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1 . Introduction

In a recent article, Marr & Poggio [1977] set out a computational theory of
human stereo vision, One consequence of this theory is that the stereo algorithm can
at best determine disparity only along certain contours in the image. Two important
questions thus become: Is it possible to reconstruct a surface which is consistent
with the stereo information, and if so, how does one reconstruct such a surface?
This paper addresses these questions and discusses several pieces of mathematics

relevant to the interpolation of surfaces under such conditions.

The original motivation for the problem lies in the theory of human stereo
vision; thus, we seek an algorithm which is plausible as a human model, although

we will not claim that the resulting algorithm is an exact model of a module of the

human system,

In designing a plausible algorithm, a number of constraining principles are
applied to the problem, and are accepted as given. Any visual system must be able to
process large amounts of input data; for example, in the human system, the central
part of the visual field may be considered as an image which is a thousand pixels on
a side. 1 At the same time, it is desired that the system perform its computations in
real time; i.c. that it take only a short period of time after receiving the input to

complete its computation. Since each processor must take some non-negligible

amount of time to perform each action, this essentially implies the use of
computations which can be implemented in a parallel manner, using a large number

of interconnected processors. This is the first constraint,

A second physical constraint on our process is that the "hardware" which
~ implements it must fit into a finite and constrained amount of space (such as the
cranium). The use of parallel networks of interconnected processors, combined with
this constraint of physical space available, requires that each processor not be
connected to all others, Rather, there should only be local connections between the
processors. Here, local means not only that the number of connections be small, but
that since we are processing information whose underlying coordinate system is a
two-dimensional plane, the connections should also be local in a spatial sense. If the
support of a function, defined on a two-dimensional grid, is the set of points on the
grid which contribute in a non-trivial manner to the computation of the function,

1. The size of the individual receptors in the center of the foveal region is roughly 20 to 35 seconds
of are (T.N. Cornsweet, Visual Perception [1970). p. 356). Over the central 6 degrees of the visual field,
this implies a figure on the order of roughly 1000 receptors.
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then our requirement is that the processors implementing our computation must
have local (topological or metric) support.

A third requirement, though not as strong as the first two, concerns the
complexity of the individual processors. We do not want to achieve locality at the
expense of computatlon time. That is, if the computation can be made local only at
the expense of requiring each pr ocessor to compute some complex function requiring
a long time interval to complete, then there is something fundamentally wrong with
the computation as a part of the image processing system. -Note that the global
computation performed by the parallel.network need not be simple, it is only
necessary that the individual processors not be complex. Connected with this desire

for simplicity is a second desire for uniformity, that is, if possible, the individual
processors in the network should be identical. However, this is not as critical a
requirement as that of parallelism and local support. '

Although the original motivation for such constraints on the algorithm
arise from consideration of the human visual system they could apply equally well
to other types of image processing systems, and are taken as general constraints on
. the computation we are about to investigate. As a consequence, this paper will not
suggest a particular algorithm as a model of the human system. Rather, a nurhber of
alternatives will be suggested and examined in terms of their acceptabllity vis-a-vis
the algorithmic constraints outlined above.

The problem is approached in the following manner. We first determine
exactly what information is available from the stereo algorithm. It is shown in the
. second section that the stereo algorithm gives implicit as welllas explicit information
ahout the shape of the surfaces in a scene. Next, we turn this information into
conditions and constraints on the computation. In section three we outline general
methods for satisfying these constraints, This includes an outline of some
differential geometry relevant to the description and reconstruction of surfaces.
Also, several extremal conditions for the interpolation of a surface are suggested.
Section four outlines the Coons surface patch method for creating smooth fair
surfaces from boundary conditions. Finally, we design an actual algorithm which
satisfies the algorithmic constxainﬂ of simple, parallel, local-support processes and
which solves the problerm subject to the computational constraints developed in the
previous sections. Section five outlines methods for performing the computation.
Section six combines the previous sections and illustrates how to actually construct
the surface.
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2. Information from Stereo

According to the current computational theory of human stereo vision
(Marr & Poggio [1977]), the human visual processor solves the stereoscopic matching
problem by means of an algorithm that consists of five main steps: (1) The left and
right images are cach filtered at different orientations with bar masks of four sizes
that increase with eccentricity; these masks have a cross-section that |is
approximately the difference of two gaussian functions, with space cohstams in the
ratio 1:1.75. (2) Zero-crossings in the filtered images are found, along scan-lines
lying perpendicular to the orientation of the mask. Termination points of lines and
édges are also localized. (3) For each mask size, matching takes place between pieces
of zero-crossing contour of the same sign and roughly the same orie'ntation in the
two images, for a range of disparities up to about the width of the mask's central
region. Within this disparity range, Marr & Poggio showed that false targets pose
only a simple problem. (4) The output of the wide masks can control vergencé
movements, thus causing small masks to come into correspondence. In this way, the
matching process gradually moves from dealing with large disparities at low
resolution to dealing with small disparities at high resolution. (5) When a
correspondence is achieved, it is stored in a dynamic buffer, called the
2 1/2-dimensional sketch.

The justification for this model of stereo processing is well detailed in
Marr & Poggio [1977], and will not be dealt with here, Ou'r concern in this paper is
how to use the information provided by the stereo algorithm to construct a
'rebreséntation of the underlying surfaces in the image. To do this, one must

carefully consider what information is actuélly provided by the stereo mechanism.

The important features of the stereo theory, from the point of view of this

paper, arc the following. Fach image is convolved with a mask which is a
two-dimensional difference of g,aussians.l The convolutions are searched for
zero-crossings and the position and sign of such zero-crossings are stored in a
description of the image. These zero-crossing contours form the basic descriptors

| which are matched by the stereo algorithm. As a consequence the only places in the
image which may have explicit disparity information éssociated with them are those

corresponding to zero-crossing contours.

1. In the actual implementation of the sterco theory, a cireular symmetric difference of gaussiang
mask is uged rather than an oriented mask. The justification for the use of such masks is found in

Malrr & Hhildveth [1979],
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There is strong psychophysical evidence for such operators (Marr & Poggio
[1977], Wilson & Giese [1977], Wilson & Bergen [1979]). What is the
computational motivation for such operators? In the one-dimensional case, such an
operator detects an intensity change; specifically, the points of inflection in
intensity. For the two-dimensional case, we again want to detect those points which
correspond to a point of inflection, now for some directional derivative. Marr &
Hildreth [1979] have shown that the desired orientation of the directional derivative
should be such as to coincide with the local orientation of the underlying line of
Zero-crossings. Under certain conditions, this orientation is the one at which the
zero-crossing has a maximum slope and this can be detected using an
orientation-independent differential operator, the Laplacian ve, Thus, these
operatorsl essentially detect inflections in intensity for some resolution - the smaller
the mask's central excitatory region, the sharper the inflection must be in order to be
detected. Note that these afe not discontinuities in an analytic sense, but rather
these are "discontinuities" with respect to some resolution of the image.

From what do such inflections in intensity arise? Image formation is
affected by four factors (Woodham [1978]):
- imaging geometry

incident illumination

surface photometry

surface topography.

