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Introduction -and background

Dealing with any task involving physical objects in the three-dimensional world
requires a suitable representation. Computer scientists have used and prdposed a variety
of these representations since the first attempt to computerize such an undertaking.
The earliest models, deployed by pioneers in the field, maintained an object as an
ordered set of endpoints (i.e. corners) or pairs of points (i.e. lines or edges). Though
these had the attractive features of making the object répresentatioh explicit in a
ggomeiric sense and of facili{ating straightforward display of the particular structural
instance and spatial orientation, their downfall resulted from the fact that data
‘manipulations of most any sort (and thus transformations and manipulations, which
effect spatiotemporal changes, and prototype similarity recognition of unknown objects)

were indeed computationally cumbersome.

As early as 1963, Roberts [18] was attacking the problem of machine perception
of three-dimensional scenes involving polyhedra. The broad goals of this pioneering
work included the construction of line drawings from a pictorial source, the recognition
of the three-dimensional objects present in such dfawings, and the redisplay of these
forms after perfdrming ‘hidden line removal. In the computer, polyhedra were
represented as sets of line segments, each corresponding to a physical edge; the desired
manipulations were then effected by means of the now classic matrix transformations
applied to vectors in a homogeneous coordinate system. A thorough treatment of these

techniques is given by Newman and Sproull [14]. The computational demands that this
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method imposes even for simple transformations (e.g. translation, rotation, and scaling)
in addition to the cumbersome nature of attempts at object recognition have encouraged

researchers to pursue representations which are more conducive to the domain of use.

By 1971, Binford [3] had developed an innovative aliernative representation for
curved objects. His scheme was to model objects in terms of "generalized cylinders", i.e.
all physicval objects in a system wmild be transformed in some way to a conglomeration
of cylinders of varying size, shape, and orientation. He thereby introduced the notion of
representing all solid bodies as assimilations of objects taken from a small set of
primitive s_olids. In Binford’s case, a cylinder, the single primitive, consisted of a space
curve, or axis, and a circular cross section function on this axis. A simple object could
be modeled by choosing a single space curvet and an associated cross section function so
as to yield a good fit with respect to the shape and diménsions of the surface, and
complex objects could then be a composite of géneralized cylinders.‘ Of course, a
sacrifice was made in exchange for this simplified model -- exact representation became
impossible; and it was highly probable that the mappings of objects into the

representation were not unique, making recognition difficult.

Shortly thereafter, two independent, assembly-orientea systems evolved. That of
Braid [4] was based on a collection of six primitive solids -- cuboids, wedges, tetrahedra,
cylinders, sectors, and fillets. Vo‘elcker» [19] based his representation system on cuboid
and cylinder primitives. The idea of using generalized cylinders or cones to approximate

parts of objects after segmenting them into appropriate pieces has been further




-3

developed by Marr and Nishihara [12]. A discussion of various other approaches to
three-dimensional geometric modeling in a visual system (such as by statistical world

models, procedural knowledge, or semantic knowledge) is presented by Baumgart [2).

Each- of thesé representations hasv several drawbacks, the major ones are
difficulty of computational manipulation, difficulty of 6bject recognition, and én
incompatibility between ‘the représentational form of the object and the object
dé.scription. available as "input". 1In this light, a representation which facilitates ease of
manipulation and recognition and which is a "natural" form for the object seems to be a
mdst desirable attainment. It is these qualities which the enhanced spherical image (ESI)

- representation maintains.

In simplest terms, an ESI model for a convex object consists of a set of vectors.

An individual ;-'ector’s direction component represents the direction of a surface normal
of fhe object, and the vector’s magnitude signifieé the "object's surface area
éorre.s,ponding to the particular nonﬁal_direction. Alternatively, considering each vector
of the set to be of unit length and locafing them all at a common point of application,l
the locus of poi'nts cvonsisting of their endpoints lies on the surface of a unit sphere.
Such a mapping was developed by Gauss and is known as a spherical image. [6] A
scalar _valine, which represents the surface area corresponding to the normal vector, may

then be tagged to each point. This model of an object has been dubbed an enhanced

1. From differential geometry, a vector in 3-space consists of two points in 3-space: its vector
part V and its point of appiication P. The vector !p may then be pictured as the arrow from the
point P to the point V+P. [15]



spherical image.

Representational advantages

With the success of several computerized techniques for determining object
shapes from photographic sources - such as photometric stereo [21], Which uses two or
more images of the same scene taken with varying directions of incident illumination,
and so-called "shape from shading" algorithms [7, 8] which determine orientations by
augmenting gradient space schemes with image intensity information -- digitized
repreéentational data may be produced. To organize this information into an easily
manipulated and thus useful form, it needs to be encoded into a complementary‘objecvt
representation. The shape determination process actually resolves the object surface
normal at each pofnt in the scene. With this knowledge, the surface area of the various
regions which compose ani object may be easily computed. (Note that the normal
vectors’ directions determined for patches of a single planar region are identical to
within a rezisoxlzible degree of certainty.) A single vector may then be used to represent
the directio.n in which a flat surface is facing. Pairing this vector with the region’s area

and doing this for all of an object’s regions (i.e. faces) will yield an ESI representation.

