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Abstract: To choose their actions, reasoning programs must be able to make assumptions
and subsequently revise their beliefs when discoveries contradict these assumptions. The
Truth Maintenance System (TMS) is a problem solver subsystem for performing these
functions by recording and maintaining the reasons for program beliefs. Such recorded
reasons are useful in constructing explanations of program actions and in guiding the
course of action of a problem solver. This paper describes (1) the representations and
structure of the TMS, (2) the mechanisms used to revise the current set of beliefs, (3) how
dependency-directed backtracking changes the current set of assumptions, (4) techniques for
summarizing explanations of beliefs, (5) how to organize problem solvers into "dialectically
arguing” modules, (6) how to revise models of the belief systems of others, and (7) methods
for embedding control structures in patterns of assumptions. We stress the need of problem
solvers to choose between alternative systems of beliefs, and outline a mechanism by which a

problem solver can employ rules guiding choices of what to believe, ‘what to want, and what
to do. '
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In memory of John Sheridan Mac Nerhey

: -I'n:t‘r'odu‘ction

Computer reasoning programs usually construct computational models of situations. To

ep ‘these models consistent with new information and changes in the situations being
modelled, the reasoning programs frequently need to remove or change portions of their
“models. These changes sometimes lead to further changes, for the reasoner often constructs
- some parts of the model by making inferences from other parts of the model. This paper
. studies both the problem of how to make changes in computational models, and the

underlying problem of how the models should be constructed in order to make making
-~ changes convenient. Our approach is to record the reasons for believing or using each

‘program belief, inference rule, or procedure. To allow new information to displace previous
_conclusions, we employ "non-monotonic” reasons for beliefs, in which one belief depends on
‘a lack of belief in some other statement. We use a program called the Truth Maintenance
System' (TMS) to determine the current set of beliefs from the current set of reasons, and to
‘update the current set of beliefs in accord with new reasons in a (usually) incremental
- fashion. To perform these revisions, the TMS traces the reasons for beliefs to find the

- consequences of changes in the set of assumptions.

" LL The Essence of the Theory

‘ - Many treatments of formal and informal reasoning in mathematical logic and artificial

. intelligence have been shaped in large part by a seldom acknowledged view: the view that
- the process of reasoning is the process of deriving new knowledge from old, the process of
- discovering new truths contained in known truths. This view, as it is simply understood,
~ has several severe difficulties as a theory of reasoning. In this section, I propose another,

~ quite different view about the nature of reasoning. | incorporate some new concepts into
this view, and the combination overcomes the problems exhibited by the conventional view.
Briefly put, the problems with the conventional view of reasoning stem from the

~ monotonicity of the sequence of states of the reasoner’s beliefs: his beliefs are true, and truths
. never change, so the only action of reasoning is to augment the current set of beliefs with
~_more beliefs.  This monotonicity leads to three closely related problems involving
commonsense reasoning, the frame problem, and control. To some extent, my criticisms here
of the conventional view of reasoning will be amplifications of Minsky's [36] criticisms of

1. As we shall see, this term not only sounds like Orwellian Newspeak, but also is probably
a misnomer. The name stems from historical accident, and rather than change it here, 1
retain it to avoid confusion in the literature.




the logistic approach to problem solving.

One readily recalls examples of the ease with which we resolve apparent
contradictions involving our commonsense beliefs about the world. For example, we
routinely make assumptions about the permanence of objects and the typical features or
properties of objects, yet we smoothly accommodate corrections to the assumptions and can
quickly explain our errors away. In such cases, we discard old conclusions in favor of new
evidence. Thus, the set of our commonsense beliefs changes non-monotonically.

Our beliefs of what is current also change non-monotonically. If we divide the
trajectory of the temporally evolving set of beliefs into discrete temporal situations, then at
each instant the most recent situation is the set of current beliefs, and the preceding
situations are past sets of beliefs. Adjacent sets of beliefs in this trajectory are usually closely
related, as most of our actions have only a relatively small set of effects. The important

- point is that the trajectory does not form a sequence of monotonically increasing sets of
beliefs, since many actions change what we expect is true in the world. Since we base our
actions on what we currently believe, we must continually update our current set of beliefs.
The problem of describing and perfoming this updating efficiently is sometimes called the
Srame problem. In connection with the frame problem, the conventional view suffers not
only from monotonicity, but also from atomicity, as it encourages viewing each belief as an
isolated statement, related to other beliefs only through its semantics. Since the semantics of

- beliefs are usually not explicitly represented in the system, if they occur there at all,

atomicity means that these incremental changes in the set of current beliefs are difficult to
compute.

The third problem with the conventional view actually subsumes the problem of
commonsense reasoning and the frame problem. The problem of control is the problem of
deciding what to do next. Rather than make this choice blindly, many have suggested that
we might apply the reasoner to this task as well, to make inferences about which inferences
to make. This approach to the problem of control has not been explored much, in part
because such control inferences are useless in monotonic systems. In these systems, adding
more inference rules or axioms just increases the number of inferences possible, rather than
preventing some inferences from being made. One gets the unwanted inferences together
with new conclusions confirming their undesireability. _

Rather than give it up, we pursue this otherwise attractive approach, and make
the deliberation required to choose actions a form of reasoning as well. For our purposes,
we take the desires and intentions of the reasoner to be represented in his set of current
beliefs as beliefs about his own desires and intention. We also take the set of inference rules
by which the reasoning process occurs to be represented as beliefs about the reasoner's own
computational structure. By using this self-referential, reflexive representation of the
reasoner, the inference rules become rules for self-modification of the reasoner’s set of beliefs
(and hence his desires and intentions as well). The control problem of choosing which
inference rule to follow takes the form "Look at yourself as an object (as a set of beliefs), and
choose what (new set of beliefs) you would like to become.”

The language of such inference rules, and the language for evaluating which
self-change to make, are for the most part outside the language of inference rules




" encouraged by the conventional view of reasoning. For example, when the current set of
beliefs is inconsistent, one uses rules like “Reject the smallest set of beliefs possible to restore
_¢onsistency” and "Reject those beliefs which represent the simplest explanation of the
~ . inconsistency.” These sorts of rules are all we have, since we cannot infallibly analyze errors
or predict the future, yet these rules are non-monotonic, since they lead to removing beliefs
from the set of current beliefs, , : : T R
"To repeat, one source of each of these problems is the monotonicity inherent in
the conventional view of reasoning. I now propose a different view, and some new concepts
" which have far reaching consequences for these issues. -

Rational thought is the process of finding reasons for attitudes.

~ To say that some attitude (such as belief, desire, intent, or action) is rational is to say that
' there is some acceptable reason for holding that attitude. Rational thought is the process of
 finding such acceptable reasons. Whatever purposes the reasoner may have, such as

~ solving problems, finding answers, or taking action, it operates by constructing reasons for

 believing things, desiring things, intending things, or doing or willing things. The actual

attitude in the reasoner occurs only as a by-product of constructing reasons. The current set
of beliefs and desires arises from the current set of reasons for beliefs and desires, reasons

* phrased in terms of other beliefs and desires.  When action is taken, it is because some
_reason for the action can be found in terms of the beliefs and desires of the actor. I stress
- again, the only real component of thought is the current set of reasons - the attitudes such

~as beliefs and desires arise from the set of reasons, and have no independent existence.

s One consequence of this view is that to study rational thought, we should study
- Justified belief or reasoned argument, and ignore questions of truth. Truth enters into the
~ study of extra-psychological rationality and into what commonsense truisms we decide to

- Supply to our programs, but truth does not enter into the narrowly psychological rationality -

- by which our programs operate.

Of course, this sort of basic rationality is simpler to realize than human belief.
~~ Humans exhibit "burn-in" phenomena in which long-standing beliefs come to be believed
independently of their reasons, and humans sometimes undertake “leaps of faith” which

vault them into self-justifying sets of beliefs, but we will not study these issues here. Instead, -

- We restrict ourselves to the more modest goal of making rational programs in this simpler
sense. o ’

The view stated above entails that for each statement or proposition P just one of
-two states obtains: Either

(A) P has at least one currently acceptable (valid) reason, and is thus a member of the
current set of beliefs, or

(B) P has no currently acceptable reasons (either no reasons at all, or only unacceptable
ones), and is thus not a member of the current set of beliefs.




If ﬁ_,falls in state (A), we say that P is in (the current set of beliefs), and otheiWise, that P is

*“out (of the current set of beliefs). These states are not symmetric, for while reasons can be

“ constructed to make P in, no reason can make P out. (At most, it can make =P in as well)

= This shows that the proposed view also succumbs to monotonicity problems, for
.. the set of reasons grows'monotonically, which (with the normal sense of "reason") leads to
_-only monotonic increases in the set of current beliefs. To solve the problem of monotonicity,

e introduce hovel meanings for the terms "a reason” and "an assumption.” -
.+ Traditionally, a reason for a belief consists of a set of other beliefs, such that if
each of these basis beliefs is held, so also is the reasoned belief. To get off the ground, this

- analysis of reasons requires either circular arguments between beliefs (and the appropriate

initial state of belief) or some fundamental type of belief which grounds all other arguments.

. The traditional view takes these fundamental beliefs, often called assumptions (or premises),

! as believed without reason. On this view, the reasoner makes changes in the the current set
. of beliefs by removing some of the current assumptions and adding some new ones.

To conform with the proposed view, we introduce meanings for "reason” and

"assumption" such that assumptions also have reasons. A reason (or justification) for a

belief consists of an ordered pair of sets of other beliefs, such that the reasoned belief is in
by virtue of this reason only if each belief in the first set is in, and each belief in the second

- Set is out. An assumption is a current belief one of whose valid reasons depends on a

' non-current belief, that is, has a non-empty second set of antecedent beliefs. With these

~ notions we can create "ungrounded” yet reasoned beliefs by making assumptions. (E.g. give

P the reason ({},{~P})) We can also effect non-monotonic changes in the set of current

 beliefs by giving reasons for some of the out statements used in the reasons for current

i assumptions. (Eg. to get rid of P, justify =P)  We somewhat loosely say that when we

Justify some out belief supporting an assumption, (eg. ~P), we are denying or retracting the

~assumption (P).

These new notions solve the monotonicity problem. Following from this solution

“we find ways of treating the commonsense reasoning, frame, and control problems plaguing
‘the conventional view of reasoning. Commonsense default expectations we represent as

~new-style assumptions. Part of the frame problem, namely how to non-monotonically

- change the set of current beliefs, follows from this non-monotonic notion of reason.

However, much of the frame problem (eg. how to give the "laws of motion™ and how to
retrieve them efficiently) lies outside the scope of this discussion. The control problem can
be dealt with partially by embedding the sequence of procedural states of the reasoner in
patterns of assumptions. We will treat this idea, and the rest of the control problem, in
more detail later. » ‘

Other advantages over the conventional view  also follow. One of these
advantages involves how the reasoner retracts assumptions. With the traditional notion of
assumption, retracting assumptions was unreasoned. If the reasoner removed an assumption

" from the current set of beliefs, the assumption remained out until the reasoner specifically

put it back into the set of current beliefs, even if changing circumstances obviated the value
of removing this belief. The new notions introduce instead the reasoned retraction of
assumptions. This means that the reasoner retracts an assumption only by giving a reason




for why it should be retracted. If later this reason becomes invalid, then the retraction is no
longer effective and the assumption is restored to the current set of beliefs.

