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I. Motivation

The question uwhether reconstructing the shape of an opaque object by measuring
the light it reflects is possible was raised in Horn's thesis [HO78). We will
>r‘efer to this as the shape from shading problem. He observed that under certain
assumptions (which we will discuss in the next section), first order partial
differential equations describe the rélation betueen the brighthess of a small
patch of an object and the local surface normal. In other words we can determine
the shape of an object by solving a first order partial differential equatioﬁ
(abbreviated in the following by (FOJPDE), also referred to as the image
1rrad1an‘ce equation.

The literature about PDE's is extensive, but the emphasis is on higher order
PDE’s. As the majority of physical phenomena can be formulated as second order
PDE’s, these equations have been studied the most.

In this paper we are going to study FOPDE's. We try to summarize the various
knoun results and describe methods for solving a given FOPDE. At the same time
We keep in mind that the equations describe a physical situation and therefore
their solutions have to make "sense". A major problem is that the mathematical
literature deals nearly exclusively uwith equations and their solutions which are
continuous and have continuous derivatives in all their variables. But "real”
objects have edges and there the surface normals are discontinuous. Another
problem are occluding contours in the pictures as there the partial derivativeé
of the function describing the surface are discontinuous.

It is intuitively "clear" that if the FOPDE is discontinuous in some of its
variables, we can expect solutions which have discontinuous deri'vqtives. The
question arises if we can have such solutions also if the equation itself is

continuou‘s. Is it possible for example that an object has an edge uwithout the
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equation reflecting this fact. The ansuer is gés and uwe will examine why and hou
this can happen. We will show that in this case initial conditions are going to
reflect the discontinuity.

In germeral, a PDE describes a class of processes and not a a particular
instance of one of them. Consider as an example the Laplace equatidn

Af =0

where A denotes the Laplace operator and f a vectorfield. Then the PDE tellsvua
that the field f has no sources and zero curl. But tﬁere are a lot of fields
which fall in this category. Only when we specify some more conditions about f

can ue determine the unique solution of the equation.

We will study what kind of constraints are necessary to pin doun a unique
solution of a given image irradiance equation. An attempt will be made to find
constraints which are accessible, i.e., which can be measured.

II. The shape from shading problem revisited

There are basically three components to this problem which we have to
understand. They are the lightsource, the object and the vieuwer.

The exposure of film in a camera (for fixed shutter speed) is proportional to
image irradiance, the flux per unit area falling on the image plane. Similarly,
grey levels measured in a electronic imaging device are quantized measurements of
fmagé irradiance. It can be shoun that image irradiance in turn is proportional
to scene radiance, the flux emitted by the object per unit projected surface area
per unit solid angle [HOS78]. The factor of proportionality depends on to

details of the optical system including the effective f-number.
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Scene radiance depends on the
1) surface material and its microstructure,
2) the distribution of light source, and,

3) the orientation of the surface.

Consider a vieuer-oriented coordinate system with the viewer located far above
the surface on the z-axis. [f the objects imaged are small compared to their
distance from the viewer, one can approximate the imaging situation by an
or thographic projection,

x' = x(f/zg) y' = g(f/za)
where (x’,y') are the coordinates of the image of a point (x,y,z) made with a
system of foéal length f, when the vieuer is at distance zg above the origin. UWe
assume that (x2 + gz + 22)-« 202.

The orientation of a patch of the surface can be specified by given its
gradient (p,q), where p and q are the first order partial derivatives of z uith
~respect to x and y. For a particular surface material and a particular
distribution of |light sources, scene radiance will depend only on surface
gradient. This function, Rip,q), (or a contour representation in gradient
space), is called the reflectance map.

If L{x,y) in the scene radiance calculated form the observed image irradiance
at the point {x’,y’) in the image then

Rip,a) = Lix,y) ' (2.2)
where (p,q) is the gfadient at the corresponding point on the object being
imaged. This equation is called the image irradiance equation. 1t is clearly a
first order partial differential equation since it involves ‘only the partial
derivatives p and q and the coordinates x and.g.

A word of caution: we are not dealing with several issues like mutual
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illumination, shadous and specularity.

III, Basics

For simplicity of exposition we will only deal with partial differential
equations involving a function z of two variables x and y. It is more or less
"obvious" hou to generalize the results to functions of n variables. We will

denote z and z - the partial derivatives of z with respect to x and g - by p

Y
and q respectively. Then the relation

Fix,uy,z,p,q) = 8 (3.1)
is called a first order partial differential equation. A function z(x,y) is
called a solution of (3.1) if in some region of the x-y plane the function and
its derivatives satisfy the equation identically in x and y. Such a function is
also called an integral surface.

When solving a partial differential equation we want to find the “general“
sdlution which is a whole "set" of solutions. By imposing éome additional
constraints we can find the pafticular solution in which we are interested. Such
constraints can be for example boundary conditions or initial values. In a later
section we will state precisely what we mean by a "general" solution and what
kind of constraints are necessary to pin doun the desired solution.

The relation (3.1) is a linear PDE if it is linear in z, p and q with
coefficients depending only on x and y and (3.1) is quasi-linear if it is linear
in p and q'uith coefficients depending on x, y and z.

