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'ABSTRACT - We report on a partially implemented interactive computer aided design tool for
software engineering. A distinguishing characteristic of our project is its concern for the
evolutionary character of software systems. Our project draws a distinction between algorithms
and systems, centering ifs attention on support for the system designer. Although verification has
played a '!argc role in recent research, our perspective suggests that the corplexity and
evolutionary nature of software systems requires a nuriber of additional techniques, which are
described in this paper.

The rmanaging of complexity is a fundamental issue in all engineering disciplines. We identify
three major techniques used in mature engineering fields which seem applicable to the
engineeribng of software systems: incremental modelling, multiple and almost hierachical
decomposition, and analysis by inspection. Along these lines we have (i) Constructed a plan
library to aid in analysis by inspection (the analysis of a prbgram based on identifying standard
algorithms and methods in it); (i) Identified a small set of plan building methods which can be
used to decompose a software syslem into loosely coupled subsystems; (iii) Developed the
technique of temporal abstraction which makes it possible to model a program from a viewpoint
_ which clearly separates the actions of generators and consumers of data and (iv) Developed a
dependency-based reasoning system uniquely suited to incremental and evolutionary program
analysis. These mecthods are substantially language independent and have been applied to
programs written in several commonly used languages.
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l. The Nature of The Problem

Large softwarc systems are expensive to design and iraplernent, and éven more expensive to
maintain. The following anecdote is indicalive of the kind of difficultics which "arc all too typical. -
A major cormercial firm undertook the developrent of a large financial software systern about
seven years ago. The project began with the careful develo'pme'nf‘of atompléte'design which
was then iraplemented. This effort took four or five years, required six full time pr.ogram_me'rs and
cost roughly five million dollars.  During the course of the imblemcﬁtation effort, rmany of the
initial design features were found to be unsatisfactory. Furtfwerrrlo're,»fhe firr’s business bracticés
and tle applicable government regulations underwent numerous revisions as tirie went by. These
factors resulted in a series of modifications to.the system which were documented poorly if at all.
Althouglh the program at present is known to have certain bugs, it has been very useful. In fact it
is so useful that the firrm would like to modify the program for use in other departments and on
other computers. However, no one really' knows how it works anymore. The current staff of the
project has no programmer who has been involved with the syster for more than eleven months.
The ohly complicte documentation is the original design, now six years out of date.. The firm is
faced with the prospect of redesigning and 'recoding the e‘ntire system from the ground up.

The cvolutionary nature of systems is a central feature in the current software crisis. The
specifications change, the design chanzes, and, as bugs are discovered, the implementation must
be changed to fix them. One of the driving forces behind this is the desire for new features. This
is prompled by {wo main factors. First, it is not possible for the designers or the potential users
of a systern to foresee all of the opportunities for the system’s use. Second, the environment in

which the system operates is itself subject to change. New regulations, busincss practices and

technology appear and force modifications to the system.

A dominanl problem in the design of large software systems is how to manage and limit the
apparent complexaty of the situation so that some reasonable solution can be produced. If all of
the relevant constrainfs were considered at once in order to try to arrive at a perfect solution in
the first place, the details would overwhelm human cognitive capacity. A more effective strategy
is {o start with a solution which is reasonably close to being correct, and then to modify it
repeatedly until a solution is reached which meets the actual needs. Thus there is both an
internal and an cxtérnal cause for the evolutionary nature of software.

Automatic verification attacks the problem of evolution by attempting to eliminate the need
for change. If a program is verified at the start, then bugs will not surface later and therefore
the program will not have {o be modified in order to fix them. However, automatic verification can
be at most only part of the solution to the software problem because it does not attack the
external sources of change such as changing government regulations. A second use for

~verification is in the certification of software systems. Such facilities are highly desirable but

they do not eliminate the need for other types of support during the process of developing code
good enouzh to warrant the effort of certification.

We suggest that what is needed in addition is a computer aided design tool which can help a
prograrmmer deal with prograr evolution from the initial design phase right through the continuing
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maintenance phase. We imagine a system (such as the Programmer’s Apprentice [Hewitt & Smith
1975; Rich & Shrobe 1976,78; Waters 1976,78,79])) which can function as a "junior prograrmraer”
might. Such a system does not need to be able to certify the correctness of an entire software

'systera. Rather, it must provide the designers and coders with relevant information which helps

them to belter understand the consequences of modifications. The system would be relatively.

knowleseable, but not an expert programmer ifseif. It would be able to understand, explain, and
reason about programs in terms familiar to a programmer. Its main virtue would be its ability to

select from the vast annotation associated with a software system the small part which is relevant

to whatever task the programmer is currently conducting. We propose to develop the
fundamental principles behind such systerms and to construct a prototype systerm which meets

many of these desiderata.

iI. An ldealized Scenario

In order to indicate the kind of system we have in mind, this section presents an imaginary
scenerio showing an expert programimer interacting with a Programmer’s Apprentice during the
design and coding of a hashed associative retrieval system. Natural English dialog is used in the
example in order to make thé presentation more comprehensible. However, natural language
understanding and generation are beyond the scope of the work proposed here.

PROGRAMMER: 1 want to make a hashed associative retrieval system for tree-structured facts.
Every fact will be stored in each of the buckels hashed to by one of its leaf nodes. 1 arm
going to start by coding the insert routine. Here is the code: ’

(DEFUN INSERT (FACT) (INSERTL FACT 1))

(DEFUN INSERT1 (FACT POSITIONY) . .
(COND ((ATOM FACT) (BUCKET-INSERT FACT (HASH 'FACT POSITION TABLESIZE)))
(T (INSERTL (CAR FACT) (* POSITION 2))
( INSERTL (COR F'ApT) (+ (% POSITION 2) 1)))))

APPRENTICE: T do not understand this codé completel'y. I see that you are doing a tree-traversal
over the fact ferminated at atomic nodes, and that vou are doing a BUCKET-INSERT for each of
these terminal nodes. However, I do not understand what the computation involving POSITION
is for, nor why HASH takes POSITION as an argtirr.ent. The hashing algorithrs 1 know about take
only 't'wb argumients: a key, and a table size, and compute an index smaller than the size.

