MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

Al Memo 519a 26 March 1981

EMACS
The Extensible, Customizable
Self-Documenting Display Editor

by

Richard M. Staliman

Abstract: EMACS is a display editor which is implemented in an interpreted high
level language. This allows users to extend the editor by replacing parts of it, to
experiment with alternative command languages, and to share extensions which are
generally useful. The ease of extension has contributed to the growth of a large set of
useful features. This paper describes the organization of the EMACS system,
emphasizing the way in which extensibility is achieved and used.

Keywords: Display, Editor, Extensible, Interactive, Self-documenting

This report describes work done at the Artificial Intelligence Laboratory of the
Massachusetts Institute of Technology. Support for the laboratory’s research is
provided in part by the Advanced Research Projects Agency of the Department of
Defense under Office of Naval Research contract NO0O014-80-C-0505.

A truncated version of this paper appeared in the proceedings of the ACM
SIGPLAN/SIGOA Symposium on Text Manipulation, Portland Oregon, June 1981.

@ MASSACHUSETTS INSTITUTE OF TECHNOLOGY 1981

Richard M. Stallman Page 1

1. Introduction

EMACS' is a real-time display editor which can be extended by the user while it is
running.

Extensibility means that the user can add new editing commands or change old
ones to fit his editing needs, while he is editing. EMACS is written in a modular
fashion, composed of many separate and independent functions. The user extends
EMACS by adding or replacing functions, writing their definitions in the same
language that was used to write the original EMACS system. We will explain below
why this is the only method of extension which is practical to use: others are
theoretically equally good but discourage use, or discourage nontrivial use.

Extensibility makes EMACS more flexible than any other editor. Users are not
limited by the decisions made by the EMACS implementors. What we decide is not
worth while to add, the user can provide for himself. He can just as easily provide his
own alternative to a feature if he does not like the way it works in the standard system.

A coherent set of new and redefined functions can be bound into a /ibrary so that
the user can load them together conveniently. Libraries enable users to publish and
share their extensions, which then become effectively part of the basic system. By
this route, many people can contribute to the development of the system, for the most
part without interfering with each other. This has led the EMACS system to become
more powerful than any previous editor.

User customization helps in another, subtler way, by making the whole user
community into a breeding and testing ground for new ideas. Users think of small
changes, try them, and give them to other users. If an idea becomes popular, it can
be incorporated into the core system. When we poll users on suggested changes,
they can respond on the basis of actual experience rather than thought experiments.

To help the user make effective use of the copious supply of features, EMACS
provides powerful and complete interactive self-documentation facilities with which
the user can find out what is available.

A sign of the success of the EMACS design is that EMACS has been requested by
over a hundred sites and imitated at least ten times.

1.1. Background: Real-Time Display Editors

By a display editor, we mean an editor in which the text being edited is normally
visible on the screen and is updated automatically as the user types his commands.
No explicit commands to "print" text are needed.

As compared with printing terminal editors, display editor users have much less
need for paper listings, and can compose code quickly on line without writing it on
paper first. Display editors are also easier to learn than printing terminal editors. This

1EMACS stood for Editing Macros, before we realized that EMACS is composed of functions written in a

programming language rather than macros in the editor TECO.

Page 2 EMACS: The Extensible, Customizable Display Editor

is because editing on a printing terminal requires a mental skill like that of blindfold
chess: the user must keep a mental image of the text he is editing, which he cannot
easily see, and calculate how each of his editing command "moves" changes it. A
display editor makes this unnecessary by allowing the user to see the "board".

Among display editors, a real-time editor is one which updates the display very
frequently, usually after each one or two character command the user types. Thisis a
matter of the input command language. Most printing terminal editors read a string of
commands and process it all at once; a useful feature on a printing terminal. For
example, there is usually an "insert" command which inserts a string of characters.
When such editors are adapted to display terminals, they often update the display at
the end of a command string; thus, the insertion would be shown all at once when it
was over. It is more helpful to display each inserted character in its position in the text
as soon as it has been typed.

A real-time display editor has (primarily!) short, simple commands which show their
effects in the display as soon as they are typed. In EMACS, text (printing characters
and formatting characters) is inserted just by typing it; there is no "insert" command.
In other words, each printing character is a command to insert that character. The
commands for modifying text are nonprinting characters, or begin with nonprinting
characters. Many-character commands echo if typed slowly; if there is a sufficiently
long pause, the command so far is echoed, and then the rest of the command is
echoed as it is typed. Aside from this, EMACS acknowledges commands by
displaying their effects.

EMACS is not the first real-time display editor, but it derives much appeal from
being one. It is not necessary to know how to program, or how to extend EMACS, to
use it successfully.

Richard M. Stallman Page 3

2. Applications of Extensibility

To illustrate and demonstrate the flexibility which EMACS derives from extensibility,
here is a summary of many of the features, available to EMACS users without the need
to program, to which extensibility has contributed. Many of them were written by
users; some were written by the author, but could just as well have been written by
users.

2.1. Customization

Many minor extensions can be done without any programming. These are called
customizations, and are very useful even by themselves. For example, for editing a
program in which comments start with <** and end with **>, the user can tell the
EMACS comment manipulation commands to recognize and insert those strings. This
is done by setting parameters which the comment commands refer to. It is not
necessary to redefine the commands themselves. Another sort of customization is
rearrangement of the command set. For example, some users prefer the four basic
cursor motion commands (up, down, left and right) on keys in a diamond pattern on
the keyboard. It is easy to reassign the commands to these positions. It is also
possible to rearrange the entire command set according to a different philosophy.

2.2. Operating on Meaningful Units of Text

EMACS can be programmed to understand the syntax of the language being edited
and provide operations particular to it. Many majer modes are defined, one for each
language which is understood. Each major mode has the ability to redefine any of the
commands, and reset any parameters, so as to customize EMACS for that language.
Files can contain special text strings that tell EMACS which major mode to use in
editing them. For example, -*-Lisp-*- anywhere in the first nonblank line of a file
says that the file should be edited in Lisp mode. The string would normally be
enclosed in a comment.

For editing English text, commands have been written to move the cursor by words,
sentences and paragraphs, and to delete them; to fill and justify paragraphs; and to
move blocks of text to the left or to the right. Other commands convert single words
or whole regions to upper or lower case. There are also commands which manipulate
the command strings for text justifier programs: some insert or delete underlining
commands, and others insert or delete font-change commands.

Many commands are controlled by parameters which can be used to further adapt
them to particular styles of formatting. For example, the word moving and deletion
commands have a syntax table that says which characters are parts of words. There
are two commands to edit this table, one convenient for programs to use and an
interactive one for the user. The paragraph commands can be told which strings,
appearing at the beginning of a line, constitute the beginning of a paragraph. Such
parameters can be set by the user, or by a specification in the file being edited. But
normally they are set automatically by the major mode (that is, by telling EMACS what
language the file is written in) and do not require attention from the user.

Page 4 EMACS: The Extensible, Customizable Display Editor

2.3. Redefining Self-Inserting Characters

A very powerful extension facility is the ability to redefine the graphic and
formatting characters as commands. These characters, which include letters, digits
and punctuation, are normally all defined as commands to insert themselves into the
text. Useful alternate definitions for these characters usually insert the character as
usual, and then do additional processing which is in some way meaningfully
associated with the insertion of that character.