1

Surface photometry refers to how light is reflected by the object surface. It is
determined by optical constants of the object material and by the surface
microstructure (detail too fine to be resolved but which causes observable effects in
'the way light is reflected at the object surface). Surface topography is the surface
detail which is within the resolution limits of the imaging hardware. It refers to
the gross object shape relative to the viewer. If we assume some illumination and
imaging geometry, then inflections in the image intensities will be caused either by
the surface photometry or the surface topography.

Thus sharp changes in color or reflectance of the surface, scratches in the
surface, sharp changes in the shape of the surface all can give rise to intensity
inflections. These intensity inflections will cause zero-crossings in the convolutions
and it is these primitive descriptors which are matched by the stereo algorithm.,
Given the fact that inflections are caused by such effects of the surface photometry

L. The details of cuch "edpe deteetors” may be found in Marr & Hildreth [19;19].
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and topography, one consequence of the stereo algorithm is that at best it returns
disparity values along some set of contours in the image. One may explicitly
determine depth or surface orientation only along such contours. Our task is to
reconstruct a description of the surface (either in depth or in surface orientation) at

all points in the image.

In general, any one of a multitude of widely varying surfaces could fit the
boundary cdnditions imposed by the stereo algorithm., But to be conipletely
consistent with the stereo process, such surfaces must meet the depth or surface
orientation conditions along the zero-crossing contours g__l_xg not give rise to any other
zero-crossing contours which do not appear in the convolved image. This is captured
by the following assertion:

Assertion: Places of no information are actually places of information.

By this, we mean that for the locations of the image not associated with a
Zero-crossing, we may assume that the underlying surface does not change in a
radical way. An intuitive way of looking at this claim is as follows. Suppose we are
‘given a closed zero-crossing contour, within which there are no other zero-crossings.
An example would be a circular contour, along which the disparity is constant. One
surface which is consistent with this set of boundary conditions is a sphere.
However, one could also fit a highly convoluted surface (for example sin(r)/r) to
this set of boundary values. Yet in principle, such a rapidly varying surface should
give rise to other zero-crossings, since the intensity across the surface should also
vary considerably. Hence, we claim that the set of zero-crossing contours contains
implicit information about the surface as well as explicit information, and such
information can be valuable in reconstructing the surface,

This assertion is equivalent to the following statement:

Assertion: Except under certain singular conditions, a rapid change in the
direction of curvature of a surface must give rise to an inflection in

intensities, i.e. you cannot hide a dip.
L]

In order to prove this assertion, we shall need to first develop tools for
dealing with image formation. This will allow us to relate changes in the surface
orientation of a surface element to changes in the perceived intensities. Then we
may state the problem formally as a set of lemmas dealing with one and two

dimensional cases.
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Since the intensities with which we shall deal are caused by both surface
photometry and surface topography, it is possible to have complex interactions

between the two effects. In the case in which both factors have roughly equivalent

effects, one could construct situations in which the surface topography changes
radically, yet the surface photometry also changes sufficiently so that there are no
noticable changes in the image intensities. In such situations, it seems unlikely that
one can determine any information about the shape of the surface from the image
intensities themselves., We concentrate instead on those situations in which the

changes in the surface topography dominate changes in the surface rhotometry.

In order to prove this assertion, we develop some tools for dealing with
image formation [Horn 1970, 1975]. In the simplest case of a single point source,
the geometry of reflection is governed by three angles. The incident angle between
the local normal of a surface portion and the incident ray is called i, the view angle
between the local normal and the em'itted ray is called e; and the phase angle
between the incident and emitted rays is called g. The fraction of incident
illumination at a given surface point reflected in the direction of the viewer is
denoted by the reflectance function ¢(i,e,g). Most situations with more complicated
distributions of light sources can be modelled by the superposition of single point

sources.!

We let A(x,y,z) be the object irradiance at the surface point (x,y,z), scaled
by the ratio of image irradiance to scene radiance. The object irradiance will be
constant or obey some inverse-square law with respect to distance from the source
for physical systems. The ratio of image irradiance to scene radiance is a constant
which depends on the imaging system.

Let r = (x,y,z) be a visible point on an object, and r' be the corresponding

point in the image. If b(r') is the image irradiance measured at the image point r', .
then (Horn [1970]):

b(r') = A(r)d(ieg).

If we restrict our attention to situations in which the light source can be
considered distant relative to the separation of object and viewer, then the phase
angle is roughly constant and ¢(i,e,g) can be replace by the radiance function R(p,q),
wherep = z, and q = z, are.the partial derivatives of thev surface with respect to the
two coordinate variables, x and y. It may be that we can in many cases decompose

1. For a mare complete development of the mathematics of image formation, sec Horn [1970, 1975],
Woodham [1978].
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the surface photometry from the surface topography in such a manner, so that the
image intensities depend only on p and ¢. In fact, Woodham [1978] observes:
" No matter how complex the distribution of incident illumination, for
most surfaces, the fraction of the incident light reflected in a particular
- direction depends only on the surface orientation.”
If we also restrict our attention to situations in which the image projection is
~ orthographic, then
b(r)=1(x,y)
where I(x,y) is the intensity value recorded in the image. Thus, the image equation
is given by:
1(x,y) = A(x,y,2)R(p,q).
Note that in the case of uniform illumination and uniform photometric properties of
the surface, A is constant. However, in general, the intensities will be a function of
the position as well as the orientation of a surface patch.

To prove the assertion, we first examine the one dimensional case. We
wish to investigate the conditions under which a bending of the surface forces an
inflection in the intensities. In what follows, we assume that A, R and z are second
differentiable functions. We begin with the following lemma:

Lemma: Suppose that the surface and its reflective properties are
such that changes in the orientation of the surface dominate changes in
intenSity due to changes in position on the surface. If the surface contains at
least two inflection points, then unless the reflectance R is constant for the

values of p involved, the intensities must contain an inflection.

Proof: Consider a second differentiable surface z(x) which contains at
least two adjacent inflection points, at x; and x,. Then 2, and consequently p, are

zero at these points,

RN
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Differentiating the image intensity equation yields
L(x) = A,(x)R(p(x)) + A(x)R,(p(x))p,(x).
Note that if the reflectivity is completely .independent of the position in the image,
then A is constant and hence A, = 0. Then, since p,(x,) = P(x;) = 0, we see that
L(x)) = I(x;) = 0. Since 1,(x) has two adjacent zero points, the second
differentiability of the surface z and the functions R and A thus implies that I, must
have an extremum for some value of xj, x,<{xy<x,. In other words, I(x) must have
an inflection at this point. This is provided I,(x) is not zero everywhere, and this is
true provided that Rp is not zero everywhere, or that R is not constaht.

For thé more general case of the reflectivity being a function of the
position x, as well as a function of the orientation p, we assume that
|A,/A] << |R,p,| almost everywhere
In other words, the major cause of change in intensity is changes in orientation, so
that the surface shape changes much faster than the reflectivity.