/

The question that immediately arises concerns the case in which some faces of
an object are not visible to the shape determining process. Certainly the observable
regions may be accurately represented. Under such circumstances, a useful property of

ESI’s may then be employed, specifically that referred to as the center of mass property.

-
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(See page 28 in Appendix I1) With this, an object’s description may be checked for
completeness ("wholeness"); and if a region is missing, the appropriate direction and area
needed to fill in the hole may be calculated and appended to the object’s

representati(m.1

Once an object has been represented in this fashion, the commonplace object

“manipulations become trivial to execute. It is assumed here that the representation is

maintained as a set of vectors, all of which have a common point of application (a local
origin id Cartesian space) and whose vector parts are specified in spherical coordinates
relative to this local origin. Translations do not effeét ESI répresentations. Rotations
about the point of application are effected by 'ac‘id.ing the appropriaté'directional offset
to the two components of ¢ach vector’s direction specification or, equivalently,
maintéining a base vector which would be added to each vec;cor on any reference to any
vector’s direction (i.e. rotating the sphere).2 - Rotations about an arbitrary axis in the
Cartesian space may then be effected by a rotation about the local origin followed by
thé appropriate tranélation. To do scaling, the area associated with each ESI point
would be multiplied By the square of the desired scale factor -- which could also be
maintained in 1 base vector. These methods are significantly less computationally

demanding than would be the case for a point-edge representation of an object.

1. With respect to reconstruction, however, it is inevitable that an object's faces which are
adjacent to the contrived face will be somewhat deformed in shape if more than a single planar
surface was missing from the description.

2. It may, however, be simpler to represent the vector parts of the ESI points in Cartesian
coordinates so that a 3 x 3 orthonormal matrix may be used to maintain the rotation information.




Reconstruction

An ESI representation of an object is not in itself "viewable" or "displayable".
In fact, it is not clear that there is a straightforward method for obtaining a point-edge
representation of an object from its ESI. What is needed is a method to locate the
planes which compose the object faces at the proper distance from a center point. The
vector direction specifies the direction for the normal vector of the plane, while the
intersection of adjacent planes must define a region of the proper area. Techniqu_es

have already been developed for generating an object from a set of intersecting planes.

[22]

A recursive algorithm for reconstruction has beeh suggested but not
implemented. (See page 35 in Appendix II) The proposed proof of correctness has
been shown to have an error: a pair of ESI points may be arbitrarily close and‘yet not
represent adjacent faces of a polyhedrop. One should note, however, that this does not

prove the algorithm itself to be incorrect.

An iterative, reconstructive algorithm has also been envisioned though there

remains considerable uncertainty about its convergence. One may conceive of sliding |

planes in and out from a common point of application along the ray coinciding with
their normal vectors, trying to adjust each plane’s position so as to produce polyhedral

faces with the required areas. Specific techniques have not been investigated.
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One advantage of the ESI representation is a simple method of hidden line
elimination. Once an object has been reconstructed, its surfaces and edges have been
determined. Then only those faces which correspond to ESI points that lie in the
.hemisphere of the unit sphere which is observable by the viewer would be made
manifest in the actual display. Conveniently, these faces are exactly those that the
viewer would see jf he were examiﬁing the three-dimensional object, while the points
from the dpposite hemisphere are the poftions of the object which the viewer would be

unable to see from his current observation position.

Recognition

Another intended advantage of modeling objects by their sphericél images is
that one can easily recognize shapes by comparing their representations. For polyhedra,
the task may be pictured as that of trying to rotate two concentric spheres of unit
radius such that the dots on their surfaces match up (i;e. for each dot on one sphere
there is a dot on the other sphere in the same position). Since the dots may be of
various "intensities" or "masses" (recall that the area is encoded in some fashion), these

values also need to agree for there to be a match.

The problem involves three degrees of freedom (two for the axis direction plus
one for the rotation position about the axis) and is equivalent to holding one sphere in a
fixed orientation while matches are attempted by rotating the other sphere about many

different axes. One may envision various clever schemes for implementing this
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t‘rial-ax-id-ermr approach to the matching process, such as only trying those axes which
pass through ESI points, rotating the sphere to match one pair of points, and} then
comparingb the other points. | To determiné, however,,that two repregentafions of N
points each are not the same type of 6bject, such a scheme would try on the order of

N2 different positions of the sphere and would require comparing N points for each.

If, on the other hand, a canonical orientation could be found for each sphere,
then, by first aligning them according to their characteristic orientations, only one
relative position of the spheres need be tested and only N pairs of points need be
checked to determine a match. To develop such a promising .téchnique, it is convenient
to regard the ESI points as point masses, the representation of a polyhedron thus’
becoming a system of point masses. Obviously, the problem’s three degrees of freedom
are eliminated if two axial directions on a sphere are fixed. Moments of inertia for
physical bodies are determined with respect fo a given axis, so one naturally thinks of
the axes of minimum and maximum moment of inertia - with the adgied restriction that
the axes must pass through the center of mass of the body. The prdblem of finding a
characteristic orientation for an ESI may then be viewed as that of discovering the axes
about which a sysfem of point masses would have the minimum moment of inertia and

the maximum moment of inertia.