The single most useful command for editing text is the "auto-fill space”. Itis a
program intended to be used as the definition of the space character. In addition to
inserting a space, it breaks the line into two lines if it has become too long. With the
space character redefined in this way, the user can type endlessly ignoring the right
margin, and the text is divided into lines of a reasonable length. Of course, this
feature is not always desirable. It is turned on or off by redefining the space
command. If the auto-fill space did not exist, any user could write it and also the
command to turn it on and off.

A bolder use of redefinition of self-inserting characters is the abbreviation facility,
part of the standard EMACS system but still implemented as an extension maintained
by the user who wrote it. The abbreviation facility allows the user to define
abbreviations for words, and then type the abbreviations in order to insert the words.
For example, if "cd" were defined as an abbreviation for "command", typing "i/o-cd"
would insert "i/o-command" into the text. Abbreviation expansion preserves case, so
"Cd" would expand into "Command". Abbreviation works by redefining all
punctuation characters (the list of which can be altered by customization) to run a
program which looks at the preceding word and, if it is a defined abbreviation,
replaces it with its expansion.

Yet another application of redefining printing characters is automatic parenthesis-
matching. When this feature is in use, every time the user inserts a close-parenthesis,
the cursor moves briefly to the matching open-parenthesis, then back again.
Automatic matching is especially useful in editing Lisp code, but it is helpful with most
other programming languages also. It is implemented by redefining the close-
parenthesis character.

2.4. Editing Programs

Extensibility is especially useful for editing programs. One might cohceivably-

design in advance all the editing commands needed for editing English text, but each -
programming language has its own set of useful syntactic operations, which suggest
useful editing commands. Because languages differ so much, simple customization is
not in general enough to implement familiar operations for a new language. A new
extension package is required.

EMACS commands have been written, for many languages, to move over or Kill
balanced expressions, to move to the beginning or end of a function definition, and to
insert or align comments. But the most useful editing operation for programs, and the
first one to be implemented for any programming language, is automatic indentation.

Richard M. Stallman Page 5

The structure of a program can be made clear at a glance by adjusting the
indentation of each line according to its level of nesting. Most programming
communities attempt to indent code properly but do it manually. Automatic
indentation is used mostly by Lisp programmers.

Automatic indentation was traditionally done by a program which would read in an
entire source file, rearrange the indentation, and write out a corrected source file.
Such a tool has several disadvantages. For one thing, processing the entire file is
likely to take a while. For another, the tool insists on imposing its own idea of proper
formatting, which the user cannot override. Even after a lot of effort is put into
heuristics for good indentation, users are still dissatisfied.

Automatic indentation in EMACS is done incrementally. The Tab character is
redefined, as a command, to update the indentation of the current line only, based on
the existing indentation of the preceding lines. The Tab command is used on lines
whose nesting has changed. With it, the user can indent code properly as it is first
typed in. If he does not agree with the Tab command'’s choice of indentation, he can
override it.

Because the indentation function must understand the syntax of the programming
language being edited, each language requires a separate indentation function. It is
the job of the major mode for each programming language to redefine the Tab
character to run an appropriate indenter. Users can always use the same command
to indent, no matter what sort of program they are editing. In addition, another editing
command can do indentation by calling the current definition of Tab as a subroutine.
(One such function is the one which indents several consecutive lines.)

Conventions such as this are vital, in an extensible system, for enabling unrelated
extensions to avoid interacting wrong; one user can write an indentation function for a
new language, while another user writes new language-independent operations for
requesting indentation, and the two automatically work properly together.

Languages which have support for indentation include Lisp, Pascal, PL/I, Bliss,
BCPL, Muddle and TECO.

Comprehension of the user’'s program reaches its greatest heights for Lisp
programs, because the simplicity of Lisp syntax makes intelligent editing operations
easier to implement, while the complexity of other languages discourages their users
from implementing similar operations for them. In fact, EMACS offers most of the
same facilities as editors such as the Interlisp editor which operate on list structure,
but combined with display editing. The simple syntax of Lisp, together with the
powerful editing features made possible by that simple syntax, add up to a more
convenient programming system than is practical with other languages. Lisp and
extensible editors are made for each other, in this way. We will see below that this is
not the only way.

2.5. Editing Large Programs

Large programs are composed of many functions divided among many files. Itis
often hard to remember which file a given function is in. An EMACS extension called
the TAGS package knows how to keep track of this.

Page 6 EMACS: The Extensible, Customizable Display Editor

The TAGS package makes use of a file called a tag table, which records each
function in the program, stating what file it is defined in and at what position in the file.
The tag table is made by running a special program named TAGS, which is not part of
EMACS. Once the tag table is loaded into EMACS, the command Meta-Period2 finds
the definition of any function, using the information in the tag table to select the
proper file and find the function in it.

The positions within the source file, remembered in the tag table, are used to find
the function in the file instantly. Changing the file makes the remembered positions
inaccurate. If this has happened, Meta-Period searches in both directions away from
the remembered position until it finds the definition. So small inaccuracies cause only
slight delays.

When many new functions have been added, or moved from one file to another, the
TAGS program can reprocess the tag table into an updated one. To make this more
automatic, the tag table also remembers which language each source file is written in.
This information is needed for recognizing the function definitions in the file.

2.6. Editing Other Things

Interactiveness is useful in many activities aside from editing text. For example,
reading and replying to mail frem other users ought to be interactive. Many of these
activities occasionally involve text editing: for example, editing the text of a reply. Ifa
speciai editor is implemented for the purpose, it can easily be much more work to
write than all the rest of the system. It is easier to write the other interactive system
within the framework of an extensible editor.

EMACS has two extensions, RMAIL and BABYL, for reading mail. Commands in
RMAIL and BABYL are not like EMACS commands: typical commands include "D" for
"delete this message”, and "R" for "reply to this message"”. Editing the text of the
reply is done with ordinary EMACS commands.

DIRED is used for editing a file directory. The normal editing commands, as
extended, can be used to move the cursor through the directory listing. Other special
commands defined only in DIRED delete, move, compare or examirie the file whose
name is under the cursor.

The INFO extension is designed for reading tree-structured documentation files.
These files are divided textually into nodes, which contain text representing pointers
to other nodes. INFO displays one node at a time, and INFO commands move from
one node to another by following the pointers.

2"Meta" is the name of a shift key on the ideal EMACS terminal. On terminals which do not have this
key, the ASCII character Escape is used as a prefix instead.

Richard M. Stallman Page 7

3. The Organization of the EMACS System

The primary components of the EMACS system are the text manipulation and 170
primitives, the interpreter, the command dispatcher, the library system, and the
display processor.

The text and I/0 primitives are used to operate on the text under the command of
the program. The interpreter executes programs, using the primitives when called for.
The command dispatcher remembers which program corresponds to each possible
input character; it reads a character from the terminal and calls the associated
function. The library system associates functions with their names and
documentation, and allows groups of related functions to be loaded quickly together.
The display processor updates the screen to match the text as changed by the text
primitives; it is run whenever there is nothing else to do.

3.1. Editing Language vs. Programming Language

An EMACS system actually implements two different languages, the editing
language and the programming language. The editing language contains the
commands users use for changing text. These commands are implemented by
programs written in the programming language. When we speak of the interpreter, we
mean the one which implements the programming language. The editing language is
implemented by the command dispatcher.

Previous attempts at programmable editors have usually attempted to mix
programming constructs and editing in one language. TECO is the primary example
of this sort of design. It has the advantage that once the user knows how to edit with
the system, he need only learn the programming constructs to begin programming as
well.

