‘!x
LT

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

AI Memo No. 531 ’ ' : July, 1979

_ An Overview of A Theory of
Syntactic Recognition for Natural Language

Mitchell P, Marcus

Assume that the syntax of natural language can be parsed by a left-
to-right deterministic mechanism without facilities for parallelism or backup.
It will be shown that this "determinism" hypothesis, explored within the

context of the grammar of English, leads to a simple mechanism, a grammar
_interpreter, having the following properties: :

(a) Simple rules of grammar can be written for this interpreter
which capture ‘the generalizations behind various linguistic phenomena,
despite the seeming difficulty of capturing such generalizations in the
framework of a processing model for recognition. _

(b) The structure of the grammar interpreter constrains its operation
in such a way that grammar rules cannot parse sentences which violate
either of two constraints which Chomsky claims are linguistic universals.
This result depends in part upon the computational ‘use of Chomsky's notion

- of Annotated Surface Structure. _ .

(c) The 'grammar interpreter provides a simple explanation for the
difficulty caused by "“garden path" sentences, such as "The cotton clothing is
made of grows in Mississippi". i)

’ To the extent that these properties, all .of which reflect deep
pProperties of natural language, follow from the original hypothesis, they
" provide indirect evidence for the truth of this assumption, ,

This memo is an abridged form of several topics discussed at length

in [Marcus 77]; it does not discuss the mechanism used to parse noun

Phrases nor the kinds of interaction between syntax and semantics discussed
in that work. Co

" This report describes research done at the Artificial Intelligence Laboratory of
the Massachusetts Institute of Technology. Support for the laboratory's
artificial intelligence research is provided in part by the Advanced Research
Projects Agency of the Department of Defense under Office of Naval Research
contract NO0O014-75-C-0643 and in part by the Office of Naval Research
nnder Office of Naval Research contract N00014-77-C-0389.

© Massachsetts Institute of
Technology 1979

Table of ‘Contents

I. The Determinism Hypothesis

2

II. The S_tructure‘of the >Grammar Interpreter 7

N III. Parsing a Simple Declarative Sentence 16
| IV. C&pturing L.inguistic Generalizations 24
V. The Grammar Interpreter and Chomsky's Constraints 39
VI. Differential Diagﬁosis and Garden Paths .50
VII. ?ohclusioné 58
Acknowledgments 61
Bibliography 61

Syntactic Recognition 2 The Determinism Hypothesis

I. The Determinism Hypothesis

Introduction : ,

’ , All current natural language parsers that are adequate to cover a
wide range of syntactic constructions operate by simulatlng nondeterministic
machines, either by using backtracking or by pseudo-parallelism. On the face
of it, this seems to be’ necessary, for a cursory examination of natural
language reveals many phenomena that seem to demand nondeterministic
solutions if we restrict our attention to-parsers that operate left-to-right.

A typical natural language parser is conceptually nondeterministic in
- that it will parse a given input if there is some sequence of grammar rules
(however such rules are expressed) whose application yields a coherent
~ analysis of the input, even if other legal sequences of rule application do not
Jdead to such analyses. Since all physically existing machines must be
deterministic, such a nondeterministic machine must be simulated by causing
a deterministic machine to make "guesses" about what the proper sequence of
actions for a given input should be, coupled with some mechanism for
aborting incorrect guesses. For many inputs, this necessarily leads to the
Creation of some syntactic substructures which are not constituents in
whatever final syntactic analysis is -assigx_aed to a given input.

To see that such an approach seems to be necessary, consider the

' sentences 1.1a and 1.2a shown below. While the first seven words of both

. of these sentences are identical, their structures, as shown as 1.1b and 1.2b,
are very different. In 1.2a "have" is the main verb of an imperative
sentence, with the rest of the sentence a subordinate clause. 1.2b is a
question, with "have" as an auxiliary of the main verd "taken", and "the
students" as the subject of the main clause,

1.1a Have the studentg who missed the exam take the makeup today.
1.1b [5 [yp Have [5 the students who ... take the makeup today]]]

1.2a Have the students who missed the exam taken the makeup today?
1.2b [s [aux Have] [yp the students who ...] [yp taken the exam today]]

Figure 1 - Some examples that motivate nondeterministic parsing.

It would seem that to analyze the structure of these sentences in a
left-to-right manner, a parser must necessarily simulate a nondeterministic
process. Not only is it impossible to determine what role the word "have"
serves in either 1.1a or 1.2a upon first encounter, but the two structures are
identical up to the end of the NP "the students who missed the exam".
There is no possible way to tell the two structures apart until the
morphology of the verb can be examined.

While this and other such examples appear to be quite cdmpelung. it
is my belief that natural language need not be parsed by a mechanism that

Syntactic Recognition 3 The Determinism Hypothesis

simulates nondeterminism, that the seeming necessity for such an approach is
~an illusion. This paper is based upon this hypothesis; the central idea
behind the research reported here is that the syntax of any natural language
can be parsed by a mechanism which operates ”strictly deterministically”
in that it does not simulate a nondeterministic machine, in a sense which
will be made precise below. (Actually, this paper will investigate this.
hypothesis only for the particular case of English; nothing will be said
about languages other than English in what follows below.) I begin by
assuming that this hypothesis is true, and then pursue the consequences of

this assumption. '

Two important’ restrictions on the range of this work should be
made clear at the outset:

_ First, I intend to hypothesize only that the syntactic component
operates strictly deterministically; as is discussed. in [Marcus 77], there is a
clear necessity for a strictly deterministic parser to ask questions of
semantic/pragmatic components which by their very nature involve a limited
amount of semantic parallelism, (Some of these semantic tests are
comparative tests which involve the production of two competing semantic
structures, one of which will ultimately be discarded. Because these tests
cannot be nested, however, the process is not combinatoric.)

_ Second, this document will not attempt to prove that this hypothesis
is true, i.e. I will not offer a proof that there are no constructions in
English that violate this hypothesis. Instead, I will demonstrate that this
assumption, which will be referred to as the Determinism Hypothesis, leads
directly to a simple mechanism, a grammar interpreter, which has the
following properties, among others:

-The grammar interpreter allows simple rules to be written which
elegantly capture the significant generalizations behind such constructions as
Passives, yes/no questions, imperatives, and sentences with existential "there".
These rules are reminiscent of the sorts of rules proposed within the
framework of the theory of generative grammar, despite the fact that the
rules presented here must recover underlying structure given only the
terminal string of the surface form of the sentence. The component of the
grammar interpreter which allows such rules to be formulated follows
directly from the Determinism Hypothesis.

~The structure of the grammar interpreter constrains its operation in
such a way that only very complex, ad hoc grammar rules can parse
sentences which violate several of the constraints on rules of grammar
proposed within the last several years by Chomsky. (The syntactic structures
that the parser creates are by and large Annotated Surface Structures of the
type currently proposed by Chomsky, complete with traces, although each
parse node is also annotated with a set of features a la Winograd.) Most of
the structural properties of the grammar interpreter upon which this result

Syntactic Recognition 4 The Determinism Hypothesis

- depends are directly motivated by the Determinism Hypothesis.

~The grammar interpreter provides a simple explanation for the
difficulty caused by "garden path" sentences, sentences like "The horse raced
past the barn fell". In essence, the grammar interpreter allows special
diagnostic rules to be written which can diagnose between- the alternative
cases presented in figure 1 above, but there is a limitation on the power of
such rules which follows from a parameter of the mechanism. By
appropriately setting this parameter, sentences like those in figure 1 can be
diagnosed, but those which typically cause garden paths cannot. The
component of the ‘mechanism which this parameter affects is the same
component that allows the formulation of the linguistic generalizations
discussed above. (These garden path sentences clearly disconfirm one possible
form of the Determinism Hypothesis which would say that all sentences
which are grammatical according to a purely competence grammar can be
parsed strictly deterministically, but the explanation for such sentences -
afforded by this model is consistent with a more "psychological" formulation
of the hypothesis: that all sentences which people can parse without
conscious difficulty can’ be parsed strictly deterministically.) '

To the extent that these properties, all of which reflect deep
properties of natural language, follow frpm the Determinism’ Hypothesis, and
in this sense are explained by it, this paper provides indirect evidence :for
the truth of the hypothesis. !

A Note on Methodology

From the properties of the grammar interpreter which this paper
will investigate, it should be clear that the theory presented herein is an
explanatory theory of language, rather than merely a descriptive theory.
My central concern is not the particular grammar of English that has been
developed in the course of this work, but rather the general properties of the
grammar interpreter that enable a grammar of this form to be written.
Thus, the central focus of what follows will not be on the particular rules
of grammar presented as examples, but rather on the properties of the
interpreter that allow rules like these to be written,

I will also be much concerned with what must be the case, given
the Determinism Hypothesis as a starting assumption; I will attempt to show
wherever possible that the mechanism I develop necessarily has the
properties that it does, with the Determinism Hypothesis as the primary
"forcing function". In this respect, I believe this research to be unique
within the field of natural language processing. '

Given this focus, this paper will not discuss details of the
implementation of the parser presented here at all, and will only discuss
particular rules of grammar when relevant to a higher level point. From the
point of view of this paper, the implementation of the parser is only of
interest as a "scratchpad" on which the model of the grammar interpreter and

Syntactic Recognition 5 _ ‘ The Determinism Hypothesis

the rules of grammar discussed here can be tested for adequacy.

This is not to say that the parser has not been implemented; indeed,
all of the snapshots of the parser’'s operation included in this document are
taken directly from actual traces of the parser's operation and all of the
code for grammar rules presented in this document has been tested in this
- implementation. And again, this is not to say- that the grammar interpreter
does not have powerful engineering applications, but that these applications
are not relevant to the theoretical issues considered here. Indeed, it should
be noted that an early version of this parser and grammar have been used as
‘a front end for the Personal Assistant Project at the MIT A.l. Lab '[Goldstein
& Roberts 77]. However, to reiterate the point, implementation issues are not
the concern of this paper.

I believe that the justification of a theory of parsing must be in
terms of its explanatory power (taking this term now in a wider sense than
it is used in the theory of generative grammar) and the generalizations and
universals of the competence linguists are one important form of explanation.
However, there are clear differences between a theory of parsing and an
abstract model of linguistic competence. On the one hand, any theory of
parsing states how language is to be processed, going from' the surface string
to some underlying representation. On the other hand, the theory of
generative grammar is formally a "proof checker" which states how to decide
if some given string of tree structures (or, more’ precisely, phrase markers) is
a legal derivation, in the formal-language theoretic sense of "derivation". As
a processing model, there are criteria of adequacy for a paréing theory which
g0 beyond - as well as potentially include - the criteria which are imposed
upon the competence theories of generative grammar,

Thus, it is true that a parsing theory should attempt to capture
wherever possible the sorts of generalizations that linguistic competence
theories capture; there is no reason in principle why some of these
generalizations should not be expressible in processing terms. On the other
hand, a parsing theory can also be Justified in terms of additional criteria
including such issues as the adequacy of the theory as a psychological model,
and the computational properties of the mechanism. These computational
properties can include formal and informal limitations on resource utilization
such as the time and space complexity of the computation, as exemplified by
the Determinism Hypothesis. Other computational properties can include such
issues as the net effect of interactions between various subsystems upon the
overall compytational complexity of the problem, viewed formally or
informally.

The key point to be made, however, is that the search should be a
search for universals, even - and perhaps especially - in the performance
domain. For it would seem that the strongest parsing theory is one which
says that the grammar interpreter itself is a universal mechanism, i.e. that
there is one grammar interpreter which is the appropriate machine for

Syntactic Recognition 6 The Determinism Hypothesis

parsing all natural languages. If this is true, then properties of that machine
should be reflected in the structure of each language, providing evidence that
those properties are themselves reflections of the structure of the human
mind., .

The Notion of "Strictly Deterministic”
In the discussion above, the Determinism Hypothesis was loosely
formulated as follows:

Natural language .can be parsed by a mechanism that operates
"strictly deterministically" in that it does not simulate a
nondeterministic machine..,.

The notion of "strictly deterministic" is central to the meaning of this
hypothesis; exactly what does it mean?

To avoid any possible misunderstanding, let ‘me state explicitly that
the Determinism Hypothesis cannot mean simply that language can be parsed
by a deterministic machine. As noted above, any computational mechanism
that physically exists is deterministic in the automata theoretic sense, and
. thus any process which is specified by an algorithm for such a machine

must be deterministic in this sense, From this it follows that any parser,
whether it simulates a nondeterministic machine or not, must itself be
deterministic. (The reader should note that "deterministic" does not mean
’non-probabilistic, nor does "nondeterministic® mean Probabilistic. A
nondeterministic machine, instead, can be conceptualized as a machine which
has a magical oracle which tells it the right decision to make whenever its
course of action is not strictly determined by the input and the state of the
machine.) ‘

_ Rather than attempting to formulate any rigorous, general
explanation of what it means to "not simulate a nondeterministic machine”, 1
will focus instead on three specific properties of the grammar interpreter
which will be presented in this paper. These properties are special in that
they will prevent this interpreter from simulating nondeterminism by
~ blocking the implementation of either backtracking or pseudo-parallelism.
This discussion is not intended to be definitional, but rather to give the
reader a better grasp of the computational restrictions which will be
embodied in the grammar interpreter, whose structure will be sketched in
the next section. These three properties are: .

1) All syntactic substructures created by the machine are
bermanent. This eliminates the possibility of simulating determinism by
"backtracking”, i.e by undoing the actions that were done while pursuing a
guess that turns out to be incorrect.

2) All syntactic substructures created by the machine for a glven
input must be output as part of the syntactic structure assigned to that
Input. Since the structure the grammar interpreter will assign to a given
input expresses exactly one syntactic analysts, thls property eliminates the

Syntactic Recognition 7 The Determinism Hypothesis

possibility of simulating nondeterminism via pseudo-parallelism. If a machine
were to simulate nondeterminism in this manner, it would necessarily create
structures for the alternative analyses that would result from each of the
paths such a machine pursues in parallel. (The reader may wonder how
such an interpreter can handle true global ambiguity. The answer is that
while such a machine can only build one syntactic analysis for a given
input, and thus can only. represent one interpretation of the input, it can also
observe that the input was ambiguous, and flag the output analysis to
indicate that this analysis is only one of a range of coherent analyses. Some
external mechanism will then be needed to force the interpreter to reparse
the input, taking a different analysis path, if the other consistent analyses
are desired.) , '

3) The internal state of the mechanism must be constrained in
such a way that no temporary syntactic structures are encoded within the
internal state of the machine. While this does not mean that the machine's
. internal state must be limited to a finite state control (the grammar
interpreter to be presented below uses a pushdown stack, among other control
. structures), it must be limited - at least in its use - in such a way that

structure is not hidden in the state of the machine. '

One immediate implication of all' this is that a grammar for any
interpreter which embodies these properties must constrain that interpreter
- from ever making a mistake, since the interprefer can only correctly analyze
a given input if it never creates any incorrect structure. This means that
such a grammar must at least implicitly specify how to decide what the
grammar interpreter should do next, i.e. it can never leave the grammar
‘interpreter with more than one alternative,

II. The.Struoture of the Grammar Ihterpreter

Motivation

Taking the Determinism Hypothesis as a given, an examination of
natural language leads to a further set of properties which any deterministic
grammar interpreter must embody. (Henceforth, I will use the word
“deterministic” to mean "strictly deterministic® in the sense discussed

above. Please note this usage.) In particular, any such interpreter must have
the following properties:

1) It must be at least partially data driven, BUT....

2) It must be able to reflect expectations that follow from general
grammatical properties of the partial structures built up during the
parsing process.

3) It must have some sort of "look-ahead" facility, even if it is basically
left-to-right.

To show that each of these properties is necessary, it suffices to show a pair
of sentences of English that cannot be distinguished by a mechanism without
the given property, but which speakers of English understand without
difficulty. The sentences shown in figure 2 below provide crucial pairs for

Syntactic Recognlltiqn 8 The Grammar Interpreter

each of the properties listed above,

The parser must: T
Be partially data driven.
(1a) John went to the store.
(1b) How much is the doggie in the window?
Reflect expectations. ’
' (2a) I called [yp John] [to make Sue feel better].
(2b) | wanted [John to make Sue feel better].
Have some sort of look-ahead.
(3a) Have [the boys take the exam today].
(3b) Have [yp the boys] [yptaken the exam today].