The reasoned retraction of assumptions helps in formulating a class of
backtracking procedures which revise the set of current assumptions when inconsistencies
are discovered. The paradigm procedure of this sort we call dependency-directed
backtracking after Stallman and Sussman (53] It is the least specialized procedure for
revising the current set of assumptions in the sense that it only operates on the reasons for
beliefs, not on the form or conitent of the beliefs, In short, it traces backwards through the
reasons for the conflicting beliefs, finds the set of assumptions reached in this way, and then
retracts one of the assumptions with a reason involving the other assumptions. (We
. describe the procedure in detail later.) Dependency-directed backtracking serves as a
template for more specialized revision procedures.  These specialized procedures are
necessary in almost all practical applications, and go beyond the general procedure by
taking the form of the beliefs they examine into account when choosing which assumption
to reject.

1.2 Basic Terminology

The TMS records and maintains arguments for potential program beliefs, so as to
distinguish, at all times, the current set of program beliefs. It manipulates two data
structures: nodes, which represent beliefs, and Justifications, which represent reasons for
beliefs. We write St(N) to denate the statement of the potential belief represented by the
node N. We say the TMS believes in (the potential belief represented by) a node if it has
an"argument for the node and believes in the nodes involved in the argument. This may
seem circular, but some nodes will have arguments which involve no other believed nodes,
ahd so form the base step for the definition.

As its fundamental actions, (I) the TMS can create a new node, to which the
problem solving program using the TMS can attach the statement of a belief (or inference
rule, or procedure, or data structure). The TMS leaves all manipulation of the statements
of nodes (for inference, representation, etc) to the program using the TMS. (2) It can add
(or retract) a new justification for a node, to represent a step of an argument for the belief
represented by the node. This argument step usually represents the application of some rule
of procedure in the problem solving program. Usually, the rules or procedures also have
TMS nodes, which they include in the Justifications they create. (3) Finally, the TMS can
mark a node as a contradiction, to represent the inconsistency of any set of beliefs which
enter into an argument for the node. :

. A new justification for a node may lead the TMS to believe in the node. If the
TMS did not believe in the node previously, this may in turn allow other nodes to be
believed by previously existing but incomplete arguments. In this case, the TMS invokes
the truth maintenance procedure to make any necessary revisions in the set of beliefs. The
TMS revises the current set of beliefs by using the recorded justifications to compute
non-circular arguments for nodes from premises and other special nodes, as described later.
These non-circular arguments distinguish one justification as the well-founded supporting




jzlk@iﬂtati‘on of each node representing a current belief. The TMS locates the set of nodes to

N ‘updateiby finding those nodes whose well-founded arguments depend on changed nodes. .

©. .. The program using the TMS can indicate the inconsistency of the beliefs
- . represented by certain currently believed nodes by using these nodes in an argument for a

.. new node, and by then’ marking the new node as a contradiction. When this happens,
other' process of the TMS, dependency-directed backtraching, analyzes the well-founded
"argument of the contradiction node to locate the assumptions (special types of nodes defined
later) occurring in the argument. It then makes a record of the inconsistency of this set of
-assumptions, and uses this record to change one of the assumptions. After this change, the

_ contradiction node is no longer believed. We explain this process in Section 4.
0 The TMS employs a special type of justification, called a non-monotonic
. justification, to make tenative guesses. A non-monotonic justification bases an argument for
~°a node not only on current belief in other nodes, as occurs in the most familiar forms of
- deduction and reasoning, but also on lack of current belief in other nodes. For example,
~one might justify a node N-1 representing a statement P on the basis of lack of belief in
" node N-2 representing the statement -P. In this case, the TMS would hold N-1 as a
..~ - current belief as long as N-2 was not among the current beliefs, and we would say that it
A had assumed belief in N-1. More generally, by an assumption we mean any node whose
" - well-founded support is a non-monotonic justification. :

PR As a small example of the use of the TMS, suppose that a hypothetical office
scheduling program considers holding a meeting on Wednesday. To do this, the program
assumes that the meeting is on Wednesday. The inference system of the program includes a

. tule which draws the conclusion that due to regular commitments, any meeting on
~ Wednesday must occur at 1:00 P.M. However, the fragment of the schedule for the week

- constructed so far has some activity scheduled for that time already, and so another rule

. concludes the meeting cannot be on Wednesday. We write these nodes and rule-constructed
- justifications as follows:

Node  Statement . Justification ' Comment
N-1 DAY (M) = WEDNESDAY (SL O (N-2)) _an assumption
“N-2 DAY (M) = IEDNESDAY

: - no justification yet
'N-3 - TIMEMM) =13:00 (SL (R-37 N-1) (1)

" The above notation for the justifications indicates that they belong to the class of
support-list (SL) justifications. Each of these' justifications consists of two lists of nodes. A
SL-justification is a valid reason for belief if and only if each of the nodes in the first list is
believed and each of the nodes in the second list is not believed. In the example, if the two
Justifications listed above are the only existing justifications, then N-2 is not a current belief -
since it has no justifications at all. N-1 is believed since the justification for N-1 specifies
o - that this node depends on the lack of belief in N-2. The justification for N-3 shows that
N3 depends on a (presumably believed) node R-37. In this case, R-37 represents a rule
BT - “acting on (the statement represented by) N-1. - :
Subsequently another rule (represented by a node R-9) acts on beliefs about the




day and time of some other engagement (represented by the nodes N-7 and N-8) to reject
the assumption N-1.

N-2 DAY (M) = LIEDNESDAY (SL (R-9N-7N-8) ())

To accomodate this new justification, the TMS will revise the current set of beliefs so that
N-2 is believed, and N-1 and N-3 are not believed. It does this by tracing "upwards” from
the node to be changed, N-2, to see that N-1 and N-3 ultimately depend on N-2. It then
carefully examines the justifications of each of these nodes to see that N-2's justification is
valid (so that N-2 js in). From this it follows that N-1's justification is invalid (so N-1 is
out), and hence that N-3's justification is invalid (so N-3 is out).

2. Representation of Reasons for Beliefs
2.1 States of Belief

A node may have several justifications, each justification representing a different reason for
believing the node. These several justifications comprise the node's Justification-set. The
node is believed if and only if at least one of its justifications is valid. We described the
conditions for validity of SL-justifications above, and shortly will introduce and explain the
other type of justification used in the TMS. We say that a node which has at least one
valid justification is in (the current set of beliefs), and that a node with no valid
Justifications is our (of the current set of beliefs). We will alternatively say that each node
has a support-status of either in or out. The distinction between in and out is not that
between frue and false. The former classification refers to current possession of valid
reasons for belief. True and false, on the other hand, classify statements according to truth
value independent of any reasons for belief.

In the TMS, each potential belief to be used as a hypothesis or conclusion of an
argument must be given its own distinct node. When uncertainty about some statement (e.g.
P) exists, one must (eventually) provide nodes for both the statement and its negation.
Either of these nodes can have or lack well-founded arguments, leading to a four-element
belief set (similar to the belief set urged by Belnap [2)) of neither P nor —P believed, exactly
one believed, or both believed. ‘

The literature contains many proposals for using three-element belief sets of true,
false, and unknown. With no notion of justified belief, these proposals have some attraction.
I urge, however, that systems based on a notion of justified belief should forego
three-valued logics in favor of the four-valued system presented here, or risk a confusion of
truth with justified belief. Users of justification-based three-valued systems can avoid
problems if they take care to interpret their systems in terms of justifications rather than
truth-values, but the danger of confusion seems greater when the belief set hides this
distinction. - One might argue that holding contradictory beliefs is just a transient situation,
and that any stable situation uses only three belief states: true - only P believed, false - only
=P believed, and unknown - neither believed. But the need for the four-element system




. cannot be dismissed so easily. Since we make the process of revising beliefs our main

- _interest, we concern ourselves with those processes which operate during the transient
situation. For hard problems and tough decisions, these "transient” states can be quite
~ long-lived. ' ‘

22 Justifications

“ Justifications, as recorded in the TMS, have two parts: the external form of the justification

For example, a justification might have the external form (Modus-Ponens A A-B)} and

‘with significance to the problem solver, and the internal form of significance to the TMS.

- have the internal form (SL (N-1 N-2 N-3) ()), supposing that N-1 represents the rule

 Modus-Ponens, N-2 represents A, and N-3 represents ASB. The TMS never uses or

. examines the external forms of justifications, but merely records them for use by the
- problem solver in constructing externally meaningful explanations. Henceforth, we will
“ignore these external forms of justifications.

: Although natural arguments may use a wealth of types of argument steps or
Justifications, the TMS forces ‘one to fit all these into a common mold. The TMS employs
only two (internal) forms for justifications, called support-list (SL) and conditional-proof (CP)

~ justifications. These are inspired by the typical forms of arguments in natural deduction

inference systems, which either add or subtract dependencies from the support of a proof
line. A proof in such a system might run as follows:

"+ Line  Statement Justification Dependencies
1. AoB Premise {1 ‘
2.  BoC Premise {2}
3. A Hypothesis {3}
4, B MP 1,3 {1,3}
5. ¢ MP 2,4 i1,2,3)
6. A>C Discharge 3,5 {1,2}

“Each step of the proof has a line number, a statement, a justification, and a set of line

numbers on which the statement depends. Premises and hypotheses depend on themselves,
and other lines depend on the set of premises and hypotheses derived from their
justifications.  The above proof proves ASC from the premises A-B and B-C by

- hypothesizing A and concluding C via two applications of Modus Ponens. The proof of A>C

ends by discharging the assumption A, which frees the conclusion of dependence on the
hypothesis but leaves its dependence on the premises.

This example displays justifications which sum the dependencies of some of the
referenced lines (as in line 4) and subtract the dependencies of some lines from those of
other lines (as in line 6). The two types of justifications used in the TMS account for these
effects on dependencies. A support-list justification says that the justified node depends on
each node in a set of other nodes, and in effect sums the dependencies of the referenced
nodes. A conditional-proof justification says that the node it justifies depends on the




-1-

" validity of a certain hypothetical argument. As in the example above, it subtracts the
. dependencies of some nodes (the hypotheses of the hypothetical argument) from the
- dependencies of others (the conclusion of the hypothetical argument). Thus we might
~rewrite the example in terms of TMS justifications as follows (here ignoring the difference
 between premises and hypotheses, and ignoring the inference rule MP).

N-1 A (L O 0) Premise
N2 BoC SL 0 0) Premise
N-3 A (L O 0) : Premise
- N-4 B (SL N-1 N-3) ()) Mp
NS T (SL (N-2N-4) ()) - - MP
N-6 . ASC (CP N-5 (N-3) ()) Discharge

- CP-justifications, which will be explained in greater detail below, differ from ordinary
‘hypothetical arguments in that they use two lists of nodes as hypotheses, the inhypotheses
and the outhypotheses. In the above Justification for N-B, the list of inhypotheses contains
~ just N-3, and the list of outhypotheses is empty. This difference results from our use of
~ hon-monotonic justifications, in which arguments for nodes can be based both on in and out _
- nodes. :

2.3 Support-list Justifications

' - To repeat the definition scattered throughout the previous discussion, the support-list

. Justification has the form

_ ‘ : (SL <inlist> <outlist>),
and is valid if and only if each node in its inlist is in, and each node in its outlist is out.