Consider some neighbourhood of the point x;. Because p(x;) is an
extremum, there are constants a,, @, > 0, such that p(x,-a;) = p(x,+a,) and such
that

sgn{L(x;-a;)} = sgn{A(x;-a)B,(p(x;-a;))p,(x;-a,)}
sen{L(x +a;)} = sgn{A(x +a;)R,(p(x +a;))p,(x +a;)}
Here, sgn(x) is 1 if x is positive, -1 if x is negative and O if x is zero.

Using the fact that
sgn(xy) = sgn(x)sgn(y),
p(x;-a;) = p(x,+ay),
and that A(x) is non-negative, we see that
sgn(L (> -a;)) = sgn(l,(x,+a5))
if and only if
sgn(p,(xy-a))) = sgn(p,(x+ay)).
But since x, is an inflection point, this implies that
sgn(p,(x;-a;)) # sgn(p,(x,+a;)).
By the second differentiability of I, I, must be zero for some point in this
neighbourhood.

Similarly, we may show that I, is zero for some point in a neighbourhood
about x,. Arguing as before, we may then show that I(x) contains an inflection
point except in the case of R being constant.
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Lemma: Suppose that the surface and its reflective properties are
such that changes in the orientation of the surface dominate changes in
intensity due to changes in position on the surface. If the surface contains one
inflection point at x, and R(p) has an extremum for some value pp such that
p(x,) = py, where X, #x;, then unless the reflectance R is constant for the
values of p involved, the intensities must contain an inflection.

Proof: The proof of this lemma is very similar to the previous one. As
before, vwe may show that I, = O for some point in a néighbourhood about Xy,
Consider a neighbourhood of the point x,. As before, we may find constants a,; and
a, such that

L]

s&n{L,(xp-a;)} sgn{A(xp-0t) )R, (p(x2-a;))P,(x2-a)}
sen{l (xp4a,)) = sgn{A(x +a)R,(p(x2+a5))p,(Xa4a2)}.
In this case, since there is no inflection in the surface here,'
sgn(l (xp-0a})) = sgn(l(xp+a;))
if and only if
‘  sgn(Ry(p(x,-ay))) = sgn(R (p(xz+a))).
But since R has an extremum at p(x,), |
- sEn(Ry(p(x2-a))) # sgn(R,(p(xp+az))).
Arguing as before, we sce that I(x) must therefore contain an inflection point.

The only other possible case of the surface containing an inflection point is
if R is monotonic and the surface has only one inflection point. In thius case, it is
not possible to guarantee that there be an inflection in the intensities.

Stated in less formal terms, the above lemmas show that if the magjor
changes in the intensities associated with a particular surface are due to the shape of
the surface and not due to changes in the photometry of the surface, then certain
types of changes in the surface shape must give rise to zero-crossings. This means
that even if the surface is painted with a varying shade of color, so long as the effect
of the shading does not overwhelm the actual bending of the surface, there must be
an inflection in the intensities corresponding to the change in shape of the surface,
~ Of course, it may be possible to paint a curved surface in such a way as to exactly
counteract the effects of the curving of the surface on the intensities, thereby
ensuring that no zero-crossing will correspond to the change in the surface shape.
We regard such situations as speéial cases which will be rare in the real world, since
they require a peculiar coupling of the surface tbpography and photometry which is
depcendent on the viewer and illumination geometry.
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The lemmas can be extended to the two-dimensional case. The proofs are
outlined below.

L.emma: Suppose that the surface and its reflective pfoperties are
such that changes in the oricntation of the surface dominate 6haﬁges in
intensity due to changes in position on the surface. Furthermore, suppose that
along some direction, the surface undergoes radical changes of shape, while
‘perpendicular to this direction, the change in surface shape is negligible. If
the surface contains two inflection points, then unless the reflectance R is
constant for the values of p involved, the intensities must contain an
inflection, '

Proof: The proof is similar to that of ‘the one-dimensional case. Without
loss of generality, we assume that the surface inflections occur along a line parallel
to the x axis. In this case,

L(x,y) = A(xy)R(p,q) + A(x.¥)R(P.O)P,(x,¥) + A(x, )R (P,q)q,(x,¥).

Since the direction of concern is parallel to the x axis, y is constant along such a
slice of the surface, say y = yo. As before, we wish to show that I.(x,y,) is zero for
some point in a neighbourhood of the inflection point x; and for some point in a
neighbourhood of the inflection point x,. Since we have assumed that the effects of
- p, dominate those of q,, we can essentially use the same argument to show that I,
changes sign within the neighbourhood and hence must be zero at some point within
it. ’

Lemma: Suppose that the surface and its reflective properties are
such that changes in the orientation of the surface dominate changes in
intensity due to changes in position on the surface. Furthermore, suppose that
along some direction, the surface undergoes radical changes of shape, while
perpendicular to this direction, the change in surface shape is negligible, If
Athe surface contains one inflection point at x; and R(p) has an extremum for
some value p, such that p(x,) = p,, where x, # x|, then unless the reflectance R
is constant for the values of p involved, the intensities must contain an
inflection.

The proof again parallels that of the one-dimensional case, with
modifications similar to those used in the proof of the above lemma.

- We have shown that except under certain singular conditions, a pair of
inflections in the surface must cause an inflection in intensities. So at some level of
resolution, the convolutions of the image will detect such inflections (if they are

large enough) as zero-crossings. Hence the stereo output tells us not only the shape
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of the surface along the zero-crossings, but also that the surface cannot curve
rapidly or drastically between zero-crossings. Otherwise, an inflection would cause

a zero-crossing and none are evident,

. Thus, we claim that in general, places which do not have a zero-crpssing
contour must be "well-behaved” in the sense of curving as little as possible and of
having the sign of the curvature change as little as possible. In the next section, we
make precise the notion of curvature. This will allow us to use our assumption
about places without zero-crossings to design algorithms for reconstructing a

surface.
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3. Differential Geometry

, In order to develop methods for reconstructing the surface, we need to
relate the shape of the surface to inherent properties of the surface. More
importantly, we need to relate the shape of the surface to conditions on the surface
orientation at each point of the surface or to conditions on the depth values at each
point of the surface. To do this, we first review some relevant pieces of differential
geometry. For the most part, these are taken from Weatherburn [1927].

We have already indicated that the surface (or piece thereof) with which
we are dealing has no discontinuities in depth and is smooth. This suggests that the
reconstruction of the picce of surface is intimately related to the curvature of the
surface. We now make the notion of the curvature of a surface more precise.

3.1 Curvature of Curves

For a curve, the curvature at a point, X, is defined in the following

mnanner,

A curve is the locus of a point whose position vector r (relative to a fixed
origin) is a function of one parameter. In particular, that parameter can be taken to
be the arc length of the curve, s, measured from a fixed point on the curve.

The (unit) tangent to the curve at a point is defined by
t =dr/ds.
In the case where the parameter of the curve is taken to be arc length, the tangent

vector given above is automatically a unit vector.

