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ABSTRACT _
This article examines the computational problems underlving the 3-D interpretation of surface

contours. A surfuce contour is the image of a curve acrass a physical surface. such as the edge of a
shadow cast across u surface. a gloss ‘tontour. wrinkle. seam. or pigmentation marking. Surface
contours by and large are not as restricted as occluding contours and therefore pose a more difficult
interpretation preblem. Nonetheless. we are adept ar perceiving a definite 3-D surface from. even
simple line drawings (¢.g . graphical depictions of continuous functions of two variables). The solution
of a specific surface shape comes by assuming that the phvsical curves are ‘particularly restricted in
their geomerric relationship 1o the tnderlying surface. These geomerric restrictions are examined.

1. Introduction

Of the means available to the visual system for determining the shape of a
., surface. stereopsis and motion predominate. Shading. when the illumination is
- directional. and texture gradients. when the surface is visibly textured. are also
important. There are two more sources of shape information: boundary con-
~tours and surface contours. The contours that outline the boundary of a surface
constrain the surface shape interior to the boundary. when the surface is
smooth. Contours that lie across the surface are also useful. and they are the
subject of this article. ‘ ,

Consider the common practice of mathematicians and engineers to graphic-
ally depict a continuous function of two variables, = = f(x. v). as a surface seen
from an oblique viewpoint. The technique is to project the curves that result
from holding one parameter constant (for various values) while continuously
varving the other parameter. An example is the sine function in Fig. I whose
A-D shape is readily apparent. The depiction of surfaces by contours is so
familiar to us that we must pause to realize that it entails a significant problem
of visual interpretation. Observe that a valid (and in fact. the correct inter-
pretation) of Fig. | is that the surface is planar—it is the page of this journal on
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which the undulating curves are printed. We do not casily take that inter-
pretation: instead we see an undulating surface in 3-D. The widespread use of
surface contours for conveying surface shapes—in mathematical texts, com-
mercial drawings. and even cartoons—shows that their visual interpretation is
definite and consistent. In short. there is a natural way of graphically conveying
the shape of a surface by depicting how certain curves would lie across it.
When drawn accordingly. we infer the intended shape. :

Just as Fig. | has two radically different 3-D interpretations, undulating
curves on a flat sheet or curves across an undulating surface. there is also an
infinity of intermediate interpretations. at least theoretically. There are no
physical faws that force any particular surface interpretation. Therefore human
vision must incorporate particular constraints on the interpretation. This article
cxamines what those constraints are. (For further discussion on the role of
constraints in vision see [11. 13, 17].) o

A word is nceded regarding the ‘restrictions’ which we imposc on the
physical geometry. A surface contour is the image of a physical curve I across
a surface 5. This I~ may be the locus of some pigmentation change-—a stripe on
a sebra. say. When seen from a particular viewpoint, the physical curve in 3-D-
projects into a curve C in the 2-D image. The only cvidence of surface is
indirect, in the way I” projects to C. Therefore. inferring something about the
shape of X from C is possible only if the relation between ™ and I is
restricted. This is a crucial point: we can constrain the surface shape only if the
physical curve has some restricted relationship with the surface on which it lics.

The central problem is therefore cast as one of discovering the underlying

N

")\ N\

. LAl .
Fig. 1 Ttis commonplace to graphically depict a continuous function of two viriables as a surface
seen from an oblique viewpoint merely by a set of cunves. The 3D «urface shape is immediately
apparent.
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geometric constraints. A traditional method for investigation would be to start
with the dasic physics of the situation. as Horn [6] successfully did with regard
to shape from shading. The approach is to understand what physical laws
govern the image formation process. In studying surface contours, the perspec-
tive geometry carries over from other investigations. but the problem breaks
soon after into various. scemingly independent cases. according to what parti-
cular physical event causes the surface contour, Consider some possible causes
of surface contours: an illumination change such as the edge of a cast shadow
(tree shadow cast across fiilen snow). a reflectance change such as a pig-
mentation marking (zcbra stripe. stripe along the length of a spider plant leaf)
or various sorts of surface features (circular joint between sections of a bamboo
stalk. wrinkles on skin. fracture crack across a rock). Each case would be
cxamined in order to uncover geometric restrictions on how the physical curves
- are produced in nature. _ : A

© This approach. suggestive of the work of D'Arcy Thompson [16]. scems
mtractable in its complexity. Certain statements may be made. e.g.. that
wrinkles due to compression and stripes on plants are usually close ap-
proximations to lines of curvature. But for every physical curve that has some
neat geometric restriction. one mav find another curve that is unrestricted,
which mcanders across the surface arbitrarily. Thus it would be infeasible to
start with the basic physics—we would not know which physical situations to
model." But nonetheless. it is clear that certain assumptions about the geometry
of the curves must be made if we are to use them to infer surface shape. So
rather than study the basic physics of surface contours, we will study the basic
geometric reasoning. This will give us some insight into the sorts of geometric
constraints that are needed. and with that insight we may cxamine where those
constraints arise in nature. The strategy that we will pursue is (i) to consider the
various types of shape information that are plausible and uscful. (ii) to
determine the minimum geometric restrictions that are sufficient properties of
- various tvpes of real physical curves.

- We will see that there is a broad range in specificity of the 3-D shape
information that might be inferred. and that the likelihood of the interpretation
being correct decreases with increasing specificity. In other words. the more
precisely we wish to determine the true 3-D shape. the less likely we will be
successful in general. There is. therefore. a progression’ from weak to strong
information about the shape of the surface. and associated with cach type of
information are restrictions that must be met in order to extract that in-
formation from the image. Rather than examine a range of possible shape
descriptors. why not simply concentrate on ‘the best that can feasibly be

'Stated another way. we do not know what physical interpretation we make regarding the curves
in Fig TUif any We might be assuming that the lines are pigmentation markings on the surface. or
perhaps thin shadows cast across the surfuace. as if from a picket fence. Still other proposals may be

“mude- this question probably cannot be settled by introspection, '
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computed from the image? The reason is that we do not yet know enough to
judge what is the best. and furthermore. we do not know what specific shape
information the human visual system extracts when viewing. say. Fig. 1.

