MASSACHUSETTS INSTITUTE OF TECHNOLOCY
ARTIFICIAL INTELLEGENCE LABORATORY

A.l. Memo 507 . ' january 1979

A Hypothetical Monologue Illustrating '
The Knowledge Underlying Program Analysis

Howard E. Shrobe, Richard C. Waters, and Cerald J. Sussman

Abstract

Automated Program Analysis is the process of discovering decompositions of a system into
sub-units such that the behavior of the whole program can be inferred from the behavior of its
parts. Analysis can be employed to increase the explanatory power of a program understanding
system. We identify several techniques which are useful for automated program analysis. Chief
among these is the identification and classification of the macro-scale units of programming
knowledge which are characteristic of the problem domain. We call these plans. This paper
presents a summary of how plans can be used in “program analysis in the form of a hypothetical
monologue. We also show a small catalogue of plans which are characteristic of Al programmlng '

Finally, we present some techniques which facilitate plan recognition.

XThis paper was adapted from a proposal to the National Science Foundation.

This report describes research conducted at the Artificial Intelligence Laboratory and at the
Laboratory for Computer Science of the Massachusetts Institute of Technology. Support for the
Artificial Intelligence Laboratory’s Artificial Intelligence research is provided in part by the
~ Advanced Research Projects Agency of the Department of Defense under Office of Naval
Research contract NO02014-75-C-0643. Support for the Laboratory for Computer Science’s
research is provided in part by the Advanced Research Projects Agency of the Department of
Defense under Office of Naval Research contract N09014-75-C-0661.

0 mmuusms INSTITUTE OF TECHNOLOGY 197%

A Hypothetical Monologue ' -1- Shrobe, Waters, Sussman

The programmer’s apprentice project at MIT [Rich & Shrobe 1976,78] is attempting to develop
a knowledge based assistant for the expert programmer. Most other research in this direction has
centered on investigating the knowledge which underlies program synthesis. Notable among such
“systems has been PECOS [Barstow 1977] which catalogues a significant fraction of routine
programming knowledge in a form suitable for use in a refinement oriented program synthesizer.

In contrast, the apprentice project has spent considerable_effort studying the analysis process.
“Analysis is the process of segmenting a mechanism such that the behavior of the sub-parts can be
clearly identified and such that the behavior of the overall mechanism can be inferred from the
behavior of the parts. Analysis often requires multiple decompositions. Different properties of
‘the overall mechanism are often revealed fnoré clearly in one particular viewpoint.” For example,
in electrical circuit analysis one makes one decomposition for the DC analysis and a second
decomposition for the incremental analysis. _

The kind of analysis performed by the programmer’s apprentice system is quite different from
the kind of reasoning which is done as part of program verification. The goalrof verification is to
certify the correctness of a program. In contrast, the goal of the analysis discussed here is to
provide common sense explanations of how a program functions and to provide a basis for
understanding the consequences of a modification, In light of this goal, the reasoning in analysis
need not be as formal or exact as the reasoning in verification. For example, in the analysis of
physical systems inexact models are used routinely to simplify the task of understanding a system.

Although there has been considerable Al research on the automated analysis of physical
systems, there has been cbnsiderably less research on program analysis. In this paper we present,
in the form of a monologue, an illustration of some of the knowledge and processing which a good

programmer would employ to analyze a reasonably complex set of LISP functions.
Structure of the Apprentice’s Analysis System

~The apprentice represents programs using abstract "plan diagfams" which are a programming
langaﬁge independent representations of procedures. All identifiers in the plan formalism are
compietely local. The plan diagrams consist solely of: (1) Segments, described either by their
Input/Qutput specification or by another plan diagram; (2) Data Flow Linﬂks which indicate the
flow of information; and (3) Control Flow Links constraining the order of segment execution. In
this paper we show plan diagrams in a pictorial. fashion, the apprentice represents them using

assertions in a data base.

A Hypothetical Monologue -2- | ' Shro‘be, Waters, Sussman

oy [
(. C,,OJL ﬂnaﬁ:,-s ”_"@um‘m)p/é,?)
|

3f‘mc7‘ur&=/ h | PoM
Surfoce P[Em : ’3-"’3'1':{5"‘5

| ALS'I‘WJVM :

Figure 1: The flow of information in the analysis component of the apprentice system.

The flow of information within the analysis component of the apprentice system is shown in
Figure 1. The processing steps are additive; the apprentice never throws away information, but
rather builds an increasingly rich description of the code. Although each stage of analysis adds a

new layer of annotation, there is no strict barrier between these layers. Sometimes deductions

A Hypothe;ical Monologue -3- Shrobe, Waters, Sussman

triggered by the information existing in one layer will propagate information to and induce
deductions in other layers. .
The analysis process used by the programmer’s apprentice takes place in four steps. The first

step is surface flow analysis which reformulates the program in the plan language of data and

control flow. The only segmentation which is produced in this stage is that which is obvious from
the way the code is written. For example, each subroutine is made a seperate segment.

The second step of analysis is Plan Building Method analysis. Plan Building Methods (PEMs)

[Waters 1978] correspond to ways in which smaller plans are combined to form larger ones. The
primary value of PEM analysis is that it imposes hierarchical structure on the plans being analyzed
Three PBMs are used to segment straight-line code. These correspond to the standard notions of
a conditional expression, conjunction, and composition. Four other PBMs are used to analyze
recursive code (including loops). The basic idea behind these PBMs is that recursive structures
can be broken apart into stereotyped fragments of recursive behavior. Recursive program
segments are broken apart into augmentations which create and use sequences of values,
terminations which test sequences of values and control the termination of the segment, and
filters which restrict sequences of values based on a test.