. Figure 2- Some examples which motivate the structure of the parser.

Almost by definition, a hypothesis driven parser cannot be
deterministic, and thus a deterministic parser must necessarily be at least
partially data driven. The essence of the problem is that any parser which
is purely hypothesis driven, i.e. which is purely top-down, must hypotpesize
several nested levels of structure before positing any constituents which can
~ be checked against the input string. itself,

For example, a top-down parser, newly given an input, might begin
by hypothesizing that the input is a sentence. It might then hypothesize
that the input is a declarative, and therefore that the input begins with a
noun phrase. Assuming that the input begins with a noun phrase, it might
finally hypothesize that the NP begins with a determiner, a hypothesis which
can be tested against the input string. By this point, the parser has created
structures that correspond to the S and the NP, which will have to be
discarded for at least some inputs. (These structures might be implicit in the
state of the machine, but this is simply a matter of how the constituents are
represented at this point in the parsing process.) To take a concrete example,
even so different a pair of sentences as 2.1a and 2.1b above cannot both be
deterministically -analyzed by a hypothesis driven parser. The problem, of
course, is simply that any hypothesis driven pParser must either attempt to
parse a given input as a declarative sentence, béginning, say, with an NP,
before it attempts to parse it as a question, beginning with an auxiliary, or
vice versa. Whatever order the parser imposes upon these two possibilities
relative to each other, the clause type attempted first must be at least
occasionally wrong. If a parser is to be deterministic, it must look before it
leaps. : ’ '

A deterministic parser cannot be entirely bottom-up, however. Any
parser that is purely bottom-up must initially misparse one of the two
sentences given as 2.2a and 2.2b above. The problem is that the string
“John to make Sue feel better" can be analyzed in two different ways: as
one constituent that is an infinitival complement, as in 2.2b, or as two
unrelated constituents, as in 2.2a; in this latter case, the NP "John" is the

s

Syntactic Recognition .9 . The Grammar Interpreter

object of the verb and the phrase "to make Sue feel better" serves as an
adverbial "purpose” clause. The difference in structure between 2.2a and
2.2b can be predicted, however, if the parser can note that "want" typically
takes an infinitive complement, while "call" cannot take such a complement.
Thus, a deterministic parser must have be capable of using whatever
information and expectations can be gleaned from an examination of the
structures that have been built up at any given point in the parsing process.
If a parser is to operate deterministically, it must uyse such information to
constrain the analysis imposed on the remainder of the input,

Finally, if a deterministic parser is to correctly amalyze such pairs of
sentences as 2.3a and 2.3b above, it cannot operate in an entirely left-to-
right manner. As discussed earlier, it is impossible to correct assign
structures to this pair of sentences before examining the morphology of the
verb following the NP "the boys". These sentences can be differentiated,
however, if the parser has a large enough "window" on the clause to see
this verb; if the verb ends in "en" (in the simple case presented here), then
the clause is a yes/no question, otherwise it is a imperative. Thus, if a
parser is to be deterministic, it must have some constrained facility for look-
ahead. It must be stressed that unless this look-ahead ability is constrained
in some manner, the determinism claim is vacuous.

The Structure of the Parser - an Overview

u This paper will present a grammar interpreter called PARSIFAL,
whose structure is motivated by the three principles discussed above. This
grammar interpreter maintains two major data structures: a pushdown stack
of incomplete constituents called the active node stack, and a small three-
place constituent buffer which contains constituents which are complete, but
whose higher level grammatical function is as yet uncertain,

Figure 3 below shows a snapshot of the parser's data structures
taken while parsing the'sentence "John should have scheduled the meeting.".
Note that the active node stack is shown growing downward, so that the
structure of the stack reflects the structure of the emerging parse tree. ‘At
the bottom of the stack is an auxiliary node labelled with the features
modal, past, etc.,, which has as a daughter the modal "should”. Above the
bottom of the stack is an S node with an NP as a daughter, dominating the
word "John". There are two words in the buffer, the verb "have" in the
first buffer cell and the word "scheduled” in the second. The two words
"the meeting" have not yet come to the attention of the parser. (The

structures of form "(PARSE-AUX CPOOL)" and the like will be explained
below.) : ,

Syntactic Recognition 10 The Grammar Interpreter

The Active Node Stack
S1 (S DECL MAJOR S) / (PARSE-AUX CPOOL)
K NP : (John) .
AUX1 (MODAL PAST VSPL AUX) / (BUILD-AUX) '
MODAL : (should)

} The Buffer
1: WORD3 (*HAVE VERB TNSLESS AUXVERB PRES V-3S8) : (have)
2: - WORD4 (*SCHEDULE COMP-0BJ VERB INF-OBJ v-3s
ED=EN EN PART PAST ED) : (scheduled)

Yet unseen words: the meeting .

Figure 3 -. PARSIFAL's two major data structures.

The constituent buffer is the heart of the grammar interpreter; it is
the central feature that distinguishes this parser from all others. The words
that make up the parser's input first come to its attention when they appear
at the end of this buffer after morphological analysis. Triggered by the
words at the beginning of the buffer, the parser may decide to create a new

. 8rammatical constituent, create a new node at the bottom of the active node

stack, and then begin to attach the constituents in the buffer to it. After
this new constituent is completed, the parser will then pop the new
constituent from the active node stack; if the grammatical role of this larger
structure is as yet undetermined, the parser will insert it into the first cell
~of the buffer. The parser is free to examine the constituents in the buffer,
to act upon them, and to otherwise use the buffer as a workspace, '

- In general, the parser uses the buffer in a first-in, first-out fashion.
The availability of the buffer allows the parser to defer using the
constituent in the leftmost buffer cell until it has a chance to examine one
or two of the constituents to the immediate right of the first constituent.
For example, the parser must often decide whether the word "have" at the
beginning of a clause initiates a yes/no question, as in fig. 1.2b above, or
an imperative, as in fig. 1.2a." The parser can often correctly decide what
sort of clause it has encountered, and thus how to use the initial verdb, by
allowing several constituents to "pile up" in the buffer. Consider for .
- example, the snapshot of the buffer shown in figure 4 below. By waiting
until the NP "the boys", NP25, is formed, filling the 2nd buffer position, and
WORD37, the verb "do", enters the buffer, filling the 3rd buffer position, the
parser can see that the clause must be an imperative, and that "have" is
therefore the main verb of the major clause. .

Syntactic Recognition 11 The Grammar Interpreter

WORD32	NP25	WORD37	
HAVE	THE BOYS		0o
S P			

Figure 4 - The buffer allows the parser to examine local context.

While the buffer allows the parser to examine some of the context
surrounding a given constituent, it does not allow arbitrary look-ahead. The
length of the buffer is strictly limited; in the version of the parser
presented here, the buffer has only three cells. (The buffer must be
extended to five cells to allow the parser to build NPs in a manner which is
transparent to the "clause level" grammar rules which will be presented in
this paper. This extended parser still has a window of only three cells, but
the effective start of the buffer can be changed through an "attention
shifting mechanism" whenever the parser is building an NP. In effect, this
extended parser has two "logical" buffers of length three, one for NPs and
another for clauses, with these two buffers implemented by allowing an
overlap in one larger buffer. For details, see [Marcus 77].)

Note that each of the three cells in the buffer can hold a
8rammatical constituent of any type, where a constituent is any tree that the
parser has constructed under a single root node. The size of the structure
underneath the node is immaterial; both "that" and "that the big green

cookie monster's toe got stubbed" are perfectly good constituents once the
' pParser has constructed a subordinate clause from the latter phrase.

The constituent buffer and the active node stack are acted upon by
. a grammar which {s made up of pattern/action rules; this grammar can be
viewed as an augmented form of Newell and Simon's production systems
[Newell & Simon 72]. Each rule is made up of a pattern, which is matched
against some subset of the constituents of the buffer and the accessible nodes
in the active node stack (about which more will be said below), and an
action, a sequence of operations which acts on these constituents. Each rule
is assigned a numerical priority, which the grammar interpreter uses to
arbitrate simultaneous matches.

, The grammar as a whole is structured into rule packets, clumps of
grammar rules which can be activated and deactivated as a group; the
grammar .interpreter only attempts to match rules in packets that have been
activated by the grammar. Any grammar rule can activate a packet by
associating that packet with the constituent at the bottom of the active node
stack. As long as that node is at the bottom of the stack, the packets
associated with it are active; when that node is pushed into the stack, the
Packets remain associated with it, but become active again only when that
node reaches the bottom of the stack. For example, in figure 3 above, the

)

Syntactic Recognition ' 12 The Grammar Interpreter

packet BUILD-AUX is associated with the bottom of the stack, and is thus

active, while the packet PARSE-AUX is associated with the S node above the
auxiliary. '

The grammar rules themselves are written in a language called
PIDGIN, an English-like formal language that is ttanslated into LISP by a
simple grammar translator based on the notion of top-down operator
precedence [Pratt 73]. Figure 5 below gives a schematic overview of the

~ organization of the grammar, and exhibits some of the rules that make up

the packet. PARSE-AUX. .

Priority' Pattern Action *
Description of:
1st 2nd 3rd The Stack

RACKET1
6 [110 11 1 + ==> ACTION1
10: [1 [] --2ACTION2
10: [10U 10 10) -->ACTION3
PACKET2
10: [1) --> ACTION4
16: [1] L 1 ==> ACTIONS
PACKET .
6 [110 1 =-)> ACTIONG
16: [10 11 1 -=> ACTION7 .

(a) - The structure of the grammar, '

{RULE START-AUX PRIORITY: 10. IN PARSE-AUX

[=verb] -->

Create a new aux node.

Label C with the meet of the features of 1st and pres,
past, future, tnsless.

Activate build-aux.}

{RULE TO-INFINITIVE PRIORITY: 10. IN PARSE-AUX

[=*to, auxverb] [=tnsless] -->

Label a new aux node inf.

Attach 1st to C as to.

Activate build-aux.}

{RULE AUX-ATTACH PRIORITY: 10. IN PARSE-AUX

[=aux] -->

Attach 1st to C as.aux.

Activate parse-vp. Deactivate parse-aux.}

(b) - Some sample grammar rules that initiate and attach auxiliaries.

Figure § - The structure of the grammar and some example rules.

| Syntactic Recognition 13 ' The Grammar Interpreter

The parser (i.e. the grammar interpreter interpreting some grammar)
operates by attaching constituents which are in the buffer to the constituent
at the bottom of the stack until that constituent is complete, at which time
it is popped from the stack. If the constituents in the buffer provide
~sufficient evidence that a constituent of a given type should be initiated, a
new node of that type can be created and pushed onto the stack; this new
node can also be attached to the node at the bottom of the stack before the
stack is pushed, if the grammatical function of the new constituent is clear
when it is created. When popped, a constituent either remains attached to
- its parent, if it was attached to some larger constituent when it was created,
or else it falls into the constituent buffer (which will cause an error if the
buffer was already full). '

This Structure embodies the principles discussed above in the
following ways:

1) A deterministic parser must be at least partially data driven. A
grammar for PARSIFAL is made up of pattern/action rules which are
triggered, in part, when lexical items or unattached larger
constituents fulfilling specific descriptions appear in the buffer.
Thus, the parser is directly responsive to the input it is given.

2) A deterministic parser must be able to reflect expectations that
follow from the partial structures buijlt up during the parsing
process. Since PARSIFAL only attempts to match rules that are in

" active packets, grammar rules can activate and deactivate packets of
rules to reflect the properties of the constituents in the active node
stack. Thus grammar rules can easily be written that are
constrained by whatever structure the parser is attempting to
complete, '

3) A deterministic barser must have some sort of constrained look-

 ahead facility. PARSIFAL's buffer provides this constrained look-

- ahead. Because the buffer can hold several constituents, a grammar
rule can examine the context that follows the first constituent in
the buffer before deciding what grammatical role it fills in a higher
level structure. This document will argue that a buffer of quite
limited length suffices to allow deterministic parsing. The key idea
is that the size of the buffer can be sharply constrained if each
location in the buffer can hold a single complete constituent,
regardless of that constituent's size.

The Structure of Grammar Rules

We now turn to the structure of individual grammar rules. Some
example rules were given in figure § above; this section will explain the
syntax of those rules.

The pattern of a grammar rule is made up of a list of partial
descriptions of parse nodes which must all be fulfilled if the pattern is to
match. There can be up to five partial descriptions in each pattern: up to

Syntactic Recognition 14 The Grammar Interpreter

three consecutive descriptions which are matched against the first, second,
and third constituents in the buffer (in order), and two descriptions which
match against the two nodes in the active node stack accessible to the parser,
These two nodes are the bottom node on the stack, which will be referred to
as the current active node, and the S or NP node closest to the bottom of the
stack which will be called the dominating cyclic node or alternatively, if an
S, the current S node. In figure 3 above, AUX1 is the current active node,
and S1 is the current S node. As we shall see later, making the dominating
cyclic node explicitly available for examination and modification seems to
eliminate the need for any operations that ascend tree structures.

The syntax of the grammar rules presented in this paper should be
self-explanatory for the most part, but a few comments on the grammar
notation’ itself are in order. The general form of each grammar rule is:

{Rule <name> priority: <priority> in ¢packet)
{pattern> --> <action>}

.Each pattern is of the form :
[<description of 1st buffer constituent>] [<2nd>] [¢3rd>]

The symbol "=", used only in pattern descript}ons, is to be read as "has the
feature(s)". Features of the form "*¢word)" mean "has the root {word>", e.g.
"*have" means "has the root "have"". The tokens "1st", "2nd", "3rd” and "C"
“{or "c") refer to the constituents in the 1st, 2nd, and 3rd buffer positions
and the current active node (i.e. the bottom of the stack), respectively. (I
will also use these tags in the text below as names for their respective
_constituents.) The symbol "t" used in a pattern description is a predicate that
is true of any node, thus "[t]" is the simplest always true description.
Pattern descriptions to be matched against the current active node and the -
current S are flagged by "**C" appearing at the beginning of an additional
pattern description. The PIDGIN code of the rule patterns should otherwise
be fairly self-explanatory.

Each description is made up of a Boolean combination of tests for
given grammatical features. Each description can also include Boolean feature
tests on the daughters of the target node; the grammar language provides a
tree walking notation for indicating specific daughters of a node. (The
parser can access daughter nodes, but it cannot modify them.) While this
richness of specification seems to be necessary, it should be noted that the
majority of rules in even a moderately complex grammar have patterns
which consist only of tests for the positive presence of given features.

The action of a grammar rule consists of a rudimentary program that
does the actual work‘ of building constituent structures. An action is built
up of primitives that perform such actions as:

Syntactic Recognition 16 The Grammar Interpreter

-Creating a new parse node, pushing the newly created node onto
the bottom of the active node stack. A new node is presumably created
whenever the parser decides that the first constituent(s) in the buffer are
the initial daughters of a constituent not yet created by the parser. '

-inserting a specific lexical item into a specific buffer cell,
which causes the previous contents of that cell and each cell to its right to
be shifted one place to the right.

-popping the current active node from the active node stack,
causing it to be inserted into the first buffer cell if it has not been
previously attached to another node, shifting the previous contents of that
cell one place to the right. ' '
; -attaching a newly created node or a node in the buffer to the
current active node or-the current cyclic node. After each grammar rule is
executed, the grammar interpreter removes all newly attached nodes from the
buffer, with nodes to the previous right of each deleted node shifting to the
left. Note that a newly created node can either be attached to a parent node
at the time of its creation, if its function in higher level grammatical
structure is clear at that time, or it can be created without an attachment, in
which case it will be dropped into the buffer when it is popped from the
active node stack.

-assigning features to a node in the buffer or one of the
accessible nodes in the stack.

-activating and deactivating packets of rules.

PIDGIN also provides primitives from which Boolean tests of the
features of a node can be constructed, as mentioned above. These predicates

can be used within “if...then...else..." expressions to conditionally perform
various operations. .