However, there are considerable disadvantages, because what is good in an editor
command language is ugly, hard to read, and grossly inefficient as a programming
language. A good interactive editing language is composed primarily of single-
character commands, with a few commands that introduce longer names for less
frequently used operations. As a programming language, it is unreadable. If the
editor is to be customizable, the user must be able to redefine each character. This in
a programming language would be intolerable!

When the programming language is the editing language, the built-in editing
commands and the primitive operations they use have to be written in another
language. Then the user cannot change part of the standard system slightly by
making a small change to its definition: it has to be reimplemented from scratch as a
macro. Since the primitives available are only the commands he uses for editing, this
will often be impossible because the necessary primitives will be internal routines that
the user cannot call. The primitives that an extension would like to use are not always
the same as the editing operations the user wants.

The implementor of a macro processor is encouraged to ignore such deficiencies
because he himself does not use the language in implementing the rest of the system.
Since it is traditional, in designing a macro language, to ignore the standards of

Page 8 EMACS: The Extensible, Customizable Display Editor

readability, power and robustness typically applied to the design of programming
languages, these deficiencies are usually considerable. The original TECO is a good
example of this sort of problem.

In EMACS, each language is designed for its purpose. The editing language has
single-character redefinable commands. The programming language is TECO,
modified and extended to be more suitable for writing well-structured and robust
programs, and to provide the primitives needed by editing programs as opposed to
editor users. It remains hard to read, so the descendents of EMACS generally use
Lisp instead. TECO was used only for reasons of historical convenience.

More information on the requirements extensibility imposes on the system’s
programming language is in the next chapter. '

3.2.The Library System and the Command Dispatcher

An important part of any practical extensible system is the ability to use more than
one extension at one time, and begin using an additional extension at any time.
Extensions should be able to override or replace parts of the standard system, or
previous extensions. In EMACS the library system is responsible for accomplishing
this.

An EMACS library is a collection of function names, definitions and documentation
that can be loaded into an EMACS in mid-session. Libraries are read-only and
position-independent, so that they can be loaded just by incorporating them into the
virtual memory of the EMACS. This allows all EMACS’s using a library to share the
physical memory. Each library contains its own symbol table which connects function
names with definitions, and also with their documentation strings. Libraries are
generated from source files in which each function definition is accompanied by its
documentation; this encourages all functions to be documented.

When a function name is looked up, all the loaded libraries are searched, most
recently loaded first. For the sake of uniformity, the standard EMACS functions also
reside in a library, which is always the first one loaded. Therefore, any library can
override or replace the definition of a standard EMACS function with a new definition,
which will be used everywhere in place of the old. This, together with the fact that
EMACS is constructed with explicit function calls to named subroutines at many
points, makes it easy for the user to change parts of the system in a modular fashion
without replacing it all.

Subroutines are normally called by their full names. The user can also call any
command by name, and many commands are primarily intended to be used in that
way. However, the most common editing operations need to be more easily
accessible. This is the purpose of the command dispatcher, which reads one
character and looks it up in the dispatch table, a vector of definitions to find the
function to be called (the definition-object, not the name).

Functions residing in the dispatch table can be invoked either by the character
command or by name. A function which does not appear in the dispatch table can be
called only by name. The user calls functions by name by means of a single-character
command (Meta-X) whose definition is to read the name of a function and call that
function.

Richard M. Stallman . Page9

Each user has his own patterns of use. Many functions in EMACS are accessible
only by name because we expect most users to use them infrequently. If a particular
user uses one such command often, he can place the definition in the dispatch table
using the function Set Key. The function calling conventions are designed so that
almost any function definition will behave reasonably if called by the command
dispatcher. If a function tries to read a string argument from its caller, then when
called by the command dispatcher it will automatically prompt and read the argument
from the terminal instead.3

Some libraries contain functions that are intended to be called with single-
character commands. The library can arrange to place those functions’ definitions in
the dispatch table by defining a function called Setup. This will be called
automatically when the library is loaded, and it can redefine character commands as
needed. However, because EMACS is intended to be customized, no library can
reasonably make the assumption that a function belongs on a particular character
without allowing the user who loads the library to override that assumption. For
example, a library might wish to redefine Control-S on the assumption that it invokes
the search function, but a user might prefer to keep his search on Control-T instead,
and he might prefer that same library to alter the definition of Control-T when loaded
by him. The author of the library cannot anticipate the details of such idiosyncrasies,
but he can provide for them all by following a convention: in the Setup function of the
library (TAGS, say), he checks for a variable called TAGS Setup Hook, and if it
exists, its value is called as a function instead of the usual setting up.

3.3. The Display Processor

The display processor is the part of EMACS which maintains on the display screen
an up-to-date image of the text inside the editor. Since the size of the screen is
limited, only a portion or "window" can be shown. The display processor prefers to
continue to start its display at the same point in the file, so as to minimize the amount
of changes necessary to the screen. However, the text where the editor’'s own cursor
is located must appear on the screen so that the terminal’'s cursor can show where it
is. This sometimes forces a new window position to be computed. The user can also
command changes in the window position, moving the text up or down on the screen.

The EMACS display processor embodies an unusual principle which makes for
much faster responses to the user: display updating has lower priority than cogitation.

Most display editors change the display after each user command. This is the
simplest strategy to implement, since each command knows precisely how it has
changed the text. But it is very inefficient, not just of the computer’s time, but of the
user’s time, because it makes the user wait for the completion of display updates that
have already been made obsolete by further commands waiting to be executed.

Here is an example of the problem. If the user types Carriage Return to create a
new line, all the lines below that point need to be redisplayed in their new positions.

3The process of reading the argument from the terminal is implemented by a function which the user can
replace.

Page 10 EMACS: The Extensible, Customizable Display Editor

While this is still going on, if he types an additional Carriage Return to create another
new line, the rest of the display update is obsolete; there is no use displaying the rest
of the lines in their second positions, only to display them again in their third
positions.*

The EMACS display processor is best understood as being a separate, lower
priority process that runs in parallel with the editing process. The editing process
reads keyboard input and makes changes in the text. The display process is always
trying to change the screen to match the text; it keeps a record of what is on the
screen, and in each cycle of operation finds one discrepancy between the editing
buffer and the screen record and corrects it. After each cycle, the display process
can be pre-empted by the editing process, which has higher priority. The display
process can be thought of as chasing an arbitrarily moving target, the edited text, with
a speed limited by the terminal baud rate.

Multiple processes are not actually used in the implementation. Instead, after each
line of display output, the display processor updates its data base and polls for input.

An additional benefit of this input-before-output philosophy is that it uses less
computer resources when the system is heavily loaded. When not enough computer
power is available, EMACS gets behind in processing the user's input. When the first
command is completed, more input is available, so no effort is put into display
updating yet. By saving computer time this way, EMACS eventually catches up with
the user and does its display updating all at once.

Since display updating is not necessarily done at the same time as the editing
operation which necessitates it. display updating cannot be the responsibility of the
editing command itself. Instead, the display update must be done by somehow
comparing the new text with the previous displayed text, or information about it. In
EMACS, each editing command returns information on the range of text it has
changed, but aside from that the display processor operates independently. This is
good for extensibility as well: it is easier to write or change an editing command if it
does not have to contain algorithms for updating the screen.

Because the TECO language is not very efficient, the display processor had to be
written in assembler language to get adequate performance. This is unfortunate
because extensions to the display processor could be very valuable. In later
implementations of EMACS, the display processor is written in Lisp along with the
editing commands, and can be extended.