PROGRANMER: In this systew HASH takes two argumehts in addition to the size argument: an atom
from the fact and a number (POSITION) which uniquely identifies the position of the atom in the

tree s_-:'m.lc‘ture.‘of the fact. Like a standard hash, it computes an index smaller than the size.
POSITION makes it pbssible o distinguish between different occurences of the same atom in a
fact.

APPRENTICE: -I still do not completely understand ho_w.,INS&RT works. How is BUCKET-INSERT going

P
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to work? .

PROGRAMMER: In this dosign, buckets will be ordered lists of facts. BUCKET-INSERT will tetch the
bucket in the hash table indexed by its second argument and then use the standard ordered
list insertion alzorithim to splice its first argument into the bucket by side-effect.. '

APPRENTICE: I understand the design, but there is a mistake. If the new fact needs to be put at
the very front of the list, then it is not possible to splice it in. ,

PROGRAMER: In that situation, BUCKET-15SERT will just cons it onto the front of the list.

APPRENTICE: That will not work citer. You want the fact to become a rmermber of the bucket in
the hash tzble, but this will not happen in the case where it is merely consed onto the front.
The bucket in the table will still be the old list which is the COR of the newly created list.

PROCRAMIER: OK, In that situation, BUCKET-INSERT will not only cons the new fact 'on, but also
store the result in the appropriate table entry.

APPRENTICE: That seems to fix the problew, however, there is a problem in INSERT. You said that
the fact itself was to be put into each of the buckets hashed to. Ho-wever, the way the code
is written, what is inserted is FACT which is the atom being hashed on, and not the whole fact.

PROGRAMMER: You are right again. | should make the whole fact be an argument to INSERT1, and
pass it to BUCKET-INSERT. Can you make that change?

APPRENTICE: Yes, here is what the code loohs like now.

(DEFUN INSERT (FACT) (INSERT1 FACT 1 FACT))
(DEFUN INSERT1 (FACT POSITION WHOLE-FACT)
(COND ((ATGM FACT) (BUCKET._-IN$ERT WHOLE-FACT (HASH FACT POSITION TABLESIZE)))
(T (INSERTL (CAR FACT) (% POSITION 2) WHOLE-FACT)
(INSERTL (COR FACT) (+ (% POSITION 2) 1) WHOLE-FACT))))

APPRENTICE: There is still a problem, from what 1 know about this kind of hash table, each fact
should be in any one bucket at most once. However, I cannot prove that duplicates will not
be inserted. In general, hashing causes collisions and neither INSERT1 nor BUCKET-INSERT does
anything to prevent a fact from getting put in a bucket twice if it hashes to the same index
twice.

PROGRAMMER: Al yes. To fix this, I will break INSERT up into two parts: one, called INDEX, which

. determines the set (as opposed to the mulli-set) of indices associated with a fact, and the
other (still called INSERT) which will call BUCKET-INSERT in order to insert the fact into the

corresponding buckets. [And so the scenerio continues ...]

This scenario illustrates scveral of the facilitics the type of systerm we have in-mind must
'provide. First, it must interact with thé programrmer during the decign phase checking thal the
design is coherent and achicves its stated goals. Second it must record a representation of the
logical structure underlying the design so that this may be used to detect bugs and guide
evolutionary changes. Third, the apprentice must be able to recognize comrron design patterns
within the code and to explain these in familiar, high level terms. It must also use these to
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structure its understanding of the design in ways which make it convenient to reason about the
prograr and about proposed modifications to it.

)
lll. Types of Programs == Algorithms versus Systems

It is important to distinguish between two quite different kinds of programs: algorithms and.
systerms. Each kind of program is important to software engineering. However, they present quite
different deinands and requirements. We argue that current program verification techniques. are
most uselul and necessary for alporithms. The thrust of our work is directed towards the
problers inherent in the design of systems, ' '

Algorithims and systers dilfer along two primary dimensions: the character of their
specifications, and the sources of their complexity. In general, an algorithm is a relatively short
program which is precisely and concisely specified. For example, the Knuth-Morris-Pratt and the
Boyer-Moore string matching algorithms each require roughly 100 lincs of code but have a very
short precise specification: the answer returned is the position of the first substring of the text

which malches the input paltern. An algorithm is built to satisfy a precisely stated specification
which has general utility. Therefore it is reasonable to expect that this specification will not have
to evalve in the future. As a result, the cffort required to actually verify the program can reap
benefits far into the future. For example, Euclid’s algorithm has survived unchanged for thousands
of years.

In contrast to algorithms, software systems are large programs with specifications and other
related documentation much larger than their code. More important, when specifying a systerm it
is often impossible {o state precisely what is to be done. Typically come claims are made about
what must happon and others describe desirable but less crucial behavior. In any event these
specifications often change, and the system is forced to evolve to meet the new criteria. The
incormpleteness and imprecision of the spe'cificta:tior{s for systems rmakes rigorous verification
difficult, and the impermanence olfbih‘e spécificati.oﬂnsv reduces the rewards of producing such a
verification. - . ‘ '

The complexily of a typical algorithm stems primarily from clever underlying logic (often due
to obscure op’rimizé'{ions) which requires proof in order to be believed. The intricacies of the
string matching programs mentioned above would lead one to doubt whether they worked unicss a
rigorous proof weare presented. If algorithms were subject to evolutionary change, this intricacy

“would be a significant liability. ,

In contrast, a system is us;uaily made up bf a large nuraber of relatively srmall modules, each
of which involves fairly routine code. An experienced programmer can easily understand and
trust the local cperation of such a systern by recognizing standard patlerns in the code. In other
words, recognition can largely replace formal proof at this level. The complexity of software
systems arises primarily from the number of interactions between modules. These are what make'
it difficult to assess the cffect of a proposed change to the system. Systems tend to reach a
point wiere the nurmber of these interactions overwhelms unaided human abilities to manage them.