With the exception of allowing conditional expressions, PIDGIN rules
fall into the simple class of programs called fixed-instruction programs. The
PIDGIN language imposes the following constraints on rule actions:

1) There are no user-settable variables within the rule actions. The
constituents in the first three buffer cells are available as the values of the
parameters 1st, 2nd and 3rd within each rule, but these parameters are given
values by the grammar interpreter before each rule action is called, and are
not resettable within an action. The values of the parameters C and the
current cyclic node do change within a rule as nodes are pushed and popped
from the active node stack, but their values cannot be set by a grammar
rule. '

2) PIDGIN allows no user-defined functions; the only functions
within actions are PIDGIN primitives. (There is a limited ability for a rule
to circumvent the pattern-matching process by explicitly naming its
successor, but this is formally only a device for rule abbreviation, since the
specification of the successor rule could simply be replaced with the code for
the action of the rule named.)

' 3) While conditional "if...then....else..." expressions are allowed,

Syntactic 'Ré.cognition ’ 16 The Grammar Interpreter

there is no recursion or iteration within actions.

4) The only structure building operations in PIDGIN are (a) attaching
one node to another, and (b) adding features to a node's feature set. In
particular, the list building primitives of LISP are not available in PIDGIN.

III. Parsing a Simple Declarative Sentence

In this section, I will present a small grammar which is just
sufficient to parse a very simple declarative sentence, and then trace through
the process -of parsing the sentence (i) immediately below, given this
grammar. The emphasis here will not be on the complexities of the
grammar, but rather on the form of the grammar in broad outline and on the
details of the workings of the grammar interpreter.

(i) John has scheduled a meeting.

One simplification will be imposed on this example: it will be
assumed that all NPs come into the buffer pre-parsed, that the structure of
NPs is determined by a mechanism that is transparent to the "clause-level”
grammar rules that will be discussed here. Such a mechanism is in fact
presented in [Marcus 77]; I will say here only that this mechanism involves
relatively slight extensions of the mechanism presented in this paper.

) As a convention, the parser begins every parse by calling the
grammar rule named INITIAL-RULE, This rule creates an S node and activates
the packet SS-START (Simple Sentence-START), which contains rules which
decide on the type of simple sentences. The parser's state after this rule is
executed is depicted in figure 6. At this point there is nothing in the buffer.

The Active Nodé Stack (0. deep)
C: S§16 (S) / (SS-START)

The Buffer

{RULE INITIAL-RULE IN NOWHERE
[t} -->

Create a new s node.

Activate ss-start.}

Figure 6 - After INITIAL-RULE has been run.

I remind the reader once again of the grammar interpreter's
matching rules: that patterns are matched against the current contents of the
buffer starting from its left edge, i.e. the first pattern description is matched
against 1st, the second (if there is a second description in a given pattern)
against 2nd, and ‘the third (if there is one) against 3rd. The reader should
also remember that constituents enter the buffer on demand; i.e. that the
buffer mechanism will get the next constituent from the input word stream

Syntactié Recognition 17 : Scenario

when a rule pattern must be matched against a buffer cell that is currently
empty. Furthermore, before the grammar interpreter will attempt to match a
rule of a given priority, all rules with higher priority must e'xplicitly fail to
match. This means that throughout the course of the examples in this
chapter, constituents will often enter the buffer for no apparent reason.
These constituents were requested by rules that ultimately failed to match,
leaving no trace of why each constituent entered the buffer. I will not
comment further on the entry of constituents into the buffer.

The packet SS-START, some of whose rules are shown in figure 7
below, contains rules which determine the type of a major clause. If the
clause begins with an NP followed by a verb, then the clause is labelled a
declarative; if it begins with an auxiliary verb followed by an NP, it is
labelled a yes/no question.- If the clause begins with a tenseless verb, then
not only is the clause labelled an imperative, but the word "you" is inserted

into the buffer, where it is inserted at the beginning of the buffer by
convention. .

{RULE MAJOR-DECL-S IN SS-START

[=np] [=verb] -->

Label c s, decl, major.

Deactivate ss-start. Activate parse-subj.}

- {RULE YES-NO-Q IN SS-START
[=auxverb] [=np] -->
Label ¢ s, quest, ynquest, major.
Deactivate ss-start. Activate parse-subj.}

{RULE IMPERATIVE IN SS-START
[=tnsless] -->

Label ¢ s, imper, major.

Insert the word 'you' into the buffer.
Deactivate ss-start. Activate parse-subj.}

Figure 7 - Some rules that determine sentence type.

After INITIAL-RULE has been executed and packet SS-START has been
activated, the rule MAJOR-DECL-S matches, with the pattern matching process
pulling the NP "John" and the verb "has" into the buffer. The action of the
rule is now run, labelling the clause a major declarative clause, deactivating
‘the packet SS-START, and activating the packet PARSE-SUBJ. The result of
this is shown in figure 8 below.

Syntactic Recognition 18 Scenario

v

The Active Node Stack (0. deep)
C: S$16 (S DECL MAJOR S) / (PARSE-SUBJ)

The Butfer
1: NP40 (NP NAME NS N3P) : (John)
2: WORD126 (*HAVE VERB AUXVERB PRES V38) : (has)
Yet unseen words: scheduled a meeting .

Figure 8 - After the rule MAJOR-DECL-S is run.

The packet PARSE-SUBJ contains rules which find and attach the
subject of the clause under construction. It contains two major rules which
are shown in figure 9 below. The rule UNMARKED-ORDER picks out the
subject in clauses where the subject appears before the verb in surface order;
the rule AUX-INVERSION picks out the subject in clauses where an element
of the auxiliary occurs before the subject. Though the relevant rules will
not be discussed here, the rule UNMARKED-ORDER will pick up the subject
of imperatives and WH-questions where the subject of the clause is
questioned, while’ AUX-INVERSION will pick up the subject of WH-questions
that question other than the subject of the clause,

{RULE UNMARKED-ORDER IN PARSE-SUBJ
[=np] [=verb] -->

Attach 1st to ¢ as np.

Deactivate parse-subj.

Activate parse-aux.}

{RULE AUX-INVERSION IN PARSE-SUBJ
[=auxverb] [=np] -->

Attach 2nd to c as np.

Deactivate parse-subj. Activate parse-aux.}

Figure 9 - Two subject-parsing rules.

The rule UNMARKED-ORDER now matches, and its action is run.
This rule attaches 1st, i.e. NP40, the NP "John", to C, the node S16, as
subject. It also activates the packet PARSE-AUX after deactivating PARSE-
SUBJ. After this rule has been executed, the interpreter notices that the NP
has been attached, and removes it from the buffer. Figure 10 shows the
state of the parser after this rule is executed.’

Syntactic Recognition .19 - Scenario

The Active Node Stack (0. deep)
C: §$16 (S DECL MAJOR S) / (PARSE-AUX)
' NP : (John)

The Buffer .
1: WORD 125 (*HAVE VERB AUXVERB PRES V3S) : (has)

Yet unseé.n words: scheduled a meeting .
Figure 10 - After UNMARKED-ORDER has been executed.

For the sake of brevity the process of parsing the auxiliary verbs in
this example will not be discussed, although figure 12 provides a trace of
the application of rules during the parsing of the auxiliary phrase, through
the attachment of the auxiliary to the VP node. The rules referred to in the
trace are included in figure 11 below. The first frame of figure 12 results
from rule START-AUX running with the parser in the state shown in figure
10 above. (The reader can either work his/her way through figure 12, or
can safely continue reading after the trace.)

{RULE START-AUX PRIORITY: 10. IN PARSE-AUX
' [=verb] --> :
Create a new aux node. _
Label C with the meet of the features of 1st and vspl, vis,

v+13s, vpl+2s, v-3s, v3s.
%(The above features are "person/number codes", e.g. "visg"
flags a verb compatible with a 1st person subject.)%
Label C with the meet of the features of 1st and pres, past, future, tnsless.
Activate build-aux.} '
{RULE AUX-ATTACH PRIORITY: 10. IN PARSE-AUX

[=aux] --> Attach 1st to c as aux.
Activate parse-vp. Deactivate parse-aux.}
-{RULE PERFECTIVE PRIORITY: 10. IN BUILD-AUX

[=*have] [=en] --> Attach 1st to c as perf. Label ¢ perf.}
{RULE PROGRESSIVE PRIORITY: 10. IN BUILD-AUX '

' =*be] [=ing] --> Attach 1st to c as prog. Label ¢ prog.}

{RULE PASSIVE-AUX PRIORITY: 10. IN BUILD-AUX

[=*be] [=en] --> Attach 1st ta c as passive. Label ¢ passive.}
{RULE AUX-COMPLETE PRIORITY: 15. IN BUILD-AUX :

[t] --> Drop c into the buffer.}

Figure 11 - Some rules which parse auxiliaries.

It should be noted that the rules of packet BUILD-AUX, some of
which are shown in figure 11 above, are the equivalent of the
transformational rule of affix-hopping. Note that these rules concisely state
the relation between each auxiliary verb and its related affix by taking
advantage of the ability to buffer both each auxiliary verb and the following

Syntactic Recognition ' 20 Scenario

verb. It might seem that some patch to these rules is needed to handle
question constructions in which, typically, the verb cluster is discontinuo_us,
but this js not the case, as will be shown later in this paper.

About to run: PERFECTIVE
The Active Node Stack (1. deep)
$16 (S DECL MAJOR S) / (PARSE-AUX)

NP : (John)
C: - AUX14 (PRES V3S AUX) / (BUILD-AUX)
The Buffer .
1: WORD125 (*HAVE VERB AUXVERB PRES V3S) : (has)
2: WORD126 (*SCHEDULE COMP-0BJ VERB INF-OBJ V-3S ...) : (scheduled)

Yet unseen words: a meeting .

About to run: AUX-COMPLETE
The Active Node Stack (1. deep)
$16 (S DECL MAJOR S) / (PARSE-AUX)
v NP : (John)
C: AUX14 (PERF PRES V3S AUX) / (BUILD-AUX)
PERF : (has)

The Buffer -
1: WORD126 (*SCHEDULE COMP-0BJ VERB INF-OBJ V-3S ...) ; (scheduled)

About to run: AUX-ATTACH
, The Active Node Stack (0. deep)
C: §16 (S DECL MAJOR S) / (PARSE-AUX)
‘NP : (John)

The Buffer :
AUX14 (PERF PRES V3S AUX) : (has)
WORD126 (*SCHEDULE COMP-0BJ VERB INF-OBJ V-3S§ ...) : (scheduled)

N -

The Active Node Stack (0. deep)
C: S16 (S'DECL MAJOR S) / (PARSE-VP)
NP : (John)
AUX : (has)

The Buffer
1: WORD126 (*SCHEDULE COMP-OB,] VERB INF-0OBJ V-3S ...) : (scheduled)

Figure 12 - Parsing the auxiliary of (i).

_ ‘The packet PARSE-VP is now active. This packet contains, among
other rules, the rule MVB (Main VerB), which creates and attaches a VP node
and then attaches the main verb to it, This rule now matches and is run,
The rule itself, and the resulting state of the parser, is shown in figure 13

Syntactic Recognition 21 . Scenario

below.

{RULE MVB IN PARSE-VP

~ [=verb] -->

Deactivate parse-vp.

If c is major then activate ss-final else

If c is sec then activate emb-s-final.

Attach a new vp node to ¢ as vp.

~ Attach 1st to ¢ %which is now the vp% as verb.
Activate subj-verb.}

The Active Node Stack (1. deep)
§16 (S DECL MAJOR S) / (SS-FINAL)
NP : (John) -
AUX : (has)
A VP : |
" C: VP14 (VP) / (SUBJ-VERB)
VERB : (scheduled)

The Buffer
1: WORD127 (*A NGSTART DET NS N3P ...) : (a)

Yet unseen words: meeting .

Figure 13 - The rule MVB and the parser's state after its execution

At the time MVB is executed, the packet PARSE-VP is associated
with S16, the current active node, as shown in the last frame of figure 12.

- The action of MVB first deactivates the packet PARSE-VP, then activates

either SS-FINAL, if C is a major clause, or EMB-S-FINAL, if it is an embedded
clause. These two packets both contain rules that parse clause-level
" prepositional phrases, adverbs, and the like. They differ in that the rules in
EMB-S-FINAL must decide whether a given modifier should be attached to
the current clause, or left in the buffer to be attached to a constituent
~higher up in the parse tree after the current active node is completed,
Whatever packet is activated, the newly activated packet will be associated
with C, S16, and thus the grammar interpreter will attempt to match the
~ rules in it whenever S16 is the current active node, :

The execution of the next line in the action of MVB results in a
new VP node, VP14, being attached to S16 and then pushed onto the active
node stack, becoming the current active node. Next the verb "scheduled”,
WORD126, is attached to the VP, and then the action of MVB activates the
packet SUBJ-VERB. As is always the case with packet activation, this packet
is associated with the node which is the current active node at the time of
its activation, in this case VP14, Thus, this rule leaves the parser with the
packet SS-FINAL associated with S16, and the packet SUBJ-VERB associated
with VP14, Since VP14 is the current active node, SUBJ-VERB is now active.

Syntactic Recognition 22 Scenario

Once VP14 is popped from the stack, leaving S16 as the current active node,
SS-FINAL will be active. -)

The packet SUBJ-VERB contains rules which set- up the proper
environment for parsing the objects of the verb. The major rule in this
packet, the rule SUBJ-VERB is shown in figure 14 below. Note that this
rule has a very low priority (where 0 is the highest priority) and a pattern
that will always match; this rule is a default rule, a rule which will
become active when no other active rule can fire. While most of the code
of the action of the rule SUBJ-VERB does not apply to our example, I have
refrained from abbréviating this rule to give a feel for the power of PIDGIN.

{RULE SUBJ-VERB PRIORITY: 15. IN SUBJ-VERB
[t]-->
%Activate packets to parse objects and complements.%
If the verb of c is inf-obj then activate inf-comp.
If the verb of c is to-less-inf-obj then activate to-less-inf-comp.
_If the verb of c is that-obj then activate that-comp,
If there is a wh-comp of the s above ¢
and it is not utilized then activate wh-vp
else If the s above c is major then activate 88-vp
else activate embedded-s-vp.
Deactivate subj-verb.}

Figure 14 - The rule SUBJ-VERB.

The rule SUBJ-VERB is now the rule of highest priority that
matches, so its action is now executed. Since the action of this rule is
rather complex, I will discuss what it does in some detail,

The purpose of this rule is to activate the appropriate packets to
parse the objects and complements of a clause; the activation of some of
these packets depends upon the verb of the clause, while the activation of
others depends upon more global properties of the clause, such as whether
the clause is embedded or top-level. Thus, the next several lines of the
action activate packets for various sorts of complement constructions that a
verb might take: infinitive phrases in general (the packet INF-COMP),
infinitive phrases that are not flagged by "to", e.g. "I saw John give Jane a
kiss." (the packet TO-LESS-INF-COMP in addition to INF-COMP), and tensed
complements (the packet THAT-COMP). The next long clause activates one of
a number of packets which will attach the objects of the verb. The packet
activated depends on the clause type: whether this clause still has a WH-
head that needs to be utilized (WH-VP), whether this clause is secondary
without a WH-head (EMBEDDED-S-VP), or whether this clause is a major
clause (SS-VP).

The ruvle SUBJ-VERB provides a good example of one difference
between the packets used to organize this grammar and the states of an ATN.

Syntactic Recognition 23 Scenario

Packets do not simply correspond to ATN states, for several packets will
typically be active at a time. For instance, if parsing the sentence "Who did
John see Jane kiss?", this rule would activate three packets: INF-COMP, TO-
LESS-INF-COMP, and WH-VP. In terms of the ATN model, one can think of
this rule as dynamically tailoring the arcs out of a state of an ATN to
exactly'match various properties of the clause being parsed.

Of the complement-iniﬁiating Packets, only the packet INF-COMP is
activated in our example, since "schedule" can take infinitive complements, as
in "Schedule John to give a lecture on Tuesday.". The packet SS-VP is then
activated to attach the verb's objects, the packet SUBJ-VERB is deactivated,
~and the rule SUBJ-VERB is through. This rule thus changes the state of the
parser only by activating and deactivating packets; the packets now
associated with the current active node are SS-VP and INF-COMP. figure 15
below shows the rules in the packet SS-VP that will come into play in the
example below. Note that the rule VP-DONE, like the rule SUBJ-VERB above,
is a default rule, a rule which will become active when no other rule can
apply, and will thus complete the VP when no other active rule can fire.