While surface contours have not been studied psychophysically. the following
is casily verified: we readily derive from a line drawing. such as Fig. I. a
qualitative appreciation for the shape of the depicted surface--e.g. where it
undulates, where it is planar. We can also judge its relative orientation with
some confidence. but we have little sense for its distance or scale. Reflecting on
this. what can we infer from an ability to judge some 3-D property? It does not -
immediately follow that that property is explicitly represented. Surface orien-
tation, however. is arguably represented explicitly by the human visual system
[10. 12]. But what about the more qualitative descriptions of surface shape—
are they also explicitly represented in the visual system? Tt is premature to say:
the possibility is raised here primarily to emphasize that surface orientation is
not the only possibility for local surface representation. '

Furthcrmnrc. the fact that we have a definite impression of surface orien-
tation does not necessarily mean that we compute it directly from the contours
in the image. A “direct” computation would derive the given output without
intervening representations. The input would be the set of curves in the image.

the output would be a surface orientation map. An alternative ‘indirect”

“method would consist of two representations: the final representation would be

a surface orientation map as before: the earlier representation would be a
symbolic shape representation specifving, sav. where the surface is planar..
where it is singly curved. and where it is doubly curved. Associated with cach
representation would be a visual process that develops the representation. So
in this case. the input to the first process would be the surface contours in the
image and the output would be the qualitative shape representation. That
.information would then feed a subsequent process whose job it is to make the
surface orientation map consistent with the symbolic shape intormation and
other constraints such as smoothness and various boundary conditions.

In summary. there are several possible representations of local surface shape’
incorporated in human vision. We do not yet know whether the more qualita-
tive representations . are incorporated in human vision at this level of process-
ing. but we should examine how thev would be developed from surface contour
information.

- 2. Describing Surface Shape

This section examines a range of shape descriptors. but in doing so it intro-
duces a number of concepts from differential geometry.” So we first list the

“The reader ic referred to Hilbert and Cohn-Vosen [4] for an excellent discussion of differential
geometry,
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descriptors, in order to avoid losing track of them in the middle of all
terminology. '

(1) Planar versus curved. This is the most prmntnc qualitative statement
ahout local surface shape we will consider.

(1) Developable (and cvlindrical) versus locally convex versus hyperbolic.
D elapable surfaces are single curved and correspond to smooth twisting and
foldings of a paper sheet. (A cylinder is a further restriction to an untwisted
paper sheet.) The hyperbolid (saddle shaped) and locally convex surfacss. on

‘the other hand. are doubly curved.- This three-way distinction is complete and

is captured by the sign (zero. positive. negative) of the jocal Gaussian cur-
vature.

() Local surfuce orientation (slant-1ilr). While (i) and (i) are qualitative and
describe the surface in a manner independent of the viewpoint. the local
surface orientation is quantitative and describes the local shape relative to a
particular viewpoint. Slant and tilt is a useful and natural formalism for this
task. ,

Probably the most conservative statement about surface shape is simply to
distinguish whether the surface is curved or planar.’ While this attributes
special status to planarity, the distinction is probably biologically important. In
lay terms. ‘planar’ is synonymous with ‘flat’. and the distinction ‘fat’ versus
‘curved” is highly intuitive and scemingly primitive. The planar/curved dis-
tinction tells us little about the surface: nonetheless. the knowledge that certain
regions are planar would be useful to a smooth surface interpolation of the sort
just discussed. We will not spend time considering whether planar/curved is
made explicit in human vision—it is simply a starting point for a range of shape
descriptors.

A stronger statement about shape than (:) is to describe how the curvature of
the surface varies locally. If a patch of surface is non-planar. then a path drawn
across it will be a curve in space whose curvature depends on the direction of
the path across the surface. in general.® This gives us the basis for describing
the way surface curvature varies locally. It will be treated formally momen-
tarily. first let us visualize this notion with several examples. To begin with,
consider the various directions in which one could proceed away from a point
on a (right circular) cylinder. In the directiva parallel to the cylinder axis the
path is a straight line. in the perpendicular direction the path is circular. and in
intermediate directions the paths are elliptical. If the surface patch is saddle-
shaped. however. some paths would arc downward while others would arc
upward. Finally. on a round pebble every path would arc in the same way.
More formally. by "path’ we mean a curve defined by the intersection of a
plane with a patch of surface. where the plane is oriented so that it contains the

YA planar surface patch has sero normal curnvature in every direction at a point. ] \ull use

‘curved’ to mean ‘non-planar’,
“1f the cunature is constant in all directions the surface patch is either spherical or planar.
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normal to the surface at a given point and cuts the surface in some direction.
The curvature of that curve measures the normal curcature at a point on a
wrface taken in the given direction. As the examples show. normal curvature
depends on the type of surface and on the direction in which the surface is cut.
A fact of fundamental importance to us is that the directions of maximum and
minimum normal curvature, the so-called principal directions, are always
mutually perpendicular at any point on a smooth surface, For example. the two
principal directions on a cylinder are parallel and perpendicular to the axis of
the cylinder. ' :

The curvature in cither principal direction is termed principal curcature. It is
a signed quantity, and the previous examples illustrated three combinations of
the two principal curvetures. On the saddle surface the principal curvatures
have opposite sign. on the pebble they have the same sign. and on the cylinder
one of the principal curves vanishes to zero.® These possibi'litics cor-
respond to a three-way distinction which seems primitive and natural. as does
the distinction between planar and curved. A curved surface is either singly

curved (like a curtain or a gently folded sheet of paper) or doubly curved and

cither saddle-shaped or convex.

It is important to note that we scek only a qualitative description of shape
here. and not any quantitative measure of surface curvature. Therefore it is
sufficient to only consider the sign of the two principal curvatures. It so
happens that the Gaussian curvature is convenient in this regard. Gaussian
curvature - is the product of the two principal curvatures «; and «: (the
curvatures measured in the two principal directions). So if the two principal
curvatures have the same sign. the Gaussian curvature will be positive: the
curface at that point is called elliptic. A surface patch consisting entirely of
elliptic points is termed locally convex. or simply convex. an example being a

round pebble.” When the two principal curvatures have opposite sign their

product x is negative—the point is called hyperbolic and the surface is locally
saddle shaped. We will call a surface patch hyperbolic as well. if it consists
entirely of hyperbolic points. When either (or both) principal curvatures vanish.
their product. the Gaussian curvature «. is zero. A surface patch of zero
Gaussian curvature is called developable. ,
~ Developable surfaces. or singly curved’ surfaces. correspond to the smooth
‘bhendings and twistings of a picce of paper that are possible without tearing. If
the paper is allowed to bend but not twist. one has the special class of surfaces
called cvlinders. To give a more precise definition it will be necessary to
introduce the notion of line of curvature. a curve which follows one of the two
principal directions. A line of greafesi curvature. for instance. follows the
direction of greatest normal curvature across the surface. (Since the two

““The fourth possibility is that both cunatures vanish. i the surfuce is planar.