L)

This task is known in Lagrangian dynamics as that of determining the principal
moments of inertiq. [13] The techniques as applied to the problem discussed above are

developed completely in Appendix 1. Using those results, it is possible to assign a
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unique, characteristic orientation to any ESI repre:sentation.1

Recognition by principal axes alignment

The first step in recognizing that an object matches a known prototype is to
align the two spheres so ‘that their characteristic axes coincide. The next step involves
determining whether a true match of the ESI points exists. In the case where the object
representations are guaranteed to be exactly correct (e.g. in an artificial or synthesized
example), the points 'must coincide perfectly and have identical masses (surface area
values). Matching beéomes trivial. In more realistic situations, however, one might
expect that a match should still occur even if some of the points are slightly amiss in
location or mass. This would be especially true if the unknown object’s representation
was the result of processing real world data, such as a photograph. The matching
algorithm must then incorporate some tolerance, the amount of which cbuld perhaps be

dependent on the known uncertainty associated with the shape determination process.

At this point, only a couple of speculative suggestions can be mentioned. First,
it can be noted that if an exact match exists, then the alignment of principal axes will

pair ESI points without any discrepancy -- provided unique principal axes exist. This

1. In general, a single unique orientation may be determined; but for objects which exhibit a high
degree of symmetry, two or more equivalent orientation frames may be possible. (Consider, for
example, the axes about which a cube has the maximum moment of inertia.) This does not seem to pose
any problem to the matching process, because each of these possible orientations is equivalently
useful. 1In simply choosing one, a correct match will still result, since the match is based on
shape and size alone -- a cube has no unique "top" side. Yet, a regular tetrahedron is an exception
to this general idea. It allows many matches which are equally good based on moments of inertia,
but not all of which are genuine.
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means tﬁa{ in no case will it be possible fo s‘lightly rotate one sphere to produce a
superior mﬁtch. However, in a situation where an exact match is not obtained, it is not
certain that alignment of principal axes will produce the "best" or "closest" match. If it
is found that a slight rotation in some situations would result in a better match, a
technique kﬁown as chamfer matching seems ideally suited for use in determining the
best refinement to make. [1] A pictorial explanation of how chamfer matching works-
would be to view each ESI point on one sphere as being down in an inverted éone
shaped vaﬂey. The points on the other sphere wish to roll down into the valley as if by
gravity, but the system of points is rigidly connected. The matchiﬁg finds the most

.agreeable compromise.

In either case, the remaining issue is thatvof determining the relative goodness of
a match. It is probable that one would wish to recognize an object mdstly by its shape,
rather than its size. (Should a little cube "match" a big cube?) This means that the
difference in location between ESI pqints is significant; whereas, it is the ratio of masses
fof each pair of péints that one should examine. Potentially appropriate measures would
be the root-mean-square of the differences in position between paired points and the ’

standard deviation of the mass ratios of point pairs.

This manner of recognizing objects seems quite promising for objects all of
- whose features are known. Unfortunately, from a single view (as in a photograph) it is
usually the case that parts of the object are unobservable and must be guessed at. The

ESI representation itself aids in filling in missing pieces, but any attempt to identify such
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an object ‘by the recognition method just described would be hopeless in all but a few
lucky cases. At present, the only method envisioned for recognizing such objects would
involve preserving the hemisphere of valid points and then trying to apply a similar,
though appropriately modified, method using them alone -- determining principal axes,
etc. The prototypes against which the match was being done must also be "halved." Of
course; one need only consider hexnispﬂeres which contain the desired number of points.
This technique results in many more matches being tried (on the order of the number

of points in the prototype).

In the preceding discussion of this method of recognitioh, it has been implicitly
assumed that the representation- of the object is at least not too grossly in error and,
specifically, that each represented object face corresponds to exactly one real face of the
object being modeled.r If, however, the shape determination process reports a face that
~does not actually exist or if it fails to_detect a face that is actually present, then the
rgsixltinxg EST will have more or fewer points than it should. In such a situation, it
seems that the proposéd recognition algorithm would féil miserably due to its heavy
A-r“’é'!i‘ance on “matchi_nig point-for-point. ~ Yet hypothesizing that the shape determination
“algorithm would-only produce such a mistaken result for relatively small surface areas of
the object and assign to them an approximately correct orientation, it might be the case
- that the characteristic orientation of an erroneous model would differ'only slightly from
that of the true, accurate model. In such a situation, if the two models were aligned by
- the orientations, then all but the false ESI point(s) would be closely paired. One would

expect the points of the inaccurate model which lie closest to the false point (or location
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of the "missing" poixit) t§ deviate more from their correct positions than othe.r:,_ more
distant, points. Noting such an occufrence durin_g; the matching péqéé,ss, the abgéhce or
presence of an extra point might potentiail’y be'det‘e-c'ted,' and the correct match could
then result. Incorporating a detection scheme ofv this SOl‘t‘iI‘ltO the recognitibn process
would, however, ‘eliminate part of the screening procedure proposed for determining
those representations which should be used in the comparisons. Specifically, if one is
seeking to identify an ESI which consists of N points, then in the naive manner one
would only examine the prototype models which consist of N points. in dealinvg-wwith
errors thaf effect. the number of presumed faces, it would then be necessary to
additionally check the models consisting of N+, N-1, N+2, N-2,.., N+i, and N-i

points, where i is the maximum number of potentially erroneous faces (perhaps a

fraction of N, though hopefully a small number).

