MASSACHUSETTSINSTFTUTE(HTTECHNOLOGY
.A'RTIFICIAL INTELLIGENCE LABORATORY

Al Memo NO" 527 B g : | | ‘November 1979 :

“The Dream of a Lifetime: A Lazy Scoping Mechanism
by

Guy Lewis'Steele et and Gerald Jay Sussman*f

. Abstract:

We define a "rack", a data abstraction hybrid of a register and a stack. It js
- used for encapsulating the behavior of the kind of register whose contents may have an
extent which requires that it be saved during the execution of an unknown piece of
code. A rack can be implemented cleverly to achieve performance benefits over the
usual implementation of a stack discipline. The basic idea is that we interpose a state
~ machine controller between the rack abstraction and its stack /registers. This controller
can act as an on-the-fly run-time peephole optimizer, eliding unnecessary stack
operations. ' ' . . ' '

We demonstrate the sorts of savings one might expect by using cleverly
~implemented racks in the context of a particular caller-saves implementation of an.
interpreter for the SCHEME dialect of LISP. For sample problems we can expect that.
only one out of every four pushes that would be done by a conventional machine will
be done by the clever version. -

Keywords: registers, stack discipline, stack architecture, register saving, procedure
- calling conventions, data abstraction ‘ ‘ :

This report describes research done at the Artificial Intelligence
Laboratory of the Massachusetts Institute of. Technology. Support
for the laboratory's artificial intelligence research is provided
in part by National Science Foundation Grant MCS77-04828 and in
part by the Advanced Research Projects Agency of the Department

of Defense under Office of Naval Research contract N00014-75-C-0643.

* Fannie and John Hertz Fellow | _ | T Jolly Good‘Fgllow

© MASSACHUSETTS INSTITUTE OF TECHNOLOGY 1979

'Steei’e' and Sussman o) 1 :) The Dream of a Lifetime

- The Problem

- We deal here with the problem of managing’ the use of a finite set of fast

- registers. Because the set of registers is finite and in fact usually much smaller than the
total set of quantities of interest to the computation, the registers must be time-
multiplexed, holding different quantities at different times. This leads immediately to

~the problem of how and when to move quantities to and from registers.

‘recursive procedures. For small systems it may be possible to perform a complete
analysis of all the procedures and their interactions and so find an optimal allocation of
‘registers, but this is infeasible for large systems. Hence one usually adopts some
standard method which always works but which may be overly conservative.

- This problem is especially severe in the case of large systems of mutually

, A typical technique is to use a push-down stack to preserve the contents of a-
register while it is being used to hold a new value for another purpose. The new value
~may in turn be preserved on the stack if a third purpose for that register arises. A

value is saved by "pushing" it onto the stack at some time before the register is used
~for another purpose; it is restored by "popping” it back into the register after the new
purpose has ended. The range of time during which a register is used for a given
purpose (possibly interrupted by other, interpolated purposes) may be called an extent
of a use the register (by analogy with the term when applied to the variables of a high-
“level programming language such as ALGOL). A stack can be used because a discipline
is imposed requiring that the extents of quantities kept in a register be nested. o
The nesting discipline is typically carried out by tying it to the nesting of
- procedure calls. There are two common conventions for using stacks in this context. In
- one, the "Caller Saves" convention, the calling procedure is responsible for pushing any
values it will want later, and for retrieving them when the called procedure has
returned. In this way a called procedure always has the full set of registers available
for arbitrary use. In the other, the "Callee Saves" convention, the called procedure is
‘responsible for preserving any registers that it uses. In this way a calling procedure can
use any registers it pleases without worrying about called procedures destroying them.

There has been some debate as to which of these conventions is better. This
- debate has not been resolved because there is no good answer. Each convention is
nonoptimal, and can perform much worse than the other for particular procedures. The
- Caller Saves convention is justly criticized because the caller may well save a register it
- did not have to (because, unknown to it, the called procedure does not use that register
anyway). The Callee Saves convention is equally justly criticized because the called
~procedure may save the contents of a register which was not actually in use.

Steele and Sussman . . ' v 2 The Drea_m of a Lifetime

‘The problem of minimizing stack operatlons can be important because stack

‘ 'operatxons are usually <1gmf1cantly more expensive than register operations. This is true

for typical computer systeins using a hierarchy of memory devices; stacks, being of
potentially unbounded size, are hkely to overflow into slower memories. We are
- especially concerned with this problem in the context of hardware interpreters for high-
level ldnguage< (See [SCHEME Chip 0], [SCHEME Chip 1]) If the language allows
~ closed procedures (FUNARGS) to be a first-class data type, which can be passed as an
‘argument and returned as a value, and if we also allow control continuations to be_
similarly manipulated, then these problems are magnified because our stacks must be in
garbage-collectable heap memory. (Cf. [SCHEME], [Revised Report], [Moses],
[CONNIVER], and [Bobrow and Wegbrext]) ' ’

In thls paper we w1[l outlme automatic methods of saving and restormg the
values of registers which combine the good features of the classical conventions and
‘which perform in every case as well as or better than either of the two classical
conventions. We will demonstrate the effectiveness of our techniques for use of
~registers and ‘stacks in the context of .an interpreter for a dialect of LISP. We will
compare the performance under various implementation choices. We will also describe

how acks may be used in convemxonal computer archltectures. '

- Other researchers have investigated and used techniques for improving the
performance of stacks. [Burroughs] [LISP VLwhme] Such techniques generally
implement modified push and pop operations which use registers to buffer the stack
data. OQur techniques are a generalization of those prev1ous]y reported.

Although compller optimizations can amehorafe the problem of opnmdl use of '
registers and stacks, the problem can not be fully resolved before run time, even if
procedural arguments are disallowed (i.e. even if the targets of all procedure invocations
are known at compile time). Which regxsters are in use and which are needed can
: depend on (a) which of several procedures is the caller, and (b) which of several data-
dependent execution paths is taken within the called procedure. Hence in general not
even the most complex optimizing compiler using either of the classical conventions can

fully optlmxze register usage. If procedural arguments are to be implemented, then the
problem is even more 1mpossxble ‘

~ Some’ negotiation must occur dynamically, at run time, between the various
users of a register. Only if both the caller and the called procedure need to use a
- register should it be preserved for the caller’s sake. More generally, the called
‘procedure may not need a register, but one that it calls (or one indefinitely far down
the call chain) may need the register. The negotiation protocol therefore cannot be just:
between caller and called procedure, but must extend over more then one level of call.
~ The techmque we presem is dCtlld“y independent of any procedure call mechamsm it

LS

© Steele and Sussman The Dream of a Lifetime

involves associating state information with each register describing whether or not it is
in use. '

The Strategy

- By a "register" we mean something which can hold a single finite datum.
There are two operations on registers: one can read the datum contained in the
“register, and one can store a new datum into it. The datum obtained by a read
operdtxon is alwa)s the datum most recently stored.