{RULE OBJECTS IN SS-VP
[=np] -->
Attach 1st to c as np.}

{RULE VP-DONE PRIORITY: 20 IN §S-VP
[t] --> Drop c.} .

Figure 15

_ The rule OBJECTS is now triggered by NP41, and attaches thé NP to
VP14, The state of the parser at this point is shown in figure 16 below.

The Active Node Stack (1. deep)
S$16 (S DECL MAJOR S) / (SS-FINAL)
' . NP : (John)
AUX : (has)
VP :
C: VP14 (VP) / (SS-VP INF-COMP)
VERB : (scheduled)
NP : (a meeting)

The Buffer
1 : WORD 133 (*. FINALPUNC PUNC) : (.)

Yet unseen words: (none)

Figure 18 - After the rule OBJECTS has been run

y

Syntactic Recognition 24 Scenario

Completing the parse is now a simple matter., The default rule in
packet SS-VP, VP-DONE now triggers, popping the VP node from the active
node stack. Since VP14 is attached to S16, the S node above it on the stack,
it remains hanging from the § node. The S node is once again the current
active node, and packet SS-FINAL is now active, The default rule in this
packet, SS-DONE, shown in figure 17, immediately triggers. This rule
attaches the final punctuation mark to the clause, pops the S node from the

‘stack, and signals the grammar interpreter that the parse is now complete,

bringing our example to a close.

{RULE S-DONE IN SS-FINAL

[=finalpunc] -->

Attach 1st to c as finalpunc.

%The next line is really part of the cf mechanism.%
Finalize the cf of s.

Parse is finished.}

Figure 17 - The rule S-DONE.

Syntactic Recognition 24 Generalizations

IV. CAPTURING LINGUISTIC GENERALIZATIONS

Introduction . ; ,
In this section we will shift our attention from the grammar
interpreter to the organization of the grammar itself and the form of the
linguistic structures that it builds. This section will show that the grammar
. formalism is capable of capturing many of the same generalizations that are
captured by traditional generative grammar, with much the same elegance.

The General Grammatical Framework - Traces

The form of the structures that the current grammar builds is based
on the notion of Annotated Surface Structure. This term has been used in’
two different senses by Winograd [Winograd 71] and Chomsky [Chomsky
73]; the usage of the term here can be thought of as a synthesis of the
two concepts. Following Winograd, this term will be used to refer to a
notion of surface structure annotated by the addition of a set of features to
each node in a parse tree. Following Chomsky, the term will be used to
refer to a notion of surface structure annotated by the addition of an element
called trace to indicate the "underlying position" of "shifted" NPs. .

In current linguistic theory, a trace is essentially a "phonologically
null” NP in the surface structure: representation of a sentence that has no
daughters but is "bound" to the NP that filled that position at some level of
underlying structure. In a sense, a trace can be thought of as a "dummy"
- NP that serves as a placeholder for the NP that earlier filled that position;
in the same sense, the trace's binding can be thought of as simply a pointer
to that NP. In the context of this theory of parsing, I will define a trace
simply to be an NP which has no daughters and which has associated with
it a binding register which can be set to a pointer to another NP. (Within
the grammar presented below, a trace will also be flagged by the feature
TRACE.) This register can be set by the PIDGIN code

Set the binding of <node) to <controlling node>.
It should be stressed at the outset that a trace is indistinguishable from a
normal NP in terms of normal grammatical processes; a trace is an NP, even

though it is an NP that dominates_no lexical material.

Some examples of the use of trace are given in figure 18
immediately below.

Syntactic Recognition 25 Generalizations

(1a) UWhat did John give to Sue?
(1b) What did John give t to Sue?
' I — |

{lc) John gave what to Sue.

(2a) A book was given Sue.
(2b) A book was given Sue t.

(2c) Vv gave Sue a book.

(3a) John uas believed to be happy.
(3b) John uas believed [s t to be happyl.

Figure 18 — Some examples of the use of trace.

One use of trace is to indicate the underlying position of the wh-
head of a question or relative clause. Thus, the structure built by the parser
for 18.1a would include the trace shown in 18.1b, with the trace's binding
shown by the line under the sentence. The position of the trace indicates
that 18.1a has an underlying structure analogous to the overt surface
structure of 18.1c.

Another use of trace is to indicate the underlying position of the
surface subject of a passivized clause. For example, 18.2a will be parsed into
a structure that includes a trace as shown as 18.2b; this trace indicates that
the subject of the passive has the underlying position shown in 18.2c. The
symbol "V" signifies the fact that the subject position of (2c) is filled by an
NP that dominates no lexical structure, (Following Chomsky, I assume that a
passive sentence in fact has no underlying subject, that an agentive "by NP"
.Prepositional phrase originates as such in underlying structure.) The trace in
(3b) indicates that the phrase "to be happy", which the brackets show is
really an embedded clause, has an underlying subject which is identical with
the surface subject of the matrix S, the clause that dominates the embedded
complement. Note that what is conceptually the underlying subject of the
embedded clause has been passivized into subject position of the matrix S, a
Phenomenon commonly called "raising". The analysis of this phenomenon
assumed here derives from [Chomsky 73]; it is an alternative to the classic
analysis which involves "raising" the subject of the embedded clause into
object position of the matrix S before passivization (for details of this later
analysis see [Postal 74]).)

There are several reasons for choosing a properly annotated surface
structure as a primary output representation for syntactic analysis. While a
deeper analysis is needed to recover the predicate/argument structure of a
sentence (either in terms of Fillmore case relations [Fillmore 68] or
Gruber/Jackendoff "thematic relations" [Gruber 65; Jackendoff 727),

Syntactic Recognition 26) Generalizations

phenomena such as focus, theme, pronominal reference, scope of
quantification, and the like can be recovered only from the surface structure
of a sentence. By means of proper annotation, it is possible to encode in the
surface structure the “deep" syntactic information necessary to recover
underlying predicate/argument relations, and thus to encode in the same
formalism both deep syntactic relations and the surface order needed for
pronominal reference and the other phenomena listed above,

Note that the information that these traces encode is easily used by
a semantic component to recover the underlying predicate/argument structure
of an utterance. For example, all that needs to be done to recover the
predicate/argument structures of the (b) sentences in figure 18 above (where
the predicate/argument structure is taken here loosely to be analogous to the
structure of the (c) sentences) is to repeatedly replace each trace with its
binding until all traces have been eliminated, and to ignore the surface
subjects of passivized clauses.

While the notion of a trace and its binding is discussed above in
terms of the theory of generative grammar, there is an essentially
computational motivation for trace theory, as will be shown below. In
essence, the point’'is this: Once a trace has been dropped into the buffer by
a grammar rule, later grammatical processes will be unaware that an NP did
not actually appear in this position in the input structure. Furthermore, by
dropping a trace into the buffer, a grammar rule can assert, in effect, that an
NP underlyingly. appears at a given linear position in the input string
without committing itself to the position of this NP in the underlying tree
structure. This fact will turn out to be crucial to the formulation of the
passive rule which will be presented below.

Some Captured Generalizations

In the remainder of this section, I will briefly sketch a few
examples of grammar rules that explicitly capture, on nearly a one-to-one
basis, the same generalizations that are typically captured by classical
transformational rules. The central point I hope to make is that the
availability of the buffer as a workspace, in conjunction with a grammar
written in the form of pattern-action rules, makes possible several techniques
for writing simple, concise grammar rules that have the net effect of
explicitly "undoing" many of the generative grammarian's transformations
with much the same elegance,

One caveat should be stated at the outset: Not all grammatical
processes which are typically expressed as single rules within the generative
framework can be so captured within the grammar for this parser, or, 1
believe, any other. Such processes include the general phenomenon of “"WH-
movement”, which accounts for the structure of WH-questions and relative

clauses (at the least), and the problem of prepositional phrase attachment.

Thus, while there is a wide range of grammatical generalizations that can be
captured within a parsing grammar, it must be conceded that there are

Syntactic Recognition ' a7 Generalizations

important generalizations that cannot be captured within this framework.

There are several techniques made possible by the buffer that will
“be used repeatedly to capture linguistic phenomena within fairly simple rule
formulations. They are: , '

1) The ability to remove some constituent other than the first from
the constituent buffer, cdmpacting the buffer and reuniting discontinuous
constituents. In natural language, it is often the case that some third
structure intervenes between two parts of what is intuitively one
constituent. In most parsers, special pProvisions must be made in the grammar
for handling such situations. As will be demonstrated below, the buffer
mechanism makes this unnecessary.

2) The ability to place a trace by inserting it into the buffer
rather than by directly attaching it to a tree fragment. As I will sketch
below, this yields a simple analysis of passivization and "raising".

3) The ability to insert specific lexical items into the buffer,
thereby allowing one set of rules to operate on only superficially different
cases. As figure 19 below shows, many grammatical constructions in natural .
language are best analyzed as slight variants of other constructions, differing
only in the occurrence of an additional specific lexical item or two. Given
the buffer mechanism, such constructions can be easily handled by doing a
simple insertion of the appropriate lexical items into the shorter form of the
construction, "transforming” the shorter form into the longer form, allowing
both cases to then be handled by the same grammar rule.

1(a) all the boys
(b) all of the boys

2(a) | helped John pick it up.
(b) | helped John to pick it up.

Figure 19

In what follows below, I will give examples which illustrate points
(1) and (2). :

Example 1 - Yes/No Questions

‘ In the grammar for this parser, the analysis of a yes-no question
differs from the analysis of the related declarative only in the execution of
two rules for each ‘sentence type: declaratives trigger the two rules shown
in figure 20a beiow, and yes-no questions trigger the two rules shown in
20b. The differences between the rules for declaratives and yes-no questions
are underlined in fig. 20. .

Syntactic Recognition 28 Generalizations

{RULE MAJOR-DECL-S IN SS-START {RULE YES-NO-Q IN SS-START

[=np] [=verb] --> _ [2auxverb] [=np] -->
Label ¢ s, decl, major. Label c s, quest, ynquest, major.
Deactivate ss-start. Deactivate ss-start.
Activate parse-subj.} Activate parse-subj.}
{RULE UNMARKED-ORDER S {RULE AUX-INVERSION
IN PARSE-SUBJ IN PARSE-SUBJ

[=np] [=verb] --> L [zauxverb] [=np] -->-
Attach 1st to c as np. Attach 2nd to c as np.
Deactivate parse-subj, Deactivate parse-subj.
Activate parse-aux.} Activate parse-aux.)
DECLARATIVES YES-NO QUESTIONS

(a) (b) '

Figure 20 - Grammar rules for yes-no questions and declaratives.

What is surprising about these rules is that they obviate the need
for the grammar to contain special provisions to handle the discontinuity of
the verd cluster in yes-no questions. Consider the following sentence,

(ii) Has, John scheduled the meeting for Wednesday?

One of the auxiliary parsing rules that should be triggered during the course
of the analysis of this sentence is the rule PERFECTIVE, shown below in
figure 21. This rule will attach any form of "have" to the auxiliary and
label the auxiliary’ with the feature perfective if the following word
(implicitly a verb) has the feature en. It would seem that some provision
must be made for the fact that in a yes-no question these two words might
be separated by the subject NP, as in (ii) above where the verb "scheduled"
(which does carry the feature en, since en is morphologically realized with
this verb as "-ed") does not follow "has", but rather follows an intervening
NP. As we shall see immediately below, however, no special patch is needed
to handle this discontinuity at all. :

{RULE PERFECTIVE PRIORITY: 10. IN BUILD-AUX
[=*have] [=en] --> Attach 1st to c as perf. Label ¢ perf.}

Figure 21 - The PERFECTIVE rule requires contiguous verbs.

Let us now trace through the initial steps of parsing (ii) and see
why it is that no changes to the auxiliary parsing rules are required to parse
Yes-no questions.

A We begin with the parser in the state shown in figure 22a below,
with the packet SS-START active. The rule YES-NO-Q matches and is

Syntactic Recognition 29 Generalizations

executed, labelling S17 with features that indicate that it is a yes-no
question, as shown in figure 22b below. (The buffer, not shown again,
remains unchanged.) This step of the parsing process is quite analogous to
the analysis process for declaratives. .

The Active Node Stack (0. deep)
C: S$17 (S) / (SS-START)

The Buffer
1: WORD 134 (*HAVE VERB AUXVERB PRES V3s) : (Has)
2: NP43 (NP NAME NS N3P) : {John)
3: WORD 136 (*SCHEDULE COMP-0BJ VERB INF-0BJ V-3S ...) : (scheduled)

Yet unseen words: a meeting for Wednesday ?

(a) - Before YES-NO-Q has been executed.

" The Active Node Stack (0. deep)
C: S17 (S QUEST YNQUEST MAJOR) / (PARSE-SUBJ)

(b) - The Active Node Stack after YES-NO-Q is executed.

Figure 22

The packet PARSE-SUBJ is now active, and rule AUX-INVERSION
matches and is executed; it attaches NP43 to S17. After AUX-INVERSION has
been executed, the grammar interpreter notices that NP43 is attached and it
therefore removes NP43 from the buffer. But now that the subject of the
clause has been removed from the buffer, the pieces of the verb cluster "has
scheduled” are no longer discontinuous, as the word “"has" is now in the 1ist
buffer cell, and "scheduled" is in the 2nd cell. This is shown in figure 23
below. In effect, the rule AUX-INVERSION, merely by picking out the
subject of the clause, has "undone" the subject/auxiliary "inversion" which
signals the presence of a question.

The Active Node Stack (0. deep)
C: S17 (S QUEST YNQUEST MAJOR) / (PARSE-AUX)
NP : (John)

' The Buffer :
1: - WORD 134 (*HAVE VERB AUXVERB PRES V3S) : (Has)
: WORD 136 (*SCHEDULE COMP-0BJ VERB INF-0BJ V-3§ ...) : (scheduled)

Yet unseen words: ' a meeting for Wednesday ?

Figure 23 - After AUX-INVERSION has been executed.

Syntactic Recognition 30 Generalizations

From this simple example, we see that the ability to attach
constituents in other than the first place in the buffer to the current active
node, in conjunction with the fact that attachment causes a node to be
removed from the buffer, compacting the remaining contents of the buffer,
allows a key generalization to be captured. Most interestingly, the removal
of the subject NP in this case was not specifically stipulated by the grammar
rule, which merely specified that the second NP in the buffer was to be
attached to the dominating S. The deletion followed instead from general
principles of the grammar interpreter's operation. This latter point is
crucial; given a simple statement of the structure of Yes-no questions in
English, the proper behavior follows from much more general principles,

Example 2 - Passives and Raising

In this section, I will very briefly sketch a grammatical solution to
the phenomena of passivization and “raising" [Postal 74], sentences in which
what seems to be the subject of an embedded complement is passivized into
the subject position of the higher clause. This analysis, I believe, is simpler
than that demonstrated by Woods within his classic paper on the ATN
formalism [Woods 70], in that (1) nothing like the register mechanism of
the ATN and-the related SENDR and LIFTR mechanisms are needed for this

solution; and (2) the register resetting involved in Woods' solution is not
neededv here,

: Let us begin with the parser in the state shown in figure 24 below,
in the midst of parsing the following sentence:

The meeting was scheduled for Wednesday.

The analysis process for the sentence prior to this point is essentially parallel
to the analysis of any simple declarative with one exception: the rule
PASSIVE-AUX in packet BUILD-AUX (shown in figure 11) has decoded the
passive morphology in the auxiliary and given the auxiliary the feature
passive (although this feature is not visible in figure 24). At the point we
begin our example, the packet SUBJ-VERB is active.

Syntactic Recognition . 31 Generalizations

The Active Node Stack (1. deep)
§21 (S DECL MAJOR) / (SS-FINAL)
NP : (The meeting)
AUX : (has been)
: VP:
C: VP17 (VP) / (SUBJ-VERB)
: VERB : (scheduled)

The Buffer
1: PP14 (PP) : (for Wednesday)
-2 WORD 162 (*. FINALPUNC PUNC) : (.)

_Figure 24 - Analysis of a passive after the verb has been attached.