From that point on, modifications become increasingly bug-prone.
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These distinctions between algorithms and systems point to the need for different kirds of

desimn aids in the two domains, The designer of algorithms needs. proof chechers, theorem

provers, and verification systems. While these serve a useful role for the system designer as
well, they are rot his bread and butter. Instead he needs tools which can help him evolve designs
which satisfy evolving criteria. Rather than a tool for proving convoluted programs correct, a
system designer needs a tool which can structure and remember the s’tréightforward argument's
for parts of larze but routine programs so that the proofs can be us.ed- to guide an analysis of the
effects of modifications. ' ‘

IV. Problem Solving Theories

Three key ideas in current Artificial Intelligence theories of problern solving are: problem
solving by recognition of the form of thé answer, using planning in a simplified "abstraction” space
in order to guide the problem solving process, and using debugging in order to transform an
almost rizht solution into a correct solution. ’

One hallmark of an expert probler solver is the ability to recognize the form of the solution..
to a problem bascd only on a few high level features of the probler description. This reduces
the initially unmanagzeable search in a very large solution space to an exploration of possibilities
within a much simaller space. In clech’ic_él ehginocring, the form of a solution might be a particular
circuit topology with certain components undetermined. In programming, the form of a solution
mighi be a particular control strategy with unspecified primitive actions. This problera solving
idea finds its antecedents in the Means-Ends analysis of [Newell, et. al,, 1959]) and in Minsky’s
notion of "islands" [Minshky, 19617 and was later formalized in the Planner prograrrming language
[Hewitt 1972] and its descendants Conniver [McDermott & Sussman 1974] and QA4
[Rulifson et. al. 1978] where the form of the solution is called a plan.

In sufficiently complex situations, a second paradigm called planning in an abstraction spaée,
is also used. An abstraction cpace is a model of the real world in which some important details
are intenlionally omitled. Recognition of the form of the answer is first attempted in an
abstraction space. If a plan is successfully formulated in the abstraction space, then it is modified
to work in increasing more realistic spaces until a satisfactory solution is found. This problem
solving paradiagm was embodied in the ABSTRIPS program [Sacerdoti 1973].

Both the planning paradigm and the abstract modelling paradigm point to debugging as an
unavoidable part of designing complex systems. The role of debugging in problem solving has
been investizated by Sussman in his HACKER program [Sussman 1973). When a plan is inifially
produced by recognizing the form of the answer in an abstraction space, the plan has associated
with it an explanation of how it achieves its goals. However this "proof of correctness” is likely to
be faulty because it depends on assumptions in the model which contradict facts in the real world.
The almost-right plan is refined by developing a more realistic model of the situation and then
using the old "proof of correctness” to guide the debugging process.

We believe these ideas constitute the best understanding to date of how people manage the
complexity of planning and problem solving in complex domains and therefore these ideas should
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form the conceptual basis for developing computer aids for software engineering.

V. What Do Engincers Do?

In this section we discuss some specific techniques which have proved effective in rmore
mature engineering domains such as electrical and frechanical engineering and which we think can
be fruitfully applied to software engineering. '

One might think that engineering is mainly concerned with the optimization of numcrical

parameters within physical systerms and that computer science therefore has little to gain from the

study of methodologies used in enginecring. However, although engincers are at times concerned

with numerical optimization, it is not their main activity. The dominant problem in engineering is

the management of complexity during’ design and analysis. This can be scen in the following quote
D p / (&) L& / ©

from a standard electrical engineering text [Bose & Stevens 65).

A physiéal problem is never analyzed exactly. This is a consequence both of our
inahility fo describe a physical situation completely and of the increasing complexity of
the analysis as greater accuracy is demanded. A problem that involves events in the
rcal world is aiways approached by making simplifying assumptions that hold only
approximately, thereby forming a model of the events under study. The problem then
reduces to that of analyzing the model. 1f the assuraptions by reans of which the
physical sifuation was reduced to the model are reasonable, then our analysis should
produce results that co'rrespond to observed events, and the same type of analysis
should be useful in predicting the behavior for other similar physical situations.

Thus, as the problem solving theories predict, etwgineers use abstract models to manage the
cornplexity of their dormains., Two particular abstraction téchniques which engineers use are: the
construction of multiple models each of which is accurate only under a restricted set of operating
conditions, and the decomposition of complex systeras into several possibly overlapping hierachical
Organizalions. Both of these lechniques omit details which are not relevant to the task at hand.
An exarmple of the first technique is a linear model of a transistor which describes its behavior
accuréteiy only when it is operating within a certain range of frequencics and power. Soretimes
several <:‘ifferént models will be used which together form a gbdd overall description, as for
example ihe DC and frequency domain models for a circuit.

Engineers use decomposition to break up a large system into a (possibly overlapping)

hierarchy of suboystems. Each subsystem is given a siraple description which includes only those

4

aspects of it behavior which are relevant to other subsystems. The whole artifact is then:

regarded as a loosely coupled nctwokk”in which the behavior of the whole systerm rmay be
deduced from the descriptions -of the 5ubsystems._ The simplest kind of decomposition involves
only a single non-overlapping hierarchy. However, sometimes a single component may be |ogica!’ly
part of two or more different subsystems, and sometimes several different decompositions of a
syster are necessary in order to derive convenient descriptions for all of its behavior.
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Cecomposition is already a common technique in computer science. ’The use of subroutines
a= procedural abstractions described by their input-output behavior is well ectablished. Data
abstraction techniques allow a anolher kind of decomposition. Typically, these techniques are
ermbadied in the {eatures of & programrr.ihg languase such as CLU [Liskov et. al. 1977] or ALPHARD
[Wulf 1974). While we recoznize the improvement such !anguages offer over. earlier languages,
we do not belicve that they solve the whole problerm. Convenient analysis frequently requires
multiple decompositions of a single system, but unforlunately programming languages require that
a system be represented by a single decomposition constained by the way in which the program
is intended o exccule. .