By a "stack" we mean something which can hold an indefinitely large number
of finite data. There are two operations on stacks: one can push a new datum onto
the stack, and one can pop a datum from the stack. The datum obtained by a pop
operation is always the datum specified by the most recent matching push; that is,
pushes and pops are "b.ihnced" like parentheses. :

The (;l’assicalv,register-saving conventions deal with these two abstractions
sepdra’re!y ‘A compiler typically issues read and store operations on registers for

manipulating dam, dnd 1s<:ues push and pop operdnons for savmg and restoring the
regxsters '

When a stack is used to maintain the nested extents of a register it is not the
actual pushing and popping which is of direct interest; it is the saving and restoring of
the register. We introduce a composite abstraction (which we call a rack) which adds
to the behavior of an ordinary register the ability to specify the beginning and ‘ending
of an extent (or, equivalently, to specify that the current value must be saved so as to .
be available later). Racks have four operations defined on them: fetch, assign, save,
‘and restore. They are analogous to the read, store, push, and pop operatlons for a
~ separate reglqter and stdck

Our new abstraction is in det to be implemented in terms of a stack and one_
or more registers. The save and restore operations appear to behave as push and pop
~ stack operations, in that a restore operation causes to be available (to the fetch
~operation) that datum which was available before the corresponding save operation.

 However, perfmmmp a save does not necessarily (mdeed in some implementations never

~does!) perform a push on the internal stack; similarly, performing a restore does not
necessarily perform a pop. Instead, pushes and pops are delayed until they are forced
~ by subsequent operations. Hence a rack may be thought of as a kind of "lazy stack™.
“In particular, a push of pop may occur during a fetch or assign operation.

- Steele and Sussman , 4 v The Dream of a Lifetime

We will present a series of implementations which embody different eng'ine‘ering 3
tradeoffs. The 1mplementa‘nom will be presented in approx1mately mcreasmg order of
complex1ty

Rack Implementations .

‘Each of the unplementaﬂom given here embodies the same abstractmn a
‘slngle register-cum-stack which responds to the four operations revch, assion, save, and .
“restore. Each implementation will specify a set of internal registers and a stack, and
procedurm which nnplemem the four operations in terms of rean and store operations on
the internal registers and pusw and por operations on the internal stack.

~ The key idea is that eaah instance of a rack can have a state which encod

some of the history of previous operations. Each implementation is organized as a
~ finite-state automaton which mediates between operation requests and the internal
registers and stack. This automaton serves as an on-the-fly run-time peephole optimizer,
“which recognizes certain patterns of operations within a small window of events and
transforms them so as to reduce the actual number of stack operations performed.
 Each rack has its own internal stack (as opposed to sharing one stack among several
registers) so that the optimization can be performed independently on the operations to
be performed on each rack. This will be important in minimizing the operations
»becau?se' otherwise operations on one rack could cause wasted operations on another.
(We see this kind of inefficiency in systems which have "framed stacks" where each
~entry (a single frame) on the stack is a fixed pattern of saved state, much of “h!Ch is
irrelevant fo the particular reason \xhy that entry was constructed.)

0 We describe each nnplementd‘non in the programmmg language SCHEME
 [Revised Report], a dialect of LISP which is lexically scoped and allows procedures to be
passed as arguments and returned as values. (Appendix 2 contains some of the
'1mplement(mons expressed less abstractly and in an Algol-like language) The use of
procedural values allows us to describe a data abstraction as a procedural object w hlgh'
accepts and acts on messages sent to it. (Cf. [Actors] [Smalltalk]l) Each
~implementation is a function which, when called, constructs and returns a fresh instance
of the rack in the form of a closed procedure. The instance can be operated upon
using the following operations which send appropriate messages to the instance:

Steele and Sussmap .) ,5 ‘ The Dream of a Lifetime

(DEFINE (FETCH R) (R 'FETCH))
(DEFINE (ASSIGN R NEW-VALUE) ((R 'ASSIGN) NEW-VALUE })
~(DEFINE (SAVE R) (R 'SAVE))
(DEFINE (RESTORE R) (R 'RESTORE)Y
That is, if fhe':_variable env has as its value an instance of the rack abstraction, then
~writing (retc env) will fetch the current contents of the rack, (assien env 3) will make
 the new contents of the current extent be 3, etc. ~
o Our rack implementations will contain registers and stacks. A register or stack
will also be modelled by closed procedures which take messages. A register can have a
~ value stored in it or it can be read out: : '

{DEFINE (STORE REGISTER-VALUE) ((REGISTER "STORE) VALUE))

(DEFINE (READ REGiS-TER)'(REsIerR 'READ))

(DEFINE (REGISTER) ‘ , , . iDefine a register to be an object
' Z(LET‘((V NIL)) o ; which contains a quantity V, and
o ‘(LAMBDA (OPERATION) ‘ i responds 1o a request by dispatching
{CASEQ OPERATION ' ~ 3 on the specified operation type.
{(READ) V) . ;For READ, return the quantity V.
((STORE) L iFor STORE, return a function
(LAMBDA (NEWVALUE) ; which will accept the new value

(SETQ V NEWVALUE))))))) ; and save it in V.

A siack is éirnilitrly b'ehm;iom}l_y' described:

Steele and Sussman ' 5 . 6 The Dream of a Lifetime.

~ (DEFINE (PUSH STACK TOP) ((STACK 'PUSH) TOP))

. (DEFINE (POP STACK) (STACK 'POP))

(DEFINE (STACK) o | - iDefine a STACK to be sn object
" CO(LET {(S NIL)) . . ; which contains a 1ist § (initially
(LAMBOA (OPERATION) ' ; empty) and responds to a request
(CASEQ OPERATION) ; by dispatching.
((PUSH) ;For PUSH, return a function which
(LAMBDA {TOP) ; will accept a pew value and add it
V(SETQ S {CONS TOP S)))) ; to the front of the 1ist §.
{(POP) o ;For POP,‘ , o
(IF (NOT (NULL $)) ; if the 1ist § is not empty,
(LET ({V (CAR 5))) ; then save the first glehent,

(SETQ S (COR S)) f remove the first element from S,
V) ; and return the formqr'first element ;
(ERROR "Stack ran out -IPOP"))))))) "~ ;ERROR if S s empty.

Ordinary Stack Implementation

- As a short example of an implementation, we express the classical save-must-
- push/restore-must-pop convention. This is not very interesting except to demonstrate
~our notation and to serve as a benchmark for comparative performance measurements,

(DEF INE (STANDARD-STACK)
‘ (LET ({R (REGISTER)) (S (STACK)))
" (LAMBDA (OPERATION)

(CASEQ OPERATION

‘ ((FETCH) (READ R))
((ASSIGN) .
“(LAMBDA (NEWVALUE) (STORE R NEWVALUE)))
((SAVE) (PUSH S (READ R)))

((RESTORE) (STORE R (POP S)))))))

In this implementation, each instance creates two internal objects: a register r
and a stack s. The current value is always kept in r. When a save operation is

requested, the current value is always pushed onto s; during a restore operation, a pop -
always occurs. :

Steele and Sussman ' A o 7 L) The Dream of a Lifetime

Optimizing Pushes

. The next implementation has two states, called avariasie and iv-use. The value
associated with the current extent is always in the internal register r. The state encodes
whether that value has been saved or not. That is, the state describes whether or not
the internal register can be used freely or has been pressed into service as a virtual top-.
of-stack. The important idea here is that the state machine recognizes the operation
‘sequence "save; restore” and treats it as a compound no-operation. It delays the pushing
conceptually associated with a save by moving to the state m.use. If the next operation
is an assien (or another save) then the push is performed after all. If the next operation

is a restore, however, then the state is simply reset to avaiLasie, and a push and pop have .
- been avoided.