Unless otheruise stated we will assume that F, z and all relevant derivatives

exist and are continuous.
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IV. The quasi-linear first order PDE

We will first consider this special POE as its geometric interpretation is
rather clear and so the relevant method for solving it can be explained and

understood easily. In this case the relation (3.1) can be rewritten as

alx,y,z)p + blx,y,2)q = clx,y,z) (4.1)
To rule out trivial cases we will further assume that
a2 + 1«8

We will try to find solutions to (4.1) given implicitly by

Gix,y,z) = 8 : (4.2)

‘Differentiating (4.2) uith respect to x and y gives us

G, +0C,z, =8 and Gg + Gzzg =0 (4.3)
or equivalently
z, = -G /G, and zy = - Gg/Gz (4.3%)
Using {4.3") in (4.1) ue get
l | a(x,g,z)Gx(x.g,z) + b(x,g,z)Gg(x,g,z) + c(x,g.z)GZ(x,g,z) = 0 (4.4)
Note that in general (4.1) is a nonlinear PDE for the function z(x,y) whereas
(4.4) is a linear PDE for Gix,y,z). We can interpret the coefficients alx,y,z),
blx,y,z), clx,y,z) in (4.4) as the components of a vectorfield
- "ix,y,z2) = lalx,y,2),blx,y,2),clx,y,z}].
Then we can reurite (4.4) as
<A, V6> =8 : ) (4.5)
where VG denotes the gradient of G and < , > the inner product of tuwo vectors.
We know that at each point VG is perpendicular to the surface defined by
G(x,y,z) and the equation (4.5) tells us that % is perpendicular to VG, Thus ¥
has to lie in the tangent plane of the integral surface defined by Gix,y,z).

Let us introduce the notion of a fieldline of a vectorfield. By a fieldline



PAGE 8

we understand a curve whose tangent at every point has the direction of the
fieldvector there. Then an integral surface can be built up from fieldlines
(called characteristics in this context) of the vectorfield W. To reiterate the
previous statements: The tangent at each point of a characteristic has the same
direction there as the vector M and therefore by virtue of (4.5} the same
direction as the tangent plane of the integral surface Gix,y,z}. This does not
mean that each quasi-linear PDE has a single solution. Such a PDE only
constrains the possible orientations of the tangent planes at each point to a
one-parameter manifold. As (4.1) is linear in p and g all feasible tangent
planes at every point of an integral surface intersect in a line which is called
the Monge axis. Thus finding a solution to (4.1) means finding a surface wuhich
at each point has the direction of the Monge axis (the direction of the vector
) as its tangent direction.

l.et us nou describe a method of finding the characteristic curves, uwhich can
be uritten as functions of one parameter x=x{(s), y=yl(s} and z=z(s). Then
é(s)zb;(s).l;;(s).é(s)] (where * denotes differentiation with respect to 8) has the

same direction as W and therefore the outer product of £(s) and ¥ has to be

zero.
bz - ¢y 9 '
cx - az = 0 (4.6)
ay - bx = 0
The relation (4.8) is normally wuritten as
dx ¢ dy : dz=a: b: c 4.7)

The solutions of the equations (4.7) comprise a two-parameter family of curves
in space (the characteristics). We know that only a one-parameter subset of them

generate the solutions of the PDE . To find this subset we introduce an
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arbitrary function betueen the tuo free parameters we get solving (4.7). So the
general solution of (4.1) contains an arbitrary function of one parametef.

Now we are able to summarize all the previous stated results as follous: Each
surface which is produced by a one-parameter family of characteristics is an
integral surface. Conversely each integral surface is generated in such a

_ fashion.

The first statément should be clear by now (otherwise this is not a

"comprehensive" guide to first order POE's). To understand the second, remark

the following.

On each integral surface z = z{x,y) the equations

dx dy
-- = alx,y,z) -- = bix,y,z)
ds ds

define a one-parameter family of curves: x = x(s) » Yy =yls) , z = z(xls),yls)).

Note that on such a curve

dz
-- = clix,y,z)
ds as

dz  dz dx dz dy
=t oom b e- - =z 4 bzu = C
ds dx ds dy ds

example:
FOq,u,2,p,9) = xp +yqg -z =8
Then the equations for the characteristics (4.7) are
dx : dy : dz = x : y :2z

and have as their solution the tuo-parameter curves in space
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y = Clx
(x)
z = sz
Nou we introduce an arbitrary function u betueen the tuwo constants: wi(Cy) = C,

to find a one-parameter subset of (x)

z Y
- = CZ = H(Cl) = ui-)

X X
solution of the PDE : z = wuly/x)x

or in parameter form : y = Clx and z = u(Cl)x.

V. Method of characteristics for general first order PDE's

We want to apply similar methods as developed in section IV to the general

first order PDE

Fix,y,z,p,q) = 8 . . {5.1)
To exclude trivial cases uwe will assume that
2 2
Fp + Fq » 0

Our goal is to transform the problem of finding a solution to (5.1} to the
problem of integratiog a set of ordinary differential equations. Again
geometrical reasoning will help us find these equations.

Let us fix a point P with coordinates (x,y,z} on an integral surface. Then
the quantities p and q are constrained by (5.1} teo a onel-parameter family of
curves. [in other words: Once x, y and z are fixed, (5.1} is an equation for p
and q. To urite this equation in parameter form we only need one parameter.] As
p and q determine the direction of the tangent plane at P, we have just
established the fact that (5.1) constraints the feasible tangent planes to a one-

parameter family. The envelope of the tangent planes is a conical surface and is
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called Monge cone. This surface can have several sheets. Then "the
considerations here refer merely to a suitable small range of tangent planes,
e.g., a portion of a sheet of the cone where q can be expressed as a single-
valued differentiable function of p [COHIB2]." Fach generator of this cone
represents a possible direction of the tangent plane at P and is called a
characteristic direction. Thus the integral surface has to "fit" into the field
‘of Monge cones.

Recall nou that in the quasi-linear case the Monge cone degenerated to the
Monge axis, i.e. at every point the direction of the tangent plane was fixed. In
that case we proceeded by finding characteristic curves which at every point had
as their tangent direction the direction of the Monge axis there. MWe concluded
that the integral surface is suept out by the characteristic curves. Actually we
can do the same thing in the case of a general PDE, but ue have to be a little
more careful this time.‘ First uwe ffnd the curvee; which at every point have as
their tangent direction the characteristic direction. Let such a curve (called
focal curve) be given by x(s), y(s) and z(s). Remember that we are looking for
~curves which sueep out the integral surface z(x,y). In other words we uant the
functions x(s}, yf(s), z(s), pls) and qls) to satisfy the PDE (5.1). The focal
curves only determine x(s), yls) and z(s) and (5.1) gives us only a relation
betueen p and g. So uwe are one equation short in order to determine p and gq. Ue
‘uill obtain this equation by forcing the focal curves to lie on the integral
surface. The focal curves, uhich also satisfy this last condition are called
characteristic curves. Again the characteristic curves sueep out the integral
sur face.