The idea of problem solving by fecognizing the form of the solution appears in engineering
both in design and analysic. Evidence of this is the development of a vocabulary of useful macro
structures which constitute the abstract forms of the solutions for broad classes of problems. In
any cnzinecring discipline, the basic units of design arc a set of primitives (such as transistors,
resistors, etc. or COHNS, CAR, COR, elc.) and rules for their legitimate combination. These generate an
infinite number of legitimate combinations only some of which are useful. The macro structures in
the intermediate vocabulary serve as stepping stones which make it cognitively feasible to derive
the useful combinations from the primitives. ’ o

We do not intend to imply that there is a unique set of universally useful intermediate
constructs but rather that it is always fruitful to look for them. Different domains employ quite
different engineering vocabularies. Once an iMermediate vocabulary is developed it expands the
cognitive range of those practitioners who learn the vocabulary.  As a result, they are capable of
conceiving of vet more complex combinations, which leads to a highcr level engineering
vocabulary. For example, in electrical engineering ore first learns to engineer useful networks
using intermediale consirucls such as voltage dividers. In order to combine these into rore
complex artifacts, one learns a higher level vocabulary including notions such as oscillators and
amplifiers.

In pragramming the connection between the microscopic and the macrbscopic is also
mediated by an inlermcdiale engineering vocabulary. If one is to work with a particular
programmming lanzuage one must know what its primitives do. However, program analysis which
exclusively concentrales on the axiomatic description of program primitives is inadequate to deal
with the complexity of real world programs. Indeed most of program understanding happens at a
macro level which is more appropriate to the task at hand. It is at this level that one learns and
remembers the useful patterns of doing things. For example, it is more fruitful to think about two
linked lists, and about "splicing™ as a kind of operation on these higher level objects, than to think
of computer memory as a large collection of cells and about changing pointers in particular cells.
In this way, we are wmuch more likely to arrive at a computationally feasible and easily
undercstandable descriplion of the behavior of a program. One of our research goals is to create a
catﬁlog of intermediate engineering vocabulary for programming.
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V. Plans and Teleology

An engineer raust have a representational system within which it is possible to utilize and
coordinate information derived through the techniques described above. In most engineering
disciplines there is a notion of the "design plan" which forms a skeleton around which all of this

information is arranged. Of all the issues discussed so far, the design plan is the one least well’

addressed by other current work in computer science. Because the use of plans in software
engincering is a central theme in our approach, we begin the presentation of our current work
with an explanation of what a plan.is and how it is represented.

In traditional cngincering or software engincering, the behavior of a device or part of a
device can be described in two ways. Some properties of a device are independent of its context
of usec. These properties constitute the intrinsic description of the device. For example, a
capacitor can be described by the relation I{t) = C dv()/dt. The LISP function APPEND can be
described intrinsically by ifs input—omput behavior of returning the concatenation of its
arguments, - Intrinsic descriptions correspond to specifications in the literature of software
engineering. ’

A deVice may also be described by its role in the plan for a larger mechanism. This is its
extrinsic description.  For example, a particular capacitor may be described as a coupling
capacitor, a bypass capacitor, or a tuning capacitor, depending upon its purpose in the circuit.
Similarly, APPEND may be used to pkoduce the union of two disjoint sets represented as lists, or to
altach a suffix to a root word represented as lists of characters. The abstract form of an answer
retrieved in the process of engineering design is a plan in which each part is specified only by its
extrinsic propertics. Synthesis involves filling each role in the plan with a part whose intrinsic
description satisfies the given extrinsic description. *

A sinsle part may have scveral extrinsic descriptions correspording to raultiple needs that it
satisfies in the larger mechanism. For example, a screw in a camera may fasten two plates
together and also provide a fulcrum about which to pivot a lever. There may also be several
plans for a given device, describing its structure in different dimensions. In this situation, & part
may fill several different roles in several different plans. For example, in a radio-frequency
amplifier aninductor may be both part of a resonant circuit in the frequency domain plan and part
of the bias network of a transistor in the DC plan. ,

The essence of understanding & mechanism is knowing the purposes of each part. This
involves building a description of the mechanisr which matches each part with its roles in the
appropriate plans. Each role in each plan must be filled by some part of the mechanism and the
intrinsic properties of that part must satisfy the extrinsic properties of its roles.

The utillit;/ of this kind of understanding is that it factors knowledge. A given plan fragment
. can appear as part of the plans for 'rnany differen’t devjces. ‘Therefore understanding the logical
structure of a plan fx'as;mo‘nt (\Vhigh x'ﬁay be very difficult) nced only happen once. Any properties
of the plan fragment which can be proven, are known to hold wherever the plan is used. These
plan fragments are the in"(ov_r'mcdiate vacabulary items discussed in the fast section.

T
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VHl. Representing Plans

In order o look at progrars from the viewpoint of a design plan, we have devised a
formalism called plan diagrams which can be used to describe both abstract program patterns and
concrele progrars. The basic entities in the plan diagrar formalism are segments (input/output
abstractions) and data objects. The formalisrn supports hierarchical description - by allowing
scgments within r;og:ﬁonts (sUbsegmonts) and objects within objects (subobjects). The most basic
relationship between these enlities is the applicalion of a segment to a set of input objects,
yielding a set of orutput'obje'cts. The fqrmalisﬁm includes four other primitive relationships: data
flow, control flow, control sfﬁlittir\g, and control joining. I is a straightforward matter to give the
proof rules for the formalism, as has been done in [Rich & Shrobe 1976; Shrobe 1978).