The packet SUBJ-VERB contains, among other rules, the rule PASSIVE, shown
in figure 25 below. As I will show in the next section, this rule by itself
is sufficient to account for many of the phenomena that accompany clause-
level passivization including the phenomenon of raising. The pattern of this
rule is fulfilled if the auxiliary of the S node dominating the current active
node (which will always be a VP node if packet SUBJ-VERB is active) has
. the feature passive, and the S node has not yet been labelled np-preposed.
(The notation "** C" indicates that this rule matches against the two
accessible nodes in the stack, not against the contents of the buffer.) The
action of the rule PASSIVE simply creates a trace, sets the binding of the

trace to the subject of the dominating S node, and then drops the new trace
into the buffer.:)

{RULE PASSIVE IN SUBJ-VERB
[** c; the aux of the s above c is passive;
the s above c is not np-preposed] -->
Label the s above ¢ np-preposed.
- Create a new np node labelled trace.
Set the binding of ¢ to the np of the s above c.
Drop c.)}

Figure 25 - PASSIVE captures np-preposing in 4 lines of code.

The state of the parser after this rule has been executed, with the parser
previously in the state in figure 24 above, is shown in figure 26 below.
S21 is now labelled with the feature np-preposed, and there is a trace,
NPS53, in the first buffer position. NP53, as a trace, has no daughters, but is
bound to the subject of S21.

Syntactic Recognition . 32 Generalizations

The Active Node Stack (1. deep)
S21 (NP-PREPOSED S DECL MAJOR) / (SS-FINAL)
NP : (The meeting)
AUX : (has been)
_ VP : »
C: VP17 (VP) / (SUBJ-VERB)
VERB : (scheduled)

The Buffer.
1: NP53 (NP TRACE) : bound to: (The meeting)
2: PP14 (PP) : (for Wednesday)
3: WORD162 (*. FINALPUNC PUNC) : (.)

Figure 26 - After PASSIVE has been executed.

Now rules will run which will activate the two packets SS-VP and

INF-COMP, given that the verb of VP17 is “"schedule'. These two packets
 contain rules for parsing simple objects of non-embedded Ss, and infinitive
complements, respectively. Two such rules, each of which utilize an NP
immediately following a verb, are given in figure 27 below. The rule
OBJECTS, in packet SS-VP, picks up an NP after the verb and attaches it to
the VP node as a simple object. The rule INF-S-START1, in packet INF-
COMP, triggers when an NP is followed by "to" and a tenseless verb; it
initiates an infinitive complement and attaches the NP as its subject. (An
example of such a sentence is "We scheduled John to give a seminar next
week".) The rule INF-S-START!1 must have a higher priority than OBJECTS
because the pattern of OBJECTS is fulfilled by any situation that fulfills the
~ pattern of INF-S-START{; if both rules are in active packets and match, the
higher priority of INF-S-START1 will cause it to be run instead of OBJECTS.

{RULE OBJECTS PRIORITY: 10 IN SS-VP
[=np] -->
Attach 1st to c as np.}
{RULE INF-S-START1 PRIORITY: &. IN INF-COMP
[=np] [=*to,auxverb] [=tnsless] -->
- Label a new s node sec, inf-s.
Attach 1st to c as np.
Activate parse-aux.}

Figure 27 - Two rules which utilize an NP following a verb.

While there is not space to continue the example here in detail,
note that the rule OBJECTS will trigger with the parser in the state shown
in figure 26 above, and will attach NP53 as the object of the verb "schedule.
OBJECTS is thus totally indifferent both to the fact that NP53 was not a
regular NP, but rather a trace, and the fact that NP53 did not originate in

Syntactic Recognition 33 _ Generalizations

the input string, but' was placed into the buffer by grammatical processes.
Whether or not this rule is executed is absolutely unaffected by differences
between an active sentence and its passive form; the analysis process for
either is identical as of this point in the parsing process. Thus, the analysis
process will be exactly parallel in both cases after the PASSIVE rule has been
executed. (I remind the reader that the analysis of passive assumed above,
following ‘Chomsky, does not assume a process of "agent deletion", “subject
, postposmg" or the like.) :

»Example 3 - Passives in Embedded Complements

In the previous section, we investigated how simple passives were
handled by the parser. In this section we will investigate how the parser
handles much more complicated passives, such as the sentence presented
below as 28a. The desired analysis of this sentence, as shown in 28b,
analyzes "to be "happy" as an embedded S whose subject is a trace bound to
the subject of the higher clause. Such an analysis views 28b as deriving
conceptually from an underlying form similar to 28c, where the subject of
the underlying clause has been passivized into subject position in the upper
clause. In this section I will show how the parser builds such an analysis.

(a) John was believed to be happy.
(b) John uas believed [g t to be happyl.

| |
(c) V believed John to be happy.

Figure 28 - The intended analysis for a complex passive .

The reader may have wondered why the PASSIVE rule introduced in
the previous section was formulated to drop the trace it creates into the
buffer rather than immediately attaching the new trace to the VP node. As I
will show in this section, such a formulation of PASSIVE also correctly
analyzes passives like 28c above which involve "raising", but with no
~additional complexity added to the grammar, correctly capturing a
generalization about a range of grammatical phenomena. To. fully show the
range of the generalization, the example which we will investigate in this
section, sentence (1) in figure 29 below, is yet a level more complex than
28a above; its analysis is shown schematically in 29.2. In this example
there are two traces: the first, the subject of the embedded clause, is bound
to the subject of the major clause, the second, the object of the embedded S,
is bound to the first trace, and is thus ultimately bound to the subject of
the higher S as well. Thus the underlying position of the NP "the meeting”

can be viewed as being the object position of the embedded S, as shown in
29.3.

Syntactic Recognition 34 Generalizations

(1) The meeting was believed to have been scheduled for Wednesday.
(2)The meeting was believed [g t to have been scheduled t for Wednesdayl

I I |
(3) V believed [g V to have scheduled the meeting for Wednesdayl.

Figure 29 - The example which will be discussed in this section.

We bégin our example, once again, right after the rule MVB has
been executed, attaching "believed" to VP20, the current active node, as
shown in figure 30 below. Note that "was" has been attached to the AUX

node, and that the AUX node has been labelled passive, although this feature
is not shown here. ' :

The Active Node Stack (1. deep)
8§22 (S DECL MAJOR) / (SS-FINAL)
NP : (The meeting)
AUX : (was)
. VP :
C: VP20 (VP) / (SUBJ-VERB)
VERB : (believed)

The Buffer ,
1 WORD 166 (*TO PREP AUXVERB) : (to)
2: WORD167 (*HAVE VERB TNSLESS AUXVERB PRES ...) : (have)

Figure 30 - The example begins after MVB has been executed.

With the parser in the state indicated in figure 30 above, the packet
SUBJ-VERB, which contains PASSIVE, is active, and this rule's pattern is
fulfilled, so the rule is executed. This rule, as stated above, creates a trace,

‘binds it to the subject of the current clause, and drops the trace into the

first cell in the buffer. The resulting state is shown in figure 31 below.

Syntactic Recognition 35 Generalizations

The Active Node Stack (1. deep)
S22 (NP-PREPOSED S DECL MAJOR) / (SS-FINAL)
NP : (The meeting)

AUX : (was)
VP :
C: VP20 (VP) / (SUBJ-VERB)
VERB : (believed)
The Buffer
1: NP55 (NP TRACE) : bound to: (The meeting)
2: WORD 166 (*TO PREP AUXVERB) : (to)
3: WORD167 (*HAVE VERB TNSLESS AUXVERB PRES ...) : (have)

Yet unseen words: been scheduled fbr Wednesday .

Figure 31 ~ After PASSIVE has been executed.

The rule SUBJ-VERB is now triggered, and deactivates the packet
SUBJ-VERB and activates the packet SS-VP (which contains the rule OBJECTS)
and, since "believe" takes infinitive complements, the packet INF-COMP
(which contains INF-S-START1), among others. Now the patterns of OBJECTS
and INF-S-START1 will both match, and INF-S-START1, shown above in
figure 27, will be executed by the interpreter since it has the higher
priority. (Note once again that a trace is a perfectly normal NP from the-
point view of the pattern matching process.) This rule now creates a new S
node labelled infinitive and attaches the trace NP55 to the new infinitive as
its subject.- The resulting state is shown in figure 32 below.

The Active Node Stack (2. deep)

- S22 (NP-PREPOSED S DECL MAJOR) / (SS -FINAL)
NP : (The meeting)
AUX : (was)
VP

VP20 (VP) / (SS-VP THAT-COMP INF-COMP)
VERB : (believed)
C: S§23 (SEC INF-S S) / (PARSE-AUX)
' NP : bound to: (The meeting)

The Buffer
1: WORD 166 (*TO PREP AUXVERB) : (to)
2: WORD 167 (*HAVE VERB TNSLESS AUXVERB PRES ...) : (have)

Yet unseen words: been scheduled for Wednesday .

Figure 32 - After INF-S-START1 has been executed.

Syntactic Recognition 36 Generalizations

We are now well on our way to the desired analysis. An embedded
infinitive has 'been initiated, and a trace bound to the subject of the
dominating S has been attached as its subject.

The parser will now proceed, exactly as in earlier examples, to build
the auxiliary, attach it, and attach the verb "scheduled" to a new VP node.
After the rules that accomplish this have been executed, the parser is left in

‘the state depicted in figure 33 below. (Note that for the sake of brevity,

only the 3 bottommost nodes in the active node stack will be shown in this
and all successive diagrams.) The infinitive auxiliary has been parsed and
attached, and VP21 is now the current active node, with the verbd
"scheduled" as main verb of the clause. It should be noted that the auxiliary
has been assigned the feature passive by the auxiliary parsing rules,
although this is not shown in the figure below.

The Active Node Stack (3. deep)

VP20 (VP) / (SS-VP THAT-COMP INF-COMP)
VERB : (believed)

S23 (SEC INF-S S) / (EMB-S-FlNA!.)
NP : bound to: (The meeting)
AUX : (to have been)
VP : |

C: VP21 (VP) / (SUBJ-VERB)

VERB : (scheduled)

* The Buffer
1: PP15(PP) : (for Wednesday)
: - WORD174 (*. FINALPUNC PUNC) : (.)

. Figure 33 - After the auxiliary and main verb hqve been parsed.

The packet SUBJ-VERB, containing the rules PASSIVE and SUBJ-
VERB, is now active. Once again PASSIVE's pattern matches and this rule is
executed, creating a trace, binding it to the subject of the clause, (which is
in this case itself a trace), and dropping the new trace into the buffer. And
again, it labels the dominating S node, in this case S23, with the feature np-

preposed, blocking the PASSIVE rule from reapplying. This is shown in

figure 34 below. Note that in this figure, as in earlier figures, the lexical
NP which is the transitive closure of the binding relationship is shown for
each trace.

Syntactic Recognition 37

®N -

The Active Node Stack (3. deep)

ooooooo N

VP20 (VP) / (SS-VP THAT-COMP INF-COMP)
VERB : (believed)

S$23 (NP-PREPOSED SEC INF-S S) / (EMB-S-FINAL)
‘NP : bound to: (The meeting)
AUX : (to have been)
VP : |

VP21 (VP) / (SUBJ-VERB)

VERB : (scheduled)

The Buffer .
NP&7 (NP TRACE) : bound to: (The meeting)
PP15 (PP) : (for Wednesday)

WORD174 (*. FINALPUNC PUNC) : (.)

Figure 34 - After PASSIVE has run on the lower clause.

attached to the VP of the major clause.

Generalizations

The remainder of the parsing process proceeds in a fashion similar to
the simple passive example discussed above, with the rule OBJECTS next
attaching the trace NP57 as the object of VP21,

Once the infinitive complement is completed, it is dropped into the
buffer, where it triggers a grammar rule which attachs it to an NP node

The tree structure which resuits

after the parse is complete is shown in figure 35 below. (For the sake of
brevity, most features have been deleted from this tree.) A trace is indicated

in this tree by giving the terminal string of its ultimate binding in
parentheses.

Syntactic Recognition 38 Generalizations

(NP-PREPOSED S DECL MAJOR)
NP: (MODIBLE NP DEF DET NP)
" DET: The
NBAR: (NS NBAR)
NOUN: meeting
~AUX: (PAST V13S AUX)
PASSIVE: was
VP: (VP)
VERB: believed
NP: (NP COMP)
' S: (NP-PREPOSED SEC INF-S S)
NP: (NP TRACE)
(bound* to: The meeting)
- AUX: (PASSIVE PERF INF AUX)
TO: to '
PERF: have
PASSIVE: been
’ VP: (VP)
VERB: scheduled
NP: (NP TRACE)
(bound* to: The meeting)
PP: (PP)
PREP: for ,
NP: (NP TIME DOW)
NOUN: Wednesday
FINALPUNC: .

Flgufe 35 - The tree structure resulting from parsing 29.1.

We have seen that the simple formulation of the PASSIVE rule
presented above, interacting with other simply formulated grammatical rules
for parsing objects and initiating embedded infinitives, allows a trace to be
attached either as the object of a verb or as the subject of an embedded
infinitive, whichever is the appropriate analysis for a given grammatical
situation. The PASSIVE rule is formulated in such a way that it drops the
trace it creates into the buffer, rather than attaching the trace somewhere in
particular in the tree. Because of this, later rules, already formulated to
trigger on an NP in the buffer, will analyze sentences with NP-preposing
exactly the same as those without a preposed subject. The PASSIVE rule,
formulated as it is, elegantly captures the notion that the “underlying"
location of a preposed NP is, in fact, immediately after the verb in the
underlying terminal string, regardless of its position in the underlying tree.
Once again, we see that the availability of the buffer mechanism is crucial
to capturing this generalization; such a generalization can only be stated by
a parser with a mechanism much like the buffer used here.

- Syntactic Recognition 39 Constraints

V. The Grammar Interpreter
and Chomshky’s Constraints

Introduction ,

In a series of papers over the last several years, Noam Chomsky has
argued for ‘several specific properties of language which he claims are
universal to all human languages [Chomsky 73, 75, 76]. These properties,
which form one of the cornerstones of his current linguistic theory, are
embodied in a set of constraints on language, a set of restricuons on the .
operation of rules of grammar.

In this section, I will give some examples that demonstrate that
important sub-cases of two of these constraints fall out naturally from the
structure of the grammar interpreter. I will then show that many of the
properties of the interpreter which are crucial to capturing these universals
are motivated by the Determinism Hypothesis. Thus, I will demonstrate that
significant sub-cases of Chomsky's purported universals follow naturally from
the Determinism Hypothesis and in this sense are explained by it. Such a
demonstration provides further evidence in favor of the Determinism
Hypothesis.

(It should be noted that these constraints are far from universally
accepted. They are currently the source of much controversy; for various
critiques of Chomsky's.position see [Postal 74; Bresnan 76]. I will not argue
for these constraints here but will accept them as a given.)

Before preceding with the argument itself, let me briefly sketch the
two constraints, Subjacency and the Specified Subject Constraint that will be
the focus of this section.

Subjacency ,

Before defining the notion of Subjacency, a few auxiliary technical
terms ‘need to be defined: If we can trace a path up the tree from a given
node X to a given node Y, then we say X is dominated by Y, or
equivalently, Y dominates X. If Y dominates X, and no other nodes intervene
(i.e. X is a daughter of Y), then Y immediately (or directly) dominates X.
[Akmajian & Heny 75]. One non-standard definition will prove useful: I
will say that if Y dominates X, and Y 'is a cyclic node, i.e. an S or NP node,
and there is no other cyclic node Z such that Y dominates Z and Z dominates
X (i.e. there is no intervening cyclic node Z between Y and X) then Y
Dominates X.

The principle of Subjacency, informally stated, says that no rule can
involve constituents that are separated by more than one cyclic node. Let us
say that a node X is subjacent to a node Y if there is at most one cyclic
node, i.e. at most one NP or S node, between the cyclic node that Dominates
Y and the node X. Given this definition, the Subjacency principle says that
no rule can involve constituents that are not subjacent,

Syntactic Recognition : 40 Constraints

The Subjacency principle implies that Chomsky's two movement
rules, the rules MOVE NP and MOVE WH-phrase, are constrained so that they
can move a constituent only into positions that the constituent was subjacent
‘to. This means that if «, 3, and ¢ in figure 36 are cyclic nodes, no rule
can move a constituent from position X to either of the positions Y, where
[w:--X...] is distinct from [, X].

[enYol gl K] Yoo]

vFigure 36 - Subjacency: no rule can involve X and Y in this structure.