(DEFINE (PUSH-OPTINMIZER) v ,
‘ (LET ({R (REGISTER)) (STATE (REGISTER)) (S (STACK)))
(STORE STATE 'AVAILABLE) ;initial state
" {LAMBDA (OPERATION) ,
: ' (CASEO OPERATION
' {(FETCH) (READ R))
((ASSIGN)
{LAMBDA {NEWVALUE)
~ (CASEQ (READ STATE)
({IN-USE)
{PUSH S (READ R))
(STORE STATE 'AVAILABLE)
"(STORE R NEWVALUE))
((AVAILABLE)
‘ (STORE R NEWVALUE)))))
{{SAVE)
(CASEQ (READ STATE)
((IN-USE) (PUSH S (READ R}))
((AVAILABLE) (STORE STATE 'IN-USE))))
({RESTORE)
(CASEQ (READ STATE)
((IN-USE)
(STORE STATE 'AVAXLABLE))
((AVAILABLE) (STORE R (POP $)))})})))

Optimization of pushes can help considerably in a program which uses the
Caller Saves convention. In this case, there are many calls to subprocedures which will

not modify the registers of interest to the caller. The caller, however, will not in
- general know that these procedures are "safe". Even if we grant that the caller will

‘Steé;‘l_e‘and Sussman) _ e 8 _ The Dream of a Lifetime

know which registers important procedures can potentially modify (a dangerous
“violation of modular organization, but one which is often made in highly optimized
‘performance code), different subsets of the potentially modified registers will be actually
modified depending on the arguments passed to the callee. Thus, our push optimizer
~can do better than an optimizing compiler under some circumstances. The reason is

~ that it recognizes (temporal) sequences of relevant operations. Operations which do not

affect the register of interest are not cluttering the view of our optimizer. 'Additiomill‘y, -
the optimizer can "see through" subroutine calls and other module boundaries. '

Optimizi'ng Pushes and Pops

- The next implementation augments the previous implementation by recognizing

~ some situations in which pops may be optimized as well as some pushes. Tt recognizes

both "save; restore" and "restore; save” sequences and effectively elides them. The state

‘machine has three states: IN-USE, AVAILABLE, and on-stack.. The new state encodes where
“the value associated with the current extent is actually located: in the internal register
~or on ‘the top of the internal stack. As before, if the value is not on the stack, it may
_either be protected (in-use) or the register may be available to accept a new value
(avarLasLe). ' '

~ When does pop optimization buy anything? The state machine elides restores
followed by saves with no operations on that register in between. This is unlikely to
happen in a well-written program wusing the Caller Saves convention because such
sequences can be deleted by simple peephole optimization on the local data-flow of the
program. However, in Calle¢ Saves situations, it is often to be expected that two
“procedure calls occur in sequence, each calling a procedure which will clobber some
-~ particular register, which is not referenced by the code between the procedure calls. In
this case such a useless sequence will occur. Again we see how this technique is very
‘nice in that the code "removed" is not necessarily lexically adjacent, just adjacent
logically in the flow of control. S

 Stee}e.and Sussman] 9

"(DEFINE (PUSH-AND-POP-OPTIMIZER) L
(LET ((R (REGISTER)) (STATE (REGISTER)) (S (STACK)))
(STORE STATE 'AVAILABLE) :initial state
{LAMBDA (OPERATION)
~ (CASEQ OPERATION
((FETCH)
(CASEQ (READ STATE)
((IN-USE) (READ R))
((AVAILABLE) (READ R))
({ON-STACK)
(STORE R (POP 5))
(STORE STATE 'AVAILABLE)
(READ R))))
{(ASSIGN) -
(LAMBOA (NEWVALUE) ‘
(CASEQ {READ STATE)
({IN-USE)
(PUSH S (READ R)) ‘
(STORE STATE 'AVAILABLE)
(STORE R NEWVALUE))
({(AVAILABLE) ;
{STORE R NEWVALUE))
((ON-STACK)
(POP 5) '
- (STORE STATE 'AVAILABLE)
R (STORE R NEWVALUE)))))
©((SAVE)
(CASEQ (READ STATE)
({IN-USE) (PUSK S (READ R)))
((AVAILABLE) (STORE STATE 'IN-USE))
* ((ON-STACK) (STORE STATE 'AVAILABLE))))
((RESTORE) ,
(CASEQ (READ STATE)
((IN-USE) (STORE STATE 'AVAILABLE))
((AVATLABLE) (STORE STATE 'ON-STACK))

((ON-STACK) (POP $))))))))

The Dream of a Lifetime

The important idea here is that the state machine recognizes the operation
sequence "Restore; save" and treats it as a compound no-operation. That is, it delays
the popping conceptually associated with a restore by moving to the state on-sTack. If
the next operation is a retch or assien (or another restore) then the pop is perforined
after all.- If the next operation is a save, however, the state machine recognizes that the

* 'Steele and Sussman] 10 »I . The Dream of a Lifetime

relevant value is alre:idy on the stack and so the rack reverts to state avaiLaste.

. Now we have to be a little careful here, In describing the rack abstraction we
never sald whether a rercn operation immediately after a save operation is guaranteed to
return the same value it would have before the save was performed. If an
1mplementahon preserves value over saves we will say that it "duplicates” the extent
- before saving it. The simple stack implementation and the push-optimizer are hoth
- duplicating implementations. The push-and-pop-optimizer lmplementatlon would appear,
- at first, to do no damage to the value in the register during a save operat:on, but
' consxder ‘the following sequence of operatlons :

(AS'S’IGN FOO»I) ' o Jthis leaves the rack in state AVMLABLE (R is 1)

(SAVE F00) - ;this Teaves it IN-USE (R is 1) _ o
{ASSIGN FOO 2) ' ;this leaves it AVAILABLE (R is 2; 1 has been pushed)
(RESTORE F0O) ‘ ithis leaves it ON-STACK (R is 2)

_;[doing a FETCH at this point would return 1, but é]so
)) o ; would pop -»{he stack and change the state to AVAILABLE]
'(uS'AV'E F0O) ’ - ithis leaves it AVAILABLE (R is 2)
'(FETCH FOO) o ;this returns 2 ‘

In a duphcatmg implementation, the result must be a 1, but in the nnplementmrm_
shown the result will be 2! The duplication is an extra property which is needed in
~some dpphc‘xtmns and not in others

o We m1ght thmk that we could fix up the push-and pop-optumle
1mplementat10n 50 that it duplicated extents by replacing the followmg code in the case
for SAVE:

((ON-STACK) (STORE STATE 'AVAILABLE))
with the somewhat more complex:

((ON-STACK)
(STORE R (POP §))
(STORE STATE 'IN-USE))

Thls mdeed makes the rack duplicate, but it kills the pop opnm:zatxon It is not uqu!lv'
necesqary for a rack to have a duplicating save. However, sometimes we need this
operation explicitly. In this case we may find it necessary to implement a separate
oypLIcATE operation which is the same as save in most rack implementations and has the
complex code above in this rack 1mplementahon

" Steele and Sussman , 11 The Dream of a Lifetime

Two-Cell Top-of-Stack Buffer

-~ This implementation is presented for comparison. It is similar in spirit to the

- top-of-stack buffer used in the B6500/B7500 series computers [Burroughs]. There are

two internal registers, r1 and r2, which buffer the stack operations. The value

- associated with the current extent is always in one of these two registers.; there are

- two states 1n-r1 and n-rz2 indicating which is the case. An important feature of this

_implementation is that reren and assiey never perform push or pop operations; only save

ever pushes, and only restore ever pops. The registers provide a sliding window,

however, within which pushes and pops may be elided. ' - '

{DEFINE (PDL-BUFFER) »

: ~ (LET ((R1 (REGISTER)) (R2 (REGISTER)) (STATE (REGISTER)) (5 (STACK)))
(STORE STATE ' IN-R2) ;initial state. '
(LAMBDA (OPERATION)

(CASEQ OPERATION
((FETCH)
(CASEQ (READ STATE)
({IN-R1)} (READ R1))
((IN-R2) (READ R2))))
((ASSIGN)
(LAMBDA (NEWVALUE)
(CASEQ (READ STATE)
©((IN-R1)
(STORE R1 NEWVALUE))
((IN-R2)
_ (STORE R2 NEWVALUE)))))
((SAVE)
(CASEQ (READ STATE)
((1N-R1)
(PUSH S (READ R2))
(STORE R2 (READ R1)))
({ IN-R2)
~ (STORE R1 (READ R2))
v (STORE STATE 'IN-R1))))
((RESTORE)
{CASEQ (READ STATE) .
((IN-R1) (STORE STATE ’IN-R2))
((IN-RZ) (STORE R2 (POP 5)))))))))

This rack implementation is duplicating and optimizes both pushes and pops. . |
On the other hand, it needs two registers per rack (besides the stack-pointer register).