Actuaily the problem we are concerned with is to find the integral surface.
So we have to go the "opposite" way from what was described in the preceding

paragraphs. We will first find a set of equations, called the characteristic
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equations. A subset of the solutions of this set are the characteristic curves,
from which the integral surface can be built up.

In the following paragraphs ue are gobing to develop the techni‘cal "machinery”
to find an integréﬂ surface of (5.1},

Our first task is to find the equation of the Monge cone. So let us fix a
point (x,y,z). Then we can write p and g - which satisfy (5.1) - as functions of
a parameter u and all feasible tangent planes at (x,y,z) can be expressed as

(Z-2) = G=xdplu) + (Y-y)qlu) | (5.2)

The envelope of the planes defined by (5.2) defines a conical surface with
vertex at {x,y,z), the Monge cone. [aside: a conical surface is produced by
moving a straight line which is fixed at one point along a curvel. We get t"ue
equation of the Monge cone by eliminating u from (5.2) and (5.3) which is
obtained by differentiating (5.2) with respect to u.

' (X-x)dp  (Y-yldq
B = oo . (5.3)
Differentiating the POE (5.1) with respect to the parameter u we obtain
dp dg
B - Fp;; + Fq;; (5.4)
Assuming that neither dp and dq nor Fp and Fq vanish identically we get from
(5.2), (5.3) and (5.4) that
X-x Y-y Z-z

U , - (5.5)

Fp Fq pF

By substituting all possible values for p and q (i.e. all values for p and g
which satisfy (5.1) )} uwe obtain all generators of the Monge cone at the point
(x,y,z}). The generators of the Monge cone at the different points of the

integral surface define the tangent direction of the focal curves. Therefore the
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focal curves have to satisfy the following differential equations.

dx dy dz
—= Fp — = Fq — = pr + qu (5.6)
ds ds ds

Let z = z(x,y) be an integral surface on which we also know p and q. Then the

equations
dx dy
_— = Fp — = Fq (5.7)
ds ds

define a one-parameter family of curves.
On these curves

dz dx dy
T =z bz (5.8)
ds ds ds

holds and using (5.7) in (5.8) we obtain

dz

;; = pr + qu
faside: The above condition is called strip condition. "It statés that the
functions x(s), yl(s), z(s), pls), qls) not only define a space curve, but
simultaneouélg a plane tangent to it at every point. A configuration conéisting
of a curve and a family of tangent planes to this curve is called a strip
[COHIB2). ™)

So (5.8) states that the curves defined by (5.7) are focal curves. Nou ue
also require that a focal curve is embedded on an integral surface: ["By
embedding we mean that in the neighborhood of the projection of a focal curve on
the x-y plane z is a single-valued, twice continuous differentiable function of x

and y [COHIB21."] 1f ue differentiate the PDE (5.1) with respect to x and y ue
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get

Fppx + qu>< +Fp+F =8

(5.9)
FppU + quu + qu + Fg = @
Using (5.7) and the fact that Py = Oy We get
dp dx dy
=== Py Py = ppr + quq
ds ds ds
(5.18)
dqg dx dy
TT T G+ dym = R+ afg
ds ds ds
“Using (5.9) in (5.18) ue get
dp
- 4 sz +F =0
ds
(5.11)
dq
-~ +F,q+ Fg =0
ds

We can now summarize the previous results as follous: If a focal curve is
embedded on an integral surface then along the curve the coordinates x,y,z and

the quantities p and q satisfy the following five ordinary differential

equations:

dx dy dz

-— = Fp -— = Fq - = pr + qu

ds ds ds :

(5.12)

dp dg

-- = -{pF, + F)) -- = -(gF, + Fg)

ds ds

Let us now consider the system (5.12) by itself, i.e. disregarding that ue
obtained it with a given integral surface in mind. Note first that Fix,y,z,p,q)

is constant along each solution of the system (5.12) as
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dF dp dq dz dx dy
—— = Fp~— + Fq«— +F,—-+F -+ Fg—- =
ds ds ds ds ds ds

= - Fp(sz + F) - Fq{sz + Fg) + FZ(pr + qu) + Fpr + Fqu =0

Thus Fix,y,z,p,q) = constant is a solution of (5.12). The system of equations
(5.12) defines a four-parameter family of solutions. By imposing the additional
constraint that the solutions of (5.12) also satisfy the PDE (5.1) we obtain a2
three-parameter subset of the solutions, the characteristic strip. "A space
curve x(s), yls), z(s) bearing such a strip is called characteristic curve
[COHIB21." We have already established the fact that a one-parameter subset of
the three-parameter family of curves sueeps out the integral surface.

As characteristics depend on the solution, their range of influence cannot be
determined in advance,

In the next section we will discuss the ndtion of_a complete integra!‘and then
we uwill show hou to choose the appropriate one-parameter subset.

So the problem of finding a solution to (5.1) is equivalent to integrating the
system of five ordinary differential equations (5.12) which are also callied the

characteristic equations.