PEM analysis is followed by temporal analysis [Shrobe, 1978] [Waters, 1978] which constructs

temporal models. Temporal analysis.examines the entire potential history of a computation,

segmenting the occurances of various segments into causally coherent units. One example of this
is closely related to the PBMs for recursive segments. PBM analysis suggests the separation of
generators and consumers within recursive programs. [Each generator is then modelled as a
segment which produces a temporal collection of values as its output. This temporal collection is
“then used as an input by the consumers. A temporal collection is a set of objects which does not
exist as a unified data structure but which is produced by the repeated application of a segment.
For example, a program which builds a list of the terminal nodes of a tree can be modelled as the
composition of a Tree-Traversal (Car-Cdr recursion) which visits every node of the tree and a
Cons Accumulation which reccives each terminal node as it is generated and adds the node to the
list of alrcady accumulated terminal nodes.

Tree T'raversal and Cons Accumulation are examples of standard plans, extremely common
patterns of program behavior. A relatively small number of such standard plans constitute the
bulk of the apprentice’s knowlege of programming. These have been catalogued in a plan Ilbrary
[Rich, forthcoming] which is the apprentice’s knowledge base. The eausal aggregation performed‘
during PBM and temporal analysis breaks the plan for a program into units which correspond quite

closely to standard plans of the library. This facilitates the final stage of the analysns process. In

A Hypothetical Monologue -4 - | Shrobe, Waters, Sussman

this stage (cailed plan recognition), the program is divided up in such a way that fragments of it
can be mapped onto standard plans in the library.

Plan recognition is not based on a monolithic grammar which parses the program as a whole.
Rather it extracts structure from fragments of the program. It is not necessary fof our system
to completely understand a program as a single unit in order for it to be useful. Evan a partial
analysis provides a framework for organizing additional information supplied by.the user. For
example, even though the apprentice does not have any expertise in the area of algorithmic
analysis, it can store and index information about time and space tradeoffs in such a way that it
can be retrieved and used with adequate flexibility. ,

The annotation developed during program analysis is coordinated by means of a
dependency-directed reasoning system [de Kleer et. al. 1977, Shrobe, 1978). Every assé'rtion in the
system’s data base is associated with a justification explaining why the assertion is believed.
These are managed by a Truth Maintenance System [Doyle, 1978). An important featufe of this
systeh is its ability to make an assumption in such a way that if the assumptibn is ever
discovered to be invalid any conclusion which depended on the assumption will automatically be
removed from the data base. T'his makes it easy for the system to operate in a hypothesis-driven

manner.
A Detailed Scenario

The following scenerio is a hypbthetical monologue which illustrates the kind of knowledge
and reasoning which is required in order to perform plan recognition. The code which is analyzed
in this scenario is a procedural deduction system. Such systems utilize two data bases in tandem.
The first is a data base of facts, while the second is a data base of demons. A demon consists of
a procedure and a pattern. The procedure is invoked any time a fact which matches the pattern is
entered into the data base. Fach data base is completely inverted so that pattern directed
retrieval may be done based on any fragment of an item. The code in the example is written in
MACLISP. ‘

Before beginning the monologue, we present several of the plan library’s standard plans.
These will be used extensively during the monologue. In the diagrams, segments are represented

as boxes, data flow is represented by solid arrows, and control flow is represented by cross

hatched arrows. Recursion is indicated by a looping line connecting two boxes. This indicates

that the two boxes have exactly the same internal plan.

- N

A Hypothetical Monologue -5- Shrobe, Waters, Sussman

o~ L. List enumeration or Cdr recursion (Figure 2) The key features of this plan-type are the
null-test, and the dita flow from the cdr segment to the singly recursive call.
. l Lis‘\" . lis‘!’—-Enu.w\
ull
4
YI N
LYY YT
£

Figure 2: The plan diagram for List Enumeration.

A Hypothetical Monologue -6 -

 Shrobe, Waters, Sussman

9. Binary iree Traversal or Car/Cdr recursion (Figure 3) This plan-type is characterized by an

atom test, and data flows from each of a Car and a Cdr segment to two recursive calls.

2 g 2 5}

tert | - | Right
—_—d ‘ ; .
.'),1 al 1L TT-R F7Y

T

Join Temporal Collections '

H lH!H!HH-HH§I
¢ o

=t

Figure 3: The plan diagram for Tree Traversal.

PN

A Hypothetical Monologue -7- Shrobe, Waters, Sussman

3. Sequential Accumulation (Figure 4) This plan-type is most easily understood in its temporal

model. From the temporal viewpoint, sequential accumulation is characterized by a temporal
collection input, a cascade of accumulator segments, an initialization input (typically an identity
element for the operator used in the accumulation) and an output flowing from the last
accumulator segment. '

" the-tenp-col

A Sin;';i'e Abstract l , l o
Data-}-‘low N S ST S » Sequential—AccumuIati_on
K the —
l temp-tol ‘,’
: . » SEQ'ACC"I]
4 '] Seq-Acc-1
'Y . . 'S S ACCUm
. 0p

Final
: Accumulation

Figure 4: Sequential Accumulation with a Temporal Collection input.

3a. Sequential Cons Accumulation This is a specialization of Sequential Accumulation in which the
accumulator segment is "CONS". The initialization is typically "NIL".
3b. Counting This is another specialization of Sequential Accumulation in which the accumulator is

an Add-One segment and the initialization is 0.

A Hypothetical Monologue -8- | Shrobe, Waters, Sussman

4, Filtered Accumulation (Figure 5) "'his plan-type is also understod most - easily in its temporal

model. A Filtered Accumulation plan consists of three segments when modelled temporally. (i) A
generator: a segment which inputs a normal input and produces‘-a temporal collection output. (ii) A
filter, which is a collection of test segments. The filter produces a smaller temporal collection as
its output which consists of exactly those members of the input which satisfy the test. (iii) An
accumulator which takes in a temporal collection and produces a single data structure as its
output. The accumulator contains a cascade of accumluation operator sub—seg_ments in one-to-one
correspondence with the members of the temporal collection input. This plan has a large number .
of specializations depending on what generator, filter and accumulator are used. Notice that the
generator and the accumulator are initilized independently; these steps are called the Enumeration

Initialization and the Accumulation Initialization, _
T 1 input object

ENUMERATOR

.+« temporal tollection cee

test ' T
ere FXLTER see
TI N . TL N

-.. restricted segquence ...