4This particular sequence of events poses no problem on terminals which can move text up and down on
the screen. But the same problem can still result from other events.

Richard M. Stallman Page 11

4. Extensibility and Interpreters

Despite its syntactic obscurity, TECO is actually one of the best languages to use
for implementing an extensible editor. This is because most traditional programming
languages simply cannot do the job! Implementing an extensible system of any sort
requires features that they intrinsically lack. Specifically, it requires a language with
an interpreter and the ability for programs to access the interpreter’s data structures
(such as function definitions).

Adherents of non-Lisp programming languages often conceive of implementing an
EMACS for their own computer system using PASCAL, PL/I, C, etc. In fact, it is simply
impossible to implement an extensible system in such languages. This is because
their designs and implementations are batch-oriented; a program must be compiled
and then linked before it can be run. An on-line extensible system must be able to
accept and then execute new code while it is running. This eliminates most popular
programming languages except Lisp, APL and Snobol. At the same time, Lisp’s
interpreter and its ability to treat functions as data are exactly what we need.®

A system written in PL/I or PASCAL can be modified and recompiled, but such an
extension becomes a separate version of the entire program. The user must choose,
before invoking the program, which version he wants. Combining two independent
extensions requires comparing and merging the source files. These obstacles usually
suffice to discourage all extension.

The only way to implement an extensible system using an unsuitable language, is to
write an interpreter for a suitable language and then use that one. Prime is now
implementing an EMACS using a simple Lisp written in PL/I. This technique works
because an editor does not require a very efficient interpreter; even the most
straightforward Lisp interpreter is more efficient than the TECO interpreter which is
empirically observed to be good enough. | would not regard this as implementation
"in" the original language, however.

A PASCAL or PL/I implementation which uses an interpreter, and allows the user
program to access the interpreter data structures sufficiently, could be used just as a
Lisp implementation would be used. However, such implementations are very rare,
because these languages are not designed for them. If the implementor appreciates
the importance of the interpreter, and of treating functions as data, he will usually
choose to implement Lisp.

It is also possible to use dynamic linking—the ability to load additional modules of
compiled code during execution, and refer to subroutines therein by name—in place
of an interpreter. However, dynamic linking operating systems are rarer than good
Lisps, harder to impiement, and not as convenient for the job. One of the few such
operating systems, Multics, has an EMACS written in Lisp. SINE, the EMACS
implementation on Interdata computers, uses dynamic linking to load files compiled
from a language which resembles Lisp.

5It is 0.k. to use a Lisp compiler, if there is one. What counts is not using the interpreter all the time, but

having it availabie all the time.

Page 12 EMACS: The Extensible, Customizable Display Editor

5. Language Features for Extensibility

When a language is used for implementing extensible systems, certain control
structure and data structure features become vital.

5.1. Global Variables

One difference between Lisp (and TECO) and most other programming languages,
which is very important in writing extensible systems, is that variable names are
retained at run time; they are not lost in compilation.

In typical compiled languages, variable names are meaningful only at compile time.
In the compiled code, uses of one variable name become references to one location
in memory, but the name itself has been discarded.

By contrast, Lisp remembers the connection between variable names and their
values, so that new programs can be defined.

Global variables are essential for parameters used for customization. EMACS has a
variable named Comment Start which controls the string recognized as starting a
comment in the text being edited. Its value is supposed to be that string. This variable
is used by the comment indenting command to recognize an existing comment. The
fact that the variable name is known at run time enables the user to

- ask to see the value of the string.
- change the string.

- define or redefine major modes, for various programming languages,
which change the string.

- define or redefine comment-manipulation commands, which refer to the
variable so that they will work on text in various languages.

5.2. Dynamic Binding

Most batch languages use a lexical scope rule for variable names. Each variable
can be referred to legally only within the syntactic construct which defines the
variable.

Lisp and TECO use a dynamic scope rule, which means that each binding of a
variable is visible in all subroutine calls to all levels, unless other bindings override.
For example, after

(defun fool (x) (foo2))
(defun foo2 () (+ x 6))

then (fool 2) returns 7, because f002 when called within foo1 uses fool's value
of x. If foo2 is called directly, however, it refers to the caller’s value of X, or the global
value. We say that foo1 binds the variable x. All subroutines called by foo1 see the

Richard M. Stalliman ‘ Page 13

binding made by foo1, instead of the global binding, which we say is shadowed
temporarily until foo1 returns.

In PASCAL the analogous program would be erroneous, because f002 has no
lexically visible definition of x.

Dynamic scope is useful. Consider the function Edit Picture, which is used to
change certain editing commands slightly, temporarily, so that they are more
convenient for editing text which is arranged into two-dimensional pictures. For
example, printing characters are changed to replace existing text instead of shoving it
over to the right. Edit Picture works by binding the values of parameter variables
dynamically, and then calling the editor as a subroutine. The editor "exit" command
causes a return to the Edit Picture subroutine, which returns immediately to the
outer invocation of the editor. In the process, the dynamic variable bindings are
unmade.

Dynamic binding is especially useful for elements of the command dispatch table.
For example, the RMAIL command for composing a reply to a message temporarily
defines the character Control-Meta-Y to insert the text of the original message into the
reply. The function which implements this command is always defined, but Control-
Meta-Y does not call that function except while a reply is being edited. The reply
command does this by dynamically binding the dispatch table entry for Control-Meta-
Y and then calling the editor as a subroutine. When the recursive invocation of the
editor returns, the text as edited by the user is sent as a reply.

Itis not necessary for dynamic scope to be the only scope rule provided, just useful
for it to be available.

5.3. Formal Parameters Cannot Replace Dynamic
Scope

Some language designers believe that dynamic binding should be avoided, and
explicit argument passing should be used instead. Imagine that function A binds the
variable F0OO0, and calis the function B, which calls the function C, and C uses the value
of FOO. Supposedly A should pass the value as an argument to B, which should pass
it as an argument to C.

This cannot be done in an extensible system, however, because the author of the
system cannot know what all the parameters will be. Imagine that the functions A and
C are part of a user extension, while B is part of the standard system. The variable
FOO does not exist in the standard system; it is part of the extension. To use explicit
argument passing would require adding a new argument to B, which means rewriting
B and everything that calls B. In the most common case, B is the editor command
dispatcher loop, which is called from an awful number of places.

What's worse, C must also be passed an additional argument. B doesn't refer to C
by name (C did not exist when B was written). It probably finds a pointer to C in the
command dispatch table. This means that the same call which sometimes calls C
might equally well call any editor command definition. So a// the editing commands
must be rewritten to accept and ignore the additional argument. By now, none of the
original system is left! ‘

Page 14 4 EMACS: The Extensible, Customizable Display Editor

5.4. Variables Local to a File

Suppose one file is formatted with comments starting at column 50. Editing this file
is easier if the variable Comment Column, which is used (by convention) to decide
where to align comments, is always set to 50 whenever this file is being editing.
EMACS provides a way to request this; but since it also provides the feature of visiting
several files at once, it must take special care to keep each file's variables straight.
Suppose one file wants Comment Column to be 50 while another is formatted with
40?

This is solved by allowing each file to have its own local values for any set of
variables. Specially formatted text at the end of the file specifies them:

Local Modes:
Comment CoTumn:50
End:

When a file is brought into EMACS, this local modes list is parsed and the variables
and values remembered in a local symbol table. While the file is not selected, its local
symbol table contains the local values of the variables. While a file is selected, its
local symbol table contains the global values, and the real symbol table contains the
file’s local values instead.