- The SL-justification form can represent several types of deductions. With empty inlist and
empty outlist, we say the justification forms a premise justification. A premise justification is

~always valid, and so the node it justifies will always be in. SL-justifications with nonempty
inlists and empty outlists represent normal deductions, Each such justification represents a
monotonic argument for the node it justifies from the nodes of its inlist. We define
assumptions to be nodes whose supporting-justification has a nonempty outlist. These
assumption justifications can be interpreted by viewing the nodes of the inlist as comprising
the reasons for wanting to assume the Justified node; the nodes of the outlist represent the
specific criteria authorizing this assumption. For example, the reason for wanting to assume
"The weather will be nice" might be "Be optimistic about the weather”; and the assumption
might be authorized by having no reason to believe "The weather will be bad." We -
occasionally interpret the nodes of the ourlist as "denials” of the justified node, beliefs which
imply the negation of the belief represented by the justified node.




2.4 Terminology of Dependency Relationships

I must pause to present some terminology before explaining CP-justifications. The
definitions of dependency relationships introduced in this section are numerous, and the
reader should consult Figures 1, 2, and 3 for examples of the definitions.

As mentioned ‘previously, the TMS singles out one justification, called the
Supporting- justification, in the justification-set of each in node to form part of the
non-circular argument for the node. For reasons explained shortly, all nodes have only
SL-justifications as their supporting-justifications, never CP-justifications. The set of
Supporting-nodes of a node is the set of nodes which the TMS used to determine the
support-status of the node. For in nodes, the supporting-nodes are just the nodes listed in
the inlist and outlist of its supporting-justification, and in this case we also call the
supporting-nodes the antecedents of the node. For the supporting-nodes of out nodes, the
TMS picks one node from each Justification in the justification-set. From SL-justifications,
it picks either an out node from the inlist or an in node from the outlist. From
CP-justifications, it picks either an out node from the inhypotheses or consequent or an in
from the outhypotheses. We define the supporting-nodes of out nodes in this way so that
the support-status of the node in question cannot change without either a change in the
Suppott-status of one of the supporting-nodes, or without the addition of a new valid
Justification.  We say that an out node has no antecedents.  The TMS keeps the
“supporting-nodes of each node as part of the node data-structure, and comptutes the
antecedents of the node from this list.

The set of foundations of a node is the transitive closure of the antecedents of the
node, that is, the antecedents of the node, their antecedents, and so on. This set is the set of
nodes involved in the well-founded argument for belief in the node. The set of ancestors of
a node, analogously, is the transitive closure of the supporting-nodes of the node, that is, the
supporting-nodes of the node, their supporting-nodes, and so on. This set is the set of
nodes which might possibly affect the support-status of the node. The ancestors of a node
may include the node itself, for the closure of the Supporting-nodes relation need not be
well-founded. The TMS computes these dependency relationships  from the
supporting-nodes and antecedents of nodes.

In the other direction, the set of consequences of a node is the set of all nodes
- which mention the node in one of the justifications in their justification-set. The
affected-consequences of a node are Just those consequences of the node which contain the
node in their set of supporting-nodes. The believed-consequences of a node are Just those in
consequences of the node which contain the node in their set of antecedents. The TMS
keeps the consequences of cach node as part of the node data-structure, and computes the
affected- and believed-consequences from the consequences.

The set of repercussions of a node is the transitive closure of the
affected-consequences ‘of the node, that is, the affected-consequences of the node, their
affected-consequences, and so on. The set of believed-repercussions of a node is the
transitive closure of the believed-consequences of the node, that is, the believed-consequences
of the node, their believed-consequences, and so on. The TMS computes all these




relationships from the consequences of the node. A

In all of the following, I visualize the lines of support for nodes as directed
upwards, so that I look up to see repercussions, and down to see foundations. 1 say that one
node is of lower level than another if its believed-repercussions include the other node.

2.5 Condﬁipnal-pmof Justifications

With this terminology, we can now begin to explain conditional-proof justifications. The
exact meaning of these justifications in the TMS is complex and difficult to describe, so the
reader may find this section hard going, and may benefit by referring back to it while
reading Sections 33, 4, and 5. CP-justifications take the form
{CP <consequent> <inhypotheses> <outhypothesess>). :

A CP-justification is valid if the consequent node is in whenever (a) each node of the
inhypotheses is in and (b) each node of the outhypotheses is out. Except in a few esoteric
uses described later, the set of outhypotheses is empty, so normally a node justified with a
CP-justification represents the implication whose antecedents are the inhypotheses and
whose consequent is the consequent of the CP-justification. Standard conditional-proofs in
natural deduction systems typically specify a single set of hypotheses, which corresponds to
the inhypotheses of a CP-justification. In the present case, the set of hypotheses must be
divided into two disjoint subsets, since nodes may be derived both from some nodes being
in and other nodes being out. Some deduction systems also employ multiple-consequent
conditional-proofs. We forego these for reasons of implementation efficiency.

The TMS handles CP-justifications in special ways. It can easily determine the
validity of a CP-justification only when the justification’s consequent and inhypotheses are
in and the outhypotheses are out, since determining the justification's validity with other
support-statuses for these nodes may require switching the support-statuses of the hypothesis
nodes and their repercussions to set up the hypothetical situation in which the validity of
the conditional-proof can be evaluated. This may may require truth maintenance
processing, which in turn may require validity checking of further CP-justifications, and so
the whole process becomes extremely complex. Instead of attempting such a detailed
analysis (for which I know no algorithms), the TMS uses the opportunistic and approximate
strategy of computing SL-justifications currently equivalent to CP-justifications. At the time
of their creation, these new SL-justifications are equivalent to the CP-justifications in terms
of the dependencies they specify, and are easily checked for vahdity. Whenever the TMS
finds a CP-justification valid, it computes an equivalent SL-justification by analyzing the
well-founded argument for the consequent node of the CP-justification to find those nodes
which are not themselves supported by any of the inhypotheses or outhypotheses but which
directly enter into the argument for the consequent node along with the hypotheses.
Precisely, the TMS finds all nodes N in the foundations of the consequent such that N js
not one of the hypotheses or one of their repercussions, and N is either an antecedent of the
consequent or an antecedent of some other node in the repercussions of the hypotheses. The
in nodes in this set form the inlist of the equivalent SL-justification, and the ouf nodes of
the set form the outlist of the equivalent SL-justification. The TMS attaches the list of




SL-justifications computed in this way to their parent CP-justifications, and always prefers
to use these SL-justifications in its processing. The TMS checks the derived
SL-justifications first in determining the support-status of a node, and uses them in
explanations. It uses only SL-justifications (derived or otherwise)  as
Supporting-justifications of nodes.

2.6 Other Types of Justifications

My experience with the TMS indicates that yet more forms of justifications would be useful.
A general-form (GF) justification merges the above two forms into one in which the nodes
in an inlist and an ourlist are added to the result of a conditional-proof. We might notate
this as

(GF <inlist> <outlists <consequent> <inhypotheses> <outhypotheses>).
I also suggest a summarization (SUM) justification form,
(SUM <consequent> <inhypotheses> <outhypothesess),
which abbreviates
(GF <inhgpotheses><ourhgpotheses><consequent><inhgpotheses><outhgpotheses>).
This form adds the hypotheses of a conditional-proof back into the result of the
conditional-proof, thus summarizing the argument for the consequent by excising the
intermediate part of the argument. Section 5 explains this technique in detail. | use
SUM -justifications there for expository convenience, although I have not implemented them
in the TMS. '
3. Truth Maintenance Mechanisms N

3.1 Circular Arguments

Suppose a program manipulates three nodes as follows:

F (= (+ X Y) 4) omitted
G (=X1) (5L (/) 0)
H {=Y3) (SL (K) 0).

(We sometimes leave statements and Justifications of nodes unspecified when they are not
directly relevant to the presentation.  We assume that all such omitted justifications are
valid.) If J is in and K is out, then the TMS will make F and G in, and H out. If the
program then justifies 4 with '




: (SL (F G) 0),

the TMS will bring H in. Suppose now that the TMS makes J out and K in, leading to G
becoming out and H remaining in. The program might then justify G with ‘

' (SL(FH) 0).

If the TMS now takes K out, the original justification supporting belief in H becomes
invalid, leading the TMS to reassess the grounds for belief in H. If it makes its decision to
believe a node on the basis of a simple evaluation of each of the justifications of the node,
then it will leave both G and H in, since the two most recently added justifications form

- circular arguments for G and 'H in terms of each other.

These circular arguments supporting  belief in nodes motivate the use of
well-founded supporting justifications, since nodes imprudently believed on tenuous circular
bases can lead to ill-considered actions, wasted *data base searches, and illusory
inconsistencies which might never have occurred without the misleading, circularly
supported beliefs. In view of this problem, the algorithms of the TMS must ensure that it
believes no node for circular reasons.

Purported arguments for nodes can contain essentially three different kinds of
circularities. The first and most common type of circularity involves only nodes which can
be taken to be out consistently with their justifications. Such circularities arise routinely
through equivalent or conditionally equivalent beliefs and mutually constraining beliefs.
The above algebra example falls into this class of circularity. )

The second type of circularity includes at least one node which must be in.
Consider, for example ‘

F - T0-BE ' (SL O (6))
G ~TO-BE (SL O (F)).

In the absence of ather justifications, these Justifications force the TMS either to make F in
and G out, or G in and F out. This type of circularity can arise in certain types of sets of
alternatives. ’

In unsatisfiable circularities, the third type, no assignment of in or out to nodes is
consistent with theijr justifications. Consider

F (SL ) (F)).

With no other justifications for F, the TMS must make F in .if and only if it makes F out,
an impossible task. Unsatisfiable circularities sometimes indicate real inconsistencies in the
beliefs of the program using the truth maintenance system, and can be manifest, for
example, when prolonged backtracking rules out all possibilities. The current version of the
TMS does not handle unsatisfiable circularities (1t goes into a loop), as I removed the
occasionally costly check for the presence of such circularities to increase the normal-case
efficiency of the program. A robust implementation would reinstate this check. Step 5 in
Section 3.2 discusses this problem in more detail. '




3.2 The Truth Maintenance Process

The truth maintenance process makes any necessary revisions in the current set of beliefs

when the user adds to or subtracts from the justification-set of a node. Retracting
justifications presents no important problems beyond those of adding justifications, so we
ignore tetractions to simplify the discussion. We first outline the procedure, and then
present it in greater detail. The details will not be crucial in the following, so the casual
reader should read the overview and then skip to Section 4.
' In outline, the truth maintenance process starts when a new justification is added
to a node. Only minor bookkeeping is required if the new justification is invalid, or if it is
valid but the node is already in. If the justification is valid and the node is out, then the
node and its repercussions must be updated. The TMS makes a list containing the node.
and its repercussions, and marks each of these nodes to indicate that they have not been
given well-founded support. The TMS then examines the justifications of these nodes to
see if any are valid purely on the basis of unmarked nodes, that is, purely on the basis of
nodes which do have well-founded support. If it finds any, these nodes are brought in (or
out if all their justifications are invalid purely on the basis of well-founded nodes). Then
the marked consequences of the nodes are examined to see if they too can now be given
well-founded support. Sometimes, after all of the marked nodes have been examined in this
way, well-founded support-statuses will have been found for all nodes. Sometimes, however,
some nodes will remain marked due to circularities. The TMS then initiates a
constraint-relaxation process which assigns support-statuses to the remaining nodes. Finally,
after all this, the TMS checks for contradictions and CP-justifications, performs
dependency-directed backtracking and CP-justification procéssing if necessary, and then
signals the user program of the changes in support-statuses of the nodes involved in truth
maintenance.