The curvature at any boint_ on the curve ié then defined as the arc-rate of

rotation of the tangent. It is also given more formally by the relation
dt/ds = kn

where n is a unit vector perpendicular to t and lies in the plane spanned by the
tangents at that point and a consecutive point. In other words, let P be the point
associated with the arc length value s, and let P, be the point associated with the arc
length value s+ds. As ds tends to zero, the tangents at the points P and P, will define
a plane, such that both tangents lie in this plane, The vector n lies in such a plane,
and is perpendicular to t. This vector, n, is the principal normal of the curve at that
point, and the plane containing two consecutive tangents at P, is called the osculating
plane.




Differential geametry - 14 - Grimson

An alternative method for defining the curvature of a curve at a point is as
follows. The circle of curvature at a point P on the curve is the circle passing
through three points on the curve which in the limit coincide at the point P, In
other xvords, consider a point P on the curve specified by some value of the arc
length, say sp. Let P'; be the point on the curve associated with the arc length value
So+¢ and let P, be the point associated with the arc length value sy-¢. For any ¢ these
three points define a circle passing through all three points. As we let ¢ tend to zero,
the associated circle converges to the circle of curvature. Its radius p is related to
the curvature of the curve at that point by

- p=1/k.

Expressed in intuitive terms, the curvature at a point measures how
‘quickly the curve deviates from a straight line,

) . The particular normai to the curve at P that is perpendicular to the
oscu'lating plane is the binormal. Being perpendicular to the osculating plane means
that it is perpendicular to both t and n, and hence is parallel to txn. This unit vector
is denoted b,

Just as the curvature £ measures the arc rate of turning for the unit vector
t, the tofsion T measures the arc rate of turning for the unit vector b. It can be
obtained from the relation
db/ds = -tn .
In intuitive terms, the torsion measures how quickly the curve deviates from a
plane,

3.2 Curvature of Surfaces

Now we can turn to surfaces and again define the notion of curvature.

A surface is the locus of a point whose coordinates are functions of two
independent parameters, u and v. Thus the parametric equations for a surface,
defined in a Cartesian coordinate system are -

x=f,(u,v) y=f(u,v) z=f5(u,v)
and the surface is defined. by some function F(u,v)=0.

Consider any curve drawn on the surface. Again, let s be the arc length of
the curve, measured from some fixed point on the curve to the current point {x.y,z).
Then the tangent to the curve is the vector {x'y'z'}, where the ' refers to
differentiation with respect to s. Now the straight line generated by the tangent to
any curve is called a tangent line. In particular, all tangent lines at a point {x,y,z}




Differential geometry - 15 - ‘ Grimson

~ are perpendicular to the vector {F,F,,F,}. (Here we use the notation F, to denote the
partial derivative of F with respect to x.) To see this, note that F has the same value
at all points of the surface, hence it remains constant along any curve as s varies.
Thus
F, dx/ds + F,dy/ds + F, dz/ds= 0.

Thus {x'y'.2'} and (F,,F,F,} are perpendicular. So all tangent lines at a point are
perpendicular to this vector, and thus lie in a plane through {x,y,z} perpendicular to
this vector. This is the tangent plane. The normal to the plane at the point of

contact is the normal to the surface at that point.

Any relation between the parameters, say f(u,v)=0 represents a curve on
the surface since then r is a function of only one independent parameter. In
particular, the parametric curves are those for which

u = constant or v = constant
Then if we denote

r, =dr/ou 1, = dr/ov
‘we have that r; is a vector tangent to the curve v = constant at the point r.
Similarly for r;.

Consider two neighbouring points on the surface, with positioh vectors r
and r+dr, corresponding to the parameter values (u,v) and (u+du,v+dv) respectively.
Then

dr = rydu + r,dv.
Since the two points are arbitrarily closely spaced points on a curve passing through
them, the length ds of the element of arc joining them is equal to the actual distance
|dr] between them. Thus

ds? = r,2du? + 2r;T,dudv + r?dv? .

We define
E= r,z
F=r1;
G= rzz .

These quantities are called the fundamental magnitudes bf the first order, and,
together with the following quantity, are of use in computing characteristics of the
surface. '

H? = EG-F?

By definition, the normal to the surface at any point is perpendicular to
every tangent line through that point. Hence it is perpendicular to both r; and r,.
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Thus the unit normal is given by

n=rxr,/H.

In a similar manner the second derivatives of r are denoted
r;) = %r/ou? rj, = 3°r/dudv 1y, = dr/avi.
The second order inagnitudes of the surface are then defined as
L=nr),
M=nr),
N = nryy
T?= LN-M?,

We can now formalize the éurvature of the surface itself. We have seen

how one may define the curvature of a\curve at a point. Consider any plane which

intersects the surface at a particular point P, and which contains the normal to the
surface at that pbint. The result of such a normal section is a curve, and we may
evaluate the curvature of that curve at the point P. However, there are infinitely

many planes through P which contain the normal to the surface at P. Can we"

identify any particular normal sections?

Given a point P on the surface, any curve on the surface passing through
the point will have a tangent vector defined at the point. The plane containing all
the tangent vectors for any curve passing through the point is called the tangent
plane for that point. Suppose we intersect the tangent plane with the surface, and
examine the rate at which the surface deviates from the plane along any particular
direction. We will find that there are two directions on the surface, at right angles
to each other, such that in one dircction the surface deviates the quickest from the
plane, and in the other direction the surface deviates the slowest. Both of these
directions have the property that the normal at a consecutive point separated by an
infinitesimal distance in either direction meets the normal at P, This means that the
curve for a section along one of these directions has no torsion, and is subject to

curvature in only one direction, These are the principal directions,

The values for the curvature of the curves obtained by taking normal
sections along these principal directions are extrema, In other words as we change
the direction of the section, the curvature for a normal section achi ves a maximum
at one of thé principal directions. It achieves a minimum at tiy; other principal
direction. Let the curvatures of these special sections be &, and k, respectively, In
the case of a plane, the curvature of each normal section is identical. In this case,

any pair of perpendicular directions may be taken as the principal directions.
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To relate the principal curvatures to the previous definition of curvature
in terms of radii of circles, note the following. A curve on the surface such that the
normals at consecutive points intersect is called a line of curvature. The point of
intersection of consecutive normals along a line of curvature at P is the centre of
curvature at P, TIts distance from P is a principal radius of curvature and the
reciprocal is a principal curvature.

Thus at each point there are two principal curvatures k, and «,. These are
the normal curvatures of the surface in the directions of the lines of curvature,
Given the principal curvatures, the curvature of the surface can be described in a
number of ways. The first curvature of a surface is defined by

J =K, + K. ’
The second curvature of a surface (aJso known as the specific curvature or the
Gaussian curvature) is defined by

K = K.k
These are related to the fundamental magnitudes by

J = (EN-2FM+GL)/H?