Representing smooth or non-convex objects

The ESI representation and techniques developéd thus far are best suited for
application to convex polyhedra. In trying to extend the domain to non-convex objects
or smooth-surfaced objects, several difficulties arise.  For instance, the ESI for
non-convex objects is not unique, ie. there is not a one-to-one mapping between a
non-convex object and its ESI. (See page 37 in Appendix IL) Then too, the spherical
image of smooth objects does not consist solely of points, as does that of polyhedra. [6]
In fact, an object which has no planar surfaces would have a spherical image that would

be distributed over every part of the sphere with varying "density" or "intensity"
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providing the shape information. The integral of this density over a patch on the
Gaussian sphere equals the total area with surface normal with direction falling within

the patch.

Though it may be feasible to represent smooth, convex objects by their true
spherical ﬁnages, no techniques fbr doing so have been conceived. Instead, the approach
has been to employ polyhedral techniques. This necessitates approximating
‘smooth-surfaced objects by polyhedra and resolving the difficulties associatéd with
representing non-convex polyhedra. Expedient methods for approximating complex
surfaces by planar faces have been developed. [10] They generally produce a somewhat
‘optimal triangulation of the surface; in other Words, the approximafing polyhedron for a
smooth object would consist of triangular shaped faces. This is quite acceptablg' for the

intended purposes.1

Only an inelegant solution has been envisioned to circumvent the ambiguities
‘associated_ ﬁth non-convex polyhedra. This entails using existing algorithm§ for
subdividing the objects into convex compohents, keeping track of how the pieces "fit
~ back together" soxhehow. [9] Since each piece'} is then a convex polyhedron, it may be
repfesented in the normal fashion as an ESI. Reconstruction would involve first

reconstructing each component part and then joining the pieces back together in the

1. The shape determination processing may already output specifications of the surface normal for
many small regions of a surface. This could then be regarded as a many-sided polyhedral
approximation to the surface, thus foregoing the triangulation process mentioned above. One should
note that it would not be necessary to determine the edges between each small region, though the
- surface area associated with each would be needed. (In actuality, the little surface patches may
not match up exactly at their edges, so they would not be defining a "real” polyhedron.)
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proper man.ner. [9] However, it should be npted that this process would yield a
polyhedron. If a smooth object 'is desired, a smoothing operation would. be mandated,
though uﬁ éx;zct' recoﬁstructioﬁ of the original object would probably be impossible.
Little extra difficulty would result for performing spatial manipulations on such an
object; all of the component parts would just be treated as an indivisible set -- operators

being applied to a base vector for the complete object.

Recognition of non-convex objects might, however, present nﬁore of a difficmliy.
For instancé, one cannot even be confident that the algorithm for subdividing an object
into convex components would slice two identical objects in the same way, because in
general tﬁere is no unique set of slicings to produce convex parts for any given
non-convex 6bject. If a division algorithm is developed that will always yield the same
components for a given object, the matching process would probably become
manageable. In fact, before attempting to match shapes of component pieces, the
'algorithm could first try to recognize an object by the number of pieces and their

spatial relations to each other.

Conclusion

This paper has presented the current state of development for an object
representation using enhanced spherical images. The representation of convex polyhedra
is well understood, while methods for determining point-edge representations from their

ESI forms are less so. Spatial manipulations are a promising advantage of the ESI
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model, as is object recognition. The methods for matching two ESI's have been
investigated, though some specifics need more attention. Smooth-surfaced and
non-convex objects present considerable challenges which must necessarily be overc'dme
for the ESI reﬁresentation‘ to be practical and useful. A first attempt at handling these
difficulties involves approximating the objects by one or more polyhedra, and even this

idea offers additional perplexities.

Significant progress has been made towards a complete system of support for the
ESI representation of objects, but much work lies ahead if the techniques are to ever be

utilized in realistic applications.
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Appendix I
Determihation of Principal Moments of Inertia

The principal moments of inertia for a system of point masses will be
determined here symbolically. [20] Throughout this discussion, the Cartesian coordinates
of a point will be expressed as the triple (x;, y;, z;), and the mass will be referred to as

mi.

For any system of point masses, its moments of inertia about the coordinate axes -- X,

Y, and Z -- may be computed as follows:

L = £ 072 + 22 m;
Iyy =3 (Zi2 + xiz) m;

= 2
Iz =Z (" + yiz) m;
Likewise, its products of inertia may be found:

Iy = Iyx = Z xjyjm

I

xz = Izx = Z Xjzjm;

Iyz = IZy = X yizim;

In general, the inertia matrix (inertia tensor) has the form:

o
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Tix "Ixy ~Ixz
Ty Ly -y
~Ipx | 'Izy Iz
There is usually a unique orientation of axes X-Y-Z at a given origin for which the
products of inertia vanish,
r -
Ly 0 0
0 Iyy 0
0 0 I,,
This coordinate frame defines the principal axes of inertia, and the corresponding I, '
o Iyy’ and I,, are called th.e principal moments of inertia. They represent the maximum,
minimum, and an intermediate value of the moments of inertia.
The principal moments of inertia are the eigenvalues of the inertia matrix. The
- solution of the determinant equation
P —
Tixl "'Ixy ~Ixz
"Iyx Iyy—I Iyz =0
-L, I I.-1
| T zy 2z |
for T yields three roots Iy, Iy, I3 of the resulting cubic equation. (These are the
eigenvalues.)