In detail, the steps of the algorithm are as follows. We enclose comments in
bracket-asterisk pairs. (E.g. [+ This is a comment. «])

Step I. Adding a new justification: Add the new justification to the node's justification-set
and add the node to the set of consequences of each of the nodes mentioned in the
justification. I the justification is a CP-justification, add the node to the
CP-consequent-list of the consequent of the CP-justification, for use in Step 6. If the
node is in, we are done. If the node is out, check the justification for validity. If
invalid, add to the supporting-nodes either an o node from the inlist, or an in node
from the outlist. If valid, proceed to Step 2. :

Step 2. Updating belicfs required: Check the affected-consequences of the node. If there
are none, change the support-status to in, and make the supporting-nodes the sum of
the inlist and outlist; then stop. Otherwise, make a list L containing the node and its
repercussions, record the support-status of each of these nodes, and proceed to Step 3.
[+ We must collect all the repercussions of the node to avoid constructing circular
arguments which use repercussions of a node in jts supposedly well-founded supporting
argument. ] '
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. Step3 Marking the nodes: Mark each node in L with a support-status of nil, and proceed

to Step 4. [+ Nodes can have a support-status of nil only during truth maintenance.

his mark distinguishes those nodes with well-founded support from those for which

~ well-founded support has not been determined. ]
Step 4. Evaluating the nodes’ Justifications: For each node in L, execute the following

Subprocedure. When all are done, proceed to Step 5.

. Step 4a. Evaluating the justification-set: If the node is either in or out, do nothing.

- Otherwise, keep picking justifications  from the justification-set, first the
- SL-justifications and then the CP-justifications, checking them for well-founded
'- validity or invalidity (to be defined shortly) until either a valid one is found or the
justification-set is exhausted. [« The TMS tries justifications in chronological
order, oldest first. «] If a valid justification is found, then (1) install it as the
.supporting-justification (first converting it to SL form if it is a CP-justification), (2)
install the supporting-nodes as in Step 2, (3) mark the node in, and (4) recursively
perform Step 4a for all consequences of the node which have a support-status of
- nil. If only well-founded invalid justifications are found, mark the node out, install
[its supporting-nodes as in Step I, and recursively perform Step 4a for all
nil-marked consequences of the node. Otherwise, the processing of the node is
temporarily deferred; the subprocedure is finished. [+ An SL-justification is
well-founded valid if each node in the inlist is in and each node of the outlist is out;
it is well-founded invalid if some node of the inlist is ouf or some node of the outlist
s in. CP-justifications are well-founded valid if all inhypotheses are in, all
* outhypotheses are out, and the consequent is in; they are well-founded invalid if all
iﬁhypotheses are in, all outhypotheses are out, and the consequent is out. )

[+ This step may find well-founded supporting-justifications for some nodes in L, but
‘may leave the support-status of some nodes undetermined due to circularities in

potential arguments. These leftover nodes are handled by Step 5 below. If it were not

- for CP-justifications, Step 4 could be dispensed with entirely, as Step 5 effectively

subsumes it. However, we intlude Step 4 both to handle CP-justifications and' to.
improve (we hope) the efficiency of the algorithm by getting the solidly supported

~ - nodes out of the way first. =]
Step

5. Relaxing circularities:  For each node in L, execute the following subprocedure,

On completion, proceed to Step 6.

Step 5a. Evaluating the justification-set: If the node is either in or out, do nothing.
Otherwise, continue to select justifications from the SL-justifications (ignoring the
CP-justifications) and to check them for not-well-founded validity or invalidity [«
which assumes that all nodes currently marked nil will eventually be marked out, as
explained shortly =] until either a valid Justification is found or the justification-set
is exhausted. If all justifications are invalid, mark the node out, install its
supporting-nodes as in Step 1, and recursively perform Step 5a for all nil-marked
consequences of the node. If a valid justification is found, then a special check
must be made to see if the node already has affected-consequences. If the node
does have affected-consequences, then all of them, and the node as well, must be
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re-marked with ni/ and re-examined by the loop of Step 5. [+ We do this because
the procedure may have previously determined the support-status of some ‘other
node on the assumption that this node was out. #] If there are no
affected-consequences,  then install  the  valid justification  as  the
supporting-justification, install the supporting-nodes as in Step 2, mark the node in,
and then recursively perform Step 5a for all consequences of the node which have a
support-status of nil. [« All justifications will be either not-well-founded valid or
invalid; there is no third case. An SL-justification is not-well-founded valid if each
node in the inlist is in and no node of the owrlist is in; otherwise, it is
not-well-founded invalid. This evaluation of nodes assumes that a support-status
of nil is the same as out, i.e. that all currently unassigned nodes will eventually be
marked out. «] ' '
C: If Step 5 terminates, it finds well-founded support-statuses for all nodes in L. It will
not terminate if unsatisfiable circularities exist. These circularities can be detected by
checking to see if a node is its own ancestor after finding a not-well-founded valid
Justification for it in Step 5a. If the node is its own ancestor, an unsatisfiable circularity
exists in which the argument for belief in the node depends on lack of belief in the
node. Unfortunately, this sort of non-termination can also occur with a satisfiable set of
nodes and justifications which requires making changes to nodes not in the list L to
find this satisfiable assignment of support-statuses. For example, if F is in but not in L,
and if G has only the justification (SL (F) (G)) and is in L, then the procedure will
not be able to assign a well-founded support-status to G without going outside L to
change the support-status of F. In consequence, if truth maintenance is done properly
it must be non-incremental in such cases.

This relaxation procedure finds one assignment of support-statuses to nodes, but
there may be several such assignments possible. A more sophisticated system would
incorporate some way in which to choose between these alternatives, since guidance in
what the program believes will typically produce guidance in what the program does.
Some versions of the TMS (eg. [14]) incorporated rudimentary analysis facilities, but
the current version lacks any such ability. It appears that this relaxation step must be
fairly blind in choosing what revision to make. Methods for choosing between
alternate revisions must have some idea of what all the alternate revisions are, and
these are very hard to determine accurately. One can approximate the set of alternate
revisions by revisions including some particular belief, but after several such
approximations this adds up to just trying some partial revision and seeing if it works
out. ] ‘

Step 6. C/zecl\:ing Jor CP-justifications and contradictions: Call éach of the following

subprocedures for each of the nodes in L. and then proceed to Step 7. [ This step
attempts to derive new SL-justifications from CP-justifications, and to resolve any
inconsistencies ap'pearing in the new set of beliefs. Since Step 5 leaves all nodes in L
either in or out, it may now be possible to evaluate some CP-justifications which were
previously unevaluable, and to resolve newly apparent contradictions. ]

Step 6a. Check for CP-justifications: Do nothing if the node is out or has an empty
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CP-consequent list. Otherwise, for each node in the CP-consequent-list, check its
CP-justifications for validity, and if any are valid, derive their currently equivalent
SL-justifications and Justify “the node with the resulting justification. If this
Justification is new and causes truth maintenance (Steps I through 5), start Step 6
over, otherwise return. ‘ ;

Step 6b. Check for contradictions: Ignore the node unless it is in and is marked as a
contradiction, in which case call the dependency-directed backtracking system on
the node. If truth maintenance (Steps I through 5) occurs during backtracking,
start Step 6 over, otherwise return.

[« This step halts only when no new SL-justifications can be computed from

CP-justifications, and no contradictions exist or can be resolved. «]

Step 7. Signalling changes: Compare the current support-status of each node in L with the
initial status recorded in Step 2, and call the user supplied signal-recalling functions
and signal-forgetting functions to signal changes from out to in and from in to out,
respectively. [: The user must supply two global functions which, if not overridden by
a local function that the user might attach to the changed node, are called with the
changed node as the argument. However, if the user has attached local function to the
changed node, the TMS will call that function instead. )

End of the truth maintenance procedure.

For more detail, I recommend the cliapter on data dependencies in [4], which presents a
simplified LISP implementation of a TMS-like program along with a proof of its
correctness.  McAllester [20] presents an alternative implementation of a truth maintenance
system with a cleaner organization than the above, Doyle (15] presents a program listing of
one version of the TMS in an appendix. :

3.3 Analyzing Conditional-Proofs

The Find Independent Support (FIS) procedure computes SL-justifications from valid
CP-justifications by finding those nodes supporting the consequent which do not depend on
the hypotheses. Repeating our earlier explanation of what this means, FIS finds all nodes
N in the foundations of the consequent of the conditional-proof justification such that (1) N
is not one of the hypotheses or one of their repercussions, and (2) N is either an antecedent
of the consequent or an antecedent of some node in the repercussions of the hypotheses.
The in nodes in this set form the inlist of the equivalent SL-justification, and the out nodes
of the set form the outlist of the equivalent SL-justification.

Let (CP C IH OH) be a valid CP-justification, where C is the consequent node,

IH is the list of inhypotheses, and OH is the list of outhypotheses. The steps of FIS are as
follows:

Step 1. Mark the hypotheses: Mark each of the nodes in IH and OH with both an E
(examined) mark and a S (subordinates) mark, then proceed to Step 2. [+ The E mark
means that the node has been examined by the procedure. We use it to make the
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search through the foundations of C efficient. The S mark means that the node is
either one of the hypotheses or a repercussion of one of the hypotheses. ]
Step 2. Mark the foundations: Call the following subprocedure on C, and proceed to Step

Step 2a. Mark the repercussions of the hypotheses 1f the node has an E mark, return.
If the node has no E mark, mark it with the E mark, and call Step 2a on each of
the antecedents of the node. If any of the antecedent nodes is marked with an S
mark, mark the current node with an S mark. Finally, return. [: This step marks
those nodes in both the foundations of C and the repercussions of the hypotheses. -
g .

Step 3. Unmark the foundations: Using a recursive scan, similar to Step 2a, remove the E

marks from the foundations of C and proceed to Step 4.

Step 4. Remark the hypotheses: As in Step 1, mark the hypotheses with E marks, this time

ignoring their S marks. Proceed to Step 5.

Step 5. Collect the net support: Call the following subprocedure on C and proceed to Step

6.

Step ba. Skip repercussions and collect support: 1 the node has an E mark, return.
Otherwise, mark the nede with an E mark. If the node has no S mark, add it to IS
if it is in, and to OS if it is out, then return. If the node has an S mark, execute
step 5a on each of its antecedents, then return. [ This step collects just those nodes
in the foundations of C which are not hypotheses or their repercussions, and which
directly support (are antecedents of) repercussions of the hypotheses. These nodes
are exactly the nodes necessary to make the argument go through for C from the
hypotheses. =]

Step 6. Clean up and return the result: Repeat Step 3, removing both E and S marks,
~remove all marks from the nodes in IH and OH, and return the justification

(SL IS 09).

End of the Find Independent Support procedure.