K = (LN-M?)/1? ,

In intuitive terms, the first curvature is analogous to the curvature of a
curve, while the second curvature is analogous to the torsion of a curve,

Any point on the surface may be defined by the value of the Gaussian
curvature at that point. Thus, an elliptic point is one where K > 0. In other words,
normal sections through the point are all convex or all concave, the surface does not
intersect its tangent plane at this point. An example is any point of an ellipsoid. A
parabolic point is one where K = 0. An example is any point of a cylinder. A
hyperbolic point (or saddle point) is one where K < 0. In other words, there are
both convex and concave normal sections, the surface intersects its tangent plane.
An example is any point of a hyperboloid of one sheet. ' :

3.3 Example

Let the surface be represented by the vector r={x,y,z(x,y)}. Then the
derivatives are '
r; ={1,0,2)}
r = {012}
Iy xrp = {-2,,-2,,1}
¥ x1o] = (142,742,212,
Since r, and r, are tangents to the parametric curves, the normal to the surface lies
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perpendicular to both of them. Thus the unit normal to the surface is
, n = (142,242,272 {-2,,-2,,1}.
Hence

E = 142,° ’
F=2z2
G= 1-»:';),"z
H? = 142,242,
Similarly

r); = {0,0,2,,}
Fig = {O'O'ny}
ry = {0,0,2,,}

L=2z,/H
M = z,,/H
N =2z, /H

2 - -2 2
LT = H? (2,2yy72,)

Thus, for calculation purposes,
= . 2., 2yi/2 L2, 2y1[2
J = d/ox (z,/(1+2,°42,°)°) + o/dy (2,/(142,°42,°)'F)
K = (14224222 (242,4-2,7) -

This example suggests that there may be another useful representation of
J, to which we now turn.

The divergence of a vector is defined (as in Weatherburn) as
divF = H?r (GF,-FF,) + H?rp(EF,-FF,) . ‘
This can be used to show that '
divn =-J.
In the case of a surface with parameters X, y
div n = V:n = dn;/ox + ony/dy n={n;,ny,ngz} .

As well, if the Laplacian is denoted by Vz, then
2K = n-vn + (Vn)? .
For the case of r = {x,y,2(x,y)}"
' v?n = {v2n,,9v%n,,V’ng}
v2n, = o°n/ox? + a'n/ay? .

We can now make more precise the earlier suggestion that first curvature
of a surface is analogous to the curvature of a curve, and second curvature is
analogous to the torsion. For a surface

divn=Vans=s-J
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V2 = J0n
nv’n + (van)? = 2K

For a curve, one has the analogous equations, using a one parémeter
version of the del operator
V =td-/ds.
Thus
divn=9Vmn=-x
V%r = «n
nv2n + (vn)? = -r2,

Thus J is analogous to K and 2K is analogous to -2,

3.4 Extremal Conditions

One of the initial constraints applied to the problem of contructing the
surface was based on the manner in which the zero-crossing contours of the stereo
program were formed. In essence, it claimed that for portions of the image not
associated with a 2ero—crossing. the underlying surface must change in a "reasonable"
man-nver. What does this imply about the surface itself?

Our assu’mptioh requires that between zero-crossing contours,‘ the surface
should change as little as possible, and in particular should not have any inflection
points in depth that are not necessary. This is since such inflections should give rise
to other zero-crossings which are not indicated in the stereo output. At the same
time, the boundary values along the zero-crossing contours, around some portion of
the surface, will impose a certain amount of intrinsic curvature to any surface
fitting them. One method for finding a surface which will fit the boundary
conditions along the zero-crossing contours, and yet will not curve excessively, is to
require that the average curvature at any point on the surface be miﬂinial.

A theorem due to Euler states that if «, is the curvature of the curve
obtained by taking a normal section of the surface with a plane whose orientation
relative to one of the principal directions is §, then

K, = K, cos’B + &, sin’f .

By taking all possible normal sections and integrating, one finds that the
average curvature at a point is given by J/2. Hence, one possibile method for
obtaining a surface which fits a set of boundary conditions and has a particular
extremal property related to the curvature of the surface is:

1. Find the surface fitting the boundary conditions which minimizes
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[132d% dy = [[(Vn)Pdx dy = [[(k+K,)2dx dy.
A surface which minimizes the above integral for some set of boundary conditions is

a surface which minimizes the average curvature of the surface at every point.

How well does this condition satisfy our constraints? As we shall see, it is
possible to construct a computational scheme which computes a surface satisfying
this condition and yet is consistent with the notion of a local parallel algorithm. As
to whether the surfaces so constructed meet our condition of "well-behaved"
surfaces we note the following. In the case of boundary conditions which are
cbnsistent with a simple surface, such as a plane, a cylinder, a sphere or even an
ellipsoid, the above condition will lead to the correct surface in each case. This
certainly meets our requirement that the surface ‘behave smoothly and not change
any more than required. - However, if the surface determined by the boundary
conditions and the above mqmremem has a hyperbolic point, it is possible to
minimize J° at such a point without minimizing the principle curvatures. This is
undesirable since it could lead to surfaces which violate our requirement of no

extremes except at zZero-crossings.

One manner of altering the above condition to handle hyperbolic points as
well is the following:
2. Find the surface fitting the boundary conditions which minimizes
[Ix2,2dx dy = -[[(n-V?n)dx dy.
Here, it is no longer possible to minimize the integrand without minimizing the
principle curvatures as well, Thus we seem to meet our analytic constraint better
than the previous suggestion. However, finding a method of computing the surface
is not as casy. Note that
Ko+ = (K K )2-20,K, = J2-2K = -n-V’n .
This gives dll alternate form of the integrand to be minimized. However, the
conditions which will minimize such an integral give rise to a non-linear system of
equations. Whereas it is possible to devise a compuiational scheme which is
consistent with the notion of a local parallel algorithm, it is difficult to prove that
such an algorithm will converge to the correct surface. Such an algorithm may be

undesirable for this reason,

We have required that the surface which fits the boundary conditions
curve as little as possxble We achieved this in the first case by requiring that the
average curvature at every point be as small as possible. An alternate method of

Keeping the curvature of the surface minimal is as follows.
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Consider a small segment of the surface, surrounding a point P. For each
point within the scgment, translate the unit normal at that point to the origin of the
coordinate system. This results in the inscription of some region(s) of the unit
sphere. If the surface is smooth in the region of P, then the inscribed portion of the
unit sphere is a single connected region. If one considers the ratio of the area of the
inscribed region to the area of the original region, and takes the limit as the region
surrounding P tends to the point itsclf, one obtains the Gaussian curvature at P.
Thus the Gaussian curvature also measures the amount of “bending" of the surface at
a point. Thus a possible constraint is: _

3. Find the surface fitting the boundary condition which minimizes
[IK%dx dy = [[x2%2dx dy .
Minimizing the above integral results in a surface which reduces the "bending", as

measured by the Gaussian curvature, to a minimum.

There may be other extremal conditions that can be applied. The critical .
point is that they ensure that the surface which satisfies them is consistent with the
constraints previously derived. That is, they must not have additional inflections
other than at zero-crossings, they must spread the curvature of the surface in a
smooth manner over the surface, and they must fit the stereo boundary conditions
along the zero-crossings contours. ' ‘

Most of the extremal conditions listed above are phrased in terms of the
surface normal at points on the surface. Hence they are best suited for constructing
a surface when the boundary conditions are specified in terms of surface orientation.
However, one can also contruct a surface when the boundary conditions are specified

in terms of distance. The next section examines this case.
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4, Surface Patches

We have indicated that our basic intention is to fit a smooth surface to a
set of boundary conditions. Since the number of possible surfaces is infinite and
varied, we have restricted our attention to those surfaces which satisfy certain
extremal conditions with respect to surface curvature. This section outlines a
particular method for fitting smooth surfaces to boundary conditions. This method
is eéppciany suited to the task of fitting a surface to boundary conditions involving
depth information.