5.5. Hooks

When an extensible system allows the user to provide a function to be called on
certain well-defined occasions, we call it a hook. For example, we have already
mentioned the hook which is executed whenever a certain library is loaded; for the
TAGS library, the hook is named TAGS Setup Hook.

Anotiher important class of hooks is executed when a major mode is entered. Each
major mode has its own hook. For example, Text mode’s hook is named Text Mode
Hook. This hook can be used to request arbitrary actions in advance for each time
text mode is entered. Many users always define this hook to turn on Auto Fill mode,
so that Auto Fill mode is always on when Text mode is.

Hooks can be associated with variables as well. Then, each time the value of the
variable changes, its hook is run. Usually these hooks are used to change other data
structures so that they always correspond to the value of the variable. This is often
more efficient and more modular than checking the variable itself whenever its value
is relevant. For example, changing the value of Auto Fil1l Mods to turn auto-filling

on or off calls a function which automatically redefines the Space character's

command definition.

Some hooks are attached to specific points within the interpreter or display
processor. For example, there is a hook which is called whenever it is time to read a
character of input from the terminal. The hook program can supply the character
itself. These hooks can be thought of as compensating for the fact that some parts of
the system are written in assembler language and cannot simply be redefined by the
user.

Richard M. Stallman Page 15

5.6. Errors and Control Structure

A system for programming editor commands needs more sophisticated facilities for
handling errors and other exceptional conditions than most programming systems
provide. Let us consider what an error is, and what ought to happen when there is an
error.

First of all, what exactly is an error? Sometimes the user asks to do something that
cannot be done (a user error). Sometimes a program asks to do something which
cannot be done (a program error). Program errors often accompany user errors, but
either one can happen without the other.

Program errors can be defined objectively: any event which executes a certain part
of the interpreter is a program error. User errors cannot be defined objectively in this
way because they are a matter of attitude toward events rather than events
themselves. If a command has done nothing, we can regard this either as the
response to an error or as normal functioning. And this choice of attitude has no
necessary connection with whether the command definition required special code to
make it do nothing in the circumstances in question.

When a program error happens, EMACS prints the error message and then gives
the user the chance to invoke the error handler to debug it. If he does not do this,
control returns to the innermost error return point. Programs can create error return
points with a special construct. (We use a Lisp-style syntax in these examples for
clarity).

(error-return
(arbitrary-code-here))

The end of the error-return construct becomes an error return point which is in
effect while the code inside the construct is being executed. Error returns are usually
used by loops which read and execute commands of some sort, including the built-in
one which reads and displays editing commands.

(do-forever
(error-return
(read-and-execute-one-command)))

Sometimes interpreted functions are called asynchronously or unpredictably. An
example is the one which optionally saves the text every so often to reduce the
amount lost if the system crashes. If this function gets a program error, it should
notify the user, but should not interfere in any way with the user’s explicit commands.
This requires a construct known in Lisp as errset, which prevents al/l normal
processing of errors that occur within it. An error occurring within an errset does
nothing but return control immediately to the end of the errset.

The programming system does not provide any such uniform handling for user
errors because the concept of a user error is not defined at that level. Instead, the
designer of each editing command must decide what conditions ought to be
considered errors, and what to do in each case. Sometimes the command simply
does nothing. Sometimes it rings the terminal’s bell and perhaps throws away type
ahead. This can be best if we expect that, once the user is told that there is
something wrong, it will be obvious what it is. When the cause of the error is less

Page 16 EMACS: The Extensible, Customizable Display Editor

obvious, causing a program error deliberately with a specially chosen error message
is a good way of informing him. A special primitive is used o cause a program error
with an arbitrary specified error message so that the error-return processing can be
invoked.

Sometimes the user error leads naturally to an error in the program, which may be
all the handling it needs. This can be so if the program error’s error message is an
adequate explanation for the user, or if the situation is not deemed likely enough to
deserve the effort required to make anything else happen.

The error handler for debugging program errors is an interpreted program itself.
This is possible because primitives are provided for examining the function call stack
and all other data structures which the programmer would want to examine while
debugging. Users have actually written extensions and complete replacements for
the standard error handler program.

5.7.Non-local Control Transfers

Returning to the example of the user-written command loop, there has to be a
command to exit the loop. How can it be done?

(do-forever
(error-return
(read-and-execute-one-command)))

We do it by means of a non-local control transfer. We create the transfer point by
means of a catch construct around the loop. The catch creates a named transfer
point at the end of the loop, which is accessible only within the loop.

(catch
(do-forever
(error-return
(read-and-execute-one-command)))
exit-my-loop)

At any time during the loop, execution of (throw exit-my-loop) transfers
control immediately to the end of the catch, thus exiting the loop. The catch and
throw constructs were copied from Maclisp. :

Like variable names, catch names have dynamic scope: the program can throw to a
catch from any of the subroutines called while inside the catch. This is important
because ease of extension dictates that each command which the command-reading
loop understands be implemented by a separate function, so that the user can
redefine one command without replacing the framework of the Ioop.6

eNormaIly the command reading loop uses the name of the command to compute the name of the
function to call. For example, if RMAIL reads the letter N as a command, it calls the function # RMAIL N.
This way the user can easily define new commands.

Richard M. Stallman Page 17

6. Self-Documentation and Extensibility

A complex program is much easier to learn if it can answer questions about how to
use it. When the program is customizable, it is important for the answers to reflect any
customization that has been done. The easiest way to do this is for questions to be
answered based on the same tables and data structures that control the functioning
of the system. In EMACS, these include the command dispatch table and the loaded
libraries.

The most basic kind of question that a user might want to ask is, "What does this
command do?" He can inquire about either a function name or a command
character. A library contains a documentation string for each function in it, and this is
used to answer the question. When the question is about a command character, the
dispatch table is used to find the function object which is currently the definition of
that character. Then the library system is used to find the name of the function, and
then, from that, the documentation string.

The ability to ask what a certain command does, only helps users who know what
commands to ask about. Other users need to ask, "What commands might help me
now?" EMACS attempts to answer this by listing all the functions whose names
contain a given substring. Since the function names tend to summarize what the
functions do (such as "Forward Word" or "Indent for Comment") and follow
systematic conventions, this is usually enough. The list also contains the first line of
each function’s own documentation, and how to invoke the function with one or two
characters, if that is possible.

The documentation for a function is usually just a string of text, but it can also
contain programs to be executed to print the documentation, interspersed with text to
be printed literally. This comes in handy when the description of one function refers
to another function which is usually accessed as a one or two character command. It
is better to tell the user the short command, which he would actually use, than the
name of the function which defines it. But exactly which command—if any—runs the
function in question depends on the user's customization. What we do is to use a
program, in the middle of the documentation string, which searches the dispatch table
and prints the command which would invoke the desired function. Another
application of this facility is for functions which simply load a library and call a
function in it. The documentation string for such functions is a program to load the
library and print the documentation of the function which would be called.

To help users remember how to ask these questions, we make it simple and
standard. A special character, called the Help character, is used. This character is
only used for asking for help, and is always available. Help is normally followed by
another character which specifies the type of inquiry. If the user does not remember
these characters, he can type Help again to see a list of them. To close the remaining
loophole of confusion, EMACS prints a message about the Help character each time it
starts up.

Help is also available in the middle of typing a command. For example, if you start
to type the Replace String command and forget what arguments are required, type
Help. The documentation of the Replace String function will be printed to tell you
what to do next.