VI. General solution and complete integral

In the previous section we saw that each solution of a general first order PODE
is suept out by a one-parameter family of curves. Thus the equation of an
integral surface can be uritten as a function of the coordinates x and y and of
an arbitrary function of one variable; such an equation is called the general

solution.
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Let us nou assume for a moment that we have a solutioh zZ = ¢(x.g.a,b)lof the
PDE wuhich depends on tuo parameters. Then ue say ¢(x,y,a,b) is a complete
integral if

D = $a%yb ~ $xbya
is not equal to zero. This condition assures that ¢ really depends on two
parameter, i.e. that there is no o = gla,b) such that ¢(x,y,a,b} = ¢{x,y,a). |

From the two-parameter family of planes defined by ¢(x,y,a,b} we can choose a
one-parameter subset by introducing an arbitrary function which relates a and b,
e.g. set b = ula). Note that the family ¢(x,y,a,ul(a)} is again a‘solution of
the PDE . The following idea makes the concept of a complete integral
significant: The envelope of the family ¢(x,y,a,ula)) is again a solution of
the PDE since at each point it touches a member of the family é(x,y,a,ufa)) i.e.
a solution. Or conversely each point of th; envelope is a solution of the PDE .
We obtain the equation of the envelope by eliminating the parameter a from the
tuo equations:

z = ¢(x,y,a,ulal)
(6.1)
¢a(x.g.a,u(a)) + ¢b(x,g.a.u(a))u'(a) =0

Eliminating the parameter a from (6.1) yields an expression invelving an
arbitrary function u of one variable, which is a solution to the PDE and
therefore we have found the general solution. We will nouw exhibit this fact

analytically. By differentiating (6.1) with respect to x and y we get

z, =¢, + (éa + ¢bu’(a))ax
) {6.2)
zy = ég + (¢a + $pH (a))ag

We know that ¢(x,y,a,u(a)) is a solution for any choice of the parameter a.
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Using (6.1) (i.e. é, + obu'(a) = B) in (6.2) establishes the fact t'hat for all x
and y the values of z, z, and zg are the same as those of ¢, ‘x and 69.

So if we know the complete integral of a given PDE we can obtain the general
solution by just using the process of differentiation and elimination of
parameters. (This later process can in practice be tedious or impossible, but is
often not necessary, as by plugging in all different values for a, all solutions
of the PDE are obtained.) The only problem with the above described method is
t'hat. there is no easy way to find a complete integral. In the next section we
Will show that with the help of the characteristic equations we can find a
complete integral.

The general solution does not comprise all solutions of a PDE . The envelope
of the complete integral, the so called singular integral, is again a solution
which cannot be obtained from the general solution. The eq’uation of the singular
integral, which does not contain any arbitrary elements, is found by eliminating

the parameters a and b from the equations

z = ¢(x,y,a,b)
$,(x,y,a,b) =B (6.3)

éb(’(,g, a, b) = a

We have assumed all along that all eliminations are possible and that during the
course of this process we obtain functions with continuous derivatives.

Actually we do not have to know the complete integral in order to find the
singular solution. Note only that, for a complete integral, F(k,g,‘.éx,ég)
vanishes identically for all choices of the parameters a and b. If we nou

differentiate the PDE with respect to a and b we get
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F¢¢a + Fp*xa + Fq*ga 0 6.0
Fé‘b + Fp*xb + Fq*gb - @

As ¢ is a complete integral, D = ¢xa*gb.' ‘xb¢ga is not equal to =zero.
Furthermore ¢, and ¢, are zero {equations (6.3) ) and therefore we get the
equation of the singular integral from (6.4) by eliminating p and q from

Fp =0 Fq =0 F=0 (6.5)
laside:ue did not assume in this case that sz + qu's 8 as we did when obtaining
the characteristic equation.]

1f the POE does not contain the function zix,y) explicitly then there exist no
singular solution as in this case the complete {ntegral is of the form

z = ¢{x,y,a) + b

and the condition ¢, = B can not be fulfilled.

VII. Method for finding the complete integral

In the'previous sections we have shoun two methods for finding the so!utiéns
to a given PDE . Nou we will show how, wuith the help of the charactefistic
equations, we can find a complete integral and this will also then be a way to
find a one-parameter subset from the four-parameter family of solutions of the
éharacteristic equations.

First we have to discuss a special form of PDE called Pfaff's equation.

flx,y,z)dx + glx,y,z)dy + hix,y,z}dz = @ (7.1)

In the case when h = B and f and g depend only on x and y (7.1) degenerates to

an ordinary differential equation wuhich is called an "exact" differential

equation.
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O, ydx + glx,y)dy = B 7.2
The equation (7.2) is called "total" if f and g satisfy the integrability
condition
fg(x.g) = g, (x,y) (7.3)
In the case of a total differential equation it is easy to find a solution to
(7.2}. On each simply connected region we can find a function Hix,y) such that
oH JH
-- = flx,y) and -- = glx,y) (7.4)
JIx dy
then
dH = flx,yldx + glx,yldy
and the equation dH = 8 is'equivalent to (7.2).
Thus Hix,y) = constant is a solution to (7.2) and the function H can be found
by integrating (7.4),
In the case that (7.3} is not satisfied by the given equation (7.2) one can
aluays introduce an "integration" factor ulx,y) such that the equation
pfdx + pgdy = @ (7.5)
is total, i.e. that (uf)g = (pg) . Or equivalently plix,y) has to be a solution
of the follouing PDE which can be solved with the method of characteristics.
p{fg -9g,) + ”gf -ug =28
Now let us return to equation (7.1) uwhich is again easy to solve if its left
hand side is a total differential of a function Hix,y,z) i.e. if
oH JH oH '
f = —o g = -- h= - : (7.6)
Ix dy dz
Necessary for (7.6) to hold is that
df dg dg dh dh Jf
-— = - -— = - -~ = - (7.7)
dy  Ix dz dy dx  dz

In a simply connected area (7.7) is also sufficient for the existence of a
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function Hix,y,z) which satisfies (7.6) and can be.calcuiated as

(xy.2)
Hix,y,z) = f(fdx + gdy + hdz) + C

(xwyozo)

where (xa.ga.za) is a fixed point. Clearly Hix,y,z} = constant is a solution to
(7.1).

In the case when (7.7) is not satisfied we again want to find an "integration”
factor ml(x,y,zh such that the expression pfdx + pgdy + phdz is a total
differential of a function. In comparison to Pfaff's equation in tuwo variables
it is not always possible to find such a factor.