*We will not distinguish convey from concave—that distinction can only be made relative to a
viewpoint,

- el
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principal directions are perpendicular at cach point on a smooth surface. the
lines of greatest and least curvature form an orthogonal net across the surface.)
In an extended region where « is zero. at least one of the principal curvatures
vanishes. hence at least one of the lines of curvature s a straight line. We can
now define a cylinder as a surface for which the lines of least curvature are
parallel straight lines. (This is illustrated in Fig. 8a.) Cylinders have several
important propertics that we will exploit Jater. Furthermore. one may locally
approximate real surfaces by cylinders. so long as the principal curvatures arc
very different in magnitude. o

Some illustrations may help. The plane in Fig. 2a and the cylinder in Fig. 2b
both have sero Gaussian curvature. The convesx surface in Fig. 2¢ has positive

~curvature and the saddle surface in Fig. 2d has negative curvature.

Note that much of the surface in Fig. 1 may be approximated locally by
cylindrical patches. This idea of local cylinder approximations to arbitrary
doubly curved surfaces is powerful. but it is successful only if the two principal
curvatures are very different in magnitude. '

The sign of the Gaussian curvature (whether « is positive, negative, or zero)

provides a weak but useful characterization of surface shape in the immediate

vicinity of a point. An artibrary surfacc may have some regions of positive and
some regions of negative Gaussian curvature. with necessarily intermediate
points of zero curvature. The description of the visible surfaces of an object in
this manner would be potentially useful for visual recognition. for the descrip-
tion is object-centered [12]. Another representation of shape would consist of
merely noting those places of zero versus non-zero Gaussian curvature. There

(3} (b}

(c) @

Fii. 2. Examples of surface patches of sero, positive. and negative Gaussian cunvature. The planar
surface in a and the cvlinder in b hoth have rero Gaussian curvature. The «urface in ¢ is locally
convex {positive cunvature) and in d the surface is hyperbolic (negative curvature).
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are two reasons for proposing this representation, First. an image often gives
positive evidence for distinguishing patches of zero from non-zero Gaussian
curvitture (we will discuss some later, see also [2] regarding occluding contours
[19] on shading). Second. Bruss [3] has shown that patches of negative and
positive Gaussian curvature cannot he distinguished locally on the basis of the
shading. Therefore an carly representation of surface shape might only
differentiate zero from non-zero Gaussian curvature, for that is often the most
that can be stated conservatively (see “the principal of least commitment
regarding visual processing discussed in [R]).

So far the shape descriptions are qualitative. To be quantitative about
surface shape (e.g. to describe the magnitude of the Gaussian curvature. not
just the sign) requires information relative to the particular viewpoint. The
difficulty this would entail is cquivalent to determining the relative surface
orientation, ' : ’ )

Surface orientation may be described in terms of the slans and #ilf introduced
in [15]. which specify how much (slant) and which way (tilt) the tangent plane
of the surface is inclined with respect to the image plane. Tiltis measured as an
oricntation in the image plane. and can be thought of as the orientation to
which the surface normal would project. Slant is an angle. ranging from zero
(where the surface is parallel to the image plane) to 90° (where the surface is
completely foreshortened). Their relation to the more familiar Cartesian coor-
dinates p and g of gradient space [6. 7] is: :

slant o = tan”'(p?+ g>)'"" and tilt 7 = tan~'(q/p).

The slant-tilt form will be used in Section 2.3, where we consider the restric-
tions that allow us to derive surface orientation (see also [S. 14, 18]).

The various shape descriptors just given should be justified. for one might
cqually propose descriptors such as ‘spherical’. "egg shaped'. *hour-glass’. and
so forth. The descriptors based on local curvature. however. have several
advantages. First, cach level of description is complete: every smooth patch of
surface is cither planar or curved. has either positive. negative. or zero
Gaussian curvature. and every smooth visible point has a definable surface
orientation. Second. they are local and (except for surface orientation) they are
~qualitative, while such descriptors as ‘spherical” are more global and require
© quantitative knowledge of the curvature. Third. and most important, these
descriptors are feasibly computed from contours in the image without requiring
multiple views. prior knewledge of the surfaces. or other sources of in-
formation. :

3. Geometric Restrictions

We now take cach level of shape descriptor and examine what is required in
order to infer that information from the surface contours in the image. It is
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important to keep in mind that the following discussion is only geometric with
the goal of finding least restrictions, The justification or the relevance of these
restrictions is a separate matter which will he examined subsequently. To give
an example, we will find that restricting the physical curve to be a line of
greatest curvature is useful. But when. in reality. are physical curves so
restricted? In fact they often are. but for now we will merely seek geometric
restrictions that are useful. And perhaps contrary to intuition. differential
geometry has shown that there are few possibilities open to us. ,

We must assume that the surface in the vicinity of a curve (where we have no
information) is “well behaved'—that there are no invisible troughs or un-
dulations. We rule out. for instance. the possibility the curves in Fig. 2a lie on
two intersecting ridges. The property of the surface being ‘well behaved® is
captured by assuming the placement of the physical curves on the surface is not
critical—that if displaced slightly relative to the surface they would appear
qualitatively the same in the image.” This assumption is analogous to so-called
general position which. as usually considered. means the viewpoint is not
misleading—that the image is taken from a representative viewpoint, That
assumption leads to many specific conscquences: a curve that is straight in the
image is straight in 3-D. lines that are collinear or parallinear or parallel in the

~image are collinear or parallel in 3-D. and so forth. Analogously, if the

physical curves are assumed to lic in general position on the surface. we assume
that a given curve of a given type is representative of those in its immediate
vicinity. This also leads to a number of specific consequences. e.g.. if two lines
of curvature are parallel we assume that nearby lines of curvature are also
parallel® In practice this form of general position dovetails with the con-
venticnal form involving viewpoint (see Section 3.2.2). Superficially, general
position of contour placement amounts to an expectation for surface smooth-
ness. but more than that. it allows us to infer that any gcometric property
which holds along a particular curve (across a gi~en surface) also holds in the
vicinity of that curve.