The direction cosines /, m, n of the principal inertia axes are given by
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(I -DI - Ixym -L,n =0
“Tyxl + (Iyy-Dm -1,n =0

-L /- Izym +(I,,-Dn =0

These equations along with 2+ m?+ n?=1 enable a solution for the direction

‘cosines to be made for each of the three roots (Il, Iy, Ij) separately.

From the inertia matrix,

(LD gy DID + (L) -y (L)
+ (—Ixz)(—lyx)(-lzy) - (-sz)(lyy_l)(-lxz)

e (."Izy)("lyz)(lxx"l) - (IZZ-I)(-IY")(_I"Y) =0

-which may be expanded to

13

2
+ (g + Ly + Tl

: 2 2 2
+ ("Ixnyy = Ll - InyZZ + L, + Iyz + Ixy )|

2 2 2y =
+ (Ixxlyylzz - leylleyz - InyXZ - Ixnyz - IzzIxy ) =0

One method for solving such a third order algebraic equation is that of Graeffe’s

root-squaring method [5], although direct methods for solving cubic equations are also

known.

1.

Intuitively, one would expect that the three roots would necessarily always be real numbers,

since they do represent physical moments of inertia and are the result of computation involving only
real, positive quantities. This, however, has not been verified by analytical proof.
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Once the three principal moments of inertia are determined, they may be used
to compute the direction cosines of the corresponding axes, thus giving the characteristic

directions for the system of point masses.

(LDl = Lygm = Ln =0
Tyl + (yy-Dm =T m =0

o Iyzm +(I,-Dn =0
Algebraically solving these equations produces

I=(1+Q?+RYH

L1 I
. (—I _X)I
m = Y
I I I
(_.‘LX_... - Xy
'Iyz I
By
n= "Ixy v Iyz
Ll Ty
"Iyz Ixy
where
0 Ixnyz + Iyzl - Ixylxz
LI, +I1. I=-1_1I
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As a final comment, it should be noted that the computational met:hod |
presented here for determining principal axes is well-suited for applicatidn to point mass
systems which do not exhibit a high degree of symmetry. Special treatment would be
Qarranted for caseé in which ény of the products of inertia vanishes. Conceptually, such
a situation might .be remedied simply by rotating the system slightly and recomﬁuting'

the moments and products of inertia.
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Appendix II

A Support Paper for
The Representation of Three-Dimensional Objects

- Using Enhanced Spherical Images

- David A. Smith
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Introduction

The representation of three-dimensional objects in the realm of digital computers is a
fundamental keystone to several current pursuits in the field of Artificial Intelligence, such
as computer vision, spatial reasoning, and manipulaticn. Straightforward descriptions {e.q.,
re‘presentingA an object by its vertices, edges, or surface patches) suffer from the large
requirements of data storage and/or of computation time for data processing. For example,
to perform a single rotation of a point-represented object about. an érbitrary axié using
matrix multiplication calculates 384 + 16n products, where n is the number of points[14].
This representation turhs out to‘be quite expensive when methods of‘ object recognition
depend on repeatedly rotating prototype objects during some matching process. In this
paper, an alternative representation for three-dimensional objects shall be discussed which
essentially depicts an object by its surface normals. This will be the Enhanced Spherical

Image representation.

Spherical Images

The properties of surfaces in which we are interested include the area, the
inclination with respect to some standard direction, and the curvature. The latter may be
characterized by two numbers, namely the principal curvatures. These may be thought of as
the rate of change of the surface normal directions in each of two perpendicular directions
(in the tangent plane). Alternatively, the curvature at a point may be represented by a
single number using a method originated by Gauss. This number, of course, will be a function

of the principél curvatures and is in fact their product. It is known as the Gaussian
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curvature [6, 16].

In his studies of differential geometry, Gauss developed a process for mapping a
surface onto a sbhere. This transformation consists of translating the various outward unit
normals of a surface to thé center of a unit sphere. The points on the sphere which are at
the end points of these vectors are then the spherical representation of the surface, i.e., a
spherical image. It should be noted that this mapping assigns a definite point on the sphere

to every point of the surface.

Throughout the remainder of this paper, the sphere on which a spherical image is
formed shall be called the Gaussian sphere. Shown below are some simple geometric

objects and sketches of their associated spherical images.

) =




Polygons and Polyhedra

Except for the concluding section, this paper shall now main!y deal with the simplified
case of representing polyhedra. Therefore, a few of the basic properties of polygons and

polyhedra will be presented here to standardize our terminology|11].

A polygon is a two-dimensional figure whose sides are straight line segments.i A
polygon is said to be convex if it entirely contains all segments connecting any two of its
points. Thus, the interior angles (those facing the inside) of a polygon are all Iéés than 180
degrees. A polygon is uniquely determined by its interior angles and the lengths of its sides,
though this is not the case if only its angles and its area are specified. (Consider, for

example, a 2x3 rectangle versus a 1x6 rectangle.)