Coons [1967] has developed a method for piecing together patches of a
smooth surface in such a way as to ensure continuity of both the function describing
~the surface and its derivatives up to some order r. The method is described below.

Suppose that the surface is parameterized in terms of u,v so that in a

Cartesian coordinate system the coordinates are given by

v = f(u,v)
y = g(u,v)
z = h(u,v).

.

Utilizing Coons' notation, let us denote any point on the surface for the
three dimensional case by
(uv) = [f(u,v), g(u,v), h(u,v)]
Furthermore we can scale u and v so that they range from O to 1. So a surface patch
is a segment bounded by four space curves, namely (0v), (1v), (u0), (u1).

(o) (u?) an
0V @ v)
(08 tu o) @10)

In order to define a smooth surface segment (or patch) between these boundary
curves, we will blend the b01111dafy curves together in a smooth manner. Let F, and
F, be two blending functions. Then the surface equation is given by
| (uv) = TAVF) + LupFv) - ZEHFIF(V) .
The F's are restricted such that
(0) = 1 Fo(1) = 0
F;(0) =0 Fi(1) =1,
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This ensures that the surface defined by the surface equation ai)ove
contains its boundaries and corner points. In general, the functions Fo and F| are
taken to be continuous and monotonic, but this is not critical. The boundary cur{res
should be closed and continuous. '

By imposing the additional restrictions

Fo'(0) = 0 Fp'(1) = O

F'(0) = 0 Fi'(1) = 0
the slope of the surface across a boundary has the form

(u0), = (00),Fo(u) + (10),Fi(u) .
Thus the slope across the boundaries depends on the two end tangent vectors across
the boundary and on the blending functions. vIt is independent of the actual shape of
the boundary curve. Thus, any two patches which share a common boundary will
be continuous in slope across this common boundary under the above restrictions on
the blending functions. Similarly, if the second order derivatives satisfy

Fp"(0) = 0 Fo'(1) = 0

F,"(0) = 0 Fi"(1) = 0
then the patches will match in the second derivative across common boundaries.

Differentiation indicates that
(00),, = (01),, = (10),, = (00),, = O .
In other words, the cross-derivative or twist vectors at the patch corners are all zero.

v Not all the surfaces with which we must deal will have cross-—boundéry
slopes of the above form, nor will they all have zero twist vectors at the corners of
the patches. In such cases, a correction surface should be added to the original
surface to account for this. The function of this correction surface is to correct the
slopes across the patch boundary and the corner twist vectors without changing the
shape of the boundary curves, In other words, the correction surface changes only
slope and higher order conditions., This correction surface is defined by

(uv) = Z(iv),Gi(u) + L;(uj),G(v) - ZZ(ij),G(u)Gi(v) .

Adding the two surfaces together, where we denote the initial surface by‘
f(u,v) and the correction surface by g(u,v), we see that the slope across the patch is
given by
(u0), = f(u,0), + g(n,0), .
Hence, we choose g(u,0), and the other cross-boundary slope functions in g(u,v) such
that

&(1,0), = (u0), - (00),Fo(u) - (10),F,(u)
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The functions Gp and G, are the slope blending functions and have the
following end conditions in order to ensure that the correction surface does not alter
the patch boundaries but has the required cross-boundary slopes. '

Go(0) = O Go(1) = 0 Go'(0) = 1 Gp'(1) = O
G;(0) =0 Gi(1) =0 G,'(0) = 0 G'(1) = 1.
In a similar manner, one can apply higher derivative corrections.

~ The entire surface equation can be formulated in terms of tensors
(uv) = =[=1 Folu) Fy(u) Golw) G ((w)] T 0 (w0) (ul) (u0), (ul)\,‘q [ -1 ]
(Ov) (00) (01) (00), (01), Folv)
(v) 0y an o), a1, Filv)
(Ov), (00), (O1), (00), (1), | |Golv)
(1), (10), (1), (10),, (ll)w_‘ (G (V)]
This is the equation for a slope-matching, slope-continuous surface patch with

arbitrary boundaries and arbitrary slope across the boundaries.

Note that the correction surface appears to be essential in order to achieve

a "fair" interpolated surface. This is because the original surface equation had zero
twist vectors, yet most doubly curved surfaces do not. Forrest observes [1968]:

It is said that where a series of Coons first canonical form patches

[i.e. only the basic surface equation] are fitted to an array of points on a car

body panel, and the panel is cut by numerical control, the patches can be

distinguished on the panel by a series of flattenings or local distortions; the
overall surface is smooth but clearly not fair."

We have not yet specified the form of the blending functions, and to this

*we now turn., Let
‘ [u; up ug ug) ‘
be a vector whose elements are a set of linearly independent functions of u. Then
the blending functions can be specified by
[Fo(u) Fy(u) Go(u) Gy(w)] = [u; up uz ug] M .
Thus we want to specify M such that
m! = Uil Uzly.0 ugly.o uglu.0
LA P gy ugly.) Uglye)
du,/duj,.o duy/duj.o dug/dul,.o dug/duly.o
du,/dul,., duy/dul,., dug/dul,, dug/dul,.,
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For example, we could use a cubic basis vector, where

[u; uyuz ug]=[udvui].
In this case, :
| M oo o 1] M=[2-2 1

1
1111 -3 3 -2 -1
0010 0010
3210 1 000

Then we have
Fo(u) =2u® - 3u? + 1
F,(u) = -2u® + 3u?
Go(u) =u® - 2u? +u
Gy(u) = u® - u?.
~ If both basis vectors, [u, u, uz uy] and [v, v, V3 V4], are taken to be cubic
basis vectors, then the resultant patch will be a bicubic surface, which is the
two-dimensional analog of the cubic spline. Of course, many other blending
functions are possible, each one resulting in different types of smooth surface
patches. ‘
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5. Convergence Methods

The previous two sections have dealt with the problem of how to
reconstruct a surface having particular properties from a set of boundary conditions.
The reconstruction itself has not been formulated, and we now examine methods for
computing the actual value of the surface at various points, subject to the
reconstruction methods, of course. Our point of view in handling this task will be
to compute the value of the surface with as local a support as possible. .

Most of the extremal constraints on the curvature of a surface can be
turned into a set of linear difference equations, based on a tWo—dimensional grid.
Similarly, the Coons surface patch equation can be turned into a set of linear
difference equations based on a two-dimensional grid. Thus, we examine iterative
methods for solving a set of lincar equations. We look at iterative methods rather
than elimination methods because we seek local, rather than global, computations.

Given a system of linear equations
Ax =c¢

_ which is nohsingular, we want to find a sequence x, such that x, converges to Alc.
An iteration is said to be of degree r if Xy is a function of A, C, Xi_|y +o0» Xi.po Usually,
r=1 so that

. x=F (A, €, %)
If F, is independent of K then this is a stationary iteration. If F, is a linear function
then the iteration is linear.