3.1. Planar/curved

How can one determine whether or not a surface is curved when the only
evidence is a curve Cin the image. the projection of some physical curve I on
some surface 7 Observe that this cannot he determined simply on the basis of
whether C is straight or curved-—C being straight does not imply the surface is
planar (or that it is cvlindrical. or cven that it is developable). Likewise. the
mere fact that C is curved does not mean the surface is curved. The physical

“Wemust be careful with concepts such as “displaced slightlv' and ‘qualitatively the same” For
now. these notions should seem intuitive: they are used more rigoroushy in Section 3.2,
$This implies that the underlving wirface is ovlindrical (see Section 122) 4 surprisingly strong

consequence,

e 08 T TR [reeT—T
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curve might be drawn on a planar surface, as are the figures on the pages of
this journal. .

We consider a single contour, for there are instances where that is sufficient.
If we are to use the curvature of C to infer curvature of the surface X there are
two hurdles: (i) inferring whether the physical curve /7 is curved or straight on
the basis of the curvature of C. and (ii) inferring whether the surface is curved
or planar from curvature of the physical curve I

The first inference is straightforward. for in general we have that Cis curved
if and only if I" is curved. The only exception is where Cis a straight line but I
is curved and planar and its curvature is hidden from view because the plane
containing the curve is foreshortened into a line. This misleading situation is
avorded by restricting the viewpoint to be in general position.

The second inference is more difficult. To use the curvature of I to tell us
whether the surface is curved requires that we restrict the relation between the
physical curve and the surface. To understand the restrictions that must be
imposed. it is important to sce when curvature (or lack of curvature) of r
falsely imiplics curvature (or lack of curvature) of 5. We have two cascs to
consider. .

First suppose I is curved but I is actually planar. Then none of the
curvature of " is normal curvature. In other words, the principal normal of I
lics cverywhere in the plane of X. In that special situation [ is called
asympiotic.® The other case is where [ is straight but X is curved. When can
this occur? (Since one cannot imbed a straight line on a surface of positive
Gaussian curvaturce. we need only consider cases involving surfaces of cither
negative or zero Gaussian curvature.) There are special doubly curved surfaces
(the hyperboloid of one sheet and the hyperbolic paraboloid) on which one
may place a straight line. But of greater interest to us is the common
occurrence of straight lines on developable surfaces (those of zero Gaussian
curvature). The lines of lcast curvature on a developable surface are straight
lines (see Figs. 2b and 8a). so this case would mislead us because the curve C
would be straight despite the fact that the surface I is curved.

In summary. the two cases where the deduction *C curved iff I curved
would fail are (i) when [ is curved and asymptotic, and (ii) when I is straight
and a line of least curvature. Both cases occur sufficiently often in real scencs
that they must be seriously regarded. The first case arises. for instance. in water
lapping on a heach. wood grain on a table top. mottle shadows on the ground.
pigmentation markings on a relatively planar surface. and so forth. The sccond
case arises in shading contours and glossy reflections on cvlindrical surfaces
(the “terminator’ or “self-shadow’ edge is straight and parallel to the axis of the
cvlinder. as is any specular reflection along the cylinder) and virtually all
man-made objects have linear markings (scams. pigmentation edges, or what-

“ ) . . . l . . . -
The asymprotic case is discussed again in Section 4.1,
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ever) which are rulings. The only situation which we may disregard as
improbable concerns the rulings on a saddle surface as noted carlier. o

The minimal restrictions necessary for distinguishing planar versus curved
may be stated as follows: if I™is curved. it cannot be asymptotic, and if straight,
it cannot be a line of least curvature. We can accomplish the same thing by
restricting ' to a line of greatest curvature. but that is a much stronger
restriction. Tmportantly. we will have independent motivation for this restric-
tion. momentarily. The geometric reasoning for distinguishing planar vers:'s
curved is summarized below. Observe that while we only need '=° for our
purposes. we gctually have the stronger biconditional "

given a curve C. the geometric restriction

I" is ncither a line of least curvature nor an asymptotic curve
or the sironger restriction: '

that " is a line of greatest curvature
plus general position (of viewpoint) allows the inference

Ccurvede I curved© I curved.

3.2. Sign of Gaussian curvature

We now examine geometric constraints that would allow one to determine
whether a patch of surface has zero. positive. or negative Gaussian curvature.
In order to reason about Gaussian curvature one clearly needs more than a
single curve. The two cases that we will consider are intersecting curves and
parallel curves,

3210 Intersecting contours

We start with the intersection. illustrated in Fig. 2. Note that these four cases

- are exhaustive: cither we have that both contours are straight (Fig. 2a) or one is

straight and the other curved (Fig. 2b) or they are both curved with the two
senses of relative curvature in the image (Figs. 2¢ and 2d).

Toinfer the sign of the Gaussian curvature the basic problem is to determine
the signs of the two principal curvatures. The only input. remember. is the
intersecting pair of curves ¢ and C. in the image. The corresponding physical
curves [ and I'. must therefore have a known relationship to the lines of
curvature at that point. To illustrate this difficulty. Fig. 3 shows a cylinder with
two choices of intersecting curves across it. In Fig. 3a the two curves are lines of
curvature. and since the surface is developable. one of the lines of curvature is
a straight line. In Fig. 3b both curves lie at an angle to the principal directions.
and consequently both are curved. In Figs. 3¢ and 3d the outlines of the
surfaces are removed. showing only the two curves. Note that in Fig. 3d the
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Fiio 3 The evlinder in o has two intersecting curves across it that are-lines of curvature, Note that
the straight Tine is a fine of feast convature, The same evlindrical surface is shown in b, but this time
the two intersecting curses do not lie in the principal directions, and therefore both are curved. In ¢
and d the outline of the evlinder is remos ed, leaving only the intersecting curves in cach cine. The
interpretation of ¢ s the same as hefore, but d appears Toeally comver (like a sphere).

curves appear to lie on a convex surface. There is no information to indicate
the special angular relation of the curves to the principal directions, and hence
the relation between their curvature and the principal curvatures cannot bhe
deduced. Given the goal of deducing the sign of the Gaussian curvature at an
intersection of two curves in an image. there is apparently no feasible alter-
native to assuming that the corresponding physical curves are lines of cur-
vature. ’ : '