‘Stee‘Ie and Sussman ‘ ‘ 12) The Dream of a Lifetime

(On the third hand, it permits another kind of optlmlzatlon not supported by
any of the previous strategies: a sequence equivalent to "restore; Restore; save" can be
- performed without any popping if the rack had been in state iv-r1. Such a compound
operation is typical of a binary arithmetic operatlon on a stack machine (such as are the
B6500/B7500 series); addition, for example, is performed by effectrvely popping the top
- two elements of the stack and pushing back their sum in one operation. In state in-r1
this is done by placing the sum of r1 and rz in r2 and changing the state to m-rz. If
such bmary operations are interleaved with operand fetches, then much stack amhmenc
can be performed w1th no actual pushes or pops)

'Colla.pé.ing Extents Using a Coumcr

~In some d])])]l(.‘dflOﬂ’S the values held in a reglster durmg successive nested
extents often are identical, and change only infrequently. Consider, for example, a
situation where the register is used to hold a parameter passed down from one level to
another, from one procedure to another, without change. The 1deavhe_re is that if
“several consecutive values are the same, this fact can be encoded by keeping only one
copy of the value plus a count of the replications. (We will exhibit an application
below where this idea yields a substantial performance improvement.) One way to
“think about this is to consider the stack to be "run-length encoded". Another way is to
“consider the value to have a "protection count", somewhat like a reference count as
used in storage allocators [Weizenbaum] [SLIP], thus the same value can be "in-use”
‘more thau once. ' '

‘ ~This is not without associated overhead. When a value is eventually actuail
'pushed onto the stack, two items must be pushed: the value and the count. Hence rlf
in practice consecutive values are not often identical, then this implementation performs

- twice as many stack operations as previous implementation we have presented (for

example pusu-opvimizer). There is also a complexity overhead: though there are no
explicit states (the value of the count contains the state), the finite-state machine which
mediates between user and actual stack must be capable of doing simple arithmetic
(adding and subtracting one); this may be important when implementing this technique
in hardware. v '

Steele ,ahd,Sus'sman S _ B 13 __The Dream of a Lifetime

 (DEFINE (PUSH-COUNTER NAME)
- (LET ((R (REGISTER NAME)) (COUNT (REGISTER NAME)) (S (STACK NAME)))
(STORE COUNT 0) ‘Initialization.
(LAMBDA (OPERATION)
 (CASEQ OPERATION ‘
~ ({FETCH) (READ R))
((ASSIGN) _
(LAMBDA (NEWVALUE) ,
_(BLOCK (IF (NOT (= 0 (READ COUNT)))
(BLOCK (PUSH S (READ R))
(PUSH S (- (READ COUNT) 1))
~ (STORE COUNT 0)))
(STORE R NEWVALUE))))
* ({SAVE) (STORE COUNT (+ 1 (READ COUNT))))
({RESTORE) v
(IF (= (READ COUNT) 0)
(BLOCK (STORE COUNT (POP $))
(STORE R (POP $)))
(STORE COUNT (- (READ COUNT) 1))))))))

The critical idea is the code for assien. If the count is non-zero, then the
current value is serving for more than one nested extent (just as in previous
- implementations state iv-use implied that the value served for two extents). In this case
one extent must be de-collapsed from the others so that the assignment may be
performed. (A very tricky implementation might first check to see whether the new
~assigned value were the same as the old one or the previous one, and attempt to
collapse extents! It is not at all clear that this is worthwhile.) This push-courter
implementation of racks has a duplicating save operation (after all, the whole point is to
wuse this implementation in situations where consecutive extents are often the same, and
“this probably occurs by algorithmic duplication rather than computational accident.)

“ ', vThe Impact Qf Racks on the Performance Qf an :Evaluatorr for SCHEME ‘

The proof of the pudding is in the eating. We have tried the idea of using
racks to implement the saving and restoring of registers in a caller-saves implementation
of an interpretive evaluator for (a dialect of) the SCHEME language (see Appendix 1
for a complete listing of the evaluator.) This provides a non-trivial exercise of register
~saving because it performs a highly recursive operation whose precise actions depend in
a complex way on the data being processed (ie. the SCHEME program being
_interpreted). We ran the interpreter on a set of test problems with those registers
- which are saved implemented as various kinds of racks. - '

Steele and Sﬁssm_an, ‘ S 14 The Dream of a Lire‘time

In the particular interpreter we used there are five registers which are saved at

.various points in the interpreter. They are: RETPC, ENV, UNEV, ARGL, FUN. '

- retee is used to hold the "return address” for an evaluation of a subexpression.

The interpreter may recurse to evaluate a subexpression for one of a number of reasons.

retee holds the reason for the current subevalxiatipn. For example, it may be that the
subexpression is an argument to a procedure call. In this case the evaluator will have to
evaluate the following s (if any) and then apply the procedure. The subexpression may

“be the predicate part of a conditional, in which case the evaluator wants to use the

value of this expression to decide whether to proceed with the consequent of the
conditional or the alternative of the conditional. ‘

. ew is used to hold the environment which is the map of identifiers to their
values. - Since SCHEME is lexically scoped, this map is never required at the moment a
procedure is called because the procedure is enclosed within its own lexical environment

(that is, the procedure object contains an environment in which to execute the code for

the procedure). The actual new environment is made by binding the formal parameters

of the procedure to the (evaluated) actual parameters of the call, and adding these

bindings to the closure environment. The new environment is assigned to the
environment register and execution begins on the body of the procedure. Thus, it is

necessary to preserve the environment of an expression across a procedure call if more

computations are to be done with that environment after the procedure returns. This

- may happen if the subexpression is the predicate of a conditional, or is an argument in
~ a procedure call expression after which other arguments must be evaluated before the
- procedure can be called. : -

uvev is a register which is used to remember the unevaluated part of an

“expression across the evaluation of a subexpression. Thus, ukev is used to hold the

consequent and the alternative in a conditional and the rest of the unevaluated
arguments in a call. ' -

. arl is used to hold the list of already evaluated arguments for a procedure
while the next argument is being evaluated. It eventually contains the entire list of

‘arguments and is used to construct the environment when binding ‘the formal
- parameters to the actual parameters (stored in arst) at the procedure invocation.

Fun holds the procedure to be invoked after all of its arguments are evaluated.
It is necessary because the evaluator we are using evaluates an expression from left to

- right, and in that syntax the procedure comes first, followed by its arguments.