Necessary for p to exist ig that the following equation holds:

flg, - hu) +glh, - f,) + h(fU -g,) =86 : (7.8)

It can also be shoun (simple, but tedious) that in a simply connected region
(7.8) is sufficient for "(7.1) to possess a one-parameter family of solutions
H(x,y,z) = constant. MWe will show nou hou to construct such a function Hix,u,z).

First let us consider the "abbreviated" equation

flx,u,z)dx + gix,y,z)dy = 8 (7.9)

This is a Pfaff's equation in the two variables x and y with z as a parameter.

Thus we can aluays (eventually with the help of an integrating factor A, y,2) )

find a solution to (7.9):

®{x,y) = ulx,y,z) =C (7.10)
Note that
du du
M = -- and Mg = -- v (7.11})
dx " dy

Now we define a function S depending on the three variables x,y and z by
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du
Six,y,z}) = Ah - —- (7.12)
dz
I'f we express - with the help of (7.18) - y as a function of x, u and z, we can

redefine S as a function of x, u and z, i.e.

T(x,u,z) = S(x,y,z) (7.13)

We will prove nou that T is actually independent of x. Then we can find

" Hix,y,2) by solving another Pfaff's equation in the variables u and z. To prove

that dT/dx = B we use equation (7.11) and (7.12) and obtain:

d Jd .

--{M - 5} = U, = == (\f)

dx dz

J d

~~(M -8) =u _ = --(ag) ' (7.14)
yz

dy , dz

d d

--(xg) = Uy = --(rf)

dIx dy

or (equation (7.14) uritten out in full)

Sy = A = fA, + Alh, - £.) (7.15)
- SU = o\, - hxg + Mg, - hU) _ (7.186)
8 = fxg - ON, + Mfg - g)) (7.17)

Multiplying (7.15) by g, (7.16) by f and (7.17) by h and then adding up the three
equations using condition (7.8) gives us

gS

X

- ng =0 (7.18)

Differentiating (7.13) with respect to x and y gives us
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(7.19)

1f we combine now (7.11), (7.18) and (7.139) we obtain:

8 =4S, - ng =gl +glu - fTuug =

= gl + MgT, - MgT, = o,

As g = B ue can conclude that T, = 8. Thus ue can reurite (7.13} as
S5{x,y,z) = Tlu,z)
The equation (7.1), after being multiplied by N and uwith the expressions
(7.11) -and (7.12) used, reads nou as follous:
AMfdx + gdy + hdz) = u dx + ugdg + lu, + Tidz = @
or equivalently
du + T(u,z}dz = @ (7.28)
This is again a Pfaff's equation in two variables which we know how to solve.
Its solution is ¢lu,z) = C. Thus the solution to {7.1) is
Hix,y,z} = ¢lulx,y,z),2}) =C
which is one-parameter manifolid.
Finally we are ready fo describe a method for ffnding a complete integral of a
general first order PDE F(x,y,z,p,q) = 8.
The basic idea is that we can interpret the total differential of a solution
~zlx,y) of the POE
dz = pdx + qdy (7.21)
as Pfaff's equation in the variables x, y and z. To really do so we still have to
express p and g as functions of x, y and z. Now assume that we can find two

functions f and g such that if we set

o~
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p = flx,y,z,a) and q = glx,y,z,a) (7.22)

(uhere a is an arbitrary constant) the PDE and condition (7.8) (with h = -1)
fa, - of, - fg +g9,=8 (7.23)
is satisfied. Then the solution to (7.9) is a one-parameter manifold, but as ue
have already built in a parameter a into the equation (7.9) the solution contains
two parameters and is the complete integraf. So we have to solve the problem of
houw to find such functions f and g. MWe need two equations to do so. Let us
assume that somehow a function Gix,y,z,p,q) exists such that P and q {or

equivalentiy f and g) can be expressed from the two equations

Flx,y,z,p,q) = 8
(7.24)
G(X.uvZ,P-q) = a
(aside: thus Fqu - Fqu #* 8).
Nou we want to assure that f and g obtained in such a fashion satisfy (7.23)

identically in the three variables x, y and z. Differentiating (7.24) with

respect to x, y and z gives us:

Fo+ ppr +qfF, =8 Gx + prp + quq =9

q
FZ + pZFp + quq =8 Gz + szp + quq +8

After expressing Py Oy Py and q, from (7.25) and plugging this expression

into (7.23) ue obtain the linear first order PDE for the function G
FpGx +‘Fng + (pr + qu)Gz - (F + pFZ)Gp - (Fg + sz)Gq =0 (7.26)

We can solve (7.26) uwith the method of characteristics. The appropriate
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system of characteristic equations is the same as the one for Fix,y,z,p,q) = 8
dx:dy:dz:dp:dq = Fp:Fq: (pr + qu):—(sz + Fe-(dF, + Fg) (7.27)

But we need nou only one integral of (7.27) - which is independent of F and
contains at least one of the variables p and g. Such an integral is our desired
function G. There will aluays be such an integral as the solution of (7.27)
comprise a four-parameter famiiy:
| vi by, z,p,0) = C, ’ i =1,2,3,4
The v, are independent and at least one of them must contain either p or q.
The just described method is due to Lagrange and Charpit. It has the
advantage over the method of characteristics as described in section V in fhat we
only need to find a single integral of (7.27) instead‘ of finding the four-

parameter family of curves.

VIII, Initial-value problem for linear and quasi-linear PDE's

Nou that we know how to find the general solution of a given first order PDE
we will attack the problem to determine the constraints uith uhicﬁ a particular
solution can be found.

We will consider the quasi-|inear POE

alx,y,2)z, + b(x.g,z)zg = clx,y,z) : (8.1)
We now want to find the integral surface z{(x,y) which passes through a given
curve C in space (in the literature referred to as Cauchy's problem). Clearly

the following guestions have to be ansuered:
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1) UWhat conditions on C aré necessary such that this problem is solvable.

