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ABSTRACT. An efficient Lagrangian formulation of manipulator dynamics has been developed. The
efficiency derives from recurrence relations for the velocities, accelerations, and generalized forces. The num-
ber of additions and multiplications varies linearly with the number of joints, as opposed to past Lagrangian
dynamics formulations with an n* dependence. With this formulation it should be possible in principle to
compute the Iagrangian dynamics in real time. The computational complexitics of this and other dynamics
formulations including recent Newton-Euler formulations and tabular formulations are compared. It is con-
cluded that recursive formulations based either on the Lagrangian or Newton-Euler dynamics offer the best
method of dynamics calculation. V
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Introduction

The inverse problem for manipulator dynamics, namely the problem of computing the joint torques
required to produce given joint positions, velocities, and accelerations, has until recently been a computational
bottleneck in the control of manipulators. Past formulations of manipulator dynamics have been based on a
relatively inefficient derivation from the Lagrange equations [1,2]. The solutions to these equations required on
the order of seconds on a computer for cach trajectory point, and it was perceived that therefore torques for
trajectorics could not be computed in real time.

Two different types of schemes were proposed to render the lagrangian dynamics computationally
feasible: (1) simplifying the dynamics by ignoring some terms and correcting errors with feedback, and (2)
tessellating the state space along various dimensions and tabulating part of the solution. The most common
method of simplifying the dynamics has been to ignore the Coriolis and centrifugal forces, which are by far the
greatest computational burden in the dynamics calculation [3,4]. However, ignoring Coriolis and centrifugal
forces works well only at slower speeds of movement; at fast speeds of movement the Coriolis and centrifugal
forces are a major component of the dynamics [S]. The errors in the computed torque resulting ﬁ'dm ignoring
Coriolis and centrifugal forces cannot be corrected with feedback because of excessive requirements on the
corrective torques [6].

Tabular solutions to the dynamics seck to achieve economies in computation time at the expense of large
memorics. Raibert [7] has discussed this space-time tradeoff and has examined the different dimensions along
which the tabularization can be sct up. Albus [8,9] represents the space extreme by including in his table all
dimensions (g, ¢, ), representing n dimensional position, velocity, and acceleration vectors. Since the general-
ized forces have the form F; = f(q, 4, ), these forces are obtained at no computational cost by indexing the

table with the desired trajectory valucs (g, ¢, ¢). Raibert [10] climinated the acceleration dimension from the
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table by expressing the dynamics in the form F; = J(q)§ 4 K(q, ¢) and tabulating the position and velocity
dependent terms J(g) and K(q, ¢). Because of the large memory costs involved in the above two methods,
Horn and Raibert [6] proposed a configuration space control that tabulates only the position dependent terms.
Their formulation will be presented later in conjunction with a discussion of its computational complexity.
The difficulties with tabular methods include (1) enormous table sizes necessitated by creating a fine cnough
tessellation along the various dimensions, (2) filling the entries in the table, (3) interpolating between stored

values, and (4) the tables become uscless if the load changes suddenly such as when an object is picked up.

This paper presents a reformulation of the Lagrangian dynamics for a manipulator that greatly reduces
the computational burden and that should allow real time computation of the inverse dynamics. Specifically,

there are three parts to the reformulation:

1. backward recursion of the velocities and accelerations working from the base of the manipu-
lator to the end link,

2. forward recursion of the generalized forces working from the end link to the basc of the
manipulator, and

3. usc of 3x3 rotation matrices instcad of 4x4 rotation-translation matrices and homogencous
coordinates.

The end result of applying these methods is that the number of additions and multiplications varies lincarly
with the number of joints. This reformulation brings the Iagrangian dynamics into line with recently
developed recursive Newton-Euler dynamics [5,11,12], whose computational complexity varies linearly with
the number of joints and whose formulation contains parts 1 and 2 above. Part 3 was delineated in [12] for
the Newton-Euler method, and a similar preference for 3x3 versus 4x4 matrices was expressed for reasons of

computational efficiency.

The Uicker/Kahn Lagrangian Formulation

"The standard formulation for manipulator dynamics is derived from Uicker [1], who used 4x4 matrices to
sct up the Lagrangian based dynamics for a somewhat more general linkage problem. This formulation was

particularized to open loop kinematic chains by Kahn [2]. Borrowing Kahn’s notation (Figure 1), the links of
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Figure 1. Standard coordinate axes definitions for connected links and relationships  between
neighboring coordinate axes. '

a manipulator are numbered consccutively from 1 to n starting from the basc to the tip. By convention the
reference frame is numbered link 0. The joints are the points of articulation between links, and arc numbered
so that joint z connects links ¢ — 1 and ¢. An orthogonal coordinate system is fixed in cach link as follows:

Zi s directed along the axis of joint ¢ -+ 1,

Zi lics along the common normal from 2;__; to 2;, and

Yi completes the right handed coordinate.

‘The relative position of two adjacent links is completely described by the following four parameters:
@ is the distance between the origins of coordinate systems ¢ — 1 and 7 measured along z;,
8 is the distance between z;__; and z; measured along z;_y,
@ s the angle between the z;_ and 2; axes measured in a righthand sensc about z;, and

0; is the angle between the z;__; and the z; axes measured in the righthand sense about 2;__j.