Acc Acc ..+ ACCUMULATION ... [Acc

o/

final agcumulation

Fle-tit

Figure 5: The plan diagram for the temporal model of Filtered Accumulation.

A Hypothetical Monologue -9- - Shrobe, Waters, Sussman

5. Queue and Process (Figure 6) This is characterized by it use of the queue. The purpose of
this plan is to create abstract data flows between one occurrence of the body of the loop and
later occurrences of the body. Recognition of this plan-type immediately suggests a temporal

abstraction in which the abstract data flows are made manifest.

lnitialv-Object' _) | Q-and-Process

_ Qj_and-Proces,s-'l.

. RealW%Work

o o Process
queue _ 3 _Henber

Q.|
N

:
:
f : ‘ Cascade lf\ jf\ ‘ \

‘ .

Q-unG-Process-]

Figure 6: The plan diagram for the Queue and Process plan.

A Hypothetical Mono!ogué

- 10 -

Shrobe, Waters, Sussman

6. Hashing Plan (sce figure T) This is a prototype for the typical operations performed on a hash

table. The plan is shown at a level of abstraction high enough so that it is valid for any of the

standard implementations of hash-tables. It is characterized by a numerical calculation producing

ST

s st

an index for an array reference. Frequently the last stage of the hash caleulation is the
computation of the absolute value of the remainder of some number when divided by the size of

the array. The second éegment of the hash plé'n fetches the appropriate bucket from the array.

This bucket will be an implementation-dependent data structure which is used to represent a set.

The last segment is the appropriate set operation specialized to the object-type of the bucket.

| “J*:\;\; o?‘aﬂs!ﬂow .

Tl fobject |
Gel- X
Buc'm.‘\’ H ”\\
o C a,\w‘ &.,‘,ﬁbvs
Bucks}-
Fzteh

Bucksl
' S?g‘ci a.l?%ié-
O?Lra-*‘fovn

1

Figure T: Hashing operations.

Abstcact WHaoslhh Caleulation

Object | Tabe
M aA'L LY"A’;CG! ,
CZL‘C‘—*\BA‘:OH
S VX &
— ,
Remaindee

A Hypothetical Monologue -11 - Shfobe, Waters, Sussman

1. Linear Search (shown in Figure &) This plan is most clearly shown in the temporal viewpoint. It
consists of a cascade of test segments which test a temporal collection of values. One case of
each test terminates exccution, the other case enables the next test segment and returns control

to the generator.

v

Test Tzs""

No ‘YLS. No

\WWA 3] 1\.05*2_

Figure 8: Plan diagram for Linear Search.»

A Hypotheticsl Monologue , B VA Shrobe, Waters, Sussman

8. Trailing Tointer Cnumeration = Splicing (Figure 9) Splicing plans are used to insert or delete

elements from list structures. The generator part is called a Trailing Pointer Enumeration; it
produces pairs of pointers to list cclls (called the Current and Previous pointer) such that the
current pov’mter points to the Cdr of the cell pointed to by the previous pointer. The splicing part
of the plan is characterized by a Searching Plan and a side-effect which changes the CDR of the

cell which caused the exit.

- _ L'd- | ‘ -Prz.\lfqu.s
' ' Trod];na
?e‘n*bf
Nu“*T‘-t" Enumtfaior
Yes [No_
(
} .
}’ Qlt"\ N Previoxs
Pornter L]
Erums cater
{ —YY Hoeer U
Y | B PS]

Figure 9: Plan diagram for Trailing Pointer Enumeration.

——

A Hypothetical Monologue -13 - Shrobe, Waters, Sussman

9. Enumerate and Side-FEifect Fach (Figure 18) This is a simple plan-type in which each element

enumerated is subjected to the same side-effect.

A

Genevator

£ g e} T Ackon

Ac"\'on A'c."\os\ ‘ Ac"\'oq AE“WV\ on
Each

Figure 10: Plan diagram for Enumerate and Side-Effect Each.

A Hypothetical Monologue -14 - . Shrobe, Waters, Sussman

19. Set Insertion (Figure 11) This is often used for sets which are represented explicitly in a data
structure. The plan first checks to see il the object to be inserted is already present; the actual

insertion into the data structure is only performed if the lookup does not find the object.

s,,{- l B o"bvjac,t“
I~
kc’mk wp

— St
A Tusection

S

yi}) No
3 h _ \ V.
Primibue
CSet
Thsert

Figure llv: Plan for Set Insertion.

The plans shown so far constitute a set of techniques out of which many programs can be
built. They are coordinated into higher level plans which depend significantly on the particular
application domain. Such higher level orgahizing plans often exhibit an alternating layered
structure. One layer représent§ an abstract data structure; the next layer operates on this
structure so as to implement a data abstraction. The plan library is structured to reflect this
pattern. It includes a vocabulary consisting of abstract data types annotated by the plans which
are likely to operate on these types. Each type is also annotated by information indicating the
typical implemomat’ion plans.

High level plans impose global structure on a program. For example, a data base can be
regarded as a set which accumulates assertions. Thus, there is a point of view which presents the
system as an accumulation plan with the data base acting as the accumulator. However it is
unlikely that the system will have a single accumulation loop in which assertions are added to the
data base. Typically, there will be many places in the program where assertions are added to the
data base; the accumulation plan is distributed throughout the system and is part of the syAste'm’s
global structure. Temporal analysis can be used to identify such global plans and to model them as

single coherent units.

4

A Hypothetical Monologue - 15 - Shrobe, Waters, Sussman
The Mionologue

This scenario is presented as a monologue reflecting the apprentice’s reasoning processes as it
reads the code for an example system of programs. Three fonts are used to distinguish the code,
the apprentice’s "train of thought" and our discussion of the aprentice’s thinking.