2) UWhen is such a solution unique.
Let C be given by continuous differentiable functions of a parameter t: x(t),
ylt), z{t). Furthermore we will assume that the projection of C on the x-y plane
(later referred to as Cg) does not contain double points - (without this
constraint we obtain surfaces with self intersections, i.e. z is not everyuhere a
single-valued fu.nction of x and y, which implies that along the .Hne of
intersection p and q are discontinuous) - and that xt2+gt2 = 8. Nou to
construct a solution of the PDE which contains C we lay through each point of C a
characteristic curve whose equations depend nouw on two parameters:

' x = x(s,t) y = yls,t) z = z(s,t) (8.2)

Note that the functions x, Y, z are still continuous differentiable. To get the
equation of the integral surface we have to eliminate the parameters s and t from
the equations' (8.2), i.e. ue have to express s and t in terms of x and y. A

sufficient condition to do so is that the functional determinant A as specified

in (8.3) does not vanish along the curve C.

A = XUy = YgXy ' (8.3)
laside: using the characteristic 'equations we can rewrite (8.3} as
o = ay, - bxt]

Thus if A = B we can express z as a function of x and y and it is assured that C
lies on the surface. The solution is also unique which follous from the

following lemma:

Each characteristic curve which has one point in common with an integral

sur face, lies completely on this surface.

The proof of this lemma is the uniqueness theorem for solutions of ordinary
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differential equations,

The determinan{ A can be interpreted as the outer product of the two vectors

Xg *¢
Yg Yt

which are the projections of the tangent and the characteristic direction on the
x-y plane. In the special case when A vanishes along C these tuo directions
coincide and we can deduce that C has one of the three properties listed belou:
1) C is a characteristic curve,
2) C is the envelope of the characteristics. (called edge of regression)
3} Cg is the envelope of the projections of the characteristics on the x-y
plane.

Let us first discuss case 1). From A = 0 ue get

Xt Yt
— = - (8.4)
a b

1f we use x(t) and y(t) (from the equation for C) in zlx,y) then the follouing

equation has to hold along C:

dz dx dy
-- =zt Zg" = az, + bzg = C
dt dt dt -

Or equivalently uwe can say that C satisfies the characteristic equations and is

therefore a characteristic curve. Obviously the solution of the PDE is not

unique in this case. Actually in the case uhen C is a characteristic curve there.

exist infinitely many surfaces through C which satisfy the POE . To see that
just choose another curve C' along which A vanishes and which has a point P in
common with C. Now to construct the solutions through C’ one lays the
characteristic through every point of C’, in particular also through P, (i.e. the

characteristic curve through P is C). Thus an integral surface through C’

T
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contains C. In such a way infinitely many integral surface can be constructed
which contain C.'Theg meet along the characteristic curve and we can say that C
is a branch curve.

One assumption we had made should be stressed here again: wue were looking for
solutions of the PDE which in the neighborhood of C are continuous and are
continuous differentiable. It might be possible to find a solution z through C,
along which A vanishes, without C being characteristic. These are the cases 2

or 3 as mentioned above. But then the derivatives of z are not continuous on C,

Let us illustrate this problem with an example.
example
F(X'Uvzvpvq) = 3(2 - U)ZP - Q= B

characteristic equations:

dx

=3z - y?

ds

dy

_— = -] , {x)

ds

dz

— =

ds

solution of (x) with initial values Xg» Yg» Zgt
x = (zg - ug + )3 4 xg - (ZH - ga)3
y=-s+uyp (xcx)
z = zg
We want the solutions (xx) pass through C given by:
| x=08 y=1t z=1t
Note that C is not a characteristic.

So uWe set the initial values Xg» Yg» 2g li.e. x,y,z for s = B) as
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X0=8 l_/)g"t Za“t

With these initial values {(xx) becomes

><=53
ys=-s+t
z =t

and the determinant A is in this case

2

A = xgyp - XyUg = 3s

Thus along the curve C (i.e. s =8) A =10

But there is a solution of the PDE which passes through C:
7 = 173, y

Note that p = 1/3>«“2/3 does not exist along C (as x = B there).

~ Now we will explain the previous example. To deduce from A = 8 that C is a
characteristic curve we used the relation:

dz dx dy :
_——= Z - 4 2~ (8.5)

X
dt dt dt

But (8.5) is based on the following lemma in analysis:

Let G be a region in RZ. f:6 » R. 1f the partial derivatives at ¢ € G exist

and are continuous in a neighborhood of ¢ then f is differentiable at c.

This lemma is not satisfied if C is an edge of regression or Cy is the envelope
of the projection of the characteristic curves on the x-y plane, (cases 2 and 3
in the above list).

In the case of a linear PDE we can make some more statements abbut the

solution if A vanishes along C. We will show that in this case the integral
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surfaces are cylindrical surfaces perpendicular to the x-y plane, i.e. that the
solution is independent of z. The POE is

alx,ylp + blx,ylgq = clx,y)
Recall that A is defined és

A = %y - x4yg

Note that if A, (i.e. the partial derivative of A wuith respect to s) and A
vanish along C, then A vanishes everyuhere. (proof: existence and uniqueness
theorem for ordinary differential equations.)