4. Dependency-Directed Backtracking

When the TMS makes a contradiction node in, it invokes dependency-directed backtracking
to find and remove at least one of the current assumptions in order to make the
contradiction node out. The steps of this process follow. As above, we enclose commentary
in bracket-asterisk pairs ([s, =]). '

Step L. Find the maximal assumptions: Trace through the foundations of the contradiction
node C to find the set S = {4}, .. Ay}, which contains an assumption A if and only if A
is in C's foundations and there is no other assumption B in the foundations of C such
that A is in the foundations of B. [+ We call § the set of the maximal assumptions
underlying C. :]

[ Just as the TMS relies on the problem solving program to point out
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inconsistencies by marking certain nodes as contradictions, it also relies on the problem
solver to use non-monotonic assumptions for any beliefs to which backtracking might
apply. Because the TMS does not inspect the statements represented by its nodes, it
foregoes the ability, for example, to retract premise justifications of nodes. +]
Step 2. Summarize the cause of the inconsistency: 1f no previous backtracking attempt on €
discovered S to be the set of maximal assumptions, create a new node NG, called a
. mogood, to represent the inconsistency of S. [« We call § the nogood-set. ] If S was
encountered earlier as a nogood-set of a contradiction, use the previously created
nogood node. [: Since C represents a false statement, NG represents
SUAD A .. ASHA,L) > false,
or : .
1 —~(SHAD A . A St(4,,)
by a simple rewriting. «]

Justify NG with

2) (CPC § 0O).

L With this justification, NG will remain in even after Step 3 makes one of the
assumptions out, since the ‘CP-justification means that NG does not depend on any of
the assumptions. ]

Step 3. Select and reject a culprit: Select some A;, the culprit, from S. Let Dy .., Dy be the

out nodes in the outlist of A/'s supporting-justification. Select Dj from this set and
justify it with
(3) (SL NG Ay ... 4 Ajsp oo Ap) (D .., Dj—l Dj+1 cee D))
[ If one takes these underlying D nodes as "denials” of the selected assumption, this
step recalls reductio ad absurdum. The backtracker attempts to force the culprit out by
invalidating its supporting-justification with the new justification, which is valid
whenever the nogood and the other assumptions are in and the other denials of the
culprit are out. If the backtracker erred in choosing the culprit or denial, presumably a
future contradiction will involve D; and the remaining assumptions in its foundations.
However, if the outlist of the justification (3) is nonempty, ) ; will be an assumption, of
higher level than the remaining assumptions, and so will be the first to be denied.

The current implementation picks the culprit and denial randomly from the
alternatives, and so relies on blind search. Blind search is inadequate for all but the
simplest sorts of problems, for typically one needs to make a guided choice among the
alternative revisions of beliefs. I will return to this problem in Section 8. :]

Step 4. Repeat if necessary: 1f the TMS finds other arguments so that the contradiction
node C remains in after the addition of the new justification for D, repeat this
backtracking procedure. [+ Presumably the previous culprit A; will nolonger be an
assumption. =] Finally, if the contradiction becomes out, then halt; or if no assumptions
can be found in C's foundations, notify the problem solving program of an
unanalyzable contradiction, then halt.
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Y
End .qf the dependency-directed backtracking précedure.
As an éxample, consider a program scheduling'a meeting, to be held preferably at 10 A.M.
- in either room 813 or 801 '
1 TIMEM) - 1000 (SL O (N-2))
oo N-2 TIME(M) = 1000
- N-3  ROOM(M) =813 (5L O (N-4)
N-4 ROOM (M) = 801 '
. With only these justifications, the TMS makes N-1 and N-3 in and the other two nodes out.
Now suppose a previously scheduled meeting rules out this combination of time and room
for the meeting by supporting a new node with N-1 and N-3 and then declaring this new
node to be a contradiction.
- N-5  CONTRADICTION (SL (N-1 N-3) ()}
~

~ The dependency-directed backtracking system traces the foundations of N-5 to find two
- assumptions, N-1 and N-3, both maximal.

N-6 NOGOOD N-1 N-3 (CPN-5 (N-1N-3) () - here= (SL () ())
N-4 ROOM (M) = 881 (SL (N-6 N-1} (})

. The backtracker creates N-6 which means, in accordance with form (1) of Step 2,

N ~{TIME(M) = 1888 A ROOM(M) = 813)

~and justifies N-6 according to form (2) above. It arbitrarily selects N-3 as the culprit, and

justifies N-3's only out antecedent, N-4, according to form (3) above. Following this, the
TMS makes N-1, N-4, and N-6 in, and N-2, N-3, and N-5 out. N-§ has a CP-justification
equivalent to a premise SL-justificafion, since N-5 depends directly on the two assumptions
N-1 and N-3 without any additional intervening nodes.

A further rule now determines that room 80l cannot be used after all, and creates

another contradiction node to force a different choice of room. o

N-7 CUNTRADICTIUN (SL (N-4) () -
N-8 NOGOOD N-1 (CPN-7 (N-1) (D) - here = (SL (N-B) ()
N-2 '

TIME(M) = 1000 (SL (N-8) O}

_ Tracing backwards from N-7 through N-4, N-6, and N-1, the backtracker finds that the
o~ - contradiction depends on only one assumption, N-1. It creates the nogood node N-8,
' : Justifies it with a CP-justification, in this case equivalent to the SL-justification
(SL (N-B) ()} since N-7's foundations contain N-6 and N-1's repercussions don’t. The
loss of belief in N-1 carries N-5 away as well, for the TMS makes N-2, N-3, N-6, and N-8 in,

and N-1, N-4, N-5, and N-7 our. '
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5, Summarizing Arguments

Long or extremely detailed arguments are usually unintelligible. When possible, able
- expositors make their explanations intelligible by structuring them into clearly separated
levels of detail, in which explanations of major points consist of several almost-major points,
nd so on, with each item explained in terms of the level of detail proper to the item.
.Structuring arguments in this way serves much the same purpose as structuring plans of
~action into levels of detail and abstraction. Users of the TMS, or any other means for
recording explanations, must take care to convert raw explanations into structured ones if
“the explanations lack structure initially. Consider, as an exaggerated example, a centralized
~ polling machine for use in national elections. At the end of Election Day, the machine
reports that john F. Kennedy has won the election, and when pressed for an explanation of
this decision, explains that Kennedy won because Joe Smith voted for him, and Fannie
- Jones voted for him, and Bert Brown voted for him, et cetera, continuing in this way for
many millions of voters, pro and con. The desired explanation consists of a summary total
of the votes cast for Kennedy, Nixon, and the other candidates. If pressed for further
_ explanations, breakdowns of these totals into state totals follow. The next level of
- explanation expands into city totals, and only if utterly pressed should the machine break
-~ the results into precincts or individual voters for some place, say Cook County.
e One can summarize the arguments and explanations recorded in the TMS by
using conditional-proofs to subtract nodes representing “low-level” details from arguments.
Summarizations can be performed on demand by creating a new node, and justifying this
~..hode with a CP-justification mentioning the node to be explained as its consequent, and the
_ set of nodes representing the unwanted low-level beliefs as its in and outhypotheses. The

effective explanation for the new node, via a SL-justification computed from the

CP-justification, will ‘consist solely of those high-level nodes present in the well-founded
argument being summarized. v
- Explanations can be generalized or made more abstract by this device as well, by
justifying the original node in terms of the new node, or by justifying the original node
~with the new SL-justification computed for the new node. This new Justification will not
mention any of the low-level details subtracted from the original argument, and so will
support the conclusion as a general result, independent of the particular low-level details
used to derive it. For example, an electronic circuit analysis program might compute the
voltage gain of an amplifier by assuming a typical input voltage, using this voltage to
compute the other circuit voltages including the output voltage, computing the voltage gain
as the ratio of the output voltage to the input voltage, and finally justifying the resulting
value for the gain using a conditional-proof of the output voltage value given the
hypothesized input Voltage value. This would leave the gain value depending only on
characteristics of the circuit, not on the particular input voltage value used in the
computation. : :
’ Returning to the election example above, summarizing the election result’ by
subtracting out all the individual voter's ballots leaves the argument empty, for presumably
the intermediate results were computed solely in terms of the individual ballots. In order to
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~_ Summarize an explanation, one must know the form of the desired summarization. While
~ this analytical knowledge is frequently unavoidable, we typically can reduce its scope by
introducing structure into arguments during their creation. To illustrate this point, we
~ explain how one simplé structuring technique works smoothly with so-called structured

descriptions to easily produce perspicuous explanations. ‘ R
" For this discussion, we take a structured  description to consist of a
- description-item (sometimes termed a "node” in the knowledge-representation literature; but
" we reserve this term for TMS nodes), a set of roles-items representing the parts of the
description, and a set of local inference rules. These roles frequently represent entities
~associated with the description, For example, a PERSON description may have a
- MOTHER role, and an ADDER description may have roles for ADDEND, AUGEND, and
- SUM.
o To structure explanations, we draw an analogy between the parts of a description
and the calling sequence of a procedure.  We associate one TMS node with each
description-item and two TMS nodes with each role-item.  We will use the node associated
with a description-item to mark the arguments internal to the description, as explained
shortly. We separate the nodes for role-items into two sets, corresponding to the external
calling sequence” and the internal "formal parameters” of the procedure. We use one of the
nodes associated with each role-item to represent the external system's view of that
~ "argument” to the procedure call, and the other node associated with the role-item to
represent the procedure’s view of that "formal parameter” of the procedure. Then we
organize the problem solving program so that only the procedure and its internal rules use

. or justify the internal set of nodes, and that all other descriptions and procedures use or

justify only the external set of nodes. The motivation for this separation of the users and
Justifiers of two sets of nodes into internal users and external users is that we can structure
arguments by transmitting information between these two sets of nodes in a special way, as
we now describe. :

"Let D be the node associated with the description, and let E; and I; be
corresponding external and internal role-item nodes. We justify D to indicate the reason for
the validity of the description. To distinguish internal arguments from external arguments,
we justify I; with

) o (SL(DE) 1), |

- This makes all portions of arguments internal to the description depend on D. With the
internal arguments marked in this way, we can separate them from other arguments when
transmitting information from the internal nodes to the external nodes. We justify E; with

- (SUM 1, (D) ), |

This justification subtracts all. internal arguments from the explanation of E;, and replaces
them with the single node D.

- For example, suppose the hypothetical voting program above computed the vote
totals for Somewhere, Illinois by summing the totals from the three precincts A, B, and C.
The program isolates this level of the computation from the precinct computations by using
an ADDER description to sum these subtotals. : '
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* ADDER DESCRIPTION AD Somewhere, 111,

N-1
N-2 v EXTERNAL A OF AD = 500 oo Precinct A
‘N-3 EXTERNAL B OF AD = 288 ces ~ Precinct B
N-4

EXTERNAL C OF AD = 700 coe Precinct C

ere the ébtﬁpuiétions for the precinct totals justify the three precinct totals. The program

‘then transmits these values to nodes representing the internal components of the adder
- description, and a local rule of the description computes the value of the sum component.

N-5  INTERNAL A OF AD = 580 (SL (N-1 N-2) 0))
- N-B INTERNAL B OF AD = 209 (SL (N-1N-3) (1)
N-7 INTERNAL C OF AD = 708 (SL (N-1 N-4) ())
N-8 A+B OF AD = 790 (SL (IN-5N-B) ) intermediate result
N-3 INTERNAL SUM OF AD = 1488 (SL (N-7 N-8) ()

The program transmits this value for the sum to the node representing the external form of

the result.