THE CODE IS'WRITTERN IN A SMALL CAPITALIZED FONT.
The apprentice "thinks" in the normal font used in the rest of the text.

[The authors comment on the apprentice’s thoughts in italics inside brackets).

(The apprentice begins to read the input file.)

v5s A SIMPLE DEDUCTION SYSTEM .
vvs IMPLEMENTED USING A PATTERN-DIRECTED DATA BASE AND ANTECEDENT RULES.

I know of only three ways of implementing pattern-directed data bases: hashing schemes,
discrimination nets and p/ropérty lists, 'l'herefore}}.expect that one of these is being used. | will
wait for triggering information to suggest a selection among these.

The comment says this is a deduction system, thus there must be some scheme for sequencing
through the inferences to be made. I will expect to see an “agenda" mechanism for buffering
actions to be taken. This may take the form of an explicit data structure (such as a queue for a
system based on breadth-first search or an explicit stack for a system based on depth-first

search) or “the implicit stack of the implementation language il the system is recursively

controlled.

(SETQ +DGx* (*ARRAY NIL T TABLESIZE)) ;this array holds the facts in the fact data base.
)

(SETQ *D-DB* (*ARRAY NIL T TABLESIZE)) ;this array holds the demons in the demon data base.

The particular code | see is the initialization of two arrays. The comments say these arrays
are part of the data base. The only way | know to use arrays in Al data base systems is for
has;hing7 data objects. Thus I will assume that the system uses these arrays as hash tables.
[Notice that the apprentice used the array declarations as a "trigger fact" to jump to a
conclusion.] ‘ |

143 Functions for entering new facts and demons into the data bases
(DEFUN ENTLR-FACT (FACT)

1 (COND ((NULL (LOOKUP FACT *DBx)) ;if not already in the db

2 (INSERT FACT) ;put it din

3 (MAPC ' (LAMBDA (DEMON) iand enqueue all the matching demons
4 (ENQUEUE (LIST DEMON FACT) *xTQx))

5 { DEMON-LOCKUP FACT *D-DB*)))))

A Hypothetical Monologue -16 - ‘ Shfobé, Wéters, Sussman

Iy

{Wien laced with a piece of code, the apprentice first breaks it up using PBM‘A‘a.nalysis and
temporal abstraction. Then it begins to reason about the parts it has found.]

The function name "LOOKUP" (used on line 1) is associat;_ed with data base plans. [t indicates
a module which can test whether a given fact is present in the data base. | assume that this is a
Data Base Lookup. Lookup modules take at_leaét two inputs, the fact and the data base. [The
apprentice talks about "inputs" which are part of the terminology of the surface plan
representation. In the actual code inputs may be implemented as explicitly passed arguments (as is
done here) or they may be imp!iéit/y passed through free variables or parts of global data
structures referred to by free variables.]. ' '

The function name "DEMON-LOOKUP" (line 5) also suggests a lookup routine, but this

module takes a different data base as an argument. It would seem that LOOKUP determines’

whether a particular fact is in the data base XDBX and that DEMON-LOOKUP checks whether a
particular demon is in the data base ¥D-DB%, However, the way in which these function are used
indicates that they return lists. Lookup routines for associative data structures often return a
set of items which match the input. Since an Al data base is an associative structure and since
lists are often used to represent sets this is likely to be the case here.

I have already decided that there will probably be some Agenda which is used to buffer
waitingvactions. The comment on line 3 mentions an ENQUEUE and the function invoked on line 4
is named ENQUEUE; this suggests strongly that the agenda is being implemented by a queue. This
means that there must be a Queue-and-Process plan to drive the agenda.

The l’raf;menl on lines 1 and 2 is a Set Insertion Plan which is often used in data base Insert
routines. Therefore, I conclude that this is a data base INSERT fragment and also that one
fragment of this plays the role of an ACTION-ENQUEUE paft of a Queue-and-Process plan.
(DEFUN ENTER-DEMON (DEMON DB D-DB)

;: if the demon is not already in the d-db

(COND ((NOT (MEMBER DEMON (LOOKUP (CAR DEMON) *D-DBx)))
(DEMON- INSERT DEMON) iput it in

;. and apply the demon to all of the facts its pattern matches.

(MAPC ' (LAMBDA (FACT) (ENQUEUE (LIST DEMON FACT) %TQx))
(LOOKUP (CAR DEMOM) xDBx)))))

o Ub W

Again the ENQUEUE suggests the use of a Queue-and-Process plan. Obviouély the queue
contains pairs of demons and facts. Lines 2-3 are probably a Set Insert, with the fragment on line
9 containing (NOT (MEMBER DEMON (LOOKUP ..))) acting as the Test Part of the Set Insert
plan. However, | don’t yet understand exactly how it implements this behavior and I will not
understand it until | understand exactly what LOOKUP docs. |

One thing | can say based on this fragment is that demons are indexed by their CARs.

e

3

S

A Hypothetical Monologue -17- Shrobe, Waters, Sussman

Therefore CAR must select the PATTERN-PART of the data structure representing a demon.
This is confirmed by line 6 where matching facts are looked up using the CAR of the demon as
the FETCH-PATTERN.

[(Here we see an ‘instance of the apprentice in/'e‘rringr the correct organizing structure, even
though it cannot yet understand all of the [ragments of the code in detail. We also see the
apprentice attempting to discover the layout of the data structure which represents demons. As
with the organizing structure, it can only infer part of the information needed.)

;s Basic dinsertion and retrieval functions for the data bases.
DEFUN INSERT (FACT)
v+ insert the fact in data base.
. note: does not check if fact already present.
(MAPC " {LAMEDA (INDEX) (BUCKET-INSERT FACT INDEX *DBx))
(INDEX FACT *DBx%)))

B W .

PBM analysis of the surface flow implemented by the MAPC on lines 3-4 indicates this is an
Enumerate and Side-Effect Each plan whose enumerator is a List-Traversal.