The evaluator we are using has other registers for temporary storage of values

and expressions. Those registers are not interesting for our test as they are never saved.

Steele and Sussman B -) 15 : ’ The Dream of a Life'Hmer

, To measure the performance of the evaluator we use the following doubly
~recursive method of computing F‘i'bonacci numbers. This test is interesting in that it
. exercises the recursion mechanism of the interpreter rather thoroughly and is thus a
- good indicator of the overhead of evaluating subexpressions. The problem is to evaluate
- (F18 4) where we define: . : o

~ (DEFINE (FIB N)
' {COND ((= N D) o')
((=n81)1)
(T (+ (FIB (- N 1))
(FIB (- W 2))))))

. The results are summarized in the following table. For each implementation,
for each register, we give the actual number of items pushed and popped in the
execution of the test example. ' '

RETPC = ENV UNEV .ARGL FUN Total
STA'P‘{.)ARD—STACK ‘ 123 85 ; 85 65 37 395
PUSH-OPTIMIZER 33 20 20 16 12 101
_PUSH-AND-POP-OPTIMIZER 33 20 29 16 12 101
PDL-BUFFER 33 20 20 16 12 101
PUSH-COUNTER - 66 8 a0 32 24 170
. ~ We can see that the simple push-optimizer is a tremendous improvement over a

simple unoptimizing stack. Additionally, in this caller-saves discipline, the push-and-pop
optimizer gives us no advantage for its added complexity. The pdl-buffer, which
requires an extra hardware register, makes no difference either. The push optimizer is a
- simple two-state machine so it is trivial to implement in hardware. ' '

- The push-counter is worse than the push-optimizer for every register except the
‘environment register env. In that case, it makes a remarkable difference. What has
- happened is that the evaluator does not save the environment unless it is logically

necessary to do so to allow the computation to proceed. The only reason that the
- environment is ever saved is because it will be needed after a recursive call to the
evaluator (and this happens to" occur only when evaluating an argument to a procedure
(other than the last argument) or the predicate of a conditional; because SCHEME is
lexically scoped, the environment is not needed to apply a procedure (in contrast to the
implementation of LISP 1.5 and its successors), because each procedure is enclosed with
its own favorite environment). Thus, in the Fibonacci evaluation the only reason to
save the environment is when the first argument of + is evaluated because the
~evaluation of the second argument will need that environment. The environment will
“be assigned (and therefore pushed) upon applying the subcall to r1s so it must be saved.

Steele and Sussman o _ 16 _The Dream of a Lifetime

Thus we s_e'eft'h'at‘ the environment must actually be pushed precisely 4 times:

The Computation Tree for (FIB 4)

The doubled edges show Fecursions over which the environment must be saved.

From this data, we infer that it is best, for this. particular program (the interpreter), to
let each rack be implemented by push-opTimizer, except for ewv, which should be -
~ implemented by eush-counter. Let us call that implementation the oprimaL strategy for
implementing the interpreter. We will now compare the gains of using oprimaL racks
over stanoaro-stack racks. For the problem (ris ¢) the optimaL strategy uses only 23% of
“the pushes required by the stanoaro-stack strategy: '

O (F1B Ay RETPC ENV UNEV ARGL FUN Total
STANDARD-STACK 123 85 85 65 37 395
OPTIMAL : 33 8 2016 12 89 and 89/395=.225...

_Lét us see how this varies with the argument. The folloWing is the data for (r1s s5).

(FIB'3) CRETPC ENV UNEV ARGL FUN Total

STANDARD-STACK 209 . 145 145 11 63 673

~opTIMAL %6 14 34 28 21 153 and 153/673=.227. ..

It still seems to be about 23%, independent of the input argument! This should not be
too surprising. Giving a larger argument to rie merely causes the same code to be
“executed more times. The use of racks does not ~optimize the algorithm being
interpreted; it merely gains a constant factor of speed for the interpreter. Now it gains
different constant factors for different parts of the interpreter, so the speed-up factor
may be different for interpreting a program other than ris. For example, if we define
factorial by the standard singly recursive definition: ' '

Steele _énd Sussman ©) : 17 : The Dreém of a Lifetime

o (DEFINE (FACT N)
{COND ((= N 0) 1) ‘
© (T {* N {FACT (- NAI))))')).'

then the savings on (ract 4) are more substantial.

(FACT 8) RETPC ENV UNEV ARGL FUN Total

STANDARD-STACK 59 40 40 31 18 188
;O'PTIMAL. , 4 0 s 8 8 35 and 35/188=.186...

.The opnmal ‘strategy does only 19% as many pushes as the standard ‘stac‘k'_
implementation. This figure remains the same for (racr 5):

(FACT 5) © RETPC ENV UNEV ARGL FUN Total
STANDARD-STACK 72 49 49 38 22 230
OPTIMAL R ¥ 0 6 10 10 43 and 43/230=.186. ..

Note fhat there are precisely zero environment pushes reqmred to compute factorials.
This optimization is, however very sensitive to the exact form of the code being
interpreted (and thus to the particular execution paths taken within the mterprefer) If
we instead defined factorial with the order of arguments to + reversed:

(uepme (FACT1 N)
(COND ((= N 0) 1)

(T (* (FACTL {- N 1)) N))))

“it ‘would be uecessarv to save the environment for each recursive call to f'act because
the environment wxll be needed after the recursive evaluation to access the value of n.

For_an'iterfntiife’implementation of factorial the savings are even greater:
(DEFINE (FACTZ N) (FACT-ITER (- N 1) N})
(DEFINE (FACT-TTER COUNT ANS)
(COND ({= COUNT 0} ANS)
(T (FACT-ITER (- COUNT 1) (* COUNT ANS)))))
For (FACT'?.#') the figures are:
(FACTZ 4y RETPC ENV UNEV ARGL FUN Total

STANDARD-STACK 55 38 38 31 16 178
oPTIMAL 12 0 8 7 4 31 and 31/178=.174. ..

Steele and Sussman : . 18 _ The Dream of a Lifetime

B Here ‘the opTiMAL sfrategy re(juires only about 17% of the pushes required by the
'STANDARD-STACK Strategy. '

 Use of Racks in "Standard" Computer Architectures

Racks could enhance the performance of a computer built around a standard
general-register-with-stacks architecture (such as the PDP-11, PDP-10, 8080, Z-8000,
etc.). A general purpose rack register A would be implemented in hardware as two
- registers (one (a.r) large enough to hold a datum, the other (a.s) large enough to hold
an address (the stack pointer)), and one or two status bits or a counter. Any
instruction which reads a register would read it by performing the mechanics of the
rack reten operation: any instruction which stores into a register would perform the
_ASSIGN operation. - ’ : ' :

, ‘The push-optimizer and push-counter methods are especially attractive here
because the rercn operation merely reads the datum from the datum register A.g, and so
there is no overhead for reading a register. Assigning to a register might perform a
push, however; thus a PDP-11 instruction mov Ro.R1 might perform a memory operation
to push the old contents of r1 before copying the contents of ro into it. This would
occur only if there had been a previous request to save register r1 which had been
“delayed. In any case, referring to ro could not cause a memory operation.