-N_—IB ~ EXTERNAL SUM OF AC = 1488 (SUMN-3 (N-1) ())

here = (SL (N-1 N-2 N-3 N-4) ())

The SUM-justification for N-18 subtracts all dependence on any internal computations
made by the adder, N-1. The resulting explanation for N-18 includes only N-1, N-2, N-3,

~and N-4. In cases involving more complex procedures than adders, with large numbers of

internal nodes and computations of no interest to the external system, the use of this
technique for structuring explanations into levels of detail might make the difference
between an intelligible explanation and an unintelligible one. -

6. Dialectical Arguments

: Quine [41] has stressed that we can reject any of our beliefs at the expense of making

suitable changes in our other beliefs. For example, we either can change our beliefs to
accomodate new observations, or can reject the new. observations as hallucinations or
mistakes. Notoriously, philosophical arguments have argued almost every philosophical
conclusion at the expense of other propositions. Philosophers conduct these arguments in a
discipline called dialectial argumentation, in which one argues for a conclusion in two steps;
first producing an argument for the conclusion, then producing arguments against the
arguments for the ‘opposing” conclusion. In this discipline, each debater continually
challenges those proposed arguments which he does not like by producing new arguments
which either challenge one or more of the premises of the challenged arguments, or which
challenge one or more steps of the challenged argument. * We can view each debater as
following this simplified procedure: ’ '
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Step 1. Make an argument. Put forward an argument A for a conclusion based on premises
thought to be shared between the debaters. ‘
Step 2. Reply to challenges: When some debater challenges either a premise or a step of A
- with an argument B, either () make a new argument for the conclusion of A, or (2)
make an argument for the challenged premise or step of A by challenging one of the
© “premises or steps of B.
~ Step 3. Repeat: Continue to reply to challenges, or make new arguments.

In this section .we show how to organize a problem solving program’s use of the TMS into
the form of dialectical argumentation.  Several important advantages and consequences
motivate this. As the first consequence, we can reject any belief in a uniform fashion, simply
- by producing a new, as yet unchallenged, argument against some step or premise of the
argument for the belief. We were powerless to do this with the basic TMS mechanisms in
any way other than physically removing justifications from the belief system. T his ability
‘entails the second consequence, that we must explicitly provide ways to choose what to
believe, to select which of the many possible revisions of our beliefs we will take when
confronting new information. Quine has urged the fundamentally pragmatic nature of this
question, and we must find mechanisms for stating and using pragmatic belief revision
_rules. As the third consequence of adopting this dialectial program organization, the belief
system becomes additive. The system never discards arguments, but accumulates them and
uses them whenever possible. This guides future debates by keeping them from repeating
past debates. But the arguments alone comprise the belief system, since we derive the
current set of beliefs from these arguments. Hence all changes to beliefs occur by adding
_ new arguments to a monotonically growing store of arguments. Finally, as the fourth
consequence, the inference system employed by the program becomes modular. We charge
each component of the inference system with arguing for its conclusion and against
opposing conclusions. On this view, we make each module be a debater rather than an
inference rule. X
: We implement dialectical argumentation in the TMS by representing steps of
“arguments both by justifications and by beliefs. To allow us to argue against argument
steps, we make these beliefs assumptions.
‘Suppose some module wants to justify node N with the justification (SL 1 0).
Instead of doing this directly, the module creates a new node, /, representing the statement
that / and O SL-justify N; in other words, that belief in each node of / and lack of belief in
each node of O constitute a reason for believing in N. The module justifies N' with the
justification (SL: J+/ O}, where J+/ represents the list ] augmented by /. The TMS will
make N in by reason of this Justification only if J is in. The module then creates another
new node, -/, repr'esenting the statement that ] represents a challenged justification.
Finally, the module justifies J with the justification (SL () (=J1). In this way, the
module makes a new node to represent the justification as an explicit belief, and then
assumes that the justification has not been challenged.
For example, suppose a module wishes to conclude that X =3 from X+Y=4 and Y-=I.
In the dialectial use of the TMS, it proceeds as follows:
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o X+Y=l‘ L)

S ¥=1 .o :
X=3 (SL (N-4 N-1 N-2) )
(N-1) AND (N=2) SL-JUSTIFYN-3  (SL () (N-5))
_N-4 1S CHALLENGED _ no justifications yet

- Since N-5 has no justifications, it is out, so N-4, and hence N-3, are in.
: In this discipline, conflicts can be resolved either by challenging premises of
arguments, or by challenging those justifications which represent argument steps. Actually,
~premise justifications for nodes now become assumptions, for the explicit form of the
premise justification is itself assumed. In either case, replies to arguments invalidate certain
justifications by justifying the nodes representing the challenges. The proponent of the
~ challenged argument can reply by challenging some justification in the challenging
argument. ’ .
' This way of using the TMS clearly makes blind dependency-directed backtracking
useless, since the number of assumptions supporting a node becomes very large. Instead, we
‘must use more refined procedures for identifying certain nodes as the causes of
inconsistencies. I will return to this issue in Section 8.

 7. bModels of Other's Beliefs

Many problem solving tasks require us to reason about the beliefs of some agent.

- For example, according to the speech act theory of purposeful communication, I must reason
about your beliefs and wants, and about your beliefs about my beliefs and wants. [5, 49)

This requirement entails the ability to reason about embedded belief and want spaces, so

called because these are sets of beliefs reported as compound or embedded statements of

- belief, for example, "I believe that you believe that it is raining.” In fact, I must frequently

~reason about my own system of beliefs and wants. In planning, I must determine what |
will believe and want after performing some actions, and this requires my determining how
the actions affect my beliefs and wants. In explaining my actions, I must determine what I
believed and wanted at some time in the past, before performing the intervening actions.
- And when choosing what to do, want or believe, I must reason about what [ now am doing,
- Wanting, or believing.
o In making a problem solver which uses such models of belief systems, we face the
_ problem of how to describe how additions to these models affect the beliefs contained in
them, how belief revision proceeds within a model of a belief system. It would be extremely
convenient if the same mechanism by which the program revises its own beliefs, namely the
TMS, could be applied to revising these models as well. Fortuitously, the mechanism of
representing justifications as explicit beliefs introduced in Section 6 lets us do just that.
_ ~ To represent a belief system within our own, we use beliefs in our own system
about the beliefs and justifications in the other system. We then mirror the other system’s
Justifications of its beliefs by making corresponding justifications in our system’s TMS of
our beliefs about the other system's beliefs. For each node N in an agent U’s belief system,
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i

| ‘we m‘a:\k‘e‘ two nodes, UB[N] and ~UBIN], one representing that U believes in N, and the
~other representing that U doesn't believe in N. We justify =UB[N] with

) L (SL O (UBIND)), thus assuming that all nodes in U’s system are out until given valid
~ justifications. For each SL-justification J (= (SL 1 0)) for N in U’s belief system, we make

a node UB(/] representing that U's belief system contains /. We then justify UB[N] with

the justification (SL L ()), where L contains the node UB[/], the nodes UB[M] for each

~ node M in /, and the nodes ~UB[M] for each node M in O. A '
~ " We might view this technique as embodying an observation of traditional modal
- logics of belief. Most of these logics include an axiom schema about the belief modality Be

~ of the form

Bel (p:q):(BeI (p)oBet (q)).

When we mirror embedded justifications with TMS$ justifications, we are making an
inference analogous to the one licensed by this axiom.

o For example, suppose the program believes that an agent U believes A, that U
'does not believe B, and that U believes C because he believes A and doesn't believe B. If we
- looked into U’s TMS we might see the following nodes and justifications.

C (SL (A) (B))

. Our program represents this fragment of U's belief system as follows:

N-1 uB Al von UB means "U believes"
N-2 -UB[B) (SL () (N-3)) :

N-3 uB(B] ) © no justification yet
N-4 UB[(A) AND (B} SL-JUSTIFY C] cee

N-5 UBICI - (SL {N-4 N-1 N-2) ()

In this case, N-1, N-2, N-4, and N-5 are in, and N-3 is out. If the program revises its beliefs
so that N-2 is out, say by the addition of a new justification in U’s belief system,

N-5  UBI... SL-JUSTIFY B]
N-2 uB (B] (SL (N-5...) O)
then the TMS will make N-5 out as well. In this way, changes made in particular beliefs in
the belief system lead automatically to other changes in beliefs which represent the implied
changes occurring within the belief system.

Of course, we can repeat this technique at each level of embedded belief spaces.
To use this technique we must require the inference rules which draw conclusions inside a
belief space to assert the corresponding beliefs about justifications for those conclusions.
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- One frequently assumes that others have the same set of inference rules as oneself, that they
- €an draw the same set of inferences from the same set of hypotheses. This assumption
- amounts to that of assuming that everyone operates under the same basic "program” but
- has different data or initial beliefs. 1 am currently exploring a formalization of this
ag;@mption in an “introspective” problem solver which has a description of itself as a
program, and which uses this self-description as the basis of its models of the behavior of
© ' others. [16]

: 8 A;sumptions and the Problem of Control

~ How a problem solver revises its beliefs influences how it acts. Problem solvers typically

- revise their beliefs when new information (such as the expected effect of an action just taken

or an observation just made) contradicts previous beliefs. These inconsistencies may be met

by rejecting the belief that the action occurred or that the observation occurred. This might

be thought of as the program deciding it was hallucinating. Sometimes, however, we choose

to reject the previous belief and say that the action made a change in the world, or that we

- had made some inappropriate assumption which was corrected by observation. Either of

these ways of revising beliefs may be warranted in different circumstances. For example, if

during planning we encounter a contradiction by thinking through a proposed sequence of

~ actions, we might decide to reject one of the proposed actions and try another action. On

the other hand, if while carrying out a sequence of actions we encounter a contradiction in

our beliefs, we might decide that some assumption we had about the world was wrong,

~_rather than believe that we never took the last action. As this example suggests, we might

choose to revise our beliefs in several different ways. Since we decide what to do based on

~ what we believe and what we want, our choice of what to believe affect what we choose to
" do. : o :
o How can we guide the problem solver in its choice of what to believe? It must
make its choice by approximating the set of possible revisions by the set of assumptions it
can change directly, for it cannot see beforehand all the consequences of a change without
actually making that change and seeing what happens. We have studied two means by

- Which the problem solver can decide what to believe, the technique of encoding control
information into the set of justifications for beliefs, and the technique of using explicit
choice rules. Both of these approaches amount to having the reasoner deliberate about

what to do. In the first case, the reasoning is "canned.” In the second, the reasoning is

performed on demand. ,

We encode some control information into the set of justifications for beliefs by
using patterns of non-monotonic justifications. We can think of a non-monotonic
justification (SL ()" (N-2 N-3)) for N-1 as suggesting the order in which these nodes
should be believed, N-1 first, then N-2 or N-3 second. On this view, each non-monotonic
justification contributes a fragment of control information which guides how the problem
solver revises its beliefs. In Sections 8., 8.2, and 8.3 we illustrate how to encode several
standard control structures in patterns of justifications, namely default assumptions,
sequences of alternatives, and a way of choosing representatives of equivalence classes useful




in controlling propagation of constraints (a deduction technique presented by [53)). These
examples should suggest how other control structures such as decision trees or graphs might
be encoded. ‘