The action performed on each member of the list is a BUCKET-INSERT. This suggests two -
things. First the use of the term BUCKET in this function name suggests that | was correct in
assuming that the data base ¥DBX is a hashed system. Second, the use of the term INSERT
suggests a Sgg—lnsértion operation. Since the buckets of 3 hash table are constrained to be a gaté
structure representing a set this is a consistent interpretation. | can infer from these
assuxﬁptions, therefore, that INSERT makes FACT be a member of every bucket returned by the
call to the function INDEX on line 4. ‘

The output of the call to INDEX is fed into the MAPC, therefore | can tell that INDEX
should return a list of elements which will be input to BUCKET-INSERT. The interface between
INDEX and BUCKET-INSERT must be compatible, so if I find out that INDEX returns a list of
numbers, | should expect BUCKET-INSERT to input a table-index (and vice-versa). Similarly, if
INDEX returns a list of buckets, then BUCKET-INSERT must input a Bucket (and vice versa).
There are various types $f ‘hashing systems, but in the one most commonly usea in LISP, the
buckets are implemented as lists. [will assume that this is the implememation used here, unless 1
find evidence to the contrary.

(DEFUN DEMON-INSERT (DEMON)

1 :s insert demon 1in the demon data base.

;; note: does not check if already present.

(MAPC ' (LAMBDA (INDEX) (BUCKET-INSERT DEMON INDEX *D-DBx))
(INDEX (CAR DEMON) %D-DBx)))

S wn

A Hypothetical Monologue - 18 - Shrobe, Waters, Sussman

- This routine,is virtually identical to the one above. The only difference is that the demon is
only indexed by its CAR and that a different data base is used.

(DEFUN LOOKUP (PATTERN DB)

1 v+ return 11ist of facts in data base which match pattern.

2 (PROG (INDICES ;1ist of 1indices.

3 BKTS ;1ist of buckets to be intersected.

4 HITS ;Tist of facts in the intersection.

5 MATCHES) :to accumulate facts that match.

6 (SETQ INDICES { INDEX PATTERN DB))

7 (SETQ BKTS (MAPCAR '(LAMBDA (INDEX) {ARRAYCALL T DB INDEX)) INBICES))
8 {SETQ BKTS (SORTCAR BKTS '<))

9 ;3 intersect buckets to get candidates for match.

10 (SETQ HITS

11 (DO ((L (CDR BKTS) (CDR L))

12 (INT ;to accumulate intersection.

13 . (CDAR BKTS) ;initialize to contents of first bucket.
14 (FAST-INTERSECT INT {(CDAR L))))

15 ((OR {NULL L) (NULL INT))

16 ;: done, return intersection.

17 INT))) .

18 ;s select only facts that match pattern.

19 (MAPC ' (LAMBDA (FACT)

20 (AND (MATCH FACT PATTERN) :

21 (SETQ MATCHES (CONS FACT MATCHES))))
22 HITS)

23 (RETURN MATCHES)))

This module is quite a bit larger than the earlier ones. However, I can break this up into
smaller units easily. The PBM analysis suggests that lines 10-17 are an Accumulation-Loop. Lines
6-8 form a unit which participates in both intializations for the loop. Its Accumulation
Initialization is accomplished by taking the CDAR of the result of lines 6-8; the Enumeration
Initialization is accomplished by taking the CDR of the result. Similarly PBM analysis indicates
that lines 19-22 are a Filtered Accumulation Loop. Surface flow analysis indicates that the
Enumeration Initialization of this loop is the loop on line 10-17. The Accumulation Initialization of
the loop on lines 19-22 is on line 5. Finally, since line 7 is a MAPCAR, | can tell that it is an
Accumulation Loop whoée Enumeration Initialization is on line 6. The Accumulation Operator of
the loop consists of the composition of the ARRAYCALL and a CONS Which is implicit in the
MAPCAR.

I already know that INDEX returns a list of either buckets or indices of buckets. The
structure of this Filtered Accumulation Loop implies that each element of this list is input to the
ARRAYCALL. Therefore, INDEX must return a list of hash table indices and it follows that
BUCKET-INSERT expect‘s its input to be a table index. Given the fact that this is a hashed data
base, it would scem likely that the ARRAYCALL on line 7 is serving the role of a Bucket Fetch
operation. For this to be a reasonable assumption it must be the case that the variable DB on line |

7 is used to hold an array which is implementing a hashed data base. But flow analysis indicates

A Hypothetical Monologue -19 - Shrobe, Waters, Sussman

that this is an input varisbie of the module. So far, I have seen calls to LOOKUP in
ENTER-FACT and ENTER-DEMON and flow analysis indicates that in each of these cases the
object which flows to the DB input of LOOKUP is either ¥DB% or ¥D-DB¥, both of which are
arrays implementing Hashed Data Bases. Therefore, it follows that lines 6-7 produce a list of all
the buckets whose indices are returned by (INDEX PATTERN DB). :

The typical use of a Bucket Fetch operation within a Hashing Scheme involves calling it with a

numerical operation which is the Hash of some object. | assume therefore that INDEX computes a
list of Hashes. The fact that there are several Hashes is not typical, so I will have to examine
INDEX to see exactly what Hashes are produced.

I have already decided that lines 10-17 constitute an unfiltered accumulation loop. The
Accumulation Operation of this loop is the FAST-INTERSECT called on line 14. Since buckets are
a particular representation of sets it is a reasonable assumption that FAST-INTERSECT computes
the intersection of two sets. The initial accumulation is the first bucket in the list of buckets
and the loop enumerates the rest of the buckets. Therefore, lines 10-17 computes the
intersection of the collection of buckets computed on lines 6-8.

There are various facts which | cannot yet explain. FAST-INTERSECT is given the CDR of
each bucket as its input, rather than the whole bucket. | will have to examine the structure of
buckets to explain this. Also | do not yet understand the role of the sort on line 8. However,
since it sorts using the CAR of the bucket as the Sort Key and since line 14 operates on the CDR
of the bucket, it seems a likely assumption that buckets have two distinet conceptual parts
represented by their CAR and their CDR. If my interpretation of FAST-INTERSECT is correct
“then it must be the case that the CDR of the list represénts a set of items.