5.1 Linear Case

Suppose that
F(Ac,x ) = Xy + v
where H, is a function of A and ¢. The solution should be invariant so
A 'c=H A ey |
which implies
| vy = Mic where M, = (I-H)A! .
Thus, » ‘
HX,.; + Myjc and H, + M(A = 1.
The error associated with each iteration is

i

Xy

e = xk-A"c where e, = Hey.,. ‘
Then the system given above is convergent for a given initial error ey if and only if
K x converges to O for any x, where K.=HH,.,...H;. For stationary linear iterations,
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H,=H and K.;H". Thus we need to check that Hx converges to 0. It can be shown
that H*x converges to O for arbitrary x if and only if each eigenvalue A; of H is such .
that M,I( 1.

Bearing thi$ in mind, we can now develop particular methods of iteration.

5.2 Simultancous Displacements (Jacobi, 1845)

Given Ax=c let A=E+D+F where D is a diagonal matrix, E is a lower
triangular matrix, F is an upper triangular matrix and a,#0 for all i. Suppose we are
given a trial solution X, and we have found x,_;, (k = 1,2,...), then we solve

Exy, + Dx, + Fx,, = ¢ ‘

or X, = Hx, , + Mc
where H = -D''(E+F) and M = D', In order for this iterative process to converge, it
is necessary and sufficient that the eigenvalues A\, of H be bounded in modulus by 1.
Note that if D = I then an eigenvalue ); of H corresponds to an eigenvalue (1-A)8 of
A,

One set of sufficient conditions is given by the following result, due to
Collatz [1950].

If A has diagonal dominance and is not reducible, then the method of
simultaneous displacements converges. Note that A is diagonally dominant if and
only if '

' Eu-;lai}l S a‘jj
with strict inequality for at least one j. A is reducible if the set {1,...N} is the union .

for all j

of two nonempty sets S and T such that a,=0 for all ieS, j¢T. In other words, there is
a permutation matrix II such that

Mall" = A, o
Az As .

5.3 Gradient method

If A is symmetric and definite, we can use the gradient method. Let
E(x) = x'Ax - 2¢'x.
Since E(x) = (x-A"'¢)'A(x-A'c) - ¢'A'c it follows that E(x) attains a minimum
value -¢'A'c precisely when x=A"'c, Solving the system Ax=c is then equivaient to
finding the x which minimizes E(x).
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~ Given X.....X,_,. compute the gradient direction of E(x) at x,_,
'VE(x)lx-x[ | = 'z(AXkJ'C) = ?‘rk-l ‘
where 1y is the residual. Since E(x) decreases in the direction of ry_;, we choose

Xy = Xy Hoy Iy g .

We now need to select a,_;. One possibility is to choose the optimal value,
which can be shown to be '

o T
_IJs;JT_.’_.F—.J._
Iy Aty

A second possibility is to let ay=a for all k. Then the system becomes

Xy = Xy +alc-Ax,_ ;) v
and the error term is e,=x,-A"'c such that

e = e, + al-Ae,. ) = (I-ah)e,; .
So we have a stationary linear iteration with H=I-aA, Let u; be the eigenvalues of A,
A; those of H. Then A=1-ap, Since A is positive definite, we know that u; > O for all
i. The requirement of |\;] < 1 for convergence then becomes

0<a<2/max;y,.

For the fastest convergence, we must minimize max; |\, so we choose &
such that max; |1-au} is a minimum.

If we know that the g, lie in the interval [a,b], 0<a¢b<{w, then |1-ap | is a
maximum at the endpoints. So the best choice is 1-ata = -(1-ab) which implies 1/a =
(a+h)/2. In this case,

[1-ap;| < (b-a)/(b+a) < 1.

The gradient method is identical to the method of simultaneous
displacements whenever A is symmetric and definite with a scalar matrix as diagonal

(D=61).

5.4 Richardson's methoed

We have seen that in the gradient method
Xy = Ky + 0 Ty o |
This suggests that the relaxation parameter &« may be a function of k.

Suppose A is positive definite and, as before, the error term is

e = (I~ Ade,_

(I-ao)(I-a,A)....(I—a,;_,A)co .

ey

Thus we have
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e, = P (A)ey
where
| P(x) = Mpgigey (1-00%) ,
is a polynomial in x such that P,(0) = 1. Furthermore, the zeros of Py are 1/a;. So
choosing the constants &, is the same as choosing a polynomial P, of degree k such
that P,(0)=1. There are a number of ways of doing so; the following is one of the
more useful.

If the eigenvalues of A are y; then those of Py(A) are Py(u;). Suppose that

pe[a,b] where 0<aCb<~, Let

€ = ZyqeN ViXi
where the x,'s are the eigenvectors of A, and form a basis. Then

e = Zygen TiPHDx; .
This suggests that one method for ensuring that the error terms vanish quickly is to
make Pk(ui)‘ small. It can be shown [Forsythe 1960, p227] that one can minimize
maXye e |Px(%)| by choosing '

P, (x) = T.[(b+a-2x)/(b-a)]/Ty[(b+a)/(b-a)]
~where T,(y) is the Chebyshev polynomial and is given by

T (y) = cos[k arccos y)] .

Thus Py(x) is simply the Chebyshev polynomial adjusted to the interval
[a,b] and scaled to satisfy P,(0)=1. Let yo = (b+a)/(b-a). Then ‘
2T () = [y + y2-D' + [y - -0
Thus, as k tends to infinity,
MaXyee (X < 2(yo - (yo2-1'/2F
The average rate of convergence is then bounded by
- log(le/liegh)'’* < -1/k log 2 + log (yo + (¥o? - 1)'/2 .

To compare this method to the simultaneous displacements method, let
P = max p; / min g, where y; are the eigenvalues of A, which is positive definite.
Then the rate of convergence for the Richardson method is
| C log [y + (yoP-1)V?] = 2(a/m)'? < ap'?
The rate of convergence for the method of simultaneous displacements is
log yo = 2a/b gzp"

For a process of degree 1, we cannot in general let k tend to infinity. If
we use a process such as
Xy = Xy + Ky Tyey ‘
we need to know the value of a;,. Since the a; are the reciprocals of the zeros of
Py (x), we can fix k at say K = 2.0 then determine o from the roots of the Chebyshev
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polynomial and compute x,...,%,. If the error term e is not small enough, one can
use the same values of «; to make another cycle of K steps. Such a process is called
semi-iterative, o

5.5 Successive Displacements (Gauss-Seidel [ 1874])

The method of successive displacements takes advantage of the
computation of the components of the vector as soon as they become available. Thus,
th_e process is

Ex, + Dx, + Fx,, = ¢
X, = -(D+E)'Fx,, + (D+E)'c .

As with the case of simultaneous displacements, the following results
hold.

(Collatz [1950]) If A has diagonal dominance and is not reducible then the
method of successive displacements converges.