Even with these fragments of control information, many alternative revisions may
appear possible to the problem solver. In such cases, we may wish to provide the problem
solver with rules or advice about how to choose which revision to make. If we are clever
(or lazy), we might structure the problem solver so that it uses the same language and
mechanisms for these revision rules as for rules for making other choices, such as what
action to perform next, how to carry out an action, or which goal to pursue next. In [11] my
colleagues and 1 incorporated this suggestion into a general methodology which we call
explicit control of reasoning, and implemented AMORD, a language of pattern-invoked
procedures controlled by the TMS. T am currently studying a problem solver architecture,
called a reflexive interpreter, in which the problem solver’s structure and behavior are
themselves domains for reasoning and action by the problem solver [I6]. This sort of
interpreter represents its own control state to itself explicitly among its beliefs as a task
network similar to that used in McDermott's [34]) NASL, in which problems or intentions are
represented as rasks. The interpreter also represents to itself its own structure as a program
by means of a set of plans, abstract fragments of task network. It represents the important
control state of having to make a choice by creating a choice task, whose carrying out
involves making a choice. The interpreter can then treat this choice task as a problem for
solution like any other task. In this framework, we formulate rules for guiding belief
revision as plans for carrying out choice tasks. We index these revision plans by aspects of
the problem solver state; for example, by the historical state, by the control state, by the state
of the problem solution, by the domain, by the action just executed, and by other’
circumstances.  Each revision plan might be viewed as a specialization of the general
dependency-directed backtracking procedure. Such refinements of the general backtracking
procedure take the form of the beliefs (and thus the problem solver state) into account when
deciding which assumptions should be rejected. T will report the details of my investigation
in my forthcoming thesis.

8.1 Default Assumptions

Problem solving programs frequently make specifications of default values for the quantities
they manipulate, with the intention either of allowing specific reasons for using other ‘values
to override the current values, or of rejecting the default if it leads to an inconsistency. (See
(45] for a lucid exposition of some applications.) The example in Section 1.2 includes such a
default assumption for the day of the week of a meeting.

To pick the default value from only two alternatives, we justify the default node
non-monotonically on the grounds that the alternative node is out. We generalize this
- binary case to choose a default from a larger set of alternatives. Take § = {A} ... A} to be
the set of alternative nodes, and if desired, let G be a node which represents the reason for
making an assumption to choose the default. To make A; the default, Justify it with
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(SLAG) Uy uv Ay Apyy e A,

If no additional information about the value exists, none of the alternative nodes except A;

- will have a valid justification, so A; will be in and each of the other alternative nodes will

be out. Adding a valid Justification to some other alternative node causes that alternative to
become in, and invalidates the support of A, so A4; goes out. When analyzing a
contradiction derived from A;, the dependency-directed backtracking mechanism recognizes
A; as an assumption because it depends on the other alternative nodes being out. The
backtracker may then justify one of the other alternative nodes, say Aj. causing A; to go out.
This backtracker-produced justification for 4 will have the form
(SL <various nodes> <remainder nodess)

where <remainder nodes> is the set of Ay's remaining in S after A;and 4 are taken away.
In effect, the backtracker removes the default node from the set of alternatives, and makes a
new default assumption from the remaining alternatives. As a concrete example, our
scheduling program might default a meeting day as follows:

1 PREFER LI. TOM. ORF.

2 DAY (1) = MONDAY

-3 DAY (1) = LIEDNESDAY {SL (N-1} (N-2 N-4))
4 DAY (M) = FRIDAY

The program assumes Wednesday to be the day of the meeting M, with Monday and
Friday as alternatives. The TMS will make Wednesday the chosen day until the program
gives a valid reason for taking Monday or Friday instead

We use a slightly different set of justifications if the complete set of alternatives
cannot be known in advance but must be discovered piecemeal. This ability to extend the
set of alternatives is necessary, for example, when the default is a number, due to the large
set of possible alternatives. Retaining the above notation, we represent the negation of
St(4;) with a new node, ~A;. We arrange for 4, to be believed if —A; is out, and set up
Justifications so that if Aj is distinct from 4, Aj supports ~A4;. We justify A; with

(SL (G) (-4))),
and justify —4; with a justification of the form
(5L (4) )

for each alternative A, distinct from A, As before, A; will be assumed if no reasons for
using any other alternative exist. Furthermore, new alternatives can be added to the set §
simply by giving —4; a new justification corresponding to the new alternative. As before, if
the problem solving program justifies an unselected alternative, the TMS will make the
default node out. Backtracking, however, has a new effect. If A; supports a contradiction,
the backtracker may justify —-/If' $0 as to make A; become out. When this happens, the TMS
has no way to select an alternative to take the place of the default assumption. The
extensible structure requires an external mechanism to construct a new default assumption




-39 -

whenever the current default is ruled out. For example, a family planning program might
make assumptions about the number of children in a family as follows:

N-1 PREFER 2 CHILDREN Ve
N-2 #-CHILOREN(F) = 2 (SL (N-1) (N-3))
N-3 #-CHILDREN(F) = 2 (SL (N-4) ()

(SL (N-5) (1)

(SL (N-B) (1)

_ (5L (N-7) )
N-4 H-CHILDREN(F) = 8
N-5 #-CHILDREN(F) =1
N-6 H-CHILDREN(F) =3
N-7 H-CHILOREN(F) = 4

With this system of justifications, the TMS would make N-2 in. If the planning program
finds some compelling reason for having 5 children, it would have to create a new node to
represent this fact, along with a new justification for N-3 in terms of this new node.

8.2 Sequences of Alternatives

Linearly ordered sets of alternatives add still more control information to a default
assumption structure, namely the order in which the alternatives should be tried. This
extra heuristic information might be used, for example, to order selections of the day of the
week for a meeting, of a planning strategy, or of the state of a transistor in a proposed
circuit analysis. '

We represent a sequence of alternatives by a controlled progression of default
assumptions. Take {4}, .., 4,} to be the heuristically-ordered sequence of alternative nodes,
and let G be a node which represents the reason for this heuristic ordering. We justify each
A; with '

(SLAG -4, p (=4,
Ay will be selected initially, and as the problem solver rejects successive alternatives by
Justifying their negations, the TMS will believe the successive alternatives in turn. For
example, our scheduling program might have:

N-1 SEQUENCE N-2 N-4 N-B -

N-2 DAY (M) = LIEDNESDAY (SL (N-1) (N-3))
N-3 DAY (M) = LIEDNESDAY

N-4 DAY (M) = THURSDAY (SL (N-1 N-3) (N-5))
N-5 DAY (M) = THURSDAY .

N-6 DAY (M) = TUESDAY (SL (N-1 N-5) ())

This would guide the choice of day for the meeting M to Wednesday, Thursday and




Tuesday, in that order. :
Note that this way of sequencing through alternatives allows no direct way for the
problem solving program to reconsider previously rejected alternatives. If, say, we wish to
use special case rules to correct imprudent choices of culprits made by the backtracking
system, we need a more complicated structure to represent linearly ordered alternatives. We
create three new nodes for each alternative Ai PA;, which means that A; is a possible
alternative, NS A;, which means that A; is not the currently selected alternative, and ROA4;,
which means that A; is a ruled-out alternative. We suggest members for the set of
alternatives by justifying each PA; with-the reason for including 4; in the set of
alternatives. We leave each ROA; unjustified, and justify each A;and NS A; with
Ay (SL (PA; NSA; ... NSA_ ) (ROA)) '
NSA:  (SL O (PAY)
(SL (RO ).

Here the justification for A;is valid if and only if A; is an alternative, no better alternative
is currently selected, and A; is-not ruled out. The two justifications for NSA; mean that
either A; is not a valid alternative, or that Apis ruled out. With this structure, different
parts of the problem solver can independently rule in or rule out an alternative by
Justifying the appropriate 4 or ROA node. In addition, we can add new alternatives to the
end of such a linear order by constructing justifications as specified above for the new
nodes representing the new alternative,

8.3 Equivalence Class Representatives

Problem solvers organized to encourage modularity and additivity frequently contain
several different methods or rules which compute values for the same quantity or
descriptions for the same object. We call these multiple results coincidences, after [9, 59). If
the several methods compute several. values, we can often derive valuable information by
checking these competing values for consistency.  With polynomials as values, for example,
this consistency checking sometimes allows solving for the values of one or more variables.
After checking the coincidence for consistency and new information, prudent programs
normally use only one of the suggested values in further computation, and retain the other
values for future reference. The various values form an equivalence class with respect to the
propagation of .the value in other computations, and one of the values in this class must be
chosen as the representative for propagation. We could choose the representative with a
default assumption, but this would lead to undesirable backtracking behavior. For instance,
if the backtracking system finds the equivalence class representative involved in an
inconsistency, then it should find some way of rejecting the representative as a proper value,
rather than letting it stand and selecting a new representative. This means the backtracker
should find the choice of representative invisible, and this requirement rules out using
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: Eithef the default assumption or sequence of alternatives representations.

- - We select equivalence class representatives by using conditional-proof justifications
~'to hide the choice mechanism from the backtracking system. For each node R; representing
~a equivalence class member, we create two new nodes: PR., which means that R; is a

~ possible representative, and SR;, which means that R, is the selected representative. Rather

. than the program deriving justifications for the R nodes directly, it should instead suggest

v these values as possible representatives by justifying the corresponding PR nodes instead.

| » ‘With this stipulation we justify each R; and SR; as follows:

SR (SL (PR) (SR, ... SR, )
Ry (CPSR; ) (SR ... SR, 1))
o Here the justification for SR; means that R; has been suggested as a member of the

~ equivalence class, and that no other member of the class has been selected as the
representative. This justification constitutes a default assumption of R; as the selected

representative. However, the justification for R; means that the reason for believing R; will
‘be the reason for both suggesting and selecting R; (the argument for SR;). minus the reason

- for selecting it (the default assumption), thus leaving only the reason for which R; was

- suggested, namely the antecedents of PR;. In this way the equivalence class selector picks
alternatives as the representative in the order in which they were added to the set of
‘alternatives, while hiding this selection from the backtracking system.
' For example, suppose a commodity analysis program derives two values for the
~ predicted number of tons of wheat grown this year and notices this coincidence.

N-1 SUGGEST WHEAT (1979) = 5)(@3880 (SL (R-57...) 0)
N-2  SUGGEST WHEAT (1979) = 7Y (SL (R-60 ...) ()
N-3

Y = (5X+3000) /7 - (SL (N-1N-2) (1)

These suggested values correspond to possible equivalence class representatives. To avoid
using both values in further computations, the program chooses one.