Subjacency implies that if a constituent is to be "lifted” up more
than one level in constituent structure, this operation must be done by
repeated operations. Thus, to use one of Chomsky's examples, the sentence
given in figure 37a, with a deep structure analogous to 37b, must be derived
as follows (assuming that "is certain", like "seems", has no subject in
underlying structure): The deep structure must first undergo a movement
operation that results in a structure analogous to 37c, and then another
movement operation that results in 37d, each of these movements leaving a
trace as shown. That 37c is in fact an intermediate structure is supported
by the existence 'of sentences such as 37e, which purportedly result when
the V in the matrix S is replaced by the lexical item "it", and the embedded
S is tensed rather than infinitival. The structure given in 37f is ruled out
as a possible annotated surface structure, because the single trace could only
be left if the NP "John" was moved in one fell swoop from its underlying
position to its position in surface structure, which would violate Subjacency.

(a) John seems to be certain to win.

(b) v seems [5 V to be certain [John to win]]
(c) V seems [g John to be certain [g t to win]]
(d) John seems [s t to be certain [g ¢ to win]]

(e) It seems that John is certain to win.

(f) John seems [V to be certain [g t to win]]

Figure 37 - An example demonstrating Subjacengy.

The Specified Subject Constraint

The Specified Subject Constraint (SSC), stated informally, says that
no rule may involve two constituents that are Dominated by different cyclic
nodes unless the lower of the two is the subject of its S or NP. Thus, no
rule may involve constituents X and Y in the structure shown in figure 38

below, if o and @ are cyclic nodes and Z is the subject of a, Z distinct from
X.

Syntactic Recognition ' 41 Constraints

[geYouly ZooXen Yo]

Figure 38 - SSC: No rule t;an involve X and Y in this structure.

The SSC explains why the surface subject position of verbs like
"seems" and "is certain" which have no underlying subject can be filled only
by the subject and not the object of the embedded S: The rule MOVE NP is
free to shift any NP into the empty subject position, but is constrained by
the SSC so that the object of the embedded S cannot be moved out of that
clause. This explains why (a) in figure 39 below, but not 39b, can be
derived from 39c; the derivation of 39c would violate the SSC.

(a) John seems to like Mary..
(b)*Mary seems John to like.
(c) V seems [John to like Mary]

Figure 39 - Some examples illustrating the SSC.

Limitations _

Before turning to the aspects of these constraints that are accounted
for by the operation of the grammar interpreter, there are several important
limitations of this work which must be discussed.

First of all, the range of phenomena for which explanations can be
given in terms of the structure of the grammar interpreter is more limited
than that accounted for by Chomsky's constraints. While two of Chomsky's
constraints, the Specified Subject Constraint and Subjacency, seem to fall out
of the grammar interpreter, there seems to be no apparent account of a third,
the Tensed S (or Propositional Island) Constraint, in terms of this mechanism.

Second, I show here only that movement rules are constrained by
the grammar interpreter. Chomsky's constraints themselves are intended to
apply to all rules of grammar, both syntactic rules (i.e. transformations) and
those rules of semantic interpretation which Chomsky now calls "rules of
construal”, a set of shallow semantic rules which govern anaphoric processes
[Chomsky 77]. The discussion here will only touch on purely syntactic
phenomena; the question of how rules of semantic interpretation can be
meshed with the framework presented in this document is beyond the range
of the present research. This would seem to be a fertile area for future
investigation. For more on all of this, the non-linguist is encouraged to read
Chapter 3 of [Chomsky 75], which is an introductory presentation of the
notions outlined here.

Third, the arguments presented below deal only with English, and in
fact depend strongly 'upon several facts about English syntax (e.g. the fact
that English is subject-initial). Whether these arguments can be successfully

Syntactic Recognition 42 , Constraints

extended to other languages is an open question, and to this extent this work
must be considered exploratory.

And finally, I will not show that these constraints must be true
without exception; as we will see, there are various situations in which the
constraints imposed by the grammar interpreter can be circumvented. Most
of these situations, though, will be shown to demand much more complex
grammar formulations than those typically needed in the grammar so far
constructed. This is quite in keeping with the suggestion made by Chomsky
[Chomsky 77] that the constraints are not necessarily without exception, but
rather that exceptions will be "highly marked" and therefore will count
heavily against any grammar that includes them.

Because of space limitations, this section deals only with those
grammatical processes characterized by the competence rule "MOVE NP"; the
constraints imposed by the grammar interpreter upon those processes
characterized by the rule "MOVE WH-phrase" are discussed at length in
[Marcus 77]. There I show that the behavior characterized by Ross's
Complex NP Constraint [Ross 67] itself follows directly from the structure of
the grammar interpreter for rather different reasons than the behavior
considered in this section. But this is not the problem it might seem: As
Chomsky himself notes, the phenomena he characterizes by the rule "MOVE
WH-phrase" do not, in fact, appear to observe his constraints. Instead,
Chomsky argues that his constraints account for the behavior stipulated by
the Complex NP Constraint. The claim then, is that the grammar interpreter
accounts for the same range of behavior (given the caveats above) that
Chomsky's two constraints account for, but in rather different ways for
MOVE NP and MOVE Wh-phrase phenomena.

Also because of space limitations, I will not attempt to show that
the two constraints I will deal with here necessarily follow from the
grammar interpreter, but rather only that they naturally follow from the
interpreter. In particular, I will show that they follow from the simple,
natural formulation of PASSIVE presented in the previous section, whose
formulation itself depends heavily upon the structure of the interpreter.
Again, necessity is argued for in detail in [Marcus 77].

The Specified Subject Constraint and the Grammar
Interpreter

As I pointed out above, the Specified Subject Constraint constrains
the rule "MOVE NP" in such a way that only the subject of a clause can be
moved out of that clause into a position in a higher S. Thus, if a trace in an
annotated surface structure is bound to an NP Dominated by a higher S, that
trace must fill the subject position of the lower clause. In this section I
will show that the grammar interpreter constrains grammatical processes in
such a way that annotated surface structures constructed by the grammar
interpreter will have this same property.

Syntactic Recognition - 43 Constraints

In terms of the parsing process, this means that if a trace is
“lowered" from one clause to another during the parsing process, then it will
be attached as the subject of the second clause, unless it is created by a WH-
movement process. To be more precise, if a trace is attached so that it is
Dominated by S1, and the trace is bound to an NP Dominated by some other S
node S2, then that trace will necessarily be attached so that it fills the

. Subject position of S1. This is depicted in figure 40 below. This will be

true presupposing the structural analyses for passivization and other
constructions involving traces -presented in previous chapters and assuming,
again, that the grammar does not violate a small set of restrictions.

The Active Node Stack

.

s2..1/..
NP2
c: St1../.

NP: NP1 (NP TRACE) : bound to NP2

-

Figure 40 - NP1 must be attached as the subject of S1
since it is'bound to an NP Dominated by a higher S.

Let us briefly review the last example in section IV, which showed
how the trace t1 in (iii) below was created, bound to the NP "the meeting",
and attached as the subject of the embedded clause.

(iii) The meeting was believed [g t1 to have been scheduled for Wednesday])

Immediately after the verb "believed” was attached to the VP of the major
clause, the PASSIVE rule was executed. This rule created a trace, bound it to
the subject of the dominant S, and then dropped this new trace into the first
position in the buffer. If this were a simple passive, the OBJECT rule would
now attach the trace to the VP of the current clause. In this case, however,
the rule INF-S-START1, with pattern

[=np] [=*to] [=tnsless]
triggered, creating a new S node and then attaching the trace to that S node

as its subject. The essence of the process is as follows: create and properly
bind a trace while the major S is the current S; drop the trace into the

buffer; create a subordinate S; attach the trace to the newly created S.

The end result of this process is that a trace bound to an NP in a
higher S has been attached as the subject of an embedded S without having:

been explicitly "lowered” from one S to the other. The original point of the

example, of course, was that the rather simple PASSIVE rule handles both

Syntactic Recognition 44 Constraints

this case and the case of simple passives without the need for some
mechanism to explicitly lower the NP. The PASSIVE rule captures this
generalization by dropping the trace it creates into the buffer (after
appropriately binding the trace), thus allowing other rules written to handle
normal NPs to correctly place the trace.

This statement of PASSIVE does more, however, than simply capture
a generalization about a specific construction. As I will argue in detail -
below, the behavior specified by both the Specified Subject Constraint and
Subjacency follows almost immediately from this formulation. In [Marcus
77], 1 argue that this formulation of PASSIVE is the only simple, non-ad hoc,
formulation of this rule possible, and that all other rules characterized by the
competence rule "MOVE NP" must operate similarly; in that paper I attempt
to show that all other possible formulations are blocked by the nature of the
grammar interpreter. However, while it is easy to show that the behavior
characterized by the SSC follows from the PASSIVE rule as stated here, the
demonstration that other possible formulations of PASSIVE are blocked by the
structure of the grammar 'interpreter is quite tedious. Because of this, I will
only show here that these constraints follow naturally from this formulation
of PASSIVE, leaving the question of necessity aside. Here I will assume one
additional constraint, the Left-to-Right Constraint and then show that the SSC
and Subjacency naturally follow from this constraint, given the Passive rule
stated above. I will then briefly motivate this constraint as a natural
condition on the formulation of a grammar for this mechanism.

The Left-to-Right Constraint: the constituents in the buffer are (almost
always) attached to higher level constituents in left-to-right order,
l.e. the first constituent in the buffer is (almost always) attached
before the second constituent.

I will now show that a trace created by PASSIVE which is bound to
an NP in one clause can only serve as the subject of a clause dominated by
that first clause.

Given the formulation -of PASSIVE, a trace can be "lowered" into one
clause from another only by the indirect route of dropping it into the buffer
before the subordinate clause node is created, which is exactly how the
PASSIVE rule operates. This means that the ordering of the operations is
crucially: 1) create a trace and drop it into the buffer, 2) create a .
subordinate S node, 3) attach the trace to the newly created S node. The
key point is that at the time that the subordinate clause node is created and
becomes the current active node, the trace must be sitting in" the buffer,
filling one of the three buffer positions. Thus, the parser will be in the
state shown in figure 41 below, with the trace, in fact, most likely in the
first buffer position.

Symtactic Recognition 45 Constraints

The Active Node Stack

ccccc

The Buffer

NP 123 (NP TRACE) : bound to NP in S above S123

Figure 41 - Parser state after embedded S created.

Now, given the.L-to-R Constraint, a trace which is in the buffer at
“the time that an embedded S node is first created must be one of the first
several constituents attached to the S node or its daughter nodes. From the
structure of English, we know that the leftmost three constituents of an
embedded S node, ignoring topicalized constituents, must either be

COMP NP AUX
or
NP AUX [vp VERB ...]J.

(The COMP node will dominate flags like "that" or "for" that mark the
beginning of a complement clause.) But then, if a trace, itself an NP, is one
of the first several constituents attached to ‘an embedded clause, the only
position it can fill will be the subject of the clause.

This is all that must be demonstrated to capture the behavior
characterized by the SSC. I have shown that any trace bound to an NP in a
higher clause which is attached to a lower clause can only be attached as
the subject of that clause. This is exactly the empirical consequence of

Chomsky's Specified Subject Constraint in such cases as explained above.

The L-to-R Constraint
I will now briefly discuss the motivation for the L-to-R Constraint.

I will not attempt to prove that this constraint must be true, but merely to
show why it is plausible.

For the grammar of English discussed in this paper, and, it would
seem, for any grammar of English that attempts to capture the same range of
generalizations as this grammar, the constituents in the buffer are attached to
the current active node (and thus are removed from the buffer by the
grammar interpreter) in left-to-right order, with a small range of exceptions.
This usage is clearly not enforced by the grammar interpreter as presently
implemented; it is quite possible to write a set of grammar rules that
specifically ignores a constituent in the buffer until some arbitrary point in
the clause, though such a set of rules would be highly ad hoc. However,
" there rarely seems to be a need to remove other than the first constituent in

Syntactic Recognition . 46 Constraints

the buffer,

For this reason, I will make the following assumption in the
discussion that follows: the constituents in the buffer are almost always
attached to higher level constituents in left- -to-right order, i.e. the first
constituent in the buffer is almost always attached before the second
constituent. The one exception to this seems to be that a constituent C, may
be attached before the constituent to its left, C_;, if C; does not appear in
surface structure in its underlying position (or, if one prefers, in its
unmarked position) and if its removal from the buffer reestablishes the
unmarked order of the remaining constituents, as in the case of the AUX-
INVERSION rule discussed earlier in this paper. To capture this notion, the
L-to-R Constraint can be restated as follows: All constituents must be
attached to higher level constituents according to the left-to-right order of
constituents in the unmarked case of that constituent's structure. This
restatement seems, empirically, to include most of the exceptions I can think
of to the constraint as stated above.

This. reformulation is interesting in that it would be a natural
consequence of the operation of the grammar interpreter if packets were
associated with the phrase structure rules of the base, and these rules were
used as templates to build up the structure assigned by the grammar
interpreter, thereby adding a "base component” of phrase structure rules to
the grammar. A packet of grammar rules would then be explicitly associated
with each symbol on the right hand side of each phrase structure rule., A
constituent of a given type would then be constructed by activating the
Packets associated with each node type of the appropriate phrase structure
rule in left-to-right order. Since these base rules would reflect the
unmarked l-to-r order of constituents, the constraint suggested here would
then simply fall out of the interpreter mechanism.

Subjacency and the Grammar Interpreter

Chomsky's Subjacency constraint, stated informally, says that no rule
can affect constituents in two distinct clauses (or more generally, two cyclic
constituents) S1 and S2 unless S1 Dominates S2 (i.e. S1 dominates S2 and
there is no third clause S3 that "comes between" S1 and S2). In terms of
the competence rule "MOVE-NP", this means that an NP can be moved only
within the clause in which it originates, or into the clause that Dominates
that clause. In this section I will show that the parsing correlate of this
constraint follows from the structure of the grammar interpreter.
Specifically, I will show that there are only limited cases in which a trace
generated by a "MOVE-NP" process can be "lowered" more than one clause,
i.e. that a trace created and bound while any given S is current must almost
always be attached either to that S or to an S which is Dominated by that S.

Let us begin by examining what it would mean to lower a trace
more than one clause. Given that a trace can only be "lowered" by dropping
it into the buffer and then creating a subordinate S node, as discussed above

Syntactic Recognition 47 : Constraints

lowering a trace more than one clause necessarily implies the following
sequence of events, depicted in figure 42 below: First, a trace NP1 must be
created with some S node, Si, as the current S, bound to some NP Dominated
by that S and then dropped into the buffer. By definition, it will be
inserted into the first cell in the buffer. (This is shown in figure 42a)
Then a second S, S2, must be created, supplanting S1 as the current S, and
then yet a third S, S3, must be created, becoming the current S (fig. 42b).
During all these steps, the trace NP1 remains sitting in the buffer. Finally,

NP1 is attached under S3 (fig. 42c). By the Specified Subject Constraint,
NP1 must then attach to S3 as its subject,

The Active Node Stack

Cc St../
The Buffer
1st: NP1 (NP TRACE) : bound to NP Dominated by S1

(a) - NP1 is dropped into the buffer while S1'is the current S.

The Active Node Stack

St../..
s2../..
C: S3../..

The Buffer
NP1 (NP TRACE) : bound to NP Dominated by S1

(b) - S2 and then S3 are created, wit}i NP1 still in (he buffer.

The Active Node Stack

.....

S1..17..
§2..17 ..
C: S3../7..
NP: NP1 (NP TRACE) : bound to NP Dominated by S1
The Buffer

(c) - NP1 is attached to S3 as its subject (by the SSC).

Figure 42 - Lowering a trace more than 1 clause

Syntactic Recognition 48 Constraints

But this sequence of events is highly unlikely. The essence of the
argument is this: . .