Using the characteristic equations:

(x)
we obtain for TAYN
Bg = aguy + aygy - bxy - bxgt =
= 85Uy + aby - boxy - ab
Differentiating a and b with respect to s and t and using relations (%) we get.
ag =aa+ aub
ap = 3%y + 3y

b, = ba+ b b

8 y
bt = bxxt + bggt
and then
Ay = la + bU)A
We want to express x as a function of y and z, i.e. x = f(x,y) and so we assume

that YgZy - Z Yy = B along C. Then we will proceed shouing that f, = B, which
will prove that the integral surface z is a cylindric surface.
Diffefentiating x With respect to s and t we obtain

X, = f

s yYs * f224

Xy = fggt + f,zy
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then

from which it follous

IX. Initial-value problem for general first order PDE's

We have seen that the problem of finding a solution to a general first order
PDE is equivalent to solving the system of characteristic equations. Again ue
are posing the question about what kind of constraints determine a solution
uniquely. Clearly we need more than in the quasi-|inear case, as nou the the
solutions to the characteristic equations form a three-parameter family of
curves. So let C be a curve given by x(t), y(t), z{(t) such that neither C nor
its projection on the x-y plane have double points. Furthermore ue have to
specify p(t) and gq(t) along C such that the condition

dz dx dy

m- = P-4 G-

dt dt dt
_and the PDE (5.1) (i.e. F = B) holds identically in t. We say that the function
x{t), ylt), z(t), p(t), qlt) define an initial integral strip denoted by Cl’
From nou on the procedure is very similar to the one for solving the initial
value problem for a quasi-linear PDE . So through every element of Cl we lay a

characteristic strip, which then can be uritten as x(s,t), yls, t), =z(s,t),

pls,t), als,t). To express the parameters s and t in terms of x and y we demand

that

D = xgUy - X4Yg = Fpgt - qut

Pl




PAGE 31

does not vanish identically along the initial strip. Then z, p and q can be
expressed in terms of x and y. We only have to make sure that p and g uritten in
such a fashion are the partial derivatives of the integral surface z(x,y). Thus

He have to shou that the quantities U and V

U= 2y~ Pxy - Qyy
(3.1)
Vo= zg - pxg - ayg

vanish identically. As we have assumed that A = B ue can deduce from (3.1) and

- that z, = p and zg = g. Recall now the characteristic equations:

dx dy dz
-- = Fp - = Fq -— = pr + qu
ds ds ds
Using the first two in the last we obtain
dz dx dy
-—— p_— q—._.
ds ds ds
which implies V = 8.
Now to prove U = 8:
au .
T T Zgt 7 PgXp - PXgy - OgUp - QUgy 3.2)
ds
av
T ® Zgt T PiXg T PXgp — QyYg ~ GUgy 3.3)
- dt
(3.2) - (9.3):
au gV
-— - - = -(szt = PiXg t AgYy - qtgs) (9.4)

ds  dt
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Taking into account the characteristic equations and the fact that Ve implies
JdV/3t = B ue can reurite (9.4) as
au
_—= ptFp + thq + xtFx + gth + {pxy + ayy)F, (3.5)
ds
But we know that the PDE F = 8 holds identically in s and t. Differentiating F

with respect to t:

(9.6) in (9.5):
au
——= - FzU.
ds

For any fixed t this is an ordinary differential equation for U as a function of

s with the solution:

S
j- des

0
Uls) = UBle

- As by assumption U(B) is zero, U vanishes everyuhere.
To summarize the previous results: ‘given a curve x(t), y(t), z(1) along which
‘uwe also know plt), q(t) such that
dz dx dy
- = p-- + g--
dt dt dt
Fix{t),ylt),z(),plt),qlt)) =8 and A = Fpgt - qut #» 8, then there exists an
unique integral surface through the initial strip. MWe get a unique surface
because. the solution of the’characteristic equations is uniquely determined by
its initial values.
The exceptional case when A = 8 along C; is analogous to the one discussed in

the previous section: there are infinitely many integral surfaces through Cl if
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and only it is a characteristic strip. Again we can say that the characteristic
curves are branch elements as on either side there can be another member of tﬁe
family of solutions of the PDE while we are assured that along C the first
derivatives are continuous. |

I¢ C; is only a focal strip along which A = 8, then it might be still
possible to find an integral surface z through it. But analog to the
qugsi-linear case, z Wwill not have continuous derivatives.

The last case we will discuss is if C degenerates to a point P wuith
coordinates (;8'98'28)‘ Then the strip condition is identically satisfied for
all Pg and ag uhich also satisfy the PDE, i.e., for all pg and gg which determine
the feasible tangent planes in P. Thus we can urite Pg and ag as functions of a
parameter t. If we plug the quantities Xgr Uge Zgs pe(t). qa(t) in the PDE ue
obtain an integral surface which is in this case a conical surface with vertex at
P. It is called the integral conoid of the partial differential equation at P.
| It can be shoun that the solution to the Cauchy problem can also be found by
bonstructing the appropriate integral conoids. The integral surface is the

envelope of the integral conoids whose vertices lie along a given curve C,

X. Summary

In the preceding chapters we dealt with FOPDE's which are continuous and have
continuous derivatives in all their variables. MWe showed that the problem of
finding a solution to a given FOPDE is equivalent to solving a system of ordinary
differential equations. By imposing "suitable" initial conditions, a unique .
solution can be found.

But recall that our motivation for studying FOPDE's was to be able to solve
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the image irradiance equation:

Rip,g) = Lix,y) (18.1)
This equation has tuo properties which we are going to exploit. First the
function z does not appear explicitly in the equation and therefore no singular
integral surface exists. Second the equation can be uritten as tﬁe di fference of
tuo functions, where one depends only on p and q whereas the other depends solely
on x and y. We will use this fact to deal with discontinuities.

Let us first revieu the case when (18.1) is a linear equation (note that
(18.1) cannot be quasi-linear!), i.e;

p+qge=Lixy

We assume that L{x,y) is continuous and has continuous first derivatives. Let C
be an initial cu?ve given in parameter form: x = x{t), y = y(t) and z = z(t).
1f the A (as defined in section VIII) does not vanish along C, then Qe have a
unique solution., It is continuous and has continuous derivatfves if C is a
continuous differentiable function of the parameter t. "Any singularities of the
initial data propagate in the x-y plane along the projection there of the
relevant characteristic curve [GARB4]." This is not surprising as characteristic
curves can be viewed as branch curves in which two integral surfaces meet. the
also that higher order derivatives may be discontinuous along characteristic
curves.