A polyhedron is a three-dimensional figure whose faces are polygons. Two faces of a
polyhedron are adjacent if they have a common edge. A polyhedron is closed if its faces are
convex polygons and all of its edges specify a pair of adjacent faces, i.e., there are no
"holes" in the polyhedron. A convex polyhedron is one which entirely contains all line
segments connecting any two of its points. The angle between any two édjacent faces of a
convex polyhedron is less than 180 degrees. Thus, no two faces may have normals in the

same direction.

Future references to polygons and polyhedra should be understood to mean convex

polygons and convex and closed polyhedra, unless otherwise stated.




In 1897, H. Minkowski proved the following theorem which reveals how polyhedra may

be uniquely specified.

Theorem of Minkowski.

If each face of one convex polyhedron corresponds to a face of
another convex polyhedron such that the two faces are equivalent (of
equal area) and have paralle! outer normals, and conversely, then the two
polyhedra are equal and parallel.

Which is to say that a polyhedron is determined uniquely by the areas and directions of its
faces. This concept may now be combined with that of spherical images to develop an

efficacious representation for three-dimensional objects.

Enhanced Spherical Images

The mapping described above for generating a spherical image does not associate a
unique point on the Gaussian sphere with each paoint of an object, as may easily be verified

by considering any body some of whose surface normals are parallel -- one with a planar

surface, for example. In the case of polyhedra, the number of normals which map into the

same point on the Gaussian sphere is a measure of the surface area of the corresponding
face. This area-related data may be preserved by formin‘g an enhanced spherical image

(ES)).

Definition: Enhanced Spherical Image.

An Enhanced Spherical Image is a spherical representation in the
standard sense (as described above) which has a numeric quantifier,
"intensity", associated with each point of the image. The value of this
intensity corresponds to the total surface area of the represented
object which has mapped onto this point of the Gaussian sphere.




The following are some examples of convex polyhedra and their associated ESl's.
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Uniqueness of an Enhanced Spherical Image
The utility of a depiction for three-dimensional bodies would be questionable if

objects were not guaranteed to be represented uniquely. Proof of the following theorem is

thus essential to the development of the ESI representation.

Theorem of Uniqueness.

The ESl's of convex polyhedra are unique, i.e., the mapping
between a convex polyhedron and its ESI is one-to-one.

Proof.
Part 1: A convex polyhedron maps into one and only one ESI.

This may be shown by observing that the spherical mapping is a composition of
one-to-one mappings. We begin by recalling that the outward normals of a surface are
necessarily parallel if the surface is planar (as is the case with faces of a polyhedron).

Letting each of these normals assume unit length, we may translate (a one-to-one function)




each of them to the center of a unit sphere. Since they all have the same direction, they
map into a single point on the sphere's surface (one-to-one). The surface area of one face
of a polyhedron is a fixed ‘constant, and once associated with the point in the spherical
image,' a point in the ESl is formed. This process may be repeated unambiguously (since no
two faces have normals in the same direction) for each face of the polyhedron, producing a

unique ESI.
Part 2: An ESI of a convex polyhedron maps into one and only one convex polyhedron.

Since no two faces of a convex polyhedron can have parallel normals, a spherical
ihage consisting of n distinct points corresponds to a convex polyhedron of n faces. Thus,
‘an ESI of aﬁy convex polyhedron consists of exactly the information which specifies the
~ outward normal and surface area for each face of the polyhedron. By Minkowski's Theorem,
we conclude that an ESI of this type represents one and only one distinct polyhedron.

Q.E.D.

Thus itl is shown that the ESI representation may at least be useful in fepresenting
cohvex polyhedra. The reader should observe; however, that certain anomalies arise if the
objects are not convex. In fact, for any ESI which cofresponds to a real convex
polyhedron, there is an infinite set of polyhedron-like objects with holes in their faces which
would map into the identical ESI. One can also conceive of infinite sets of ESl's which do
not corresbond to any real convex polyhedra -- simply permute the intensity or position of

one of the points of an ESI which does represent a real polyhedron.1

1. If the reader finds this difficult to conceptualize, the Center of Mass Theorem Introduced In the next section will provide a
more formal justification for this statement,
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Another interesting class of objects is that which produces openvESl's. An open ESI
is one in which all points of the image lie on a single great circle of the Gaussian sphere. A
closed ESI is one which is not open. For example, figure (A) below could be thought to
represent an "open-ended" box, while figure (B) could represent an "open-eﬁded"

triangular tube.

For examples of this type, the "length" of the corresponding object is inversely proportional
to its cross-sectional area, though neither measure is fixed by the E_SI.1 We proceed now

by developing some mechanics towards the utilization of this enhanced representation. ‘

Center of Mass Property

Having observed that not all ESI's, which consist solely of points, actually represent
real polyhedra, one can appreciate the need for a simple test to determine the validity of aﬁ
ESI. As it shall be seen, the test presented here is not only useful in verifying a correctly
formed ESI, but it also proves essential to the reconstruction of an object from its enﬁahcéd

mapping onto the Gaussian sphere.

1. It is Interesting to note that an open ESI corresponds to an object whose Euler characteristic Is not equal to 2, as is the
case for all closed cbjects. Also, a closed ES| corresponds to a bounded convex body, i.e., one which may be enclosed by a
sphere of finite radlus.
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Definition: Center of Mass of an ESI.