In order to analyzé programs wrilten in a particular programming language one necds to
have definitions for the language’s primitives. We divide programrming Iangdage primitives into
two categories: conneclive tissue vbrimitives such as IF-THEN-ELSE,-VHILE, variables, argument
passing, etc. which are concerned solely with irmplementing data and control flow, and actions such
“as arithmetic opcrations, CONS, CAR, COR, etc. The first category is describeﬁd by a translational
sermatics in which the primitive is mapped into the appropriate pattern of control flow and data
flow links. Actions are represented as segments specificd by pre-conditions and post-conditions.
We have already constructed such ‘language semantics for LISP [Rich & Shrobe 1976] and
FORTRAN [Walcrs 1976,78] and have implemchted systems which translate prograrms written in
thece languages into the plan diagram formalisra. The translation process removes many of the
surface featurcs of the particular programming language, creating a flow graph which gives
greater insight into the underlying logié,al structure. .

Each seqment in a plan is constrained either by its spec-type or by its plan-type. The spec-
type of a segment is a formal statement of the relationships which are expected to hold for the
input objects prior to its execution (pre-conditions) and the conditions which are guaranteed to
hold immediately following execution.of'the segment (post-conditions). These conditions are
expressed in a variant of the Situational Calculus of [McCarthy & Hayes 1969]). Each segment has
associated with it an input situalion and an ouput situalion which are representations for the state
of affairs on entry to and on exit from the segment. o

‘The plan-type of a seament constrains what plan (i.e. what subsegments; and data and
control flow) is used to implement the behavior specified for the segment by its spec-type. In the
case of recursive prozrams and loops (which are rcpkesented as singly recursive programs) the
plan-type for some subsegment will be the same as the plan-type for the overall segment.

Data objccts are similarly described by object-type and plan-type. Object-types are a kind
of data abstraction decomposing a data object into subobjects satisfying a specified set of
contraints, Ir‘np%c-menta'tion rules constrain the plan-type of segments according to the plan-types
of their input and ouvtbut objeds. The coordination of procedural and data abstraction is an
important and novel feature of our represention systern.,

The plan diagram formalism is intended to facilitate our goal of cataloging the common and
useful techniques of programming. The spec-types and object-types are arranged in a tangled
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hierarchy with more specific types inheriting descriptions from their super-types. For example,
the LISP-style association-list is a specialization of both the object-type linked-list and the
object-type associative-data-structure.

In order to represent the logical relationships in a plan, a plan diagram is augmented with a
network of purpose links which summarize how‘ the parts of a program interact in order to
‘produce the behavior of the whole program. These links make it possible for a design aid system
to explain how a program works, and reason about the potential effects of a modification. There
are two basic ways in which the appropriate purpose links can be developed for a plan. They can
be copied by reference lo a slored plan in a catalog of programming knowlege (see section X), or
they can be derived by reasoning directly about the plan itself.

Symbolic exccution [Hewitt & Smith 1975; Hantler & King 1976; Rich & Shrobe 1976,78] of
plan diagrams [Shrobe 1978] can be used to reason about p'rografns and to create the appropriate
purpose links.  Symbolic excculion of a plan opcrates as follows. A set of anonymous objects
(skolem constants) is created, one object for each input to the outermost segment. Data objects
are propagated along the data flow links leading to the initial subsegment. A subsegment is
marked ready whenever all of its incoming data objects are present. The symbolic execution of
the subscgrment is then begun. . This is done in one of two ways depending on whether it has a
spec-type or plan-type. ' |

If the subseament is described by a plan-type its symbolic execution proceeds recursively.
Its inputs are propagated along its data flow links to its subsegments and these are then executed
" as they become ready. If a subsegment is described only by a spec-type, it is first necessary to
demonstrate that the <cubsegment’s pre-conditions are satisfied. - If this demonstration is
successful, thon the s;vubsegmenf is applicable. Anonymous objects are created to represent the
outpuls of the subsegment and the posl-conditions of the subscgrﬁent arc asserfed to hold in its
‘outbut situation.  The output objects are then propagated along data flow links to other
subségrments which then become candidates for symbolic execution. Once all the subsegments
have been executed, one then demonstrates that the assertions of the supersegment hold in its
output situation. If this is successful, then the plan has been shown to achieve its desired effect.

The logical arguments which are constructed during this process are surntrarized into
purpose links which capture the Qndcrlyihg teleological structure of the plan. There are two basic
kinds of 'purpose. links: prerequisite links, which show how the pre-conditions of a subsegment
~are satisficd by the interaction of the pre-conditions and post-conditions of other subsegrments,
and achieve links, which record how the pre-conditions and post-conditions of the various
subscgments interact to achieve the post—cbnditions of their supersegment. These are similar to
the proo surmmarizations used in [Moriconi 1977] '

A plan may be thought of as an abstract pr.ogram coupled with a logical analysis. However, it
is important to note that this logical analysis need not necessarily be a "proof" in the sense of a
guarantes of correctness. Our"reasoning system [Shrobe 1978) is capable of conducting logical
arguments which range from informal to rigorous. In many cases the plan for a program will only
contain 4 "common sense" or engineering type énélysis which is inadequate to guarantee

correciness under all conditions, but which is good enough for purposes of explaining its
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teleological structure. When it is necessary, our reasoning system can be asked to carry out the
veritication of certain modules with full rizor. However, in this part of the process, we have made
no ad-ances over other verification systers. Our main goal is not the proof of correctness of
large software syvsicms, bul ralher an engincering oriented explanation and bookk_eéping fac"iii'(y
of"s-.orné sophistication which will make it easier for a software engineer to modify a system while
cofivincing himsclf that it does what he intends. ' . ' ‘

VIII. Terporal Abstraction

Temporal vabstrn.ciiOn [Shrobe 1978; Waters 1978] is a._modelling technigue which makes it
more con‘\./enient to analyze the logical structure of recursive plans. In a temporal model, the time
behavior of a program is u'nfolded so that the occurrences of the subsegments can be regroAuped
to make common programming fragments more easily identifiable.