(Reich [1949]) If A is symmetric and nonsingular and a,>0, then the
method of successive displacements converges for all initial states Xo if and only if A
is positive def initg.

5.6 Ovcrrelaxatio‘n

One can take the method of successive displacements a step further. For
processes such that a; is nonzero for all i, consider '
(E+0 'D)x, + [F+(1-0"")D)x,, = ¢ .

The parameter o is a relaxation factor. If 0O<w<1, then the system is
underrelaxed. If 1<w<2 then the system is overrelaxed. In particular, if A is
symmetric, the diagonal elements are positive and the off-diagonal elements are
non-positive, then the following is true. ‘

If the method of succesive displacements converges then the method of
successive overrclaxation or underrelaxation converges for all @ such that O<w<2. If
the method of successive relaxation converges for any 0<w<2, then the method of

simultaneous displacements converges,

The value to be assigned to the relaxation factor w can be determined as
follows. Rescale the matrix A such that the diagonal elements are 1. Let A = ~E+I-F,
Let u; be the eigenvalues of A and let A, be the eigenvalues of the method of

P
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simultaneous displacements associated with A. Then X; = 1 - . Let »; be the
dojn;nant eigenvalue of the successive overrelaxation method. Then if

wy= 2/[1 + (1-),9)/?]
the following relationship holds (Kahan [1958]).

-1 < ™) < (w,-1V2
Although the optimal relaxation factor may not be known, w, may be close to it,
especially when w,=~2.

Although any of the above methods may be used to solve a system of linear
equations, there are various tradeoffs associated with each of them. For example,
although the method of simultaneous displacements tends to have slow convergence,
it can often be implemented by a network of processors which are very local in .
support. On the other hand, the same system of equations could be solved by the
method of successive displacements, Here, the convergence is much faster, but the

~support of the individual processors is much more global.
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6. Reconstruction of Surfaces

Previously, a number of possible extremal conditions were suggested for
the construction of a surface. As well, various iterative convergence methods were
suggested for actually computing the surface. We now consider the effects of
combining these two factors.

Consider the case of finding the surface which fits the boundary
conditions and minimizes
J19% dx dy = [[(k+x,)? dx dy .

Note that this criterion is well suited for the case of interpolating a
“surface from surface normal information, since any constraints derived from such a
condition directly relate to the value of the surface normal on the surface.

Applying the calculus of variations to this integral equation results in the
necessary conditions that the partial derivatives vanish.
d/0x [on/dx + dn,/dy] = d/dy [dn,;/dx + dny/dy] = 0 .
These Euler conditions derived from the calculus of variations can be transformed
into a set of discrete conditions and thus into a set of linear difference equations.
This allows one to use the convergence methods discussed above to reconstruct the

surface.

Since the partial derivatives above are bivariate, 'the iterative matrix of the
set of linear difference equations is block tridiagonal. As a consequence, the matrix
as it stands can be shown to be divergent. However, if we transform the system into
é one-dimensional system by means of some simple matrix manipulation, the system
becomes convergent, and morcover, is very local in nature. Thus, the system for
minimizing the integral of J? satisfies our condition of having computations which
are local in support. Moreover, the resulting process could easily be implemented in

.a parallel network of local support processors,

Any surface constructed under such a scheme can be shown to be locally
composed either of planes, cylinders, spheres or ellipsoids. Thus the only basic type
of surface not handled by this method is hyperboloids,

It was suggested earlier that one method for overcdming this handicap
would be to minimize the integral of x,2 + k2 since such a surface could contain
hyperbolic points. When one applies the calculus of variations to such a system, a
nonlinear set of equations are obtained, and the convergence methods described above

are no longer applicable,
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Thus, given the constraint of }'equiring a computational system which is
local in support and can be computed by iterative methods, a good candidate for
reconstructing surfaces which fit a certain set of boundary conditions and elsewhere
contain no inflection points is to find the surface minimizing

[13%dx dy = [[(Vn)ldx dy = JT(k4%,)%dx dy.

As a second example, let us consider how to fit a smooth surface to a set of
boundary conditions, using the Coons surface patch method. For simplicity, the
boundary is taken to be a square along which the distance to the surface is known
up to a scale factor. The interior of the square is of size n. The basis vectors for the
Coons patch are cubics and the underlymg parameters are taken to be the axis
vanablps X and y

We treat the underlying system as a two-dimensional grid so that we must
compute the depth of the surface at each point on an n*n grid. Suppose we know the
values of the surface at the corners of a particular patch, and we wish to compute
the value for the center of the patch, that is for x =y = 1/2. Then
Fo(1/2)=F,(1/2) = 1/2 and Go(1/2) = -G|(1/2) = 1/8.

'i‘he derivatives can be approximated by discrete differences between
points on the grid. By cvaluating the tensor form of the surface equation, we find
that the value of the midpoint is given by

(.5.5) = .5{(0 .5) + (1 .5) + (.5 0) + (.5 1)}
=25{(0 0) + (0 1) + (1 0) + (1 1)} .

We can treat each surface patch as that patch defined by a 3*3 piece of the
grid. Then, combining the surface equation for each point of the grid, we obtain the
linear system

Ax =c
wbhere the constant vector c is obtained by applying the above equation to the
boundary points for the case of a point next to the boundary. Here the matnx A has
a tridiagonal block form
A=[ a -s5a
-8A; A} -.5A

—

-5A; A,

e el
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A= [1-5

Applying the Jacobi method of simultaneous displacements to this block
system, yields the system

Xyai = Bxk + D-IC

with
B=.5 rE) I
101
10
L
D-l = Al-l —1

A"

In other words, at each stage of the iteration, each point in the grid
assumes the average of its neighbours in the y direction, plus some constant term
which reflects the influence of the boundaries in the x direction. The constant term
is given by D''c where A= [a;] with

a; = 2/(n+1) i (n+1-j) i<
= 2/(n+1) j (n+1-1) i)

Provided the boundary of the entire piece of the surface is closed, i.e.
fixed depth values are known along a closed contour surrounding the piece of the
surface, the matrix B satisfies the Chebyshev recurrence relatioh and hence has
eigenvalues cos(kw/n+1) for k = 1,2,...,n. Thus the convergence rate for this process
is cos(m/n+1), éud the asymptotic rate is roughly n?, which is slow. However, note
that the support of each computation is small, since each point of the grid obtains its
value by examining the values of only two neighbours.
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7. Summary

This paper has been a discussion of several pieces of mathematics relevant
to the interpolation of a surface from a set of boundary conditions. The first section
outlined the problem as posed by the Marr & Poggio theory of stereopsis. It was
showh that the stereo process imposes both explicit constraints along the
zero-crossing contours obtained by processing the image, and implicit constraints
elsewhere. These implicit constraints in particular included the requirement that
the surface not change its curvature in a radical manner for locations not associated
with zero-crossings. The second section dealt with some relevant details of
differential geoemetry, in particular, those aspécts dealing with the curvature of
surréces. The third section outlined the method of Coons for fitting fair surfaces to
boundary conditions. The fourth section sketched various iterative schemes for
computing the surface, and the fifth section tied all of these notions together and
sketched the reconstruction method.
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