Page 18 EMACS: The Extensible, Customizable Display Editor

Because questions are answered based on the data structures as they are at the
moment, many changes in EMACS require no extra effort to update the
documentation. It is only necessary to update the documentation of each function
whose definition is changed. The format for EMACS library source files encourages
this by requiring a documentation string for every function, between the function
name and its definition.

7. History

| began the development of EMACS in 1974 with an improvement to TECO: the
implementation of the display processor and a command dispatcher with a small fixed
set of commands. These were inspired by the editor E of the Stanford Artificial
Intelligence Lab. They were not considered a new editor, but rather one new feature
in TECO to join many existing features. The user would give the TECO command
Control-R to enter display editing mode, whose commands were suitable only for
making local changes to the file. He would exit display editing mode to do anything
else.

But once display editing was implemented, it was fairly easy to allow commands to
be redefined to call functions written in TECO. TECO already contained considerable
facilities for text manipulation, 170, and programming, so almost immediately many
users began to implement large collections of editing commands, nowerful enough to
do every part of editing. One of the most popular of these systems was TECMAC.
Others included MACROS, RMODE, TMACS, Russ-mode and DOC. The need to exit
from display editing mode to use TECO directly became less and less frequent until
new users no longer learned how.

But TECO was still missing many of the important control and programming
constructs which allow programs to be readable and maintainable (for example,
named functions and variables!). So the early TECO-based display editors were very
hard to maintain. In 1976 the TMACS system experimented with adding named
functions and variables, with good results limited by the inefficiency of implementing
them with TECO programs. This inspired me to implement EMACS itself.

Writing EMACS involved simultaneously adding to TECO the features which make
up the library system and self-documentation, which permitted a new readable
programming style, and writing a new set of display editing commands using this style.
The design for the commands themselves was based on examining the command sets
of the many TECO-based editors for inspiration, and choosing commands so that the
most common operations would take few keystrokes. The first operational EMACS
system existed in late 1976.

Since then, development has proceeded steadily, most new code being written in
TECO. New features are added to TECO itself only to speed up loops such as table
searching and s-expression parsing, or to make possible new kinds of 1/0 or interface
operations.

EMACS was developed on the Digital Equipment Corporation PDP-10 computer
using MIT’s own Incompatible Timesharing System. By 1977, outside interest in

Richard M. Stallman Page 19

EMACS was sufficient to motivate Mike McMahon of SRI International to adapt it to
Digital's Twenex ("Tops-20") operating system. EMACS is now in use at about a
hundred sites.

7.1. Successors of EMACS

Several post-EMACS editor implementations have copied from EMACS both the
specific command set and user interface and the fundamental principle of being
based on a programmable interpreter. The motivation for these projects was to
transfer the ideas of EMACS to other computer systems. Two of them, now in use, are
Multics EMACS, a Honeywell product, and ZWEI, the editor for the MIT Artificial
Inteliigence Lab Lisp machine.

Because EMACS supplied the implementors with a clear idea of what was to be
implemented, their focus was on making the foundations clean. The essential
improvement was the substitution of an excellent programming language, Lisp, for the
makeshift extended TECO used in EMACS. Lisp provides the necessary language
features in a framework much cleaner than TECO. Also, it is more efficient. A Lisp
interpreter is intrinsically more efficient than a string-scanning interpreter such as
TECO's, and Lisp compilers are also available. This efficiency is important not just for
saving a few microseconds, but because it reduces the amount of the system which
must be written in assembler language in order to obtain reasonable performance.
This opens more of the system to user extensions. Another improvement has been in
the data structure used to represent the editing buffer: Multics EMACS developed the
techinique of using a doubly-linked list of lines, each being a string. This technique is
used in ZWEI as well.

Many other editors imitate the EMACS command set and display updating
philosophy without providing extensibility. Despite that deficiency, and despite the
greatly reduced set of features that results from it, these can be useful editors, though
not as useful as an extensible one. For a computer with a small address space or
lacking virtual memory, this is probably the best that can be done.’

The proliferation of such superficial facsimiles of EMACS has an unfortunate
confusing effect: their users, knowing that they are using an imitation of EMACS, and
never having seen EMACS itself, are led to believe that they are enjoying all the
advantages of EMACS. Since any real-time display editor is a tremendous
improvement over what they probably had before, they believe this readily. To prevent
such confusion, we urge everyone to refer to a nonextensible imitation of EMACS as
an "Ersatz EMACS".

7The standard EMACS system is bigger than the entire 64k-byte address space of the PDP-11, despite
constant strenuous efforts to reduce its size. And TECO is equally large. The post-EMACS editors are even
larger.

Page 20 EMACS: The Extensible, Customizable Display Editor

8. Conclusions

8.1. Research Through Development of Installed Tools

The conventional wisdom has it that when a program intended for multiple users is
to be written, specifications should be designed in advance. If this is not done, the
result will be inferior. The place to try anything new is in a research project which
users will not see.

Some people know better than this, but they have been silenced.

The development of EMACS followed a path that most authorities would say is a
direct route to disaster. It was the continuous deformation of TECO into something
which is totally unlike TECO, from the typical user's point of view. And during the
whole process, TECO and programs containing TECO were the only text editors we
had on ITS.2 Indeed, there are ways in which EMACS shows the results of not having
been completely thought out in advance: such as, in being based on TECO rather
than Lisp. But it is still reliable enough to be widely used and imitated. The disaster
which would have been forecast has not occurred. Instead, a new and powerful way
of constructing editors has been explored and shown to be good.

I believe that this is no accident. EMACS could not have been reached by a
process of careful design, because such processes arrive only at goals which are
visible at the outset, and whose desirability is established on the bottom line at the
outset. Neither | nor anyone else visualized an extensible editor until | had made one,
nor appreciated its value until he had experienced it. EMACS exists because | felt free
to make individually useful small improvements on a path whose end was not in sight.

While there was no overall goal, each small change had a specific purpose in terms
of improving the text editor in general use, and each step had to be individually well
designed and reliable. This helped to keep things on the right track. Research
projects with no users tend to improve the state of the art of writing research projects,
rather than the state of the art of writing usable system tools.

The individual commands of EMACS benefited from a stage of unregulated
experimentation also. When the display processor and the capability for extension
were created, many users began to write extensions, which developed into the
complete editing environments of which EMACS is the most recent. Each command
in EMACS benefits from the experimentation by many different users customizing
their editors in different ways since that time. This experimentation was possible only
because a programmable display editor existed.

New implementations of EMACS can now be carefully designed, because they have
the advantage of hindsight based on the original EMACS. However, the implementor
must carefully restrict his careful design to the parts of the editor that are already well
understood. To go beyond the original EMACS, he must experiment.

But why isn’t such a program of exploration doomed to be sidetracked by a blind

8The Incompatible Timesharing System.

Richard M. Stallman Page 21

alley, which will be unrecognized until too late? It is the extensibility, and a flexibility
of mind, which solves this problem: many alleys will be tried at once, and blind alleys
can be backed out of with minimal real loss.

8.2. Lisp is Loose!

The traditional attitude towards Lisp holds that it is useful only for esoteric
amusements and Artificial Intelligence. The appearance of Multics EMACS as a
Honeywell product is the death knell of this view. Now, a mainframe manufacturer is
offering a system utility program written in Lisp; a program intended for heavy use by
the general user community. The special properties of Lisp, which make extensibility
possible, are a key feature, even though many of the users will not be programmers.
Lisp has escaped from the ivory tower forever, and is a force to be reckoned with as a
system programming language.