Nothing in the buffer can change between the time that S2 is
created and S3 is created if NP1 remains in the buffer. NP1, like any other
node that is dropped from the active node stack into the buffer, is inserted
into the first buffer position. But then, by the L-to-R Constraint, nothing to
the right of NP1 can be attached to a higher level constituent until NP1 is
attached. (One can show that it is most -‘unlikely that any constituents will
enter to the left of NP1 after it is dropped into the buffer, but I will
suppress this detail here; the full argument is included in [Marcus 77})

But if the contents of the buffer do not change between the
creation of S2 and S3, then what can possibly motiv_ate the creation of both
S2 and S3? The contents of the buffer must necessarily provide clear
evidence that both of these clauses are present, since, by the Determinism
Hypothesis, the parser must be correct if it initiates a constituent. Thus, the
same three constituents in the buffer must provide convincing evidence not
only for the creation of S2 but also for S3. Furthermore, if NP1 is to become
the subject of S3, and if S2 Dominates S§3, then it would seem that the
constituents that follow NP1 in the buffer must also be constituents of S3,
since S3 must be completed before it is dropped from the active node stack
and constituents can then be attached to S2. But then S2 must be created
entirely on the basis of evidence provided by the constituents of another
clause (unless S3 has less than three constituents). Thus, it would seem that
the contents of the buffer cannot provide evidence for the presence of both
clauses unless the presence of S3, by itself, is enough to provide confirming
evidence for the presence of S2. This would be the case only if there were,
say, a clausal construction that could only appear (perhaps in a particular
environment) as the initial constituent of a higher clause. In this case, if
~ there are such constructions, a violation of Subjacency should be possible,

With the one exception just mentioned, there is no motivation for
creating two clauses in such a situation, and thus the initiation of only one
such clause can be motivated. But if only one clause is initiated before NP1
is attached, then NP1 must be attached to this clause, and this clause is
necessarily subjacent to the clause which Dominates the NP to which it is
bound. Thus, the grammar interpreter enforces the Subjacency Constraint.

As a concluding point, it is worthy of note that while the grammar
interpreter appears to behave exactly as if it were constrained by the
Subjacency principle, it is in fact constrained by a version of the Clausemate
Constraint! (The Clausemate Constraint, long tacitly assumed by linguists but
first explicitly stated, I believe, by Postal [Postal 64], states that a
transformation can only involve constituents that are Dominated by the same
cyclic node. This constraint is at the heart of Postal's attack on the
constraints that are discussed above and his argument for a "raising"
analysis.) The grammar interpreter, as was repeatedly stated above, limits

Syntactic Recognition | 49 ; Constraints

grammar rules from examining any node in the active node stack higher
than the current cyclic node, which is to say that it can only examine
clausemates. This parsing version of the Clausemate Constraint, in fact, is
crucial to the argument presented above showing that Subjacency is a natural
consequence of the grammar interpreter. The trick is that a trace is created
and bound while it is a-"clausemate" of the NP to which it is bound in that
the current cyclic node at that time is the node to which that NP is
attached. The trace is then dropped into the buffer and another S node is
created, thereby destroying the clausemate relationship. The trace is then
attached to this new S-node. Thus, in a sense, the trace is lowered from
one clause to another. The crucial point is that while this lowering goes on
-as a result of the operation of the grammar interpreter, it is only implicitly
lowered in that 1) the trace was never attached to the’ higher S and 2) it is
not dropped into the buffer because of any realization that it must be
"lowered"; in fact it may end up attached as a clausemate of the NP to
which it is bound - as the passive examples presented earlier make clear.
The trace is simply dropped into the buffer because its grammatical function
is not clear, and the creation of the second S follows from other
independently motivated grammatical processes. From the point of view of
this performance theory, we can thus have our cake and eat it too; ‘to the
extent that it makes sense to map results from the realm of performance into
the realm of competence, in a sense both the clausemate/"raising" and the
_Subjacency positions are correct.

These Arguments as Evidence in Support of the
Determuusm Hypothesis

In closing, I would like to show that the properties of the grammar
interpreter crucial to capturing the behavior of Chomsky's constraints were
originally motivated by the Determinism Hypothesis, and thus, to some extent,
the Determinism Hypothesis explains Chomsky's constraints.

The strongest form of such an argument, of course, would be to
show that (a) either (i) the grammar interpreter accounts for all of
Chomsky's constraints in a manner which is conclusively universal or (ii) the
constraints that it will not account for are wrong and that (b) the properties
of the grammar interpreter which were crucial for this proof were forced
by the Determinism Hypothesis, (To show necessity, of course, it must be
demonstrated either that no other mechanism would serve to implement a
deterministic parser or that any such mechanism would lead to fundamentally
the same results.) If such an argument could be made, it would show that
those of Chomsky's constraints which are valid follow from the Determinism
Hypothesis, giving strong confirmation to the Determinism Hypothesis.

I have shown none of the above, and thus my claims must be
proportionately more modest. I have argued only that important sub-cases of
Chomsky's constraints follow from the grammar interpreter, and while I can
show that the Determinism Hypothesis strongly motivates the mechanisms

Syntactic Recognition 50 Constraints

from which these arguments follow, I cannot show necessity. The extent to
which this argument provides evidence for the Determinism Hypothesis must
thus be lgft to the reader; no objective measure exists for such matters.

The ability to drop a trace into the buffer is at the heart of the
arguments presented above for Subjacency and the SSC as consequences of the
functioning of the grammar interpreter; this is the central operation upon
- which the above arguments are based. Also crucial to the arguments are
various restrictions upon the operation of the grammar interpreter, such as
the fact that there is no way to access any nodes in the active node stack
except for the current active node and the current cyclic node,

As discussed earlier in this paper, the buffer itself, and the fact that
a constituent can be dropped into the buffer if its grammatical function is
uncertain, are directly motivated by the Determinism Hypothesis, It was
argued above that a parser must necessarily provide some sort of look-ahead
mechanism if it is to function deterministically. It was also argued that this
look-ahead must be constrained in 'some manner if the determinism claim was
to have any content, but that this constraint must be based on some number
of constituents, rather than some fixed number of lexical items. It is easy
to see that such'a requirement also necessarily implies an ability to construct
constituents and - in some sense or other - buffer them; the example given
in that earlier discussion demonstrated the necessity of holding on to the
first three constituents of a clause before the grammatical role of the first
could be determined. Given these attributes which a deterministic parser
must fulfill, the buffer mechanism intuitively seems to be one of the
simplest computational devices that fulfills these specifications. In this sense,
it seems clear that the buffer mechanism and the ability to drap constituents
from the active node stack into the buffer follow naturally and directly from
the general principles which a deterministic parser must fulfill,

It is thus the case that the aspects of the grammar interpreter
which are crucial to the arguments presented above, namely the buffer
mechanism and its ability to buffer a constituent until its grammatical
function is clear, are directly motivated by the Determinism Hypothesis.
Given this, it is fair to claim that if Chomsky's constraints follow from the
operation of the grammar interpreter, then they are strongly linked to the
Determinism Hypothesis. If Chomsky's constraints are in fact true, then the
arguments presented in this chapter provide solid evidence in support of the
Determinism Hypothesis.

VI. Differential Diagnosis
and Garden Path Sentences

Introduction

As the observant reader has probably noted, there are sentences in
English which seem to indicate that people don't parse English
deterministically, quite independently of any claim that English can be parsed

Syntactic Recognition 51 ' | Garden Paths

~ that way. While such sentences are not a priori counterexamples to the
Determinism Hypothesis as stated in part 1 of this paper, they seem to call
into question the validity of the Determinism Hypothesis as a basis for any
sort of psychological modelling. In this section I will present some anecdotal
evidence which supports speculation that such sentences are in fact the
exception that proves the rule, given one small modification of the
Determinism Hypothesis: ’

There is enough information in the structure of natural language in
general, and in English in particular, to allow left-to-right
deterministic parsing of those sentences which a native speaker can
ana]yze without conscious effort.

This section will present a potential explanation for the difficulty
caused by so-called "garden path” sentences, sentences which have perfectly
acceptable syntactic structures, yet which many readers initially attempt to
analyze as some other sort of construction, i.e. sentences which lead the
reader "down the garden path". (Some examples of garden path (GP)
sentences are given in figure 43 below.) This theory will derive from an
investigation of several situations in which a deterministic parser is presented
with an input which contains a local structural ambiguity. (An ambiguity is
local if it can be resolved by examining the grammatical context provided by
the entire sentence; an ambiguity is structural if two different structures
can be built up out of a string of smaller constituents each of a given type.)
To handle each of these ambiguities, a special purpose grammar rule will be
presented which can differentially diagnose between the two structural
possibilities. I will show that some ambiguities can be diagnosed with
assurance by PARSIFAL's grammar rules while it seems that diagnosing other
ambiguities requires a buffer "window" larger than the three constituent
maximum which each rule is allowed to examine. These latter ambiguities, I
suggest, are exactly those which cause garden paths.

(a) The grocery store always orders a hundred pound bags of sugar.
(b) I told the boy the dog bit Sue would help him.
(c) The horse raced past the barn fell.

Figure 43 - Some examples of garden path sentences.

It must be stressed again that the theory which will be presented
here is highly speculative, and that the evidence presented for it is either
anecdotal or the result of informal experiment. Hopefully, such "armchair
psycho-linguistics" will provide incentive for future research in this area
which will yield more substantial evidence for or against the speculations
presented below. :

Diagnosing Between Imperatives and Yes/No Questions
. I will now turn to the question of what causes a sentence to cause
‘a parser to take a garden path. This will be done in the context of a

Syntactic Recognition 52 Garden Paths

specific structural ambiguity and the diagnostic rule which attempts to
resolve it. Investigation of where and why this rule fails will lead directly
to a theory of garden paths.

Consider the following sentences, first presented early in this paper:

(iii)a Have the students who missed the exam take the exam today.
(iii)b Have the students who missed the exam taken the exam today?

Even though (iii)a is an 1mperat1ve sentence, with "have" as the main verdb
of the matrix S, and (iii)b is a yes/no question, with "have" as an auxilliary,
- the initial segments of these two sentences are exactly identical. Because
‘these two constituents serve in different grammatical roles in the two
different constructions, neither of these two constituents can be utilized by a
deterministic parser until it is determined whether the sentence is an
imperative or a yes/no question.

Within the framework of the PARSIFAL grammar interpreter, the
initial segment of these sentences is ambiguous in that it fulfills the patterns
of both IMPERATIVE and YES/NO-QUESTION, both of which are in packet SS-
START with identical priorities. (These rules were shown previously in
figure 7.) This is because the word "have" (as well as the word "can") can
be both an auxiliary verb, fulfilling the first node description in the pattern
of YES/NO-QUESTION, or a tenseless verb fulfilling the first node description
in the pattern of IMPERATIVE. To resolve this ambiguity, either an
additional diagnostic rule must be added to the grammar or else one of these
two rules must be changed to eliminate the ambiguity altogether. In some
sense, the two choices are equivalent, but the first is conceptually the
cleaner of the two solutions, and it is this option which will be developed
in the discussion that follows.

To begin with, it is clear that this diagnostic rule must apply
whenever both IMPERATIVE and YES/NO-QUESTION are applicable, i.e. exactly
when the word "have" appears in the first buffer position and an NP appears
in the second position, as discussed above. Furthermore, the diagnostic must
have access to the constituent in the third buffer location, since the pair of
sentences given in (iii) above differ only in this third position. Given this,

the pattern of the diagnostic rule, which I will call HAVE-DIAGNOSTIC, must
be:

[="heve, tnsless] [=np] [t]

(The form of the word "have" that is tenseless is the word "have", so the
feature auxverd need not be specified.in this pattern.)

Second, it is clear that a sentence which fulfills this pattern can be
a yes/no question only if the NP, which will be the subject of the sentence,
agrees with the initial verb in person and number. Since the verb "have"

Syntactic Recognition 53 Garden Paths

will agree with an NP of any person and number except 3rd person singular,
if the NP is 3rd person singular, the sentence must be an imperative. For
example, in figure 44 below, any clause whose initial segment is as shown
in (a) must be an imperative, while any clause whose initial segment is as
shown in 44.b may be either an imperative or a yes/no-question. (This is
the first mention of person/number agreement in this document. Usually, it
is unnecessary to use agreement ‘information to decide upon the proper
interpretation of a sentence, and so agreement can be safely ignored. Where
it seems to be of value is in resolving various ambiguous situations such as
this. I believe that agreement information will become highly important
when an attempt is made to resolve lexical ambiguity deterministically, but
that issue is out51de the scope of this document.)

‘(a) Have the student who missed the exam
(b) Have the students who missed the exam

Figure 44 - Sentence (a) must be an imperative.

If the NP is not 3rd person singular, then HAVE-DIAGNOSTIC must
examine the constituent in the 3rd buffer position and try to determine the
correct analysis for the input sentence on the basis of its features. If 3rd is
an NP, then the sentence is a yes/no-question, as in .Figure 45.a below. If
3rd is tnsless (i.e. tenseless), then the sentence is an imperative, as in 45.b.

(a) Have the boys a dollar between them?
(b) Have the students who missed the exam take it today.

Figure 45 - Diagnosis on the basis of the 3rd constituent.

One might suppose that if 3rd is en, as in (iii)b above, that the
sentence must be a yes/no-question, but this is not the case, as the following
sentence shows:

(iv) Have the students who booed taken to the principal!

If this feature occurs, the sentence is either a yes/no-question, or else an
imperative with a passive subordinate clause, but one cannot tell which
without examining more of the sentence, Indeed, it is possible for such a
sentence to be globally ambiguous (ignoring final punctuation), as the
sentences (v)a and (v)b show:

(v)a Have all of the eggs broken?
(v)b Have all of the eggs broken!

In terms of the grammar interpreter, it is clear that more than three
constituents must be examined to diagnose such pairs of sentences (using
final punctuation to resolve the above pair). This seems to call into question
the constraint which allows a grammar rule to examine only the first three

Syntactic Recognition 54 Garden Paths

constituents in the grammar interpreter's buffer.

For reasons which will become clear below, I will ignore this newly
revealed problem, and simply stipulate, for the moment, that if HAVE-
DIAGNOSTIC cannot determine what the structure of a given input sentence is
on the basis of the three constituents that it can examine, then it will guess -
that the sentence is a yes/no-question. Assuming that the diagnostic tests
discussed above reveal as much information as can be gleaned from an
examination of only the first three buffer constituents, the code for the rule
HAVE-DIAGNOSTIC can now be given; this diagnostic is shown in Figure
9.10 below. Since this rule must be run instead of either YES/NO-QUESTION
or IMPERATIVE if all three rules are applicable, it must be in the same
Packet as theéy, and it must have higher priority than either of them.

{RULE HAVE-DIAG PRIORITY: 5 IN SS-START
[=*have, tnsless] [=np] [t] -->
If 2nd is ns, n3p or 3rd is tnsless

then run imperative next else
If 3rd is not verb then run yes-no-q next else B
%If not sure, assume it's a y/n-q and%

run yes-no-q next.} '

Figure 9.10 - HAVE-DIAGNOSTIC summarizes the diagnostics discussed above.

Garden Paths and a Three Constituent Window
Let us now turn to the stipulation that each grammar rule can only
examine the first three constituents in the buffer.

In the next few sections, I will present some evidence which
supports the contention that this stipulation is empirically justified. This
evidence results from a series of experiments conducted by the author during
the course of this research. As these experiments were highly informal in
nature, the conclusions presented below can be taken as highly suggestive at
best, although the results were typically quite clear.

In each of these experiments, some number of people were asked to
read a sentence or a series of sentences typed on a sheet of paper. After
reading each sentence, each person was asked if he encountered any
difficulty while reading the sentence, or, if he was familiar with the notion,
if the sentence was a garden path. At least 15 people were asked to look at
each of these sentences, unless the first four or five people who were asked
to examine a particular sentence either all or none took a garden path on
that sentence. Somewhere over twenty such experiments were conducted, at
frequent intervals, over a three year period, as I discovered more and more
possible garden paths while developing grammar rules. About two thirds of
the sentences people were asked to read led to garden paths for at least half
the people asked. Approximately 50 or 60 people total participated in at least

Syntactic Recognition 55 Garden Paths

one of these experiinents; most were students' or staff at the MIT Artificial
Intelligence Laboratory.

Let me now claim, on tfxe basis of several of these experiments, that
the diagnostic rule HAVE-DIAGNOSTIC resolves the relevant ambiguity

‘ approximately as well as many people, i.e. that many people, given a sentence

which would trigger this diagnostic if input to the parser, will arbitrarily

- analyze it as a yes/no-question if they cannot diagnose its structure on the

basis of the first three constituents. If the sentence is actually an
imperative, these people. will eventually realize that they were led down the
garden path, and will consciously reanalyze the sentence,

- In the most surprising of the relevant experiments, approximately 40
people were asked to read the following sentence, and then asked if they had
any difficulty the first time they read the sentence, i.e. whether they
noticed taking a garden path on the sentence:

(vi) Have the packages delivered tomorrow.