In the case uhen C or its projection onto the x-y plane has double points, the
integral surface has self intersections, i.e. z is not a single-valued function
of x and y. This is not a case of interest for us, as we can "see" only one value
of z. Note that a Nobius—strip is not a contradlction to the above assertions, as
it is not an opaque object. In a case like that of a Mobius-strip mutual
illumination and shadous are essential for deducing the shape of the object.

If A vanishes along C, then C is either a characteristic curve and we get
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infinitely many solutions or we get a solution whose derivatives are not
continuous along C. This second case is of special interest to us. Assume we
could specify such a C. This would imply that there is for instance an edge which
we do not see, as it is neither reflected in the equation itself nor in the
initial data. But luckily this cannot happen. In the linear case the
characteristic equations are:

xg =1 and yg =1l

"Thus for A to vanish Xy = Yy which is equivalent to saying that x(t) and ylt)

have to satisfy the characteristic equations.

Nou we will discuss the general image irradiance equation. Again we will
assume that R(p,q) and L(x,y) are continuous and have continuous firsgt
Aerivatives. In Qeriving the system of characteristic equations we assumed that
the integral surface z also has continuous second derivatives [we used this fact
in equation [5.18] to deduce that Py = a,J. In [MY48, PLIS4) it was shoun that
an integral surface can be build from characteristic strips also in the case when
only the first derivatives are continuous.

We want the integral surface to pass through a curve C again given in

parameter form by x = x(t), y = y(t) and z = z(t). Then we can determine p(t)

and g(t) along C by solving the two equations:

Rip(t),q(t)) = Lix(t),y(t)) (18.2)
dz dx dy ,
-= = pltl-- + q(t)-- (1.3}
dt dt dt

which we consider here to be algebraic (not differential) and solved over the
reals. As (18.2) is nonlinear, we may get zero or several solutions for p(t) and
q{t). Thus only for a unique determination of the roots of the equations (18.2)

and -(18.3) and the assumption that A = @ along C do we get a unique integral

i il D s ¥ e
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surface. Recall that in the linear case tuwo integral surfaces intersect smoothly
(i.e. have the same tangent plane along their intersection) only along
characteristic curves. In the general case this can also happen along the curve
where the transition from one root of p and g to another takes place. To
éimplifg the following discussion we will assume that p and q are given along C,
such that equations (18.2) and (18.3) are satisfied. In other word the initial
data is an initial strip denoted by C;. Again discontinuities in the initial
data propagate into the solution. It uas shoun [HA28], that if the initial data
does not have continuous second derivatives, then the sclution does not have
continuous first derivatives. To understand this fact, recall the lemma of

Schuarz:

Let G be a simply connected region in Rz, £:G » R, If f and f , exist

x* fU Y

and are continuous, then fgx exists and fxg = fgx‘

Furthermore for p and q to be the partial derivatives of z, they have to satisfy
the above lemma. Thus if the initial data does not have continuous second
derivatives, then the lemma of Schuarz is not satfsfied along Cl' uhich implies
that p and/or q are discontinuous. |

The case A = @ is analogous to the linear case. 1f C; is a characteristic
'strip, then we get infinitely many solutions. Again we pose the question whether
it is possible to specify C; such that A = 8 and C; is not characteristic. Then
the derivatives of p and/or q uwould be discontinuous along C (which by the
preceding remarks implies that the first derivatives are discontinuous). In that
case C would be a focal curve, i.e. satisfying the equations

dx dy dz

—— = Rp - Rq —_— = pRp + qRq (18.4)
dt dt dt
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but
dp dg
== #L O(t),ylt)) and -- # Lg(x(t).g(t)) (18.5)
dt dt

This cannot occur as we assumed that the function L(x,y) is continuous and has
continuous derivatives. Thus if x(t) and y(t) satisfy (18.4) they also have to
satisfy (18.5) as L, and LU depend only on x and y. |

The last case we have to be concerned is when A vanishes only along parts of
C [LERS7]. But then C cannot be a continuous differentiable function and the
solution is going to have discontinuous derivatives,

We always assumed that C is not a closed curve, as this would either

overdetermine the problem or make jt inconsistent.

XI. Open questions

Very little is known about "singular" PDE's, i.e. equations which are not
continuous in all their variables. Again some literature, e.g.[HAD28) can be
found about singular second order PDE's.

In the case of the image irradiance equation we are concerned about
singularities which occur in the equation itself. We can aluays assume that
Ri{p,q) is continuous in P and gq. A case when Rip,q) is not continuous is when the
surface contains specularities, which can be represented by delta-functions.
Then a completely different approach has to be taken to solve the equation. But
in a lot of cases Lix,y) is going to be discontinuous. As an example we use the
follouwing situation: looking through an electron microscope on a hal f-sphere

lying on a flat surface which can be formulated as:

R [N oy
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w2 4 gz
02 + q2 B omsmmeomees 5
1 - (xz + y“)
Along the contour NN 92 = 1 the equation is discontinuous. In this case the

contour is called an occluding contour. Informally we can say that if Lix,y) is

discontinuous then the derivatives of the integral surface are going to be

discontinuous. By specifying the solution along the curve C' where the

discontinuity occurs, we can still find an integral surface. As z does not
appear explicitly in the equation, only the projection of C’ onto the x-y plane
can be found directly from the equation. Rigorous proofs of these claims are
going to appear in a subsequent paper.

We aluags assumed that the integral surface is continuous. Discontinuities
in z correspond to gaps and for these kind of situations the image irradiance
equation is inadequate.

Another open problem is how to deél with discontinuities in the image
intensity gradient, i.g. discontinuity in L, and/or Lg' To be able to integrate
the characteristic equations we had to assume that the first derivatives of L and
R are continuous. We conjecture that the case of discontinuities in the first
derivatives 'can be treated in an analogous fashion as the cases of
discontinuities in the functions themselves.

The image irradiance equation describes some of the important features of the
"real" world. There is evidence that human beings deduce a lot of information
about the shape of an object bg‘looking at its contours and registering the
"grey" levels. We discussed hou these tuo pieces of evidence are tied together

in a single partial differential equation..
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