With the restriction of both physical curves to being lines of curvature. one
may successfully deduce the sign of the Gaussian curvature by examining the
curvature of the image curves at the intersection. In Fig. 2a the two lines are
straight in the image. hence straight in 3-D. hence the surface is planar. In Fig.
2b one of the lines is straight. hence the surface has zero Gaussian curvature (it
is developable. but we cannot further infer the surface is a cylinder—it may

twist in space like a ribbon). In Fig. 2¢ the two lines have curvature of the same

sign." therefore the physical curves have the same sign'' as well, and the

" There are Many wiys one may compire the sign of contour curvature in these intersection

configurations. One approach is to proceed away from the intersection on two ares. one from cach
curve. and compare how their normals rotate (whether they rotate clockwise or counterclockwise in
the image) Note that one may attend 1o cither of two pairs of ares: those that bound the obtuse
angle and those that hound the acute anple. 1f we take the ares that define the acute angle of
intersection and procedd on each away from the intersection, we will sav that the curves have the
same curvature if hoth normals rotate the same Wiy, :
"The sign of contour curvature in 321 is with reference o the surface. asis customary. The two
curves have the same sign of curvature if their principal normals are on the same side of the

surface.
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surface has positive Gaussian curvature (is locally convex). Finally, in Fig. 2d
the two lines have opposite curvature and the surface has negative Gaussian
curvature (is hyberbolic). The geometric reasoning is summarized below.

given m(em'r!mg contours Cy and C. the geometric restriction
- that [y and I's are lines of curvature
plus general position (()f viewpoint) allows the inference

C, or C, straight & [y or Iy straight & X developable
Cyand C:have < ['yand I"y have - © Ylocally convex
same curvature sign sarie curvature sign

Cyand C: have ‘ & I and I have & X hyperbolic
opposite curvature sign opposite curvature sign '

3.2.2. Parallel contours

Now we will examine parallel contours.'? If two curves are parallel in the i image
and in general position relative to the viewer. the corresponding physical
curves are also parallel in 3-D. What then can this tell us of the Gaussian
curvature? Strictly speaking. the surface may have arbitrary shape' between
the two parallel curves. so thcre are no inevitable consequences of parallelism.
But "if the surface is ‘well bchaved'. as discussed earlier. then a strong
restriction on the shapc ensues. Specifically. if the placement of the physical

curves on the surface is not critical (that if displaced slightly the) would remain

parallel). the surface is a cvlinder. That is to say. a cylinder is the only surface
in which one may embed parallel curves. in general. Note that one may find
special situations that violate one or the other form of general position—either
non-parallel curves on some non-cylindrical surface which look parallel from a
particular viewpoint. or parallel curves on some non-cylindrical surface which
arc critically placed on the surface—but these are arguably improbable occur-
rences in nature. Hence these two forms of general position. of viewpoint and
of placement of the curves on the surface. together allow one to infer the
surface is a cylinder wherever the contours are parallel.
A word of caution is nccded however. regarding the practical definition of
‘parallel’. For example. two lines of latitude on a globe are close to parallel,
especially if they are closely spaced—and yet the surface is convex. rnot

" Two arbitrary cunves are parallel if one may be superimposed onto the other by merely a
translation,

Y Actually, some restriction on the shape is imposed if the surface is opague. Since the two
©curves are visible along their leagth, at no point can the intervening surface lie between the viewer
and the physical curves. But this restriction is quite weak in terms of constraining the surface
shape.
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cylindrical. The cylinder deduction is valid only when the curves are precisely
parallel. (And unfortunately, the deduction does not degrade gracefully: in the
example just given even though the contours would appear roughly parallel,
the surface would not be roughly cyvlindrical) The geometric reasoning is
summarized below. '

given parallel contours Cy and Cs the geometric restrictions
that [, and I» are in general position on the surface and are not
asymptotic ' :

plus general position (of ciewpoint) allows the inference
C|C: e M|r,e = cylindrical.

3.3. Surface orientation

We have examined some gecometric restrictions for determining whether ‘a
surface is planar versus curved. and for determining the sign of the Gaussian
curvature. The final step is to consider surface orientation. As before. we will
consider two cases where we can gain information about a patch of the surface:
intersections and parallel contours.

3.3.1. Intersecting contours

The intersection in Fig. 4a will be the focus of our attention for the moment.
The crucial measurement that we will use is the angle of intersection 8
measured in the image (Fig. 4b). The normal to the surface at that point is

(a)

&</\, (b)

N

V\ZVL. (c)

F1G. 4. The intersecting contours in a may be analyzed in terms of surface orientation given certain
restrictions, The angle B8 shown in b ix measured in the image plane. In ¢ the three-dimensional
vectors U and ¥ lic on the surface, and N is the surface normal at their intersection.
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shown in Fig. Jdc. How might it be determined? We will find that the solution
builds on the geometric restrictions established in the previous discussions.
Local surface orientation has two degrees of freedom, but the restriction of
the physical curves to be lines of curvature reduces the degrees of freedom to
one. To show this, we will derive a vector expression for the surface normal.
Construct two vectors U and V that correspond to the tangents to the two
physical curves at the intersection. For convenience they are constructed so as
to project as unit vectors (Fig. 4¢) and. without loss of generality. the x-axis is
oriented with the projection of U. The-angle 8 is measured between the
projections of U and V. ’

U -{I 0.a} and V= {cosﬁ sin B. b}.

The quantities @ and b are the unknown componentx of U and V along the
z-axis. (perpendicular to the image plane). The surface normal N is the cross
product:

N ={-asin B. a cos B ~ b.sin B} - ' N

and tilt 7 and the slant ¢ are:
N, N.
r=tan' =¥ and o =cos"! ;s 7 2
N, (N;+ N+ N A @

where N,. N,. and N, are the three components of the normal vector. Observe
from (2) that the slant is the angle between the normal vector and the view
vector and the tilt is the orientation to which the normal would project.

The expression for the normal in (1) carries two unknowns. This reflects the
two degrees of freedom of surface orientation when no restrictions are im-
posed. Now. if the intersecting physical curves are lines of curvature, they are
perpendicular at the intersection. Hence the dot product of U and V is zero,
from which we have

bz)_._(ié

a

~ which when substituted into (l) gives

N = { a sin B, cmﬁ smB} ’ (3)
and thercfore the surface orientation is determined up to only one unknown, a.