N-4 N-1 SELECTED (SL (N-1) ()
N-5 WHEAT (1979) = 5X+3000 (CPN-4 OO ()

here = (SL (N-1) ())
N-6 N-2 SELECTED (SL (N-2) (N-4))
N-7 WHEAT (1979) = 7y (CP N-B6 () (N-4))

Since N-1 is in and it is the first in the ordering imposed by the selection Justifications, it is
selected to be the value propagated, and the TMS makes N-4 and N-5 in. Suppose now
that some contradiction occurs and has N-5 in its foundations, and that the
dependency-directed  backtracker denies some assumption in  N-1's  foundations.
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. Consequently, the TMS makes N-1 (and N-3) out, and N-6 and N-7 in, with N-7's
- CP-justification equivalent in this case to (SL IN-2) 0).  Thus the pattern of
- Jjustifications leads 'to selecting the second suggested value. If the program then finds a

.

third value,

. SUGGEST WHEAT (1979) - 4X+100 L

N-9 Y- aX+100) /7 (SL (N-2N-8) ()
N-18  N-8 SELECTED (SL (N-8) (N-4 N-6))
N-11  WHEAT(1979) = 4X+108 | (CPN-18 () (N-4 N-6))

it will derive any new information possible from the new value, then add the new value to .
~ the list of waiting alternative values for propagation. In this case, N-8 and N-3 are in, and

N-18 and N-11 are out.
9. Ekperience and Extensions

We have experience with the TMS in a number of programs and applications. |

implemented the first version of the TMS in September 1976, as an extension (in several
_ways) of the "fact garbage collector” of Stallman and Sussman’s [53] ARS electronic circuit

analysis program. After that, | took the program through many different versions. Howard
Shrobe and James Stansfield also made improvements in the program. Truth maintenance

~ techniques have been applied in several other circuit analysis and synthesis programs,
“including SYN [12] and QUAL [10], and in Steele and Sussman’s [56] constraint language.

We organized our rule-based problem solving system AMORD [l1] around the TMS, and

. ‘used AMORD in developing a large number of experimental programs, ranging from
blocks world problem solvers to circuit analysis programs and compilers. McAllester [31]

uses his own truth maintenance system in a program for symbolic algebra, electronic circuit

~ analysis, and programming. In Addition, Weiner [62] of UCLA used AMORD to
~implement an explanation system in studying the structure of natural explanations, and
~Shrobe [50] uses AMORD in a program-understanding system.

Several researchers have extended the basic belief-revision techniques of the TM$S
by embedding them in larger frameworks which incorporate time, certainty measures, and

~ other problem solving concepts and processes. Friedman [19] and Stansfield [54] merge

representations of continuous degrees of belief with truth maintenance techniques. London
[29] and Thompson [60) add chronological contexts to a dependency-based framework.
London also presents many detailed examples of the use of dependency networks in the
modelling component of a problem solving program.

Improvements in the basic truth maintenance process have also been suggested.
McAllester [20] describes a relative of the TMS based on a three-valued belief set, with
multi-directional clauses as Justifications. Thompson [60) generalizes the node-justification
structure of the TMS to non-clausal arguments and justifications. Shrobe (in [50] and in
personal communications) has suggested several ways in which the problem solver can
profit by reasoning about the structure of arguments, particularly in revising its set of goals




after solving some particular goal. These ideas suggest other improvements including (1)
modification of the TMS to make use of multiple supporting-justifications whenever several
well-founded arguments can be found for a node, (2) use of the TMS to signal the .problem
solver whenever the argument for some node changes, and (3) development of a language
for describing and efficiently recognizing patterns in arguments for nodes, well-founded or
otherwise.  How to incorporate truth maintenance techniques into  "virtual-copy”
representational systems [17] also seems worth study.

The TMS continually checks CP-justifications for validity, in hopes of deriving
new equivalent SL-justifications. This makes the implementation considerably more
complex than one might imagine. | expect that a simpler facility would be more generally
useful, namely the TMS without CP-justifications, but with the Find Independent Support
procedure isolated as a separate, user invoked facility. Practical experience shows that in
most cases, ane only expects the CP-justification to be valid in the situation in which it is
created, so it seems reasonable to make the user responsible for calling FIS directly rather
than letting the TMS do it.

Finally, a cluster of problems center about incrementality.  The TMS normally
avoids examining the entire data base when revising beliefs, and instead examines only the
repercussions of the changed nodes. However, apparently unsatisfiable circularities can
occur which require examining nodes not included in these repercussions. In another sense
of incrementality, some circumstances can force the TMS to examine large numbers of
nodes, only to leave most of them in their original state after finding alternate non-circular
arguments for the supposedly changed nodes. Latombe (27] has investigated ways of
avoiding this, but these difficulties deserve further study.  One particularly enticing
possibility is that of adapting the ideas of Baker's [1] real-time list garbage-collection
algorithms to the case of truth maintenance.

10. Discussion

The TMS solves part of the belief revision problem, and provides a mechanism for making
non-monotonic assumptions.  Artificial intelligence researchers recognized early on that Al
systems must make assumptions, and many of their systems employed some mechanism for
this purpose. Unfortunately, the related problem of belief revision received somewhat less
study. Hayes [21] emphasised the importance of the belief revision problem, but with the
exception of Colby [6], who employed a belief system with reasons for some beliefs, as well
as measures of credibility and emotional importance for beliefs, most work on revising
beliefs appcars to have been restricted to the study of backtracking algorithms operating on
rather simple systems of states and actions. The more general problem of revising beliefs
based on records of inferences has only been examined in more recent work, including Cox's
(7] graphical deduction system, Crocker's [8] verification system, de Kleer's [9] electronic
circuit analysis program, Fikes' (18] deductive modelling system, Hayes' [22] travel planning
system, Katz and Manna's [24] program modification system, Latombe's [26, 27] design
program, London’s [29] planning and modelling system, McDermott's (32, 23, 24] language
understanding, data base, and design programs, Moriconi’s [29] verification system, Nevins'
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[40] theorem prover, Shrobe’s [50] program understanding  system, the
MDS/AIMDS/BELIEVER programs [47, 51, 52], and Sussman and Stallman’s [53, 59)
electronic circuit analysis programs. Berliner’s [3] chess program employed "lemmas” for

~ - recording interesting facts about partial board analyses reminiscient of conditional-proofs,

but the program derives these lemmas through a perturbation technique rather than
through analysis of arguments and justifications. '
. In addition, the philosophical literature includes many treatments of belief
~ revision and related problems. Many writers study evaluative criteria for judging which
- belief revisions are best, based on the connections between beliefs. Quine and Ullian [43)
survey this area. Other writers study the problems of explanations, laws, and counterfactual
. conditionals. Rescher [44] builds on Goodman's [20) exposition of these problems to present
~a framework for belief revision motivated by Quine’s [41, 42] "minimum mutilation”
principle. Lewis [28] and Turner [61] propose means for filling in this framework. Scriven
[48] relates these questions to the problem of historical explanation in a way quite
reminiscient of our non-menotonic arguments for beliefs. Suppes [57] surveys work on
learning and rational changes of belief. The view of reasoning proposed in Section 11 is
connected with many topics in the theories of belief, action, and practical reasoning. Minsky
- [37] presents a theory of memory which includes a more general view of reasoning.
Kramosil [25] initiated the mathematical study of non-monotonic inference rules,
but reached pessimistic conclusions. More recently, McDermott and | [35] attempt to
. formalize the logic underlying the TMS with what we call non-monotonic logic. We also
survey the history of such reasoning techniques. Weyhrauch [63] presents a framework for

" meta-theoretic reasoning in which these reasoning techniques and others can be expressed.

Hintikka (23] presents a form of possible-world semantics for modal logics of knowledge and
- belief. Moore [38] combines this semantics for knowledge with a modal logic of action, but
ignores belief and belief revision. :
One might hope to find clues about how to organize the TMS’s analysis of
potential arguments for beliefs by studying what types of arguments humans find easy or
difficult to understand. Statman [55) indicates that humans have difficulty following
- arguments which have many back-references to distant statements. He attempts to formalize
some notions of the complexity of proofs using measures based on the topology of the proof
- graph. Wiener [62] catalogues and analyzes a corpus of human explanations, and finds that
most exhibit a fairly simple structure. De Kleer [10) studies causal explanations of the sort
produced by engineers, and discovers that a few simple principles govern a large number of
these explanations.

I have used the term "belief" freely in this paper, so much so that one might think
the title "Belief Revision System” more appropriate, if no less ambitious, than "Truth
Maintenance System.” Belief, however, for many people carries with it a concept of grading,
yet the TMS has no non-trivial grading of beliefs. (Section 9 mentioned some extensions
which do) Perhaps a more accurate label would be “opinion revision system,” where I
follow Dennett [13] in distinguishing between binary judgemental assertions (opinions) and
graded underlying feelings (beliefs). ~ As Dennett explains, this distinction permits
description of those circumstances in which reasoned arguments force one to assert a




‘conclusion, even though one does not believe the conclusion. Hesitation, self-deception, and
- other complex states of belief and opinion can be described in this way. I feel it particularly
~apt to characterize the TMS as revising opinions rather than beliefs. Choosing what to
"believe” in the TMS involves making judgements, rather than continuously accreting
. Strengths or confidences. A single new piece of information may lead to sizable changes in
 the set of opinions, where new beliefs typically change old ones only slightly.

e - Talso find this distinction between binary judgements and graded approximations
"useful in distinguishing’ non-manotonic reasoning from imprecise reasoning, such as that
modelled by Zadeh’s [64] fuzzy logic. I view the non-monotonic capabilities of the TMS as
capabilities for dealing with incomplete information, but here the incompleteness is "exact™
it makes binary statements about (typically) precise statements. Any approximation in the
logic enters only when one views the set of current beliefs as a whole. In the logics of
imprecise reasoning, the incompleteness is “inexact”: the statements themselves are vague,
and the vagueness need not be a property of the entire system of beliefs. While both
approaches appear to be concerned with related issues, they seem to be orthogonal in their
current development, which suggests studies of their combination. (Cf. [19])

One final note: The overhead required to record justifications for every program
belief might seem excessive. Some of this burden might be eliminated by using the
summarization techniques of Section b to replace certain arguments with smaller ones, or by
adopting some (hopefully well-understood) discipline of retaining only essential records from
which all discarded information can be easily recomputed. However, the pressing issue is
not the expense of keeping records of the sources of beliefs. Rather, we must consider the
- expense of not keeping these records. If we throw away information about derivations, we
may be condemning ourselves to continually rederiving information in large searches caused
by changing irrelevant assumptions.  This original criticism of MICRO-PLANNER (in
(58]) applies to the context mechanisms of CONNIVER and QA4 as well. If we discard the
- sources of beliefs, we may make impossible the correction of errors in large, evolving data

* bases. We will find such techniques not just desirable, but necessary, when we attempt to
build truly complex programs and systems. Lest we follow the tradition of huge,
incomprehensible systems which spawned Software Engineering, we must, in Gerald
- Sussman’s term, make “responsible” programs which can explain their actions and
conclusions to a user. (Cf. [46])
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Node  Justification Justification Name
1 (SL (3) 0O) J1
2 (st O a» J2
3 (SL (1) () J3
4 (sL (2> M J4a
4 (sL (3) O)) | J4b
5 s O O J5
6 (SL (3 5) ()) J6

Figure 1. A sample system of six nodes and
: seven justifications.
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(in) 6 (out)

J4a FJAb ‘ - J6
2 (in) 3 (out) 5 (in)
J2 J5
1 (out)
Figure 2. A depiction of the system of Figure 1. All

arrows represent justifications. The uncrossed
arrows represent inlists, and onlythe crossed
line of J2 represents an outlist. We always
visualize support  relationships as pointing
upwards. '
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