Finally the MAPC on lines 19-22 is a Filtered Accumulation Loop whose Filter is MATCH and
whose Accumulation Operation is CONS. Since the Enumeration Input of this loop is the output
of the previous loop, I can conclude that this loop builds a list of all those facts in the Set
Intersection which also MATCH the input PAT TERN.

The function name MATCH suggests the use of Pattern-Matehing. | know a few varieties of
éattern matching typical of Al systems, but I have no evidence to suggest one of these. The
variable name PATTERN also suggests Pattern Matching so | assume that MATCH is a pattern
matcher. _ ‘ '

[Here we see a very clear example of how our techniques contribute to the analysis.
Although each of the loops are coded in 4 different manner, Surface Flow Analysis reveals the
cénm;énality. The PBEM analysis is used to separate the program into sub-units which can be

analyzed in isolation to a large degree. The PBM annotation also deterniines a categorization of

A Hypothetiﬁal Monologue \ - 20 - N Shrobe, Waters, Sussman

these loops as'l'iltefed and unfiftered accumulations. This annotation leads to the construction of
a -temp,o_riai model in which the sequence of enumerated values is made explicit.

. We also see the propagation of information between layers of annotation. Surface Flow
Analysis is used to determine whether there are constraints on the type of the variable DB. This
information is used to construct a recognition mapping to a standard plan in the library. The
apprentice also uses such information to make further assumptions about what structures are
likely to be seen later in the code.)

(DEFUN DEMON-LOOKUP (FACT D-DB)
;: return 1ist of demons 1in the demon data base whose pattern matches fact
(PROG (INDICES BKTS HITS MATCHES.)
(SETQ INDICES (INDEX FACT D- DB))
(SETQ BKTS (MAPCAR '(LAMBDA (INDEX) (ARRAYCALL T D-DB INDEX)) INDICES))
(SETQ BKTS (SORTCAR BKTS '<))
.; union buckets to get candidates for match.
{SETQ HITS
(DO ((L (CDR BKTS) {COR L))
(INT (CDAR BKTS) (FAST-UNION INT (CDAR L))
((NULL L) UNION)))
(MAPC ' (LAMBDA (DEMON)
(AND (MATCH FACT (CAR DEMON)) (SETQ MATCHES (CONS DEMON MATCHES))))

W E N CD WwN

e
wn = o

HITS)
(RETURN MATCHES)))

—
E-3

I'his routine has a very similar structure to LOOKUP, but there is a difference. The last
routine accumulated the Intersection of the indexed buckets, this one computes the Union. Why?
[cannot vet ascribe any purpose to either the Intersection or the Union.

;1 Basic utility routines used by the data base functions
(DEFUN INDEX (FACT DB)

1 :: returns 1ist of indices for fact.
2 (PROG (*INDICES)

3 (INDEX1 FACT 1 DB)

4 (RETURN *INDICES)))

(DEFUN INDEX1 (FACT POSITION 0B)
;; compute indices and return ihem by
:: cons'ing onto global variable *INDICES.
(COND ({ATOM FACT)

;; note that the symbol "x" is not indexed.

{OR (EQ FACT '%)

({LAMBDA (INDEX)
(OR (MEMQ INDEX *INDICES)
(SETQ *INDICES (CONS INDEX *INDICES))))
(ABS (REMAINDER (+ (MAKNUM FACT) (LSH POSITION 18.)
(CADR (ARRAYDIMS DB)))))))

O ONO M H W
o

—
fe

(T
(INDEX1 (CAR FACT) (LSH POSITION 1))
(INDEX) (CDR FACT) (1+ (LSH POSITION 190N

[
w N

A Hypothetical Monologue -21 - Shrobe, Waters, Sussman

Temporal Abstraction reveals that these two modules contain a fragment which is a Tree
Traversal whose input is the variable FACT. The recursion on the CAR is on line 12, the
recursion on the CDR is on lihe 13, In parallel with this, there is a numerical calculation
(represented by the LSH forms). However, I do not understand the role played by the numerical
calculations. The Enumeration Input of the Tree Traversal is the variable Fact in function INDEX.
This structure is reasonable only if the ihput Fact is reparded as a binary tree. Flow Analysis
shows that the object which flows to the FACT input of INDEX is either a data base Fact or the
Pattern Part of a Demon. I conclude that facts and Demon Patterns are regarded as Binary Trees.
Since these objects also flow to the MATCH function, it seems likely that MATCH will be a
Binary Tree Structure Matcher. |

From Temporal Analysis | can also tell that the Atom Test on line 3 serves both as the
Termination of the recursion and as a Filter which allows only the atomic nodes through to the
Body. Temporal Analysis of lines 5-10 determines that this fragment is a Filtered Accumulation.
Line 5 Filters out those Terminal Nodes which are the symbol "%". Lines 7 & 8 fonjm a Set
Insertion plan; line 8 alone would form a Sequential Cons Accumulation, This means that lines 7
and 8 together implement the accumulation of a Set as opposed to a Multi-Set.

The calculation on lines 9-10 is some arithmetic caleulation which 1 do not understand.
However, | see two suggestive features: “The first is that it calculates the array’s dimension.
The second is that it returns a result which is the absolute value of the remainder of dividing by
the array dimension. 1 have already noted that INDEX very likely ealculates a set of Hashes and
these features match my description of the Hash Calculation plan. I will assume, therefore, that
this is the Hash Calculation. The results of the numerical calculations on lines 12 and 13 flow into
the Hash Calculation. 1 will assume that they are related to the Hashing.

I now know that INDEX Traverses the Tree Structure of the input and Sequentially Conses '

up a Set of the Hashes of those Terminal Nodes which are not the symbol "%". I don’t yet know
| why the symbol "¥" is distinguished.