Perpendicularity of the two physical curves therefore removes one degree of
freedom of surface orientation. The constraint can be expressed geometrically
in terms of slant and tilt. parameterized by the angle of intersection B in the
image. For a given angle B to correspond to the projection of a perpendicular
intersection, the intersection could only have certain orientations in 3-D
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(a}

‘b)Y
Fig. 50 A perpendicular intersection in 3D s foreshortened in the image (a) in general The
prn;c«lu! angle of intersection in the image increasingly constrains the range of it as the angle
approaches .

rélative to the viewer."™ These limits are <h0\\n in Fig. 5. Ohscr\ that if B is
near . the foreshortening of the 3-D intersection must be large (Fig. Sa). but if
B is near ‘7 one can say little about the surface orientation. This restriction has
a simple geometric interpretation in terms of tilt. as shown in Fig. 5h. Suppose
the tangents to the curves in the image plane have orientations 7 and 7; at
their intersection. Then the surface tilt 7 must lie within the pcrp;ndlcu!ars to
these tangents:

ntn<sr<r-lm

Fig. 6 graphs this restriction and the corresponding rcstriction on slant. given 8
is a foreshortened right angle. For example. at 8 = 135° the slant is 77.75 %
12.25° and the tilt is the bisector =22.5°. And at B ="150° the slant is
R2.25+7.75° and the tilt is the bisector =15.0°..

In conclusion. by restricting the physical curves to be lines of curvature. we
¢an place bounds on the surface orientation at the intersection. For instance.
“the surface tilt at each intersection in Fig. 7a must lic within the limits shown in
Fig. 7h. This restriction also places bounds on slant as a function of B.

Thus far we have only attended to the point of intersection of two surfac"'
contours. and have only utilized the angle of their intersection. Intuitively. i
seems that we should be able to use the more global shape of the surfacc
contour in order to determine surface orientation. But to do this requires
substantially stronger geometric restrictions,

" We will ignore the reversals in the direction to which the normal would project due to depth
reversals This ambiguity is inherent in the orthographic projection and will not be considered here

(see [1sh.
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T

B

Fiii 6. The constraint on shant o0 (shown in a) and on tilt 7 (shown in b) i< graphed as a function of
the obtuse angle of intersection 8. which ranges from ‘rto .

The problem of computing the surface orientation at a point along a curve
on the basis of its 2-D projection is exceedingly underconstrained. It will be
worthwhiie discussing the problem informally for a moment. The three in-
dependent factors that enter into the problem are the viewpoint. the shape of
the. physical curve. and the behavior of the surface under the curve. Visualize
the physical curve as a wire in 3-D and the surface along the curve as.a thin
ribbon that is glued to the wire. While the shape of the wire must be such that
it projects to the given contour in the image. there are infinitely many bendings
of the wire that would project identically. Furthermore. the wire may have

AN \
fa; . b

Fic. 70 The cunve in ‘i intersected at two plices Assuming the intersections are perpendicular on
the surface. the tilt at cach point is constrained to lie somewhere wWithin the bounds shown in b,
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torsion, and the rlbbnn which rcprcsutts !hc \zrxp of surface undcr lhc. curve,
may twist along the length of the wire arbitrarily.

Using the wirc-and-ribbon analogy, let us rephrase the problem of solving
surface orientation along a contour. One would start with an image of a wire
(whose specific shape is not known a priori). and with information about how
wires twist and curve in general and information about how ribbons are glued
onto wires in general, determine how the particular ribbon would appear at
cach point along the wire from the particular viewpoint. It would amount to
bending a wire appropriately then gluing the ribbon along its length in some
manner, and holding the finished construction in some specific orientation in
~space relative to you. We discussed the bounds on slant and tilt afforded by a

perpendicular intersection in 3-D. The intersection may be visualized as a line
drawn across the ribbon so that it is perpendicular to the wire. Then, given an
image which shows some angle 8 (Fig. 4b) one knows roughly how to hold the
ribbon, but only at the point of intersection-—the wirc and ribbon would be
free to bend and twist away from that point. :

It is important to stress that the information about wires and ribbons must be
specific enough to allow one to solve the problem. but general enough to be
useful. We now will consider two geometric restrictions that together meet
these criteria: that the wire lics in some plane and the ribbon is everywhere
perpendicular to that plane. More formally. we restrict the physical curve I to
be planar and geodesic. Our current goal is to show why these restrictions solve
the problem: the motivation for proposing the geodesic and planar properties
will be cvident momentarily.

Suppose the physical curve I is planar. i.e.. it lics in some plane /1. Then the
problem of determining the 3-D <shape of I’ rcduces to determining the
orientation of [T relative to the viewer—I is then simply the projection of the
given image curve C back onto /T. A method for estimating the 3-D orientation
of a planar curve (for example an extension of the method developed by
Witkin [18]) may then be used to solve I". Now. given the 3-D shape of I, the
fact that it is geodesic means the surface normal is identically the principal
normal of I" at each point. The geodesic and planar restrictions are clearly
sufficient to solve the surface orientation along the curve. Now we should
consider where they arise. ’

3.3.2. Parallel contours

Earlier we established that where contours in the image are parallel, the
surface is locally a cylinder. subject to some assumptions of general position.
- This cylinder property. in conjunction with the restrictions of the physical
curves to be lines of curvature (specifically lines of greatest curvature) will give
us immediately the two geometric restrictions that we seek. because lines of
curvature across a cylinder are planar and geodesic. The reasoning is sum-
marized below.
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for parallel contours C, and C, the geometric restrictions
that [ and Iy are in gencral position on surface and are nor asymp-
totic
plus general position (of viewpoint) allows the inference
ClC. e IMjr. I cylindrical
and
& cylindrical and I’ line of curvature = I planar and geodesic.

A complementary approach will now be considered, which deals geometrically
with pairs of parallel contours.