8.3. Blue Sky

The programmable editor is an outstanding opportunity to learn to program! A
beginner can see the effect of his simple program on the text he is editing; this
feedback is fast and in an easily understood form. Educators have found display
programming to be very suited for children experimenting with programming, for just
this reason (see LOGO).

Programming editor commands has the additional advantage that a program need
not be very large to be tangibly useful in editing. A first project can be very simple.
One can thus slide very smoothly from using the editor to edit into learning to program
with it.

When large numbers of nontechnical workers are using a programmable editor,
they wili be tempted constantly to begin programming in the course of their day-to-day
lives. This should contribute greatly to computer literacy, especially because many of
the people thus exposed will be secretaries taught by society that they are incapable
of doing mathematics, and unable to imagine for a moment that they can learn to
program. But that won't stop them from learning it if they don’t know that it is
programming that they are learning! According to Bernard Greenberg, this is already
happening with Multics EMACS.

Page 22 EMACS: The Extensible, Customizable Display Editor

9. Appendices

9.1. Display Processing

The way EMACS records what remains on the screen, and compares it with what is
now in the text being edited, is determined by the representation used for that text.
The post-EMACS editors use better text representations that make for easier display
updating algorithms.

The representation used in EMACS is a straightforward linear string of characters.
A movable gap which can grow and shrink makes it unnecessary for insertion and
deletion within a small region of the file to move half of the file up and down. The gap
was essential in making it practical to insert characters one at a time, instead of en
masse in an "insert" command, but aside from that it is made invisible at all but the
lowest levels of software, so essentially the representation is just a linear string. Itis
the task of the display processor’s auxiliary data to make sense out of the amorphous
mass of text.

The lowest level of avoiding wasteful output is a checksum of the characters
displayed on each line of the screen. If a screen line is about to be rewritten, the new
and old checksums are compared. If they match, the rewriting is skipped. Once in
every 236 times this will leave old incorrect text on the screen.

Higher levels of display optimization work by preserving information which is a
byproduct of writing the display—namely, where in the text string the beginning of
each screen line comes—and combining it with information which localizes the
regions of the text string in which alteration has taken place. This allows it to restrict
display update processing to a horizontal band of screen which contains all the
necessary changes (often just one line). While processing the other lines on the
screen would do no actual output, because of the checksums, even the time to
compute the checksums is noticeable to the user as a delay. The same information
can be used to decide when some lines on the screen should be moved up or down.
When lines are inserted in the middle of the screen, it is much better tc scroll the
following iines downward (if the terminal can do this) than to rewrite them all in their
new positions.

The record of where in the text string changes have taken place is maintained by
requiring every command to return values saying what part of the string it has
changed. It can identify a subinterval of the string which contains all the changes
made, it can say that no change was made (though the cursor may have been moved),
or it can say nothing, which requires the display processor to make no assumptions.

A better way, developed by Bernard Greenberg in Multics EMACS and used in
ZWEL, is to represent the buffer as a doubly-linked list containing pointers to strings,
one for each line. Newline characters are not actually present, but implicitly appear
after each line except the last. This requires the lowest level insert, delete and search
subroutines to be more complicated (for example, inserting a string cannot treat
Newline characters like other characters), but this is just a finite amount of complexity;
and it greatly simplifies efficient display computations. The state of the screen can be
remembered in an array of pointers to the string that was displayed on each screen

Richard M. Staliman Page 23

line. When the display is updated, one can compare the strings in the buffer with the
strings in the display, both to see whether they are the same objects (the pointers are
equal; EQ, in Lisp), and to see whether their contents are the same.

Multics EMACS never changes the contents of a string in the buffer. It creates new
strings to replace the old ones when the text changes. Thus, the string pointers in the
screen state continue to record the screen as it was.

ZWEI does change the contents of existing strings. To make sure that it does not
fail to notice that the text no longer matches the screen, ZWEI maintains a "clock”
which increments each time a change is made in the text. Each line records the clock
tick of the last modification. Each screen line records the clock tick as of the time it
was displayed. If the line in the text matches the line in the screen record, but the tick
counts do not match, then the contents of the line have been changed.

Line list representations also eliminate the requirements on commands to say what
they have changed. Reducing the need for the programmer to worry about how
display will be done is very desirable. Another advantage is that it becomes feasible to
have pointers to characters in the text which relocate when insertions or deletions are
done, so that they continue to point to the same place in the text.

9.2. Libraries

An EMACS sharable library contains, first of all, a symbol table which can be binary
searched for the name of an object to find the object named. The symbol table points
at both the names and the definitions using offsets from the beginning of the file, so
that the file can be valid at any location in memory. The names and definitions are all
examples of the TECO string data type, in the internal TECO format, so that the library
does not need to be translated or parsed in any way when it is loaded.

The symbol table points to the documentation of functions in the library as well as
their definitions. The documentation for the function Visit File is an object
entered in the symbol table with the name ~Doc~ Visit File. Thereis also a string
named ~Directory~ whose definition contains a list of the names of all the objects
in the file which the library wishes to advertise. This is used for documentation
purposes, not for looking up names, and it does not contain names of auxiliary objects
such as ~Doc~ Visit File or~Directory~.

It is possible to search the symbol table in reverse, to take a definition and find its
name. Since one can tell which library an object is in by comparing its address with
the range of memory occupied by the library, this makes it possible to find the name of
any object which has one. The ability to do this is important, because when the user
asks what the character Control-K does, it is desirable to be able to tell him that it runs
the function Ki11 Line. The names themselves are not kept in the dispatch table
because looking up a name in the loaded libraries is slow. For other implementations,
that is a reasonable strategy.

Page 24 EMACS: The Extensible, Customizable Display Editor

10. Notes

10.1. EMACS Distribution

EMACS is available for distribution to sites running the Digital Equipment
Corporation Twenex ("Tops-20") operating system. It is distributed on a basis of
communal sharing, which means that all improvements must be given back to me to
be incorporated and distributed. Those who are interested should contact me.
Further information about how EMACS works is available in the same way.

10.2. Further Information

A complete manual for use (but not extension) of EMACS is

Richard M. Stallman, EMACS Manual for ITS Users, Artificial Intelligence Lab
memo 554, 1980.

Richard M. Stallman, EMACS Manual for TWENEX Users, Artificial Intelligence
Lab memo 555, 1980.

Various lower level implementation strategies for parts of an EMACS-like editor
are treated in

Craig A. Finseth, Theory and Practice of Text Editors, or, A Cookbook for an
Emacs, L.C.S. Technical Memo TM-165, B.S. Thesis, May 1980.

10.3. EMACS-related Editors

These include the true extensible descendents of EMACS, and the editors which
preceded EMACS and supplied some of the ideas for it. The many ersatz EMACS
editors are not included.

Multics EMACS

Multics EMACS was written in MacLisp by Bernard S. Greenberg of Honeywell’s
Cambridge Information Systems Lab, starting in 1978. When first implemented, it
could be used only by its author, because he alone had the necessary privileges
to patch the Multics operating system so that a program could read one character
from the keyboard instead of waiting for a complete line. After seeing the new

editor in operation, the other Honeywell people were convinced to make the

feature generally available. Because it is written in Lisp, Multics EMACS is even
more extensible than the original EMACS, and as a result it has accumulated even
more powerful features.

Bernard S. Greenberg, Multics Emacs: an Experiment in Computer
Interaction, in proceedings, Fourth Honeywell International Software
Conference, Bloomington, Minn., April, 1979

Bernard S. Greenberg, Prose and CONS (Multics Emacs: a commercial text
processing system in Lisp), in proceedings, 1980 Lisp Conference, Stanford
University, Stanford, California, August 1980.