Of the 40 people asked, 20 reported misanalyzing the sentence as a question

at least for an instant, and more than. a few were quite startled when they

first realized that this simple sentence did not have the structure they had
supposed. (It should be noted, by the way, that the sentence is entirely
anomalous if interpreted as a yes/no question, yet still fully half the people
shown this sentence misanalyzed it initially. This provides some evidence
that high level semantic analysis is not employed to diagnose such
ambiguities. Several people, when asked about this, mentioned imagining a
package giving birth to little packages in an attempt to semantically reconcile
the false yes/no-question interpretation!)

This result immediately leads one to ask why half the people shown
sentence (vi) do analyze the sentence correctly. One possible explanation is
that people simply choose one of the two possibilities at random when they
are faced with such an undiagnosable ambiguity. If this is true, those people
who did not notice taking a garden path while analyzing the sentence (vi)
simply happened to guess the correct structure initially, which seems quite
plausible.)

Unfortunately, this simple explanation seems to be wrong, as the
following experiment shows. About fifteen people were asked to read the
sentence (vii) below, and see if they had any difficulty in understanding
what it meant:

(vii) Have the soldiers given their medals by their sweethearts.

Only two of the fifteen had no difficulty with this sentence, and four or
five had to be shown the correct analysis. (The sentence can be paraphrased

“Have their sweethearts give the soldiers their medals.”.) Almost without

Syntactic Recognition 56 _ . Garden P_aths

exception, everyone shown the sentence tried to interpret it as a yes/no
question., This result is consistent with other experiments involving this
ambiguity as well; people almost never seem to mistakenly interpret a
yes/no question as an imperative. Thus, almost without exception, if a
person cannot resolve this ambiguity, he assumes the yes/no-question
interpretation. This result disproves the simple "random-guess" theory
suggested above, '

One explanation consistent with both the above experiments seems to
be the following, although I have no evidence to offer in its favor: The
number of buffer cells that can be examined by a grammar rule, and perhaps
the total number of cells in the buffer as a whole, is not a universal of-
language, but in fact varies from individual to individual, and perhaps varies
consistently from speakers of one language to speakers of another. Thus, a
given language, say English, might require, for reasonably full comprehension
of spoken language, that grammar rules must be allowed to examine up to
three buffer cells. Some speakers of English, however, for unknown reasons,
may develop the ability to examine four, or perhaps even five cells at a
time. These individuals can thus diagnose any local structural ambiguity
which can be resolved within a "window" of that size.

Such an explanation nicely accounts for why half of those asked to
read the sentence (vi) above could correctly diagnose its structure, while only
some small percentage of those asked to read (vii) could do so. As the reader
can verify for himself, (vi) can be accurately diagnosed by a grammar rule
that can examine four buffer cells simultaneously, while resolving the
structure of (vii) requires a rule that examines five buffer cells. The
results presented above imply that half of those who participated in these
experiments can access only three buffer cells at a time, most of the
‘remainder can access four cells, and a few individuals can access up to five
cells. (This, of course, implies that it should be the same few people who
- correctly analyze potential garden paths in each of these experiments. This
seems to be exactly the case.)

As a final note, the sentences which I typically asked people to
examine were examples which specifically embodied structural ambiguities
for which I could not find a fool-proof diagnostic rule. Almost without
exception, if I could not find a diagnostic rule which decided between
structural analyses A and B for sentences embodying a given ambiguity, at
- least half the people who were shown example sentences would attempt to
"analyze all such sentences as if they were examples of structure A, i.e. they
took the garden path on all sentences which were examples of structure B,
Thus, this theory of garden paths seems to have fairly good predictive value,
as least as measured by informal means such as this.

A Theory of Reanalyzing Garden Path Sentences
‘ While the theory stated above provides an account of how a

~ Syntactic Recognition 57 Garden Paths

deterministic parser might be lead down the garden path, it leaves open the
question of how such a parser would recover from its error. This section
will briefly sketch a highly speculative theory of how this can be done in
the context of a natural language understanding system which uses the
parser as a subsystem. '

A deterministic parser should be viewed, I believe, as a fast, "stupid"
black box. According to this view, the grammar of English is really quite
- simple (which doesn't imply that finding the correct grammar is simple), and
it costs very little computationally to syntactically analyze a sentence.
Because of this simplicity, such a parser is much too weak a mechanism to
be able to recover by itself if it runs into difficulty and cannot fully
analyze a sentence.

When functioning as part of a larger scale system, given a garden
path sentence as input, a deterministic parser ideally should take the garden
path and become 'stuck" at the point at which preople become conscious that
‘they have been misled. (By "stuck", I mean that no grammar rule if any
-active packet applies.)

When the parser cannot analyze a given input, it will fail with
some portion of the.input analyzed in some fashion, correct or incorrect. At
this point, some higher level "conscious" grammatical problem solving

component comes into play. This component restarts the parser on the
" remainder of the input after activating a special packet of rules which allow
the initiation of grammatical fragments. The parser may be restarted once or
twice, say, producing a string of two or three grammatical fragments which
correspond to the original utterance. Thus, even though the parser cannot
successfully analyze the input into a single coherent grammatical structure, it
can be used to reduce the input into several coherent pieces which can be
given to a higher level analysis process.

_ Once the original input has been "chunked" into fragments, the
higher level problem solver might then use a set of grammatical heuristics to
attempt to discover where the parser initially went astray. (For a discussion
of parsing using “clever" backtracking which I believe can easily be
reinterpreted to yield a set of such heuristics, see Hill [Hill 72].) The
problem solver manipulates the fragments using these heuristics until either
. some solution is found, or the set of available heuristics is exhausted. 1
believe that a speaker of a language is aware that this latter process is
taking place (although certainly not aware of exactly what the process
entails). :

While this theory is entirely speculative, it does make clear the
notion that recovery from garden path sentences and similar phenomena need
not be entirely the task of the parser, that subsidiary “error recovery"
mechanisms might be called into play. This is the central point of the above
theory, and this is all that is really crucial for the account given here.

Syntactic Recognition - 68 . Garden Paths

VII. Conclus‘ions

Many different topics have been discussed in the preceding pages -
among them capturing the linguistic generalizations of English, linguistic
universals, and psychelogical phenomena. All have shared one common
property, that significant insights into each topic have followed from the
Determinism Hypothesis and the structure of the grammar interpreter. This
summary will focus on those features of the grammar interpreter which are
key to capturing the results presented in this paper. It will attempt to

convey exactly which aspects of the grammar interpreter lie at the heart of
- each of the results .established in this paper. This point of view should

convey exactly which aspects of PARSIFAL are unique to this parser, and
exactly why they are important. :

The central idea behind this research is the Determinism Hypothesis,
the thesis that the syntax of any natural language can be parsed by a
mechanism which operates "strictly deterministically" in that it does not
simulate a nondeterministic machine. I have attempted to argue for this
thesis only indirectly, by assuming that the Determinism Hypothesis is true,
and then seeing what follows from this assumption. If significant insights
into the nature of natural language follow from this assumption, and I
believe that I have shown that they do, then these insights provide evidence,
albeit indirect evidence, for the Determinism Hypothesis.

In fact, most of the arguments presented are one step removed from
the hypothesis itself.

In general, I do not show that the results of this paper follow
directly from the Determinism Hypothesis, but rather follow from the
structure of the grammar interpreter, whose structure in turn is motivated
by the Determinism Hypothesis. The structure of PARSIFAL reflects three
general principles that follow from the Determinism Hypothesis in
conjunction with an examination of the syntax of natural language: that
any strictly deterministic parser:

-must be at least partially data driven, but

-must reflect expectations that follow from the partial structures built
up during the parsing process; and)

-must have some sort of restricted "look-ahead" facility.

"~ PARSIFAL reflects these principles rather directly, The grammar is made up

of pattern/action rules, allowing the parser to be data directed. These rules
themselves are clustered in packets, which can be activated and deactivated to
reflect global expectations. The grammar interpreter's constituent buffer
gives it a small window through which to view the input string, allowing
restricted look-ahead.)

Syntactic Recognition ' 59 Conclusions

.

Of the structures that make up the grammar interpreter, it is the
constituent buffer which is most central to the results that are presented in
this document. The most important of these results follow from the sorts of
grammar operations that the buffer makes feasible; others follow from the
limitations that its fixed length imposes. All however, hinge crucially upon
the existence of the buffer. This data structure, I submit, is the primary
source of the power of the parser.

For example:

- -Because the buffer automatically compacts upon the attachment of the
constituents that it contains, the parsing of a yes/no question and the
related declarative will differ in one rule of grammar, with the key
difference restricted to the rule patterns and one line of the rules'
actions. The- yes/no question rule explicitly states only that the NP in
the second buffer cell should be attached as the subject of the clause.
Because the buffer will then compact, auxiliary parsing rules that expect
the subconstituents of the verb cluster to be contiguous will then apply
without need for modification.

-Because the buffer provides a three-constituent window on the structure of
a clause, diagnostic rules can be formulated that allow the differential
diagnosis of pairs of constructions that would seem to be
‘indistinguishable by a deterministic parser without such a buffer. Thus,
evidence that would seem to imply that natural language must be parsed
nondeterministically can be explained away.

~Because the buffer can only contain ‘a limited number of constituents, the
power of these diagnostic rules is limited, leading to a principled
distinction between sentences which are perceived as garden paths and
those which are not. This explanation for why certain sentences cause
garden paths is consistent with the informal experiments presented in
section VI. Furthermore, this theory led to the counter-intuitive
prediction that as simple a sentence as "Have the packages delivered
tomorrow." would cause a garden path, a prediction which was
confirmed by informal experiment.

In short, this one mechanism not only allows the formulation of
rules of syntax that elegantly capture linguistic generalizations; it also
provides the underpinnings for a psychological theory that seems to have
high initial plausibility.

Another important source of power is the use of traces, especially in
conjunction with the use of the buffer. Especially important is the fact that
a trace can be dropped into the buffer, thereby indicating its underlying
position in a factorization of the terminal string without specifying its
position in the underlying tree. From this follows:

Syntactic Recognition ~ 60 Conclusions

-A simple formulation of passive which accounts for the phenomenon of
"raising". The essence of the passive rule - create a trace, bind it to the
subject of the current S, drop it into the buffer - is noteworthy in its
simplicity. Again, the availability of the buffer yields a very simple
solution to a seemingly complex linguistic phenomenon. ‘

-An explanation for the phenomena which underlie Chomsky's Specified
Subject Constraint and Subjacency Principle. It is most interesting that
the simple formulation of Passive presented here - perhaps the simplest
possible formulation of this rule within the framework of PARSIFAL -
behaves exactly as if these constraints were true; i.e. that the
formulation presented here, by itself and with no extraneous stipulations,
leads to the behavior that these constraints attempt to specify.

Directions for Future Work .

There are several important areas for which an account must be
" given if the model presented in this paper is to begin to resemble a full
model of the syntactic recognition of natural language. The following is a
list of several topics which have not been discussed in this paper, which
must be investigated if this model is to be complete:

-No phenomena which seem to require semantic/syntactic interaction,
which I believe include such phenomena as conjunction, or PP attachment
have been discussed. These phenomena await future work; I believe that
they will require mechanisms outside of the basic grammar interpreter
presented here. It should be noted that Woods does not handle these two
phenomena within the framework of his ATN mechanism itself, but rather
he posits special purpose mechanisms to deal with them. I share his
intuitions,

-I have not discussed lexical ambiguity, but rather have focussed on
structural ambiguity. An ambiguity is structural when two different
structures can be built up out of smaller constituents of the same given
structure and type; an ambiguity is lexical when one word can serve as
various parts of speech. While part of the solution to this very pervasive
problem seems to involve notions of discourse context, I believe that much
of the problem can be solved using the techniques presented in this paper;
this problem is currently under investigation. :

- I have not discussed the psychological difficulty caused by center
embedded sentences such as "The rat the cat the dog chased bit ate the
cheese.". For a recent theory of this phenomenon which is consistent with
the model presented here, see [Cowper 76]. (This paper includes an excellent
critique of why any parsing model which operates in a purely top-down, i.e.
purely hypothesis driven, manner cannot account for this phenomenon.)

61 Bibliography

: , Acknowledgments

This paper is a summary of a Ph.D. thesis by the same title, I
would like to express my gratitude to the many people who contributed to
the technical content of this work: Jon Allen, my thesis advisor, to whom 1
owe a special debt of thanks, Ira Goldstein, Seymour Papert, Bill Martin, Bob
Moore, Chuck Rieée‘r, Mike Genesereth, Gerry Sussman, Mike Brady, Craig
Thiersch, Beth Levin, Candy Bullwinkle, Kurt VanLehn, Dave McDonald, and
Chuck Rich. A special thanks to Beth Levin for her editorial comments on
this paper.

This paper describes research done at the Artificial Intelligence
Laboratory of the Massachusetts Institute of Technology. Support for the
laboratory's artificial intelligence research is provided in part by the
Advanced Research Projects Agency of the Department of Defence under Office
of Naval Research Contract NO0014-75-C-0643,

BIBLIOGRAPHY

Akmajian, A. and F. Heny [(1975] An Introduction to the Principles of

Transformational Syntax, MIT Press, Cambridge, Mass. -

Bever, T. G. [1970] "The Cognitive Basis for Linguistic Structures", in J, R.
Hayes, ed., Cognition and the Development of Language, Wiley and Sons,
N.Y. -

Bresnan, J. W, [1'976] "Evidence for a Theory of Unbounded Transformations",
Linguistic Analysis 2:353.

Choméky, N. [1973] "Conditions on Transformations”, in S. Anderson and P.
Kiparsky, eds., 4 Festschrift for Morris Halle, Holt, Rinehart and
Winston, N.Y.

Chomsky, N. [1975] Reflections on Language, Pantheon, N.Y..

Chomsky, N. [1976] "Conditions on Rules of Grammar", Linguistic Analysis
2:303.

Chomsky, N. [1977] "On Wh-Movement", in A. Akmajian, P. Culicover, and T.
Wasow, eds., Formal Syntax, Academic Press, N.Y.

Cowper, E. A. [1976] Constraints on Sentence Complexity: A Model for
Syntactic Processing, unpublished Ph.D. thesis, Brown University.

Fillmore, C, J. [1968] "The Case for Case" in Universals in Linguistic Theory,
E. Bach and R. T. Harms, eds., Holt, Rinehart, and Winston, N.Y.

Goldstein, I. P. and R. B. Roberts [1977] "NUDGE, A Knowledge-Based
Scheduling Program," Memo 405, MIT Artificial Intelligence Laboratory,

i

62 Bibliography

Cambridge, Mass.

Gruber, J. S. [1965] Studies in Lexical Relations, unpublished Ph.D. thesis,
MIT. '

Hill, J. M. [1972] Backup Strategies for Resolving Ambiguity in Natural
Language Processing, unpublished Masters thesis, MIT.,

Jackendoff, R. S. [1972] Semantic Interpretation in Generative Grammar, MIT
Press, Cambridge,_Mass..

Marcus, M. P. [1977] 4 Theory of Syntactic Recognition for Natural
Language, unpublished Ph.D. thesis, MIT.

Newell, A. and H.A. Simon [1972] Human Problem Solving, Prentice-Hall,
Englewood Cliffs, N.J.

Postal, P. M. [1974] On Raising, MIT Press, Cambridge, Mass,

Pratt, V. R. [1973] "Top-Down Operator Precedence", in the proceedings of
The SIGACT/SIGPLAN Symposium on Principles of Programming
Languages, Boston, Mass.

"Ross, J. R. [1967] Constraints on Variables in Syntax, unpublished Ph.D.

thesis, MIT. Excerpted in G. Harmon, ed. [1974] On Noam Chomsky,
Anchor, N.Y.

Winograd, T. [1971] Procedures as a Representation for Data in a Computer

Program for Understanding Natural Language, Project MAC-TR 84, MIT,
Cambridge, Mass.

Woods, W. A, [1970] "Transition Network Grammars for Natural Language
~ Analysis", Communications of the ACM 13:591.