The lines of least curvature. or rulings on a cylinder are parallel. straight
lines. and are perpendicular to the lines of greatest curvature. Their projection
would be parallel straight lines. but because of foreshortening they would no
longer be perpendicular to the projected lines of greatest curvature (Fig. 8a)..
Nonctheless. a given ruling would intersect successive lines of greatest cur-

R

: ‘ (b)
F1G. 8. In the orthographic projection of a cylinder (a) the lines of least curvature project as
straight and parallel. and each intersects successive contours at a constant angle. In b the vectors at
two intersections are shown. In the text it is shown how the constraint can he propagated along the
curve.
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vature at a constant angle. This fact allows us to reconstruct how the rulings
would project in the image. We identify points on adjacent contours with
parallel tangents, and connect those points with straight lines that are them-
sclves parallel. This may be thought of as bringing points on adjacent contours
into parallel correspondence. The line that connects corresponding points is the
image of a ruling. The correspondence is unique in general. With reference to
Fig. 9a. note that where the contours are straight the tangent to a point P on
one contour would he parallel to various tangents on the adjacent contour, but
only one choice would result in a correspondence line that is parallel to the
correspondence lines clsewhere (Fig. 9b). With the rulings reconstructed in the
image (as in Fig. Sa). we have at cach intersection an angle B8 which cor-
responds to a foreshortened right angle. since lines of curvature are per-
~pendicular. Thus we can place bounds on slant and tilt at cach intersection. as
discussed carlier. But we have another important dividend which stems from
the fact that the rulings are perpendicular to the plane containing the
lincs of greatest curvature. To see this, consider the vector constructions in
Fig. 8b.

The 3-D vector U is collinear with a given ruling. and V. with a line of
greatest curvature. Being perpendicular. the surface normal N at the inter-
section is their cross product. We wish to define the spatial orientation of the
planc [T containing I Since I is geodesic. the two vectors V and N define that

baas ~ . .\\
~ ~.
N
-~ ~
~ .. S~ N _
~ N P" ~.. - - .
- N -
. ~ o
~. . . el -
. N - - = ~— /"’
" ~. ‘. —— P
e~ T~
S e - —
N S - s
(3}
B ~ -~
. ~ .. ..
X - — ‘\‘ . ~<
X ~. N LT
. . ~
- o [ '.\\ ~.
- ~ _ P T
K R /‘ . ———-
~ N - o ;/7

. (b

FiG. 9. Where the surface contours are straight, as in . the tangent to point P on one contour
would be parallel to various tangents on the adjacent contour. however onlv one choice would
result in a correspondence line that is parallel to the correspandence lines chewhere.
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plane. Furthermore, since U. V. and N are mutually orthogonal, U is the
normal to the plane /1. This.is important, hecause the orientation of the ruling
immediately gives us the il of 11, : :

Earlier we lamented that somehow the shape of the curve in the image
should help solve the surface orientation. Now we see how to do this. The

~planarity and geodesic restrictions allow us to propagate the surface orientation

along a curve, from places where it is strongly constrained to places where it is
not. Consider the two intersections in Fig. 8b,

U={1.0,a). V={cosB.sinB.b}. and W = {cos Ba.sin Bs. ¢}

where

The. normals at the two intersections are
) a*+1 .
N, = {~a sin B,. cos B, B sin B,} and

Ny= {-—a sin B, cos B 9-;5—1. sin B:]. 4)

Observe that B, is large. and theréfore the slant and tilt are strongly con-
strained at that point. We take the bisector of the range of tilt as a best
estimate' of 7 in order to solve for the unknown a. Since
a’+1
cos B ——
= Ny a
T=tan' F=tan”! ————
N, ~a sin 3,
we have that

_.] 12
a={———)
(tan Ttlan B, + 1)

Now. for some other point where the surface orientation is not at strongly
constrained. such as at the other intersection (where B. is smaller) we may
substitute (5) and (4) to find that the normal N. is determined completely.

Note that the parallel correspondence process which reconstructs the rulings
is local. and therefore might be applied to the images of surfaces that are not
cylinders globally, such as Fig. 10 and even Fig. 1. This suggests a computation for
generating local cylinder approximations to doubly-curved surfaces.

(5)

"Incidentally, for a given intersection the bisector choice results in the surface arientation with
the least slant
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Fici. 10, Parallel correspondence is defined only locally. hence i< applicable to surfaces that are not
cylinders, If the contours are locally parallel. the «urface may be appronimated locally as
cyvlindrical,

4. Discussion

4.1. The distinction between asyfnptotic curves and lines of curvature

Earlier when we were dctermining the restrictions necessary to distinguish
planar from curved surfaces. the asymptotic curve emerged as a special case
because its curvature is not related to surface curvature. Recall that an
asymptotic curve follows the direction of zero normal curvattre on the surface.
It may therefore be regarded as the antithesis of a line of curvature. which
follows the direction of extremal normal curvature. Asymptotic curves only
exist of surfaces of negative or zero Gaussian curvature. i.e.. hyperbolic and
developable surfaces.

Asymptotic curves exist on hyperbolic surfaces becadise the principal cur--
vatures have opposite sign and so the normal curvature must pass through zero
in some direction between the two principal directions. In fact. an asymptotic
curve's tangent always bisects the two principal directions: it is therefore a
rather special curve across a saddle surface and will be disregarded because it is
virtually non-existent in actual situations (and non-intuitive and hard to visu-
alize as well). _ - ‘ . : _

Asymptotic curves also occur on developable surfaces—they correspond to
rulings. But a degenerate case is when the surface is planar. for any curve
across the plane is asymptotic trivially. since there is no normal curvature in
any direction on a plane. It was this case that we explicitly excluded in our
analysis of surface shape. Nonetheless. asymptotic curves on planar surfaces
may be used to estimate the orientation of the planar patches. Witkin [18]
describes a method for estimating the direction and magnitude of the foreshor-
tening a planar curve has undergone in projecting into the image. From
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~measurements of contour curvature and the distribution of tangent orientation

in the image one may estimate the tilt and slant of the plane containing the
corresponding 3-D curve, This approach seems useful, for instance., with
mottled shadows on the ground or the spots on a dalmatian. and many other
natural situations involving curves on relatively'® planar surfaces.

I would suggest that there is 4 meaningful distinction to be made between
the analysis of asymptotic curves described by Witkin and the analysis of lines
of curvature introduced here. Fig. 11 shows an interesting case where the
human visual system interprets the contours as asymptotic. i.e.. as lying on a
flat surface. There are probably geometric criteria which govern whether the
contours are interpreted as lines of curvature or as asymptotic curves.

— T T T T

F1G. 11, The contours are interpreted as lving across a planar surface. i.c.. 4s asymptotic curves,

4.2, Where do geodesics, lines of curvature, and planar curves occur in reality?