Now that | understand INDEX, | can conclude that the INSERT routine Inserts a fact into each
member of a set of Buckéts. The buckets are those Hashgd to by the Terminal Nodes of the fact.
However, il a terminal node is the symbol "", then the Fact isn’t inserted into that Bucket.
Similarly INSERT-DEMON Inserts a Demon in each member of a set of buékets. In this case the
buckets are those Hashed to by the Terminal Nodes of the Pattern Part of the Demon. | know
that a Data Base Insert routine is intended to make its input be a member of the data base. It
seems reasonable to assume that the definition of membership in this data base is that an item is a

- member of the data base if it is a member of each bucket which is hashed to by one of its

A Hypothetical Monologue -22 - Shrobe,“-’Wé‘té'f&,' Sussman

terminal nodes. iowever, terminal nodes which are the symbol "X" are exceptions. Similarly I
conclude that the definition of membership in the demon data base is that a demon is a member of
the data base if it is a member of every bucket hashed to by a terminal node of its Pattern part.

This now lets me expand my understanding of the LOOKUP routine. Given a pattern, it
fetches a bucket corresponding to each terminal node. But the assumption is that any member of
the table must be a member of cach of these buckets as well. Therefore, it must be in the
intersection calculated by the Filtered Accumulation Loops in the Lookup routines. Lookup then
filters these facts in the intersection by using the function Match which I have assumed is a
Pattern Matcher. Therefore LOOK:UP returns those facts which match a given pattern. |

DEMON-LOOKUP is very much the same except that it indexes a Fact which | assume can’t
be a member of the demon data base and uses the indices generated to retrieve Demons. This
indicates that something more complex is going on. The use of the function MATCH indicates
that DEMON-LOOKUP returns Demons whose patterns match the given Fact. Presumably, it
returns all such Demons. |

(DEFUN MATCH (FACT PATTERN). _ _

1 ;s predicate which returns T only if fact matches pattern.

2 ;. note: no variables are used, only * which matches anything.
3 {COND ((OR (ATOM FACT) (ATOM PATTERN))

4 (OR (EQ PATTERN *%) (EQ PATTERN FACT)))

5 (T , tree recursion.

6 {AND (MATCH (CAR FACT) (CAR PATTERN))

7 (MATCH {CDR FACT) (CDR PATTERN))))}))

My previous conclusions have led me to expect that this routine will include a Binary Tree
Traversal and this structure is obviously present. The two recursive calls are combined by the
AND on line 6; the temporal model shows this to be a Search Plan. Line 3 indicates that this
Search Plan operates on the Temporal Collection consisting of pairs of nodes - one from each
Binary Tree - where at least one of the nodes is a terminal. ;

[By the time the apprentice gets here, it has extremely strong expectations of what structure
should be found in the pattern matcher. Notice the degree to which it can analyze this function
using plan recognition. We omit the code for the FAST-INTERSECT and FAST-UNION routines;
from its analysis of these two routines, the apprentice deduces that the buckets must be sorted

in increasing order.)

A Hypothetical Monologue -23 - Shrobe, Waters, Sussman

{DEFUN BUCKET-INSERT (FACT INDEX DB)

1 ., splice faqﬁ into indexed bucket in maknum order.

2 :; note: does not check for duplicates.

3 (PROG (BKT)

4 ;3 bucket fetch.

5 (SETQ BKT (ARRAYCALL T DB INDEX))

6 (COND (BKT

7 ;: search for place in bucket.

8 (DO ((B (CDR BKT) (CDOR B))- 1B is ordered list.
9 (PREV BKT B)) ;PREV is pointer for RPLACD.
10 : {((OR (NULL B) (> (MAKNUM (CAR B)) (MAKNUM FACT)))
11 ;3 do dinsertion.

12) (RPLACD PREV (CONS FACT B))

13 7, update bucket count.

14 (RPLACA BKT (1+ (CAR BKT))))))

15 (T ; previously unused bucket.

16 ;5 build new bucket with one entry.

17 (STORE (ARRAYCALL T DB INDEX) (LIST 1 FACT))))))

The comment on line 2 uses the term Splice; this suggests a Splicing Plan. | have already
determined that this function should be a Set Insertion into the Bucket data structure. | also_
know that the CDR of a Bucket is a List sorted in increasing order. | know that a Sphcmg Plan ‘
can be used to Insert an item in a list while maintaining its order. For this to work here, the
splicing plan must search for an element largervthan the one to be inserted; when this is found the
new element should be Spliced-In in front of the element which stopped the search.

| 'Surface Flow and PBM analysis have produced enough information for me to easily tell that
lines 8 through 14 are a Splicing Plan. The Trailing Pointer Enumeration is effected by lines 8 and
9 of the Do Construct. The first of the two tests on line 10 4is the ']'grmination Test of the
Enumeration; the sccond test is the Scarch test. The Splice Operation is on line 12. The
comments on lines 8, 9 and 13 confirm this analysis. _ ‘ '

I still don’t know what role is played by'the CAR of a Bucket. However the fact that the
CAR of a Bucket is an object playing some other role allows the Tréiling Pointer Enumeration to
initialize its Trailing Pointer to the first cell of the Bucket as is done on line S.

Line 14 is in the body of the Splicing Plan, but there is no role of the Splicing Plan which | can
ascribe to it. The comment on line 13 uses the term COUNT, suggesting a Counting Plan; but
there is no structure resembling a Counting Plan here. Is there a global counting structure? Line
14 changes thé CAR of the Bucket, by adding 1 to it. This suggests that the Car of a Bucket must
be a number. I conclude that a Bucket has two parts: A Count and a Membership List.-

The hash tables were initialized to contain all NILs when they were created. It seems
possible that Bucket-Insert can be called with the tables in that state. I have not yet seen any
other initialization code. Therefore, | will extend my understanding of Buckets to allow NIL to be
a valid Bucket. If | do find initialization code 1 will revise this conclusion.