Richard M. Stallman Page 25

Bernard S. Greenberg, and Katie Kissel, Multics Emacs Text Editor User’s
Guide, Publication # CH27, Honeywell Information Systems, Waltham, Mass.,
1979

Bernard S. Greenberg, Multics Emacs Extension Writers’ Guide, Publication
CJ52, Honeywell Information Systems, Waltham, Mass., 1980

SINE

SINE ("SINE Is Not EMACS") is based on compiling Lisp code to run in a non-Lisp
editor environment, in which, unfortunately, no interpreter is present. However,
the user can load his own compiled files into a running editor. This design was
chosen because of the small address space of the machine, an Interdata at the
MIT Architecture Machine Group. See : '

Owen T. Anderson, The Design and Implementation of a Display-Oriented
Editor Writing System, Undergraduate Thesis, MIT Physics Department,
January 1979.

TECMAC

TECMAC was the first editor implemented in TECO to work with the display
processor. It developed many of the ideas used in the EMACS user interface. It
was retired because, written when TECO was less suited to system programming,
it was unable to attain either readability or efficiency. TECMAC was maintained
from 1974 to 1976 by John L. Kulp and Richard L. Bryan.

TECO

PDP-16 TECO was originally written by Richard Greenblatt, Stew Nelson and Jack
Holloway at the MIT Artificial Intelligence Lab, based on PDP-1 TECO which was
written by Murphy in 1962. The TECO in which EMACS is implemented is its direct
descendant. The PDP-10 TECO from Digital, a typical example of TECO, is also a
descendant of an early version from MIT. Itis documented in

Digital Equipment Corporation, Decsystem-10 TECO Programmer’s Reference
Manual, DEC-10-ETEE-D (revised from time to time).

Ordinary TECO lacks many important programming constructs. In MIT TECO, the
constructs may be syntactically ugly, but they exist. So programs can be well
organized, and clean except in the lowest level of detail.

TMACS

TMACS was an editor implemented in TECO which began to develop the idea of
the sharable library with commands that could be assigned to keys by the user.
TMACS was the project of Dave Moon, Charles Frankston, Earl A. Killian, and
Eugene C. Ciccarelli. Interestingly, it had no standard command set. The
implementors were unable to agree on one, which is what motivated them to work
on making customization easier.

ZWEI

ZWEI ("ZWELI Was EINE Initially") is the editor for the Lisp machine. EINE ("EINE
Is Not EMACS"), the former editor for the Lisp machine, was also based on
EMACS; it was operational for late 1977 and 1978, and was redone to make it

Page 26 EMACS: The Extensible, Customizable Display Editor

cleaner. Both EINE and ZWE! are primarily the work of Daniel Weinreb and Mike
McMahon; see

Daniel L. Weinreb, A Real-Time Display-Oriented Editor for the LISP Machine,
Undergraduate Thesis, MIT EECS Department, January 1979.

10.4. Other Interesting Editors

Augment

Augment (formerly known as NLS) is a display editor whose interesting feature is
its ability to structure files into trees. Making the tree structure useful required the
concept of the viewspec, which specifies that only certain levels in the tree
structure will be visible. This is the sort of feature which cannot be added by a
user to EMACS, because it involves modification of the display processor; but it
could be added by a user to Multics EMACS or ZWEI. Augment popularized the
graphical input device known as the "mouse", which is a small box with wheels or
balls on the bottom and buttons on the top, which the user moves on the table
with his hand. This device has been copied widely because of its simplicity and
low cost. Augment was designed at SRI International but is now supplied by
Tymshare. See

Douglas C.Engelbart and William K. English, A Research Center for
Augmenting Human Intellect, AFIPS Conference Proceedings, Vol. 33, Fall
Joint Computer Conference, San Francisco, December 1968, pp. 395-410.

Patricia B. Seybold, TYMSHARE'S AUGMENT—Heralding a New Era, The
Seybold Report on Word Processing, Vol. 1, No. 9, October 1978, 16 pp.
(ISSN: 0160-9572), Seybold Publications, Inc., Box 644, Media, Pa 19063.

Bravo

Bravo comes from the Xerox Palo Alto Research Center. lts orientation is toward
text formatting, and it can display multiple fonts, underlining, etc. It makes heavy
use of a graphical pointing device, the "mouse" (see Augment). It is not
programmable and offers no special help for editing programs as opposed to text.
For more information, see your local industrial espionage agent.

The editor used at the Stanford Artificial Intelligence Lab, E interfaces with a "line
editor” (used to edit within a line, on a display terminal) which can also be
employed to edit the input to any other program. The line editor does not allow
commands to be redefined; since it is part of the timesharing system, that is not
trivial (though possible in principle). E allows macros to be written using the same
language used for editing. These are as powerful as a Turing machine, and as
easy to program with. See the on-line documentation file E.ALS[UP,DOC] of the
Stanford Artificial Intelligence Laboratory.

TRIX

TRIX is a language similar to TRAC designed at Lawrence Livermore Lab
specifically for writing editors. It has been used to write commands that are

Richard M. Stallman Page 27

specific to particular languages, and to write text formatters. Its fatal flaw is that it
was designed for printing terminals. See

Cecil, Moll and Rinde, TRIX AC: A Set of General Purpose Text Editing
Commands, Lawrence Livermore Lab UCID 30040, March 1977.

TVEDIT

TVEDIT is a distant relative of E (above) which is used at Stanford on the Twenex
and Tenex operating sysiems. These systems do not provide a line editor, so
TVEDIT has its own facilities for changes within lines. TVEDIT is a good example
of a generally reasonable but nonprogrammable display editor. See

Pentti Kanerva, TVGUID: A User's Guide to TEC/DATAMEDIA TV-Edit,
Stanford University, Institute for Mathematical Studies in the Social Sciences,
1973. (Online document)

10.5. Other Related Systems

The Lisp Machine

The MIT Artificial Intelligence Laboratory has built a machine specifically for the
purpose of running large Lisp programs more cheaply than ever before. One of its
goals is to make the entire software system interactively extensible by writing it in
Lisp and allowing the user to redefine the functions composing the innards of the
system. Part of the system is an EMACS-like editor (ZWEI; see above) written
entirely in Lisp, which shares in this extensibility. See

Daniel Weinreb and Dave Moon, The Lisp Machine Manual, MIT Artificial
Intelligence Laboratory.

LOGO

LOGO is a language used for teaching children how to think clearly. Unlike
conventional computer-aided instruction, which automates a method of teaching
which offers little to motivate the student, LOGO invites students to write
programs to produce interesting pictures and learn while doing something fun.
See

Seymour Papert, Teaching Children to be Mathematicians vs. Teaching About
Mathematics, MIT Atrtificial Intelligence Laboratory Memo 249, 1971.

MacLisp

The MacLisp language is very suitable for writing extensible interactive programs,
and has been used for the implementation of Multics EMACS. See

Dave Moon, Maclisp Reference Manual, MIT Laboratory for Computer
Science, 1974,

Smalitalk

The Smalltalk language and system is oriented toward writing extensible
programs.

Dan H.H. Ingalls, The Smalltalk-76 Programming System Design and

Page 28 EMACS: The Extensible, Customizable Display Editor |

Implementation, in proceedings, Fifth Annual ACM Symposium on Principles
cf Programming Languages.

