!ion2>)) V
(~(U <Bescri~ption1> <descriptiony> Cbref (M ~<¢descriptiony> ~<descriptionz>))) -

Disjoint Join
({01 <descriptiony> <descriptiony>) coref
(u :
(n <~descripiion1>' ~<descriptiony>)
(" -<descriptiony> (descripti0n2'$)))

Conditional Description
(<descriptiony> is (cdescriptiony> if <statement>)) if_and_only_if
(¢<statement> implies (<descriptiony> is <description,>))

XIL3 --- Syntax

If o is a syntactic category then an expression of the form «o* will be used to
denote an arbitrary sequence of zero or more items separated by blanks in the syntactic

category <. An expression of the form <o will be used to denote: an arbltrary sequence
of one or more items separated by bldnks in the syntactic category <o. "

The following is the symax for dcscriptions and statements: |
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<description> s:= <identifier) | ,

' ‘ =<¢identifier> | . sthe character = is used to mark local identifiers )
¢statement> | . ;note that statements (which are described below) are descriptions
<attribute_description> | '
<attribution> |
cinstance_description> |
<criterial_description> |
<mapping_description> |
<sequence_description> |
¢set_description> |
<multiset_description> |
<instance_description) |
(<description> viewed._as <description) |

~ (<descriptiony if <statement>) |
(<description> that_is <descnphon>) |
(<description> such_ that (statemenl)) |
(M <description>) | ;M designates the meet of desciptions
(U <description>) | ;U designates the join of descriptions
() <description>} | iUl designates disjoint join of descriptions
-1<descrip!ion> | i dvummtm the complement of a description
(<relation> <descr|phon>*)

eriterial_description :: (lhe only <descr|phon>)

sonly vsed [or (lvsrnpuons that dcs_cnlw.cxnctly one thing

“<instance_description> ::= <|ndefimte instance> | <dehmte |ns|ance>
Cindefinite_instance> ::= (<mdehmte article> <concept> cattribution>®)
<definite_instance> ::= (the <concept> <attribution>*)
;definite_instances are used only for criwrinl_dascr’iptiom
<mdaf|mte _articled = al an '
, sthere is no semantic ezmnﬁmnco attached to the choice of which amclv is uscd
~ (concept) i:= <des;nphon> - ;note that this is w order

- <attribution> ::= [<binary_relation descnphon) (descnphon)]
<attributions> ::= <attr|buhon>* -
<b!nary_rel_§llon,descr|phon) ::= <description> ";nme 1Imc this is. @ order

. <attribute_description> : <pro;ed|ve attribute descrup!oon) |
" ((mdehmte arhcle) (bmary refation descnphon) of (descruphon))
<projective_attribute_description> ::= (the (bmary_re|ahon descrlplmn) of <description)
sexpresses that (bmary relatlon descnptvon) is pro]('t‘llu' for <descr|phon>
;see example bvlow for an rrplanatmn of pro;orum' hinary rc'lnuom
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<{mapping_description> ::= [(des;rip(ion)H <description>]

<sequence_description> ::= [<elements_descriptions*] | _
<set_description> ::= {<elements_descriptiom*} | i and } are used to delimit sets '
<multiset_description> ::= {|: ’eléments_descripfion)*l} sharred braces are used to delimit multisets
<elements_description> ::= ... | ,

<description |

YKdescription> ;¥ is the unpack construct

<statement> ::= (¢predicate> <description>*)|

<{predication> | ' _
(<description> coref <description’) |  ;statement of coreference
{<descroptuon>*} each_is <descnphon>) |

. (and <statement>) |

" (or <statement) |

(xor <statement>) |
(not <statement>) |
(implies <statement> <s1aiement>)

<predication> ::= (¢subject) is <complemenb)
<subject> ::= <description>
<complement> ::= <description>