Lines 6 and 15 test whether or not the Bucket is NIL. If the Bucket is not NIL, I will assume

A Hypothetical Monologue - 24 - : Shrobe, Waters, Sussman

that it has been properly initialized and is correctly structured. Line 15 is executed when the
Bucket is NIL, so | assume that it is the initilization code. Line 15 stores a new object into the
Table. This new object is a List of the number 1 and the fact to be inserted. To maintain
consistency | want to show that this is a well formed Bucket. The CAR of this List is a number
and the CDR is a list of facts which are members of the Bucket. Finally, the length of this list is
1. So everything is consistent. ,

The fuller description of the structure of a Bucket which I have gained here lets me explain
one other thing which | didn’t understand. The Lookup routines sort their list of Buckets using
the CARs of the Buckets as sort keys. Now 1 can sce that this orders them by their lengths.
However, I don’t know why this is done

(DEFUN RUN ()

1 (PROG (*TQx) iqueue of demons and facts to execute

2 (SETQ »TQ* (MAKE-EMPTY-QUEUE))

3 (DO ((INPUT (READ) (READ))) ;read in an input

4 ({EQ INPUT 'STOP)) yif 'STOP all done

5 , (EVAL INPUT) jevaluate it (things get queued up

6 (DO ((DEMON-FACT-PAIR (DEQUEUE *TQ*) (DEQUEUE *TQx))) ;for each one
7 ((EMPTY-QUEUE *TQ#))

8 (APPLY (CDAR DEMON-FACT-PAIR) ;apply the demon to the fact

g (COR DEMON-FACT-PAIR)))))))

PBM analysis separates out line 2 as the initilization of the Queue-and-Process plan which is
on line 5 and 6-9. The Action Part of the Queue-and-Process plan applies the body of a demon to
a fact. This depends on my analysis of the structure of queue entries which | made during the
analysis of the two functions ENTER-FACT and ENTER-DEMON.

I can recognize the outer loop as a Driver Loop Plan; in such plansl, a READ segment plays the
two roles of Initialization and Bump. The Termination test is on line 4. The body of the Driver
Loop includes the form on line § and the loop on lines 6-9.

The only code | have seen which ENQUEUES items on the queue are the two functions
ENTER-FACT and ENTER-DEMON. However, there is no code which calls these two functions.
Also I can’t tell what actions will result from the APPLY on liné 8 unless | know what demons
will be in the queue. Again | could only tell this if I knew who called ENTER- DEMON.

Oh Well! I've encountered the end of the file and there are still things which 1 dont
understand. | guess its time to start asking the programmer about these. [From here the scenerloi

would continue with interaction between the user and the apprentice.)

A Hypothetical Monologue -25- Shrobe, Waters, Sussman

Discussion

Clearly there is a large computational cost associated with an analysis on this scale.
However, there are many payoffs. The apprentice’s understanding of the structure and purpose of
this code is quite déop. It has sufficient understanding to assimilate new information easily and to
interact with the user in an intelligent and natural way, Il the programmer wanted to edit the
code, the appropriate parts of the code could be identified semantically (for example, the bump
step of the counting loop which updates the size field of a bucket). More significantly, the
apprentice could tell the programmer wﬁat the ramifications of such a change might be (for
example, the sort in the lookup routine might order the buckets differently).

We imagine the sccnario shown above as a batch process which would be both preceded and
followed by interactive sessions with the user. The user might first develop the code using the
apprentice as an interactive coding aid. The plan language would serve the role of a high-level
documentation facility. Il the code were developed in this mannér, the apprentice would have
much stronger guidance than is indicated in this scenario. However, it is still likely that, as in this
example, there will be things which the apprentice can’t analyze. In that event the apprentice will
analyze what it can and then query the user at its next opportunity. |

A new generation of personal computers'of considerable power is beginning to appear. It
would not be unreasonable to give such a machine several hours to study the code above. It is
quite likely that this would be an adequate time frame. We like to draw the analogy between the
apprentice system and a junior colleague. Certainly, if one had a human assistant one would give
him at least the morning to study the code in the example before giving him .further assignments,
The apprentice system would function similarly. The price of developing and maintaining software
is the dominant cost of computation. As new generations of machines which prc;vide increasing
power for lower prices vcontinue to appear the relative price of software will grow even more.
- Apprentice-like analysis systems will not solve all the problems in managing the complexity of the
& programming process, but they could make a qualitative reduction in the difﬁcdlty and expense of

software maintenance.

A Hypothetical Monologue - 26 - Shrobe, Waters, Sussman

References

Barstow, David [1977], "Automatic Construction of Algorithms and Data
Structures", PhD. Thesis, Stanford University, September 1977. v
de Kleer, J.; Doyle, J.; Steele, C.; and Sussman, C.J. [1977], "AMORD: Explicit Control
of Reasoning”, Proc. of the Symp. on Al and Programming Languages, August 1977,
Doyle, Jon [1978], "Truth Maintenance Systems for Problem Solving",
MIT/ A1/ TR-419, January 1978. ,
‘Rich, C. [forthcomming], "A Library of Progran1hing Plans with Applications to Automated
Analysis, Synthesis and Verification of Programs”,
forthcoming PhD thesis, MIT Cambridge MA, expected 1979,
Rich C. and Shrobe H. [1976], "An Initial Report on a LISP Programmer’s Apprentice”,
MIT/ Al/TR-354, December 1976,
Rich, C. and Shrobe, H. [1978], "Initial Report on a LISP Progrvammver’s
Apprentice”, IEEE Trans. on Soft. Eng., V4 #6, November 1978, pp. 456-467.
Shrobe, Howard E. [1978], "Reasoning and Logic for Complex Program Understanding”, PhD
thesis, MI'T, August 1978.
Waters, Richard C. [1978], "A Method for Automatically Analyzing the Logical Structure of
Programs", PhD thesis, MIT Cambridge MA, August 1978, (to appear as MIT/Al/TR-492).