If the joint is rotational the joint variable will be 8;: if translational the joint variable will be s;. The symbol
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g; will designate the variable for joint 7 whether it is s; or ;. The vector @ = (q1,@,. .., q,) represents the
generalized coordinates of the manipulator and completely specifies the position. Multiple rotational degrees
of freedom can be expressed by joints with zero mass and zero length links.

et ivj = (1 z y 2)7 be a vector from coordinate system 3 to a point fixed in link 5 expressed in link ¢

coordinates. Then adjacent coordinate systems are related by the relation:

o= Aty ' (1)

where A; is the 4x4 transformation matrix between coordinate systems 2 — 1 and ¢:

[ 1 0 0 0 i
a;cos; cosf; —sinb;cosa; sinf;sinq;
A; = (2)
a;sind; sinf; cosf;cosa; — cosf;sinq;
| s 0 sin a; cos a;

We define Ag = 1, the identity matrix. Any two coordinate systems ¢ and j can be related by cascading the

transformations:

ivk =5 iVVj j’l)]C (3)

where ’WJ = A; 1A 42.. Ajfori < j. We define jo = I. When referring to the base coordinate system
we omit the 0 superscript, so that v, = %, and W; = W,
Using this notation, the generalized forces Fy for an n-link manipulator have been derived from the

Lagrange cquations [1,2]:
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where

J; is the inertia tensor with respect to the proximal joint of link j expressed in 7’s body coor-
dinates,

7 is the mass of link 7,

9 s the gravity vector, and

jrj is the coordinate of the center of mass of link 7 expressed in link 5's body coordinates.
Evaluation of (4) has been considered too slow for real time computation. As an estimate of the complexity
of computing the dynamics in this formulation, the total number of additions and multiplications has been
calculated. In arriving at a number, the operations in (4) were carried out more or less as set forth, because any
efficiencies in calculating these terms should be explicit in the formulation rather than hidden in a program. A

few rcasonable cconomies nevertheless were practiced. Simple decompositions saved some recomputation.

oW; A

k Kk .
W,k Ry, <
g, W ' 9g Wi b=y
S*W; OAy A
=W, == W, k<< (5)
g9 og ' log <t=y
W Sk vy, k=1

The terms "’Wj were computed first and stored. Then the dW; /dg, and 62Wj /8g,.0q; terms were computed and
their results also stored. The cost of computing the terms in the matrices A, 9A;/3g;, and 52Aj/6q§ was not
included, since they depend on the particular manipulator configuration and because they contribute only a
small lincar cost to the computational complexity. Finally, no allowance has been made for any sparseness of
the matrices.

Table T shows that the Uicker/Kahn formulation gives an n* dependence on the number of multiplica-
tions and on the number of additions. Table IT shows that for n = 6 these numbers are 66,271 and 51,548
respectively. These large numbers of operations are too time consuming to compute in real time. Luh et al. []

have cstimated that to compute the torques for one nominal point in the trajectory requires 7.9 scconds ona
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Table I. Comparison of Dynamics Formulations

Method Multiplications Additions
Uicker/Kahn 324n' 4+ 865/12n° + 171 1n? 25n" 4 66 Ln® 4 129 In?
+53 tn — 128 442 tn — 96
Waters 106 1n? 4 620 in —512 82n% -+ 514n — 384
Hollerbach(4x4) 830n — 592 675n — 464
Hollerbach(3x3) 412n — 277 320n — 201
Newton-Euler 150n — 48 131n — 48
Horn, Raibert 2n? 4 n? nd 4 n® 4 2n

Table 1. Comparison for n = 6

Method Multiplications Additions
Uicker/Kahn 66,271 51,548
Waters 7,051 5,652
Hollerbach(4x4) 4,388 3,586
Hollerbach(3x3) 2,195 1,719
Newton-Fuler 852 738
Horn, Raibert 468 264

PDP 11/45.

Lagrangian Dynamics with Backward Recursion

Waters [13] first noticed that the generalized forces (4) could be expressed in a form that allowed one
to take advantage of several backward recurrence relations (backward in the sense of the link numbering direc-
tion). We present below a simpler formulation and derivation of these recurrence relations. In reexamining the
derivation of the gencralized forces it becomes apparent that the generalized forces (4) can be expressed in a

morc compact form:

qi i

- oW, .1 OW;
=3 o G ) s | i ®
j=i

where W] could be expanded to yicld the usual form for the components of the reaction and the Coriolis and
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centrifugal forces:

J PW;

- % g;aq L o

It is however best to Ieave this term uncxpanded. With this more compact formulation the specific recurrence

relations for the velocities WJ and accclerations WJ arc casily derived by straightforward differentiation:

Wy = W14 ®)

W= W, 1A+ W, _A;

IA;
Vi 1A, +u§_1(9q G (9)
Wy=W,_ A, +W,_ A+ W-h,‘i“iiq<-+- W;_ d aA 4+ W aAjé-
J J J J J J 6(]] ] dt J an J
9A; 5A; OA;
. e W __l 2 o ,_.__J
1A+ 2W; laq g + [<9q} q;+ W, 1(9%(1, (10)

With this formulation the number of additions and multiplications is reduced to an n2 dependence
(Tables T and IT). For n = 6 there are 7051 multiplications and 5652 additions. The reduction from an
n? to an n? dependence comes about primarily from a more cfficient Coriolis and centrifugal force computa-
tion; that is to say, this formulation requires only calculation of a?m/aqg instead of all of the matrices

PW;/9q.0q.