- It would be desirable to provide special instructions to save and RESTORE registers.
These would be analogous to pusn and ror operations as usually used. One difference is
that a save operation merely guarantees to preserve a register; it does not guarartee to
put the datum in memory on the stack right away. Hence code which expects to
~examine a saved value on the stack cannot simply read the stack pointer and index off
~of it. On the other hand, an additional operation can be provided to read the stack
pointer after performing any delayed operations. Thus, for the push-counter strategy,
“such an operation would first check the state: if 1n-use, the datum in the register would
be pushed and the state reset to avarssie. Then the (new) stack pointer could be
- returned. For the special case of indexing ‘into the stack (to read or write an entry), a
- special addressing mode could be provided which would index off a register’s stack
- pointer and take the status bit into consideration so as to fetch the expected element as
if a save operation always performed a pusv. That is, if the state were avaitasie, then

- indexing would be normal; while if it were IN-use, then indexing by zero would fetch

- the register datum, while other index offsets would have to be adjusted by one. In this

- way the push which might be performed by merely reading the stack pointer can be
- avoided (because it is known that the value of the stack pointer is to be used in a
- limited way). - ' ‘

vS{eel_e and Sussman : . 19) The Dream of a Liretime

_ Some exwtmg architectures already provide specxal mstruchons to push more
than one register onto a stack. These could be adapted to perform save operations
instead. Others automatically push registers onto a stack when a procedure call occurs;
on the VAX, for example, a two-byte bit mask preceding the first instruction of a
- procedure specifies which registers to push If save operations were done instead, then
the actual number of pushes could be reduced. (Because this is an example of the
Callee Saves convention, the push-and-pop- optxmxzer implementation might be
appropriate here.) o

_ Racks seem to be most effective on code which uses recursion heauly dﬂd
which follows unpredlctdble paths through the code of each procedure, such that
different paths use different registers. LISP code tends to be written in this style: each
procedure immediately does a multi-way branch by testing the arguments, and. then
performs a computation, possibly by recursion, of greater or lesser complexity. We.
“speculate that many programs coded in one or another "structured" style with heavy use
of procedure calls will exhibit these characteristics and so be aided by an
lmplementdhon which uses mckc to opmmze reglster saves. ' "

Appendn contains p‘:eudo -Algol code (essentwlly equivalent to the LI‘;P code
-given above) describing how the rack operations and stack indexing might be
implemented in hardware. In real machines it is sometimes necessary to be able to get
‘a control structure summary for interrupts, process switching, and non-standard exit
conditions. The use of cleverly implemented racks may increase the cost of these
operations because some of the state of the machine is distributed into the states of the
rack abstractions. Thus it is necessary to be able to dump the state of a rack and
'restore it eaml} This can be done quite painlessly in the cases we have illustrated and

the code in Appendlx 2 shows procedures for obtaining such stack pointers w hen
necessary.

Conclusions

_ We have defined a data abstraction which we call a "rack" which may be
thought of as a hybrid of a register and a stack. It is useful for encapsulating the
behavior of the kind of register whose contents may have an extent which requires that
N lt be saved during the execution of an unknown piece of code.

A rack can be 1mplememed in many ways, the simplest bemg Just a repister
which is saved on a stack in the usual way, but with other choices of implementation
leadmg to increased efficiency (if we assume that stack accesses are expensive by
- comparison to register accesses). The basic idea is that we interpose a state machine
controller between the rack abstraction and its stack /registers. This- controller can act

Steele and Sussman 20 »The Dream of_ a Lifetime

" as an on-the-fly run-time peephole optimizer, eliding unnecessary stack operations.

, "_Each of the implementations we have exhibited has different virtues. The
push-optimizer implementation is simple, requiring only a single state bit, and works well
for code which uses a Caller Saves convention. The push-and-pop-optimizer also works
for a Callee Saves convention. The pdl-buffer implementation requires one more
-register than push-optimizer, but works just as well, and in addition supports binary
stack-arithmetic operators well. The push-counter implementation requires a counter
rather than a one- or two-bit state, but run-length-encodes the stack, which can
substantially improve performance if nested extents often have identical values. '

v - There are many other possible implementations of racks. A rack is an abstract
- data structure. Just as a set may be implemented as a linked list of elements, a bit
string with 1-bits indicating contained elements, or a membership predicate, so a rack
‘may be implemented in many ways, which will have different performance
characteristics under various conditions of use.)

- We have demonstrated the sorts of savings one might expect by using cleverly
implemented racks. On a particular caller-saves implementation of an interpreter for
the SCHEME dialect of LISP, we have seen that if push-optimization (a simple 2-state
machine) is used on all registers except the environment register and if a push-counter is
used on the environment register, then for sample problems we can expect that typically
only one out of every four pushes that would be done by a conventional machine will
be done by the clever version, Indeed, this can be very significant if the stacks are
expensive. (This is the case in the MIT-AI/XEROX-PARC SCHEME-79 single-chip
'LISP interpreter [SCHEME Chip 2], a VLSI microprocesssor which directly interprets
LISP code, automatically manages storage as a garbage-collected héap, and keeps its
“stacks in the heap. Dealing with external memory is much slower than manipulating an
on-chip state bit. We intend to design a version of this chip which uses racks to
improve performance (indeed, the notion of a rack as a generalized data abstraction was
~developed in an attempt to optimize earlier versions of the chip.) We expect that the
- savings can become even larger with slightly different designs for our interpreter. For
‘example, if we use a number of separate racks to hold arguments for specific primitive
operators, rather than collecting a list of them in a single rack arct, then performance
may be even further improved.) '

Steele and Sussman) e 21 ‘ The Dream of a Lifetime

Appendix 1
The Test lnterpreter

The following is a lxstmg of the interpreter we used for developmg the re=ults
_ of the tests we have displayed, using racks to implement the saveable registers. The -
mterpreter evaluates expressions written in (a subset of) SCHEME [Revised Report].
The environment register, ewv, is the only one which demands a duplicating save; this is
mdlcated in the code hy using the oupLicate operator rather than save.

Whlle the code given here for the interpreter is 1tse1f wrltten in SCHE\IE it is
so coded that it does not use the variable- -binding and recursive procedure-call
. mechanisms of SCHEME. Instead, racks are used to save and restore items in a stack-
~like discipline; the items so saved include both data objects and "return addresses". In
effect, the recursive evaluation aigornthm is implemented in terms of an explicit stack -
(1 e. a rack), Juqf as it would be in an assembly language.

(UEFINE (EVAL»EXP-QESULT-TO PC)
(AsSIGN RETPC PC)
" (SAVE RETPC)
(EVAL-DISPATCH))

(DEFINE (POPJ)
{RESTORE RETPC)
({FETCH RETPC)))

Steele and Sussman B 22 The Dream of a Lifetime

- (DEFINE (EVAL-DISPATCH) .
 (COND ((ATOM (FETCH FORM)) |
' (COND ({NUMBERP (FETCH FORM))
' (ASSIGN VAL (FETCH FORM))
(POPJY)
(7 : '
(ASSIGN VAL (VALUE (FETCH FORM) (FETCH ENV)))
- (POPY))))
({EQ (CAR (FETCH FORM)) 'QUOTE)
(ASSIGN VAL (CADR (FETCH FORM)))
(POPJ)) '
((EQ (CAR (FETCH FORM)) 'LAMBDA)
(ASSIGN VAL '
(LIST '&PROCEDURE
(CADR {FETCH FORM))
(CADOR (FETCH FORM))
‘ (FETCH ENV)))
{POPJY)
((EQ (CAR (FETCH FORM)) 'COND)
(ASSIGN UNEV (FETCH FORM))
{(EVCOND-PRED))
({NULL (COR (FETCH FORM)))
(ASSIGN FORM (CAR (FETCH FORM)))
(EVAL-EXP-RESULT-TO APPLY-NO-ARGS))
(vt _
(ASSIGN UNEV (FETCH FORM))
(ASSIGN FORM (CAR (FETCH FORM)})
(DUPLICATE ENV)
(SAVE UNEV)
(EVAL-EXP-RESULT-TO EVAL-ARGS))))