The center of mass, CM, of an ESI is analogous to the center of
mass for a system of point masses. The points of the system are the ESI
points, the positions are their coordinates on the Gaussian sphere, and
their masses are the intensities of the spherical image points. Thus,

Zm;x Zmy; Zmz

CM = , J
Zm; Zm; Zm;

where (x;, ¥js z) are the Cartesian coordinates of the ith gs) point and m;
Is its intensity.

With this definition, we may now state the following valuable theorem.

Center of Mass Theorem.

An ESI corresponds to a real convex object if and only if its
center of mass is at the origin of the Gaussian sphere and the ESI is
closed.

Proof.

Dividing the Gaussian sphere along one of its great circles, we obtain two
hemispheres. Let N be the outward normal of the sphere which is perpendicular to the plane
of‘ the great circle. Then the component of the total area of the convex object which faces
in the direction of N is the sum of

| m; * cos(e;)
over the ESI points on the hemisphere, where m; is the intensity of the ith point and e; is the
angle between N and the normal to the sphere at the ith point. If the component of the total
area which faces the -N direction (represented on ihe opposite hemisphere) is not equal to
this sum, then the represented object cannot be closed, and thus cannot be convex. If all

pairs of hemispheres do represent equal areas, then all of the point masses are balanced,
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and the center of mass must be at the center of the Gaussian sphere. Q.E.D.

Now that the ES! has been shown to represent a convex polyhedron uniquely and
that an ES| may be tested for correspondence to a real polyhedron, we may now tackle the

problem of reconstructing an object from its ESI representation.

Adjacency, Reduction, and Augmentation

Unfortunately, the information provided by the ESI o_f a polyhedron does not
immediately disclose which of the represented faces are adjacent to each other.1 This, of
course, would have greatly simplified the task of reconstructicn. We have not, however,
lost all information about the adjacency of the faces, as shgll be proven later. Before we
invest the effort of doing this, let us examine what we stand to gain. The fo"owing

definition points us in the right direction.

Definition: Adjacent'points of ESl's.

Two points on a Gaussian sphere are adjacent if one of them has
no closer neighbors (in terms of the arc length between them) than the
other.

Now recalling that the minimum number of faces for a real polyhedron is four (a tetrahedron)
and therefore that the ES| of a real polyhedron must have at least four points, we are lead

to the folloWing corollary to the Center of Mass Theorem.

1. The reader may convince himself of this fact by considering the ESI's corresponding to a cube with one of its corhers
sliced off. Depending on the size of the removed portion, the new face will have 3, 4, or 5 edges. As long as the direction of
the surface normal is kept constant (i.e., all of the slices are in parallel planes), then the positions of the points in the ESI will
not change, though the adjacent faces may.
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Corollary of Reduction.

For any ESI which consists of n points (n > 4) and which
corresponds to a real convex polyhedrcn [n-hedron], any pair of
adjacent points may be replaced by a single point such that the resulting
ESI also corresponds to a real convex polyhedron [(n-1)-hedron]. We
shall say that the n-hedron is thus reduced to an (n-1)-hedron.

Proof.

The corollary follows immediately from the Center of Mass Theorem if it is always
possible to replace two adjacent points by a single point such that the position of the
center of mass for the system of points is preserved. We now show that such a point may

always be found.

Two points on the surface of a sphere of radius R specify a great circle of the
sphere. To preserve the center of mass, the new point must lie along the arc connecting

the two adjacent points. The problem is thus transformed into one of two dimensions. Polar

coordinates are used here:
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To complement the Coroliary of Reduction, one may also give an inverse construction
with an inverse proof. This would be the Corollary of Augmentation, and we shall say that an

(n-1)-hedron is thus augmented to an n-hedron. It may be noticed that this construction is

analogous to the augmentation of nets (see p. 56 of[11]).

Theorem of Adjacency

Having the above corollaries, one might now discern the intended plan of attack --
hopefully ending at the ultimate goal of a reconstruction algorithm. The relationship between
adjacent points of an ES| and the adjacent faces of the corresponding polyhedron is

revealed by the following theorem and shall play a vital role in achieving our goal.

Theorem of Adjacency.

Adjacent points in an ES| are the mappings of adjacent faces in
the corresponding convex polyhedron, i.e., the faces have a common
edge.

Proof.

Assume that a pair of adjacent points corresponds to a pair :of faces, i and j, of a
polyhedron which are ndt adjacent. Then there exists at !eaét one face, k, between these
two faces, and the direction of k's normal vector must differ from that of i more than the
direction of j's normal differs from that of i. However, this is possible only if one of the
following is the case: |

1. There is only one face between the faces i and j, and it has at
least one edge that is not the edge of any other face, or




2. There are at least two faces between the faces i and j, and at
least one of the inward facing angles between two adjacent
faces is greater than 180 degrees.

In either case, the polyhedron is not convex. Thus, the theorem is proven by contradiction.

Theorems of Adjacent Reduction and Adjacent Augmentation

Combining the Theorem of Adjécency with the Corollaries of Reduction and
Augmentation produces the final two tools needed for specifying how to reconstruct a

polyhedron from its ESI.

Theorem of Adjacent Reduction.