For examiple, consider the following recursive Lisp program which builds a list of the terminal
nodes of a binaryvtree. '

" (DEFUN DEPTH-FIRST-FRINGE (TREE) o
(PROG (FRINGE) (DEPTH-FIRST-FRINGEL TREE) (RETURN FRINGE)))
{DEFUN DEPTH-FIRST-FRINGEYL (NODE)
{COND {(ATOM NODE) (SETQ FRIKGE (CONS NODE FRINGE)))
(T (DEPTH-FIRST-FRINGEL (CDR NOOE))
(DEPTH-FIIRST-‘FRINGEl (CAR NODE)))))
We can analyze this program as the composition of three fragments:
(i} a tree-traversal segment, implemented by the depth-first plan, which
enurerates the nodes of the tree,
(DEFUN DEPTH-FIRST-FRINGEL (NODE)
(COND ((ATOM KNODL)
(T (DEPTH-FIRST-FRINGEL (COR NODE))
(DEPTH-FIRST-FRI&GEI (CAR NODE)))))

(i) a filter seament which selects out the terminal nodes for further processing,

(COND ((ATOM KODE) ... HODE ...) .
(iii) and an accumulation segmenf which builds a list of the selected nodes.

{PROG (FRINGE)

(SETQ FRINGE (CONS NODE FRINGE)) .

This intuilive decomposition into a generator, a filler and an accuraulator has considerable
conceptual power. This section will sketch the formalization of this decomposition used in the
apprentice systerm. The method is be based on analyzing the history of applications during the
course of an entire cormputation and grouping these into occurances of segments of like type.

Given a set of inputs to a plan diagram, the rules for symbolic evaluation unambiguously
specify which of its sub-segments will be applied and to which arguments. Each such application
is described by an input situation, a sct of bindings of data objects with the input names of the
sub-segment, an outpul cituation, and a set of hindings for the outputs. The data and control flow
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links impose & nalural partial order on the applications corresponding to their order of execution.
A graphical representalion of the plan diagrem for Depth-First-Fringe is shown in Figure 1.
(Cross-hatched lines represent flow of control, solid lines represent data flow. A box with two
sections at its base is a test, one with two sections at its top is a Join. A curly line indicates that
the inner segnient is a recursive instance of the outer f;egment. Temporal abstraction makes it
possible to model this program with the plan diagram of figure 2.

Temwporal analysis begins with the notion of an occurance set of a particular plan (or spec)
type. Given an application of a plan diagram the "occurance set of typel™ consists of all
applications within the plan diagram whose type is typel. In the Depth-First-Fringe program
above there are three occurance sels of interest: (1) The occurance set of type Depth-First-
Fringel, (i) The occurance set of type "Atom Test" and (iii) The occurance set of type "Cons".
These‘correspOnd to the three fragments of code identificd at the beginning of this section.

| Fringe
' Tret
l - . ’
. : Gengrator
Abom o A
Test . 3ed of
ealtbl ) A S b - Nodes
- . Car Cdr ‘ S ' Filter
] | A | TR,
4 75 RE. caat .
"f{ﬂ Ff:uf;ti F 1] Fringed } ; o _ Accumu‘ abor
o ! )
Join : : 4 Frivﬁu

5 ' i b

Ficure 1: Plan for Depth-First-Fringe. Figure 2: Teraporal model of Depth-First-Fringe.

‘Next we consider the sets of inputs and outputs of the segments within an occurance set.
An occurance set consists of applications of segments of a coramon plan (or spec) type; the plan
diaprarm for this type provides a set of local names for these segments’ inputs and outputs. For
example, the plan diagram tor Depth-First-Fringel contains the input name "Mode”. 1t is useful to
think of the set of objects which. are bound to this name in any application of a segment of type
Depth-First-Frinzel. Given an occurance set and a local name, we define a temporal collection to
be a set of pairs consisting of (1) data objects which are bound to the selected local name and (2)
the a;‘aplic.aticn in which they are bound. The temporal collection is partially ordered byi the
natural order of the applications. If Depth-First-Fringe is applied 1o the data object Tree-1 then
the terporal collection of Node inputs to segments of type Depth-First-Frinzel will consist of
pairs containing all the nodes of Tree-1-in depth first order. This is shown diagramatically in
Figure 3. '
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For every mermber of'the occurance set of type Depth-First-Fringel there is a data flow link

o an occurance of type Atom-Test. Such a collection of identical data flow links is cailed a data

flow bundie. The collection of objects which flow along these links form two temporal collections,
one al the scgments on the initieting side of the data flowl’links and the second at the terminating
side. ‘ o ‘

Usine these concepts to examing the program. Depth—?irsFFringe mahes it possible to

decompose the program into units which can be analyzed by inspection. The occurance set of

type Depih-First-Fringel is a Binary Treé Traversal; each segment in the set either has an

atoric Mode input, or it has dala flow links fo a CAR and a CDR segment which in turn have data
flow links fo other seoments of type Depth-First-fringel. As already mentioned the temporal
collection of MNode inputs to members of this occurance set contains all the Nodes of the tree.
There is a c\iata flow bundle from this occurance set to the occurance set of type Atorn Test. The
latter sel is a filler, an occurance sct of identical test segments. Its input teraporal collection
containg all the nodes of the tree. Its output temporal collection is the sub-collection consisting of
all Modes which satisfy the Atom Test. These are the terminal nodes. There is a data flow bundle

carrying this subset from the Ator-Test occurance set to the Cons occurance set. This last set is

Can accumulation; cach segment in it takes one input from a previous Cons segment.  The second

input to each of these segments flows to it from a member of the Atom-Test occurance set. This

decomposition is shown diagramatically in Figure 3.