(DEF INE {EVCOND-PRED)]

' (ASSIEN UNEV (CDR (FETCH UNEV)))
(ASSIGN FORM (CAAR (FETCH UNEV)))
(DUPLICATE ENV) '

(SAVE UNEV) _
' (ﬁVAL-EXP~RESULT-TO EVCOND-DECIDE))

The Dream of a Lifetime

Steele and Sussman ‘ B 23

© (DEF INE' (EVCOND-DECIDE)
i (COND ((FETCH VAL)
(RESTORE ENV)
(RESTORE UNEV)
(ASSIGN FORM (CADAR (FETCH UNEV)))
(EVAL-DISPATCH))
(1 ,
(RESTORE UNEV)
(RESTORE ENV)
(EVCOND-PRED))))

(DEFINE (APPLY-NO-ARGS) _

o (ASSIGN FUN (FETCH VAL))
(ASSIGN ARGL NIL) '
(INTERNAL-APPLY))

(DEFINE (EVAL-ARGS) .
- (ASSIGN FUN (FETCH VAL))
(SAVE FUN)
{ASSIGN ARGL NIL)
(EVAL-ARGS1))
(DEFINE (EVAL-ARGS1)
(SAVE ARGL)
(RESTORE UNEV) ,
(ASSIGN UNEV (CDR (FETCH unsv)j)
(ASSIGN FORM (CAR (FETCH UNEV)))
(RESTORE ENV) ' '
(COND ({NULL (CDR (FETCH UNEV))) ,
{EVAL-EXP-RESULT-TO EVAL-LAST-ARG))
{1
{(DUPLICATE ENV)
(SAVE UNEV) ‘
{EVAL-EXP-RESULT-TO EVALLARssz))))

(DEF INE (EVAL-ARGS?2)
o “ (RESTORE ARGL)

:(ASSIGN ARGL (CONS (FETCH VAL) (FETCH ARGL)))

(EVAL-ARGS1))

~ Steele and Sussman 24 A The Dream of a Lifetlime

(DEFINE (EVAL “LAST-ARG)
(RESTORE FUN)
~ {RESTORE ARGL)
(ASSIGN ARGL (CONS (FETCH VAL) (FETCH ARGL)))
{ INTERNAL -APPLYY)

{DEF INE (INTERNAL-APPLY)
’ (COND ((PRIMOP? (FETCH FUN))

© (ASSIGN VAL (PRIMOP-APPLY (FETCH FUN) (FETCH ARGL)))
(PoPJ))

((EQ {CAR (FETCH FUN)) '&PROCEDURE)
(ASSIGN ENV

(BIND (CADR {FETCH FUN))
(FETCH ARGL)
~ (CADDDR (FETCH FUN))))

(ASSTGN FORM (CADDR (FETCH FUN)))
{EVAL-DISPATCH))

{T (BREAK JUNKNOWN FUNCTION TYPE]))))

Appendix 2
Rack Instructions

- Here we present pqeudo -Algol ¢ode for two implementations of racks (push-
optimize and push-counter) in a style suited for use in standard computer architectures.
This code is essentially equivalent to the LISP code presented in the main text; the
- LISP code, however, assumes that stacks and integer counters may grow indefinitely in
‘size. The code given here explicitly indicates memory references and checks for stack
overflow and arithmetic overflow. Another difference is that the LISP code for racks -
uses an abstract interface to the stack data type, while the code here explicitly
: 1mplemems a stack stored linearly in memory, growing upwards (as on a PDP- 1(), and

'unhke a PDP-11 or VAX, for example).

Let the array MeMory[] represent the pnmary memory in whlch stack data is
stored. We present the two implementations in parallel: push-optimize on the left, and
' -push~counter on the right. To make the code align nicely for comparison, blank lines
~ are mtentxonally inserted in the code.

- A recisTer implemented as a rack is a structure containing three reglsters One,
Ry holds a data word; one, s (the stack pointer), holds an address. For the push-
optlmxzer 1mplememanon the third one is a bit; for the push- counter 1mplementdhon

Steele énd Sussmaﬁ .) 25 ‘-The Dream of a Lifetime B

‘the third one is a counter, which may be of any size. Ideally the counter should be

‘large enough to count most runs of identically-valued nested extents, but there is a

trade-off here: the smaller the counter, the more often pushes must be done when it

~ overflows, but the larger it is, the more bits must be pushed When a push does occur.

- (We suspect that in practice the size of the counter will probably be determined by
other architectural constraints.) '

/* PUSH-OPTIMIZE IMPLEMENTATION #/
TYPE REGISTER = o
RECORD(R: DATAWORD,

/% PUSH-COUNTER IMPLEMENTATION */

TYPE REGISTER =

7 RECORD(R: DATAWORD,

S: ADDRESS, S: ADDRESS,

AVAIL: BIT); COUNT: WORD);
Reading a register (implemented as a rack, of course) is straightforward.

FUNCTION FETCH(REG)
RETURN(REG .R);

FUNCTION FETCH(REG)
RETURN(REG.R);

Assignment is less straightforward...

PROCEDURE ASSIGN{RES, NEVVALUE) PROCEDURE ASSIGN(REG, NEHVALUE)

BEGIN

B BEGIN ,
IF NOT REG.AVAIL THEN IF REG.COUNT > 0 THEN
BEGIN BEGIN
REG.S := REG.S + 1; REG.S := REG.S + 2;
CHECK_STACK_OVERFLOW(REG.S); CHECK_STACK_OVERFLOW({REG.S);
MEMORY[REG.S] := REG.R; MEMORY[REG.S-17 := REG.R;
MEMORY[REG.S] := REG.COUNT - 1;
~ REG.AVAIL := TRUE; REG.COUNT := 0;
END; END;
REG.R := NEWVALUE: REG.R := NEWVALUE;
. END; - - END;

The entire body of either version of assien could be preceded by the conditional test 1r
_' can be performed cheaply and if it is likely that a
value might be assigned which is already the value of the current extent of the register,
‘then this test may be worthwhile, as it may avoid some pushes. ‘

NOT (NEWVALUE = REG.R) THEN. If this test

- In the push-counter implementation of save, we must check for overflow of the

o~

counter. If this occurs, the old count is pushed onto the stack and the counter reset.

Steele and Sussman

26 o) The Dream of a Lifetime

© PROCEDURE SAVE(REG)
IF REG.AVAIL
© THEN REG.AVAIL := FALSE
ELSE BEGIN
REG.S := REG.S + 1;
CHECK_STACK_OVERFLOW(REG.S)
MEMORY[REG.S] := REG.R;

: END;

PROCEDURE SAVE(REG)

IF REG.COUNT ¢ MAX_WORD_VALUE

THEN REG.COUNT := REG.COUNT + 1

ELSE BEGIN '
REG.S := REG.S + 2;
CHECK_STACK_OVERFLOW(REG.S); "
MEMORY[REG.S-1] := REG.R;
MEMORY[REG.S] := REG.COUNT;
REG.COUNT := 0;

END;

If the result of a counter incrementation is zero when the counter overflows, then the

push-counter save may be simplified to:

PROCEDURE SAVE(REG)
BEGIN '
 REG.COUNT := REG.COUNT + 1

IF REG.COUNT = 0 THEN
BEGIN
REG.S := REG.S + 2;

CHECK_STACK_OVERFLOW(REG.S);
MEMORY[REG.5-1] := REG.R:
MEMORY[REG.S] := REG.COUNT;
END;
END;

In restore we must check for stack underflow (trying to pop too many entries off the
stack). This can occur if more restore operations are performed than SAVE operations.