When an ESI of n points is reduced to n-1 points, say by replacing
adjacent points i and j with point k, the set of faces of the (n-1)-hedron
which are adjacent to face k are the union of those that were adjacent
to the faces i and j in the n-hedron (excluding i and j).

The proof follows from the definition of convex polyhedra and the Corollary of Reduction.

Theorem of Adjacent Augmentation.

When the faces adjacent to a given face k of an (n-1)-hedron are
known, the face k may be augmented into 2 faces i and j, thus forming an
n-hedron. The faces adjacent to face i are those whose edges of
intersection with k now fall on i's side of the edge between i and j (plus
face j), and similarly for j. .

The proof follows from the definition of convex polyhedra and the Corollary of Augmentation.




Reconstructing a Tetrahedron

We digress momentarily to examine the "limiting" case, the tetrahedron, which is the

polyhedron with the fewest number of faces.

Consider the following property of triangles (which compose the faces of tetrahedra):
a triangle is uniquely specified by the length of its three sides. It may also be shown that a
triangle is uniquely determined by its area and its three interior angles by deriving the

lengths of the sides from this information.

ZK ’ lK } b': lK an(&wj‘m\

c= L:-:in(ﬁ) - bs""(A.) j sin(A)Sih(C)

W= bsin(n) Similarly,
- | i oo [EKm(A)]
K - (}req i , bz Sin(A) an(c-) Josin(8) Sin(t)
= il,, c = 37 ¢Cca Sin(B) K’—‘ e
X Ne 2sin(B) o (C)
bt be (M) L [2K ey
PR 2 sin(A) sin (B)
- i' ua = .‘li Clb S'Ilh(c) !

Since the ES| of a tetrahedron provides exactly the information needed to denote the
interior angles and area of each face, and since the faces are all adjacent to each other, a

tetrahedron may be reconstructed from its ESI as follows:

Tetrahedron Reconstruction Algorithm.

1. Choose one point of the ESI (a face of the tetrahedron).
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~
2. Determine the angles of intersection of the planes represented
by the other three points. These give the interior angles of the
triangle which is the chosen face. ’
3.  Calculate the lengths of the sides of the chosen triangle.
4. Construct the triangle on the plane specified by the chosen
. point. :
E
6. Position the other three faces such that their edges of
intersection with the chosen face coincide with the sides of the
triangle.
Since the positions of all four faces are then fixed, the reconstruction is complete. This
special case for tetrahedron wili serve as the basis in the restoration of more general
polyhedra.

Polyhedra Reconstruction

At last, we have reached our goal. Any polyhedron may be reconstructed from its ESI

as follows:

Polyhedra Reconstruction Algorithm.

1. Recursively reduce the ESI, "remembering" each pair of
adjacent points which get replaced, until it consists of only four
points.

SERE % SR R

2. Reconstruct the tetrahedron which corresponds to this ESI.

8.  Successively augment the faces in the reverse order of the
reductions using the remembered points to choose the ,
augmentation.

This algorithm may be shown to work correctly by induction on the number of points in the

ESI. The series of figures below give a pictorial’ example of this reconstruction algorithm in




use.
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Smooth Convex Objects and Non-convex Objects

)

For fhis technique of representing three—dimensionai objects to be of practical use, it
must be able to model more general objects than simply convex polyhedra. Since the
theorems and algorithms developed so far are all inherently dependent on the préperties of
polyhedra, the initial témptation is therefore to denote smooth convex objects as
many-faced polyhedra. This approach suggests examining the limiting situation as the area
of each little face then tends to zero. With any luck at all, doing this study will reveal a

more general spherical image representation to be utilized in the cases of non-zero
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curvature.

Non-convex objects pose a potentially more frustrating problem, since even
non-convex polyhedra cannot be represented unambiguously by ESl's. For example, the

following two objects have identical mappings onto the Gaussian sphere.

i

N\

Ona might consider treating non-convex objects as two or more convex objects with
common pianar faces. This involves using several Gaussian spheres to represent a single
object, and some mechanism for combining reconstructed objects would then be required.
Interestingly enough, once we have crossed the threshold of focusing attention on more
than a sinvgle ESI at any one time, the possibvility of representing scenes of objects by a set
of "linked" Gaussian spheres then presents itself. At this time, none of these extended
schemés have been investigated; but they should certainly be considered in future

research involving enhanced spherical images.

Conclusion

An original motive for developing a representation employing surface normals was to
facilitate computational manipulation of a three-dimensional object's description. Using the
spherical model developed here, rotations about an arbitrary axis are analogous to spinning

a sphere -- all points on its surface move at the same time. This is, of course, a result of




using sphericai coordinétes, where rotation is effected by adding appropriate offsets ‘to
each point's altitude and azimuth angles. A more significant advantage of using ESl's would
become apparent when object recognition is attempted. Though an algorithm has not yet

been developed, the matching process should be greatly simplified. Tasks involving spatial
reasoning (as a mechanical manipulator might require), scene analysis, and image

reconstruction would all benefit from having an object's surface normals readily available.

it has been demonstrated in this paper that the Enhanced Spherical Image
" representation is feasible. Suggestions have been offered for future research and possible
applications. It is hoped that these further investigations will support the practicality of

this representation and that implementation will prove useful.
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