:ffsz. | Oceurance Sot
@FN#}!:. ‘
P 5?- Nedes
Flow
Bondls.
Qacurancs St
F:“!l“ [ . ' 0? M‘-‘;ﬂ‘;
& ' Dacurance Set
Nil P Consp| Consl | Cona}/ | Comsfi=l Cons| | Cons . of Cons
Accom- | - - - -
wivtion

Figure 3: Temporal decomposition of Depth-First-ﬁihge.

We now build a model of Depth-First-Fringe, We model each occurance set as a singie:

" segment; cach data flow bundle as a single data flow link and each terporal coliection as a single -

data object. The resulting model consists of only three segments Binary Tree Traversal, Filter,
and Accumulation. The data flow links in the model form a simple pattern, each segment taking a
single input from its predecessor. From this viewpoint the program appears.is seen as & simple
composition. Notice that the temporal model susgests the following clear and concise explanation

of Depth-First-Fringe: "The program consists of three steps, first it generates the nodes of the
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tree, second it selects out those nodes which are terminals, and third it builds a list of these
nodes." This madel is shown in figure 2.

" IX. Plan Building Methods

The entire process of analyzing a program would be made much easier if it were possible to
decide how to break a program into parts before determining what any of the parts do. One

approach {o this segmehta’(ion problem is taken by Waters [1978) who has developed and

implermented a system which discovers the logical segmentation of a large body of common
programs. His analysis is based solely on recognizing topological patterns of data flow and control
flow without regard for the specifications of the various operations involved. These patterns are
called plan building methods (PBMg), because they can be thought of as instructions for how to
combine plans together to form more complex plans.

‘The simplest PBMs :correspond to the standard structured progratming notions of

conjunction, composition, and conditional. More complex PEMs decompose recursive plans by~

making usc of temporal abstraction and trajectories.

The recursive PBMs make it possible to construct a temporal model for a recursive program
in which its siructure is revealed as the composition of standard segrments which can be
understood in isolation from each other. Three basic recursive PBMs produce three types of

‘ standard recursive segments: terrﬁinations, filters, and augtmentations.

A filter seament is one which tests a temporal sequence of values and selects out a
consiétently ordered subset to'be acted on by other segments.

A termination segment is one which tests some {emporal sequence of values of values and
can cause the ter mmahon of the recursive program as a whole. (The ATOM test in the DEPTH-FIRST-
FRINGE program doubled as both a filler and a termination segment). As such, it determines the
lensth of all the trajectories in the temporal decompoemon of the given recursive plan, but does
not affect what is: computed in these trajectories. '

All other segments are referred to as augmentations., Augmentations také in trajectories of
values and perform calculations in order to create additional trajectories of values. Typically, an
augmentation will have feedback of data flow to itself, so that it can utilize past values in ils
computations. The accumulation segments in Section VIII are augmentations. '

‘ The analysis of a recursive plan using PBMs turns out to be straightforward. The bhasic idea
is thal a part of the program atfects the rest of the program only if it either has data flow to
some other part of the program, or controls when some other part of the program will be
execuled.  Deconposition is achieved by locating segrments of the plan which do not affect
anything in the rest of the plan. (Note. thal this has to be weakened slightly in the case of
terminations.) When such a segment is found, it is pulled out of the plan and the proce is
r;apea'[od until nothing else canibe pulled out. The segments that are pulled out are c0nncctcd

' t'c;'éethor temporally by trajectories as explained in Section VIII. Thus, Waters’ anaIySls provides
one means of decmnpovma systems into loosely coupled sub-systems.
‘ CAN experiment was performed in order to determine whether or not the particular Pr_,M=
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checen had a wide range of applicability, A random sample of 20% of the programs in the 1BM
Scientific Subroutine Package were analyzéd in terms of PBMs by hand. All of the programs
turned oul to be analyzable in terms of the the PBIS. More importantly, nearly 80% of the time,
the analysis broke the programs up into segments which were so simple that it was trivial to
understand what the segmentﬁihemsélves were doing. ‘

X. A Library of Plans and Analysis by Inspection

As we have seen, onc of the major goals of temporal abstraction and PBM decomposition is
to facilitate analysis by inspection. The basic idea is to analyze a given program by recognizing
patterns of segments in the decomposed plan as instances of commonly known correct plans
stored in a library. Work such as [Barstow 1977] suggests that it is possible to -catalog
substantial portions of programming knowledse in a reasonably concise formalism. We have begun
a similar cataloging effort [Rich forthcoming] using the plan formalism, which we believe will have
Cseveral advantages. Most important among these is the fact that our plan library is not biased
towards either svnthesis or analysis, but attempts to capture the knowledge underlying both.

The plan library is a formalization of the intermediate vocabulary (Section 1V) of software
engineering. It includes standard plans (patterns of data flow and control flow between specified
subsegments) for implementing coramon input-output specifications, and standard plans (sets of
objects with conslraints between them) for implementing common data abstractions. Plans in the
library are pre-proven, ie. they have attached to therm explanations that can be combined with
‘the explanations of other plans in order to arrive at a complete explanation of how a given
progiam works. ' '

Examples of plans that we have formalized are: (data plans) implementing a set as a list,
implermenting a binary relation as a hash table, implementing a stack as a sequence plus a cell,
implementing a tree uéing pairs; (procedural plans) list traversal, tree traversal, filtering, linear
search, sequential accumulation. Many of these plans fit into a specialization hierarchy which aids
in finding the right plan during analysis or synthesis. For example, binary tree traversal is a
specialization of tree traversal, and hash tables are a specialization of associative dala structure.
One of our rescarch goals is to extend this catalog to include even higher level concepts, such as
interpreter, data-based system, etc.