PROCEDURE RESTORE (REG)
“IF REG.AVAIL
~ THEN BEGlNVF : :
~ CHECK_STACK_UNDERFLOW(REG.S):

REG.R := MEMORY[REG.S7]:
~ REG.S := REG.S - 1;
END _
ELSE REG.AVAIL := TRUE:

PROCEDURE RESTORE({REG)
IF COUNT = 0

THEN BEGIN
CHECK_STACK_UNDERFLOW{REG.S);
REG.COUNT := MEMORY[REG.S7:
REG.R := MEMORY[REG.S-17;
REG.S := REG.S - 2;

END '
ELSE REG.COUNT ;= REG.COUNT - 1;

Function stackpr reads the stack pointer after forcing the rack into a known state, so
that all saved values are on the stack; that is, any delayed push is performed first.
Note how similar the code is to that for assieh. ' '

Steele and Sussman , ' 27 7 The Dream of a Lifetime .

PROCEDURE STACKPTR(REG) h PROCEDURE STACKPTR(REG)

BEGIN BEGIN
IF NOT REG.AVAIL THEN o IF REG.COUNT > 0 THEN
BEGIN BEGIN ,
REG.S := REG.S + 1; © REG.S := REG.S 4 2;
 CHECK_STACK_OVERFLOW(RES .S) . CHECK_STACK_OVERFLOW(REG.S);
MEMORY[REG.S] := REG.R; MEMORY[REG.S-1] := REG.R;.
R ' © MEMORY[REG.S] := REG.COUNT - 1:
REG.AVAIL = TRUE: © REG.COUNT := 0;
END; » . . END; .
RETURN(REG.S); - ' RETURN(REG.S):

T END: S ' . END:;

Function stackinoex logically indexes into the stack associated with a register. The
argument v must be a non-positive offset into the stack. If n is zero, the most recently
~saved value is returned; if it is -1, the next most recently saved value; and so on. (It _
is possible to code an equivalent version for the push-counter implementation, but it is -
rather inefficient, as it must scan the stack linearly, summing the saved counts.)

FUNCTION STACKINDEX(REG, N)
IF R.AVAIL '
THEN‘RETURN&MEMORY[R£G.S+N])
CELSE IF N =0 ' '
 THEN RETURN{REG.R))
© ELSE RETURN(MEMORY[REG.5+N+1]):

Procedure stackmnoexveite is similar, but takes a value to be written into the slot referred
~to be indexing. It would be very difficult to write a version of this for the push-counter-
strategy; hence if this operation is needed then that strategy should not be used.

PROCEDURE STACKINDEXWRITE(REG, N, NEWVALUE)
IF R.AVAIL
 THEN MEMORY[REG.S+N := NEWVALUE
ELSE IF N = 0 :
: THEN BEGIN
REG.S := REG.S ;,13
:CHECK_STACK~OVERFLOH(REGAS);
MEMORY[REG.S] := NEWVALUE;
REG AVAIL := TRUE;
. VEND; :
ELSE MEMORY[REG.SHN+1] := NEWVALUE:

Steele and Sussman ' . o 28 ' A The Dream of a Lifetime

- Historical Note

) , The basic idea for a rack came suddenly to one of the authors (Suqsman) in a
- dream at three o'clock in the morning. He had been worrying about the lifetimes of
~ quantities saved on the stack in a LISP interpreter. From this is derived the title of

 this report. Also, we have come to refer informally to the general technique of delaying
- stack pushes as "dreaming", an appropriate activity for lazy computers. We wish to
thank Robin Stanton, Richard Stallman, Jonathan Rees, and Richard Zippel for bcmg

the first readers of this paper and for making 1mportant suggestions, and Phil Agre for - |

fmdmg a bug.

References
| [Actors] :

~ Hewitt, Carl. "Viewing Control Structures as Pdtterns of Passing Messages AI
- Journdl 8 3 (June 1977), 12? 364,

[Bobrow and Wegbreit]
~ Bobrow, Daniel G. and Wegbreit, Ben. "A Model and Stack Implementatlon of
\/Iultlple Environments." Comm. ACM 16, 10 (October 197?) pp. '591 603.

[Burmughs}

- Hauck, E.A, and Dent, BA. "Burroughs’ B6500/B750(}‘Stack Mechanism."
~ Proc. AFIPS Spring Jomt Computer Conference Vol. 32 (1968), 245-251.

[CONNIVER] : .
" McDermott, Drew V. and Sussman, Gerald Jay. The CONNIVER Reference
_Manual Al Memo 295a. MIT AI Lab (Cambridge, January 1974).

[Interpreters] '
Steele, Guy Lewis Jr., and Sussman, Gerald Jay. The Art of the Interpreter, or,

The Modularity Complex (Parts Zero, One, and Two) MIT AI Memo 453

(Cambrldge, May 1978).

o [LISP ‘\/Iachme}

The LISP Machine Group Bawden, Alan Greenblatt, Richard; Hollo“dy Jack;
Knight, Thomas; Moon, David; and Weinreb, Daniel. LISP Mdchme Progress
Report. Al Memo 444. MIT Al Lab (Cambridge, August 1977).

Steele and Sussman) 29 The Dream of a Lifetifne

[Moses] | | | -
~ Moses, Joel. The Function of FUNCTION in LISP. AI Memo 199, MIT Al
~ Lab (Cambridge, June 1970).

[Revised Report] , , | o
Steele, Guy Lewis Jr, and Sussman, Gerald Jay. The Revised Report on
SCHEME: A _Dialect of LISP. MIT Al Memo 452 (Cambridge, January 1978).

" [SCHEME] |
- Sussman, Gerald Jay, and Steele, Guy Lewis Jr. SCHEME: An Interpreter for

Extended Lambda Calculus. AI Memo 349, MIT Al Lab (Cambridge, December »
- 1975). ‘ : ’

- [SCHEME Chip 0] v o

' Steele, Guy Lewis Jr., and Sussman, Gerald Jay. "Storage Management in a

- LISP-Based Processor." Proc. Caltech Conference on Very Large Scale
Integration (Pasadena, January 1979). :

[SCHEME Chip 1] , o
Steele, Guy Lewis Jr, and Sussman, Gerald Jay. Design of LISP-Bused
 Processors; or, SCHEME: A Dielectric LISP; or, Finite Memories Considered
Harmful; or, LTAMBDA: The Ultimate Opcode. Al memo 514. MIT Al Lab

- (Cambridge, March 1979). : S

 [SCHEME Chip 2]

Holloway, Jack; Steele, Guy L., Ir; Sussman, Gerald Jay; and Bell, Alan. The
' SCHEME-79 Chip. AT memo 559. MIT AI Lab (Cambridge, December 1979).

- [SLIP] o |
" Weizenbaum, J. "Symmetric list processor.”" Comm. ACM 6, 10 (September
1963), 524-544. ' | .

[Smalltalk] - |
- Goldberg, Adele, and Kay, Alan. Smalltalk-72 Instruction Manual. Learning
- Research Group, Xerox Palo Alto Research Center (March 1976).

[Weizenbaum] o
Weizenbaum, J. "Knotted list structures.” Comm. ACM 5, 3 (March 1962),
161-165. ’ : ‘