The previous discussions revealed three important geometric restrictions on
physical curves: line of curvature. geodesic. and planarity. Where can we expect
these restrictions to hold in actuality? A brief discussion will be given here.

The curves across the surfaces of virtually all synthetic objects are seldom
arbitrary in the geometrical sense. In fact. they are almost always planar and
geodesic lines of curvature. This is a consequence of the way we fabricate,
label. and decorate objects. In particular. we tend to generate complicated
surfaces piecewise out of developable surfaces (usually cylinders) and planes.
The seam where these surfaces join is usually planar, and that plane i~ urnally
normal to the surface—hence the seam is both planar and geodesic. Moreover,
for synthetic objects that are surfaces of revolution. the markings almost

" Le. the curvature of the surface is small relative to the contour detail on the surface.
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“invariably follow the object’s axis or are perpendicular to it Importantly, lines

on a surface of revolution that are parallel and perpendicular to the axis of

Totation are lines of curvature and are planar, T am purposefully staving at a

general level of discussion, The reader is invited 1o examine nearby objects to
find «pecific examples. Without addressing the issue of nature versus nurture, it
is clear that the fabricated objects which comprise our everyday environment
have the geometric restrictions that we scek-—the curves across their surfaces
are almost invariably planar, geodesic, and lines of curvature.

Onc may also seek to find geometric restrictions on natural curves as well,
Several interesting observations may be made. but the task is significantly more
difficult. in general. As mentioned in the introduction, planar lines of curvature
may be found in many biological forms: stripes on plant leaves, wrinkles, the
joints on bamboo stalks (they are also geodesic). As also discussed carlier. it is
difficult to weigh this evidence. for one may casily give counterexamples—
curves that meander across the surface rather arbitrarily. The stripes on a 7ebra
are one example,!”

An interesting case of geometric restriction in nature is provided by the
glossy reflections from surfaces that have a strong specular component in their
reflectance functions, If a surface is specular. then given directional illumina-
tion and a favorable viewpoint. a specular reflection—<ither a point-like
highlight or a gloss contour—-will appear in the image. For this to occur some
patch on the surface must be oriented such that the surface normal bisects the
angle defined by the point light source. the given surface point, and the viewer.
I will refer to this alignment as the specularity condition. 1f the surface is doubly
curved. the specularity condition is met anly at a point, if at all. and causes a
point-like reflection in the image—-a so-called highlight. Similarly. on develop-
able surfaces a specular reflection would be point-like in gencral—the im-
portant exception being a cylinder. On a cylinder. the fact that the tangent
plane does not twist along a ruling means that if the specularity condition is
met at some point. it will also be met along the ruling passing through that
point. Furthermore. the specularity condition is strong enough that if a given
gloss contour € (produced by specular reflection) is straight. the surface is
locally a cylinder: '

C straight & X cylindrical.

While this is true in the case of orthographic projection with a distant viewer
and distant point light source. in reality the viewer is often near the surface and
the light source is neither distant nor a point. source. The most important

" Incidentally. that may be one reason why they are effective in"obscuring the true shape of the
animal, Tt is well-known that one technique that nature seems 1o have adopted for protective
coloration is to place high contrast contours across the animal which do not correspond to the
underlving 3. shape. In our terms, those contours would be non-planar. and would not be lines of
curvature or geodesic, o :

Qo v e et ——y
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exception concerns an extended light source, such as a bright window or a
ceiling light pancl. Instead of a tiny point or thin line of specular reflection, the
reflection will be extended. Nevertheless, if the outline of the reflection is
straight, the surface is cylindrical.

Can we infer anything about surface shape in other situations? For instance.

if the gloss contour is an arc. rather than straight, what does that tell us?

Generally it means the surface is doubly curved. and the curvature across the
arc is much greater than the curvature along it (in otFer words. the surface may
be approximated locally as a cylinder along th.: arc)™ To be more analytic -
would be quite difficult: the arc is the projecdior. of some path along which the
specularity condition is met. but if the viewer is relatively near the surface. and
especially if the light source is also near by, that condition changes from point
to point. Without knowledge of the viewer (and illumination) geometry. the
specular reflection cannot be interpreted further. T suggest that images of
specular curfaces are not feasibly analyzed by any analytic *shape-from-shading’
method. Rather. only the qualitative shape of the gloss contours are used in
order provide rough information about the local Gaussian curvature. and only
with the additional constraint afforded by the smooth bhoundaries can one
feasibly compute local surface orientation. But it is clear that specular
reflections can tell us not only something of the reflectance properties of the
surface (that the surface is specular [1]). but also some qualitative information
about the surface shape.

4.3, Summing up

This article has introduced an approach towards understanding how surface
contours may bhe used as information about surface shape. Rather than start
with the “physics of the situation’. which would be intractably difficult in its
generality, we started with the basic geometric reasoning required to make 3-D
shape assertions of various sorts. A range of assertions were studied: whether
the qurf‘m is planar versus curved. the sign of the Gaussian curvature. and
finally. the local surface orientation. Even the simple task of distinguishing
planar from curved required some strong geometric restriction. The weakest
restriction is that the phvsical curve is neither asymptotic nor a line of least

_curvature. A somewhat stronger restriction is that the curve is a line of greatest

curvature. Next we saw that to conclude anything about the sign of Gaussian
curvature. the physical curves must be lines of curvature. (Actually. the special
case of parallel contours requires onh that the corresponding physical curves
he in fzcncml position on the surface and not be asymptotic—then parallelism
implies the surface is a cvlinder.) We then looked at the problem of computing

SR Oype often resorts to physical mosvement relative to the surface in order to sort out the various
refections Those reflections that stay fined relative 1o the surface (or displace only slightly)
correspond 1o places of high cumvature, ic . corners. .
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surface orientation and found that the perpendicularity of lines of curvature
places useful constraint on the possible surface orientation at the intersection.
Furthermore, it reduces the degrees of freedom of surface orientation to one.
And provided that the curve is geodesic and planar (which is the case if the
curves are paraliel in gencral). we found that one may propagate the surface
orientation from places where it is strongly constrained or known outright. to
places where it is not. Thus parallelism emerged as very important in this
analysis. It also emerged that the physical curve should be restricted to being
planar, a line of curvature. and geodesic. Then we noted the strong distinction
between lines of curvature and asymptotic curves. Finally we reflected
momentarily on where these various restrictions occur, both in the man-made
world, and in nature.
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