Recoznition of the PBMs was so successful because there were a srall number of them and
they were all very different from each other. Recognizing instances of library plans in the plan
for a given program will be more difficult because there are many plans in the library and they
tend to have some features in common. Qur first approach will be to see how far we can get
continuing the bottom-up style of recognition from PBM analysis into recognition of the
intermediate i/ocalnulax'y. However, we will certainly have to eventually develop some top-down
recoanition strategies to make it possible to recognize the very high level concepts.
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Xl. Dependency Directed Reasohing and Program Modification

A prototype dependency directed reasoning system [Shrobe 1978] has been implemented in |
the AMORD programming language [de Kleer et. al. 1977] In a dependency directed system every
new assertion entered into the data base is accompanied by a justification stating which other

“assertions form the logical supbort for the new one. The justification itself is an object which the

systerm can inspect and manipulate. ‘

Assertions in the reasoning system have two states: inor out. An in assertion is one which
is believed. An out assertion is one not currently believed. A special module called the Truth
Maintainence Systern (TMS) [Doyle 1978] is responsible for guaranteeing that all assertions with
valid reasons to be believed are in and all assertions which lack valid justifications are out. This
facility is particularly flexible because an assertion can be justified by the lack of valid support
for some other assertion. Technically this means that the assertion F1 méy have a justification
which‘ depends on the oufness of some other assertion F2. This armounts to saying that as long as
there is no reason to believe F2 one should-assume F1. If reason to believe F2 is ever discovered,
the TMS will autornatically bring F2 in and F1 out. Addition of an assertion (F2) can cause another
assertion (F1) to become invalid. Logics with this property are called non-monotonic
[Doyle 197&]. The semantics of such logics is discussed in [McDermott & Doyle 1978]. ‘

We see two key applicalions for dependency directed reasoning in software engineering:
hypothetical reasoning during theorem proving and analysis of program modifications. For

“example, [Shrobe 1978] describes the use of dependency directed reasoning to reason about

side-effects by first assuming that the degree of sharing between complex data structures is
limited. Various desircd propertics of the program are then proven under this simplifying
assumption. Sometimes such a cursory analysis is all that is appropriate. However, when a more
carcful cxploration is desired, the assumption can be rémoved and replaéed by a more cautious
assumption or by no assumption at all. In many cases, some of the important properties of the
program <o not depend on the assumption and remain in, However, if some property does in fact
depend on the assumption it ‘will go out indicating that the original proof is no I’ongerrvalid under
the conditions of sharing. A more complicated proof of that property can then be attempted.

A dependency based feasoning system also makes it possible for incremental changes in a
program {o necessitate only incremental chénges in the analysis of the program. Suppose, for
exammple, that a programmer decides to change the representation of some data object from arrays
to binary trees. He would then replace all instances of loops enumerating the elements of the
array witl {ree traversals enumerating the nodes of the tree. Although the new code might bear
little superficial reserblance to the old code, [Shrobe 1978] shows that dependencies make it

. possible {¢ handle this change by an incremental re-analysis of the prograrh rather than by a new

analysis from scratch.

[Doylc 1978) shows how dependencies can be used to achieve many of the control
disciplines which have been used in automated theorerm proving systems. Most important among
these is dependency directed backtracking in which a contradiction is removed frorm the systerm
by first identifying those aséumptions which lead through a chain of dependencies to the
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contradiction. A new set of depcndencies is constructed which guarantces that all of these
assumptions cannot be in at the same time. The reasoning system can then select an assuription
to reject. [Stallman & Sussman 1977] show how this technique reduces cornbi'na‘tqrial explosions
in an electrical circuit analysiﬁ systerm. [Shrobe 1979] shows that dependencies are adequate to
achieve  the effect of the contexts of QA4 [Rulifson et, al. 1973] and Conniver
[McDermott & Sussman 1974] while avoiding sorrie of their problermns. - '

Xil. Conclusion

We intend to furhler develop the modules we now have in order to implémen't and
experiment with a computer system that can understand and reason about programs using the
methods and representations presented above. This system should be the prototype for an
interactive programming environment in which both the computer and the human programmer
cooperate to produce software more quickly and reliably than either could do working alone. In
this environment the programmer will treat the cor’n'putér as if it were a colleague, explaining and
developing the program desigﬁ interactively. The computer will play a passive role; its s‘créngth_
is not design but rather careful bookkeeping and criticism. L

Ours is only onec of many approaches towards allevialing the currrent software crisis. High
level languages, structured progrémming, verification, and automatic programming also make claims
to being part of the solution. lndced, a pluralism of approaches seers both warranted and
necessary, However, with the exception of [Moriconi 1977],.our work appears to be the only
project which directly confronts the issue of »incremehtal and evolutionary design of large
software systeins. . ‘

In contrast to autoinatic programming and the most ambitious high level languazes, the des'ign
aid approach allows an important simplification, namely that the computer need not be an expert
in questions of efficiency. If Ian‘gu-ages, corpilers, and automatic programiming systerns are to
raise the level of  abstraction of programming significantly, thereby hiding  efficiency’
considerations, then they themselves must possess an expertise in efficient implementation
resonably close to that of a competent programmer. Otherwise, they will not be used. A design
aid syster, in contrast, can provide significant assistance with virtually no understanding of
efficiency at all. Furthermore, as techniques for reasoning about efficiency are develvoped they
can be added to the system. There is always the escape hatch that the programmerican rmodify
autormatically gererated code without losing the benefits of the design aid. Thus our approach
allows a smooth transition from a passive assistant to a more automatic system. ‘

We also set a more modest research goal in corparison to program verification. We do not
seek to zuarantee the correctness of a large software system, a task we feel is very much harder
than what current technology can manage. We set instead an intermediate goal of understanding
the structure of the system and using this as a guide to bookkeeping and checking during design
and modification. We expect that as our technology for automatically deducing the logical
structure of prozrams progresses it will find application in the area of automatic verification. This
should eventually make it possible to construct verifications (perhaps even for large systems)
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which are more intelligibly structured than presently is the case.
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