Forward Recursive Lagrangian Dynamics

An additional level of forward recursion can be placed on the generalized force formulation (6), leading
to further efficiency of the Lagrangian dynamics. We note that W, [8q; = W, [8q; ’WJ The generalized

force cquation (6) can then be written:




~

= aW; T s OWs

5Wl o i T rvaw- n i .
—_—tr(%- > WjJ,-wj) —4 '57; ij W, Jr;
]=1

j=i

This reformulation lends itself to forward recursion as follows:

n

. T
Di= Y "WW;

J=1

n
= ZVVZJ,VV;TJF Z Ai+1 ""‘WVJ-JJ-W:
j=it1

. T
=JW;, +A; 11D

n
C; — E m; lVVj]Tj

=i

= m;'ri + Aiyiciq

Substituting into (11), the generalized forces become simply:

W, W,
p=trl S=Di) —¢" Sc
F ’(aqiD) 7 oy

Recursive Tagrangian Dynamics

(11)

(12)

(13)

(14)

This recursive formulation is computed similarly to recursive formulations of the Newton-Fuler dynamics

[5,11,12]. First all the W terms arc computed staring from ¢ = 1 to ¢ = n using the recurrence relations (6).

Then the D; and ¢; terms are computed in the other direction, from ¢ = n to ¢ = 1. With this formulation

there are now 830n — 592 multiplications and 675n — 464 additions; for n = 6 there arc 4388 multiplica-
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tions and 3586 additions. This linear computation cost has essentially been obtained for free, climinating the

n? cost in Waters’ formulation without significantly changing the coefficients of the other terms.
Recursive Lagrangian Dynamics with 3x3 Matrices

Since the previous formulation reduced the computational cost to an n dependence, all that can be done
is to reduce the size of the coefficients. The greatest reduction can be obtained through a reformulation of the
Lagrangian dynamics in terms of 3x3 matrices rather than 4x4 rotation-translation matrices. Although more
convenient in setting up the dynamics, 4x4 matrices are ineflicient because of some sparscness and because
of the combination of translation with rotation (see ¢.g. [12]). While it is possible to have special purpose
multiplication routines which take into account the zeros and ones of the last row of the 4x4 transformation
matrices, it has consistently been the position of this paper that cconomies in computation should be explicit
in the formulation rather than implicit in the programming. Because 3x3 matrix multiplications require
27 multiplications while 4x4 matrix multiplications require 64, we get a greater than 50% reduction in the

cocflicients of the computational cost terms.

We suppose that A; now represents a 3x3 rotation matrix relating the orientations of coordinate system

J — land 5. Thatis to say, if v is a vector expressed in terms of the orientation of coordinate system 7
axes,then 71y = A j Ju. When a vector is presented without a left superscript, it is referred to the base
coordinate orientation (v = %v). In the subsequent development, capital letters represent 3x3 matrices, lower
case letters represent 3x1 vectors. W, is defined as before, save that it is now the composition of 3x3 rotation
matrices. Define the following vectors (see Figure 2):

Pi isa vector from the base coordinate origin to the joint ¢ coordinate origin,

p: is a vector from coordinate origin ¢ — 1 to coordinate origin 2,

i is a vector from the base coordinate origin to the link ¢ center of mass,

r: isavector from coordinate origin ¢ to the link ¢ center of mass, and

is r:/mi.
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link i
center of mass

link i
link i-1 origin

origin

base
origin

Co

Figure 2. Vector definitions between the base origin and the link origins and center of masses.

The generalized forces for this system are derived in Appendix A:

n
p; . Op; . . OW; . . W, . aW; .
F, = Z litr(mj»a}ipf + 2971% Jn} W, - bq—: fnjp; + —5—qu}WJ) —m;g" aj ’rj] (15)

j=i

The WJ term has the same recursive expression as in cquation (10), though presently referring to a 3x3 rotation

matrix. The p; term has the following recurrence relations:

p; = .bj—l - WJJP; (16)

Lastly, in Appendix B the forward recursive relation for D; is derived. The recurrence relation for ¢c; is the
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same as (13).

oW, + OW,
=t 222D ) — 7 ‘e
F; r( o4 Dl) g o0 c; (17)

where

. o T
Di =Ai\Diy1 + ‘piyreirt + nip] + LW,

o (18)
e; =¢; 11 +mip; + nIW,

This formulation decreascs the cocfficients of the complexity polynomial of the recursive Lagrangian formula-
tion with 4x4 matrices by better than 50% (Tables I and IT). For n=6 there are now 2195 multiplications and

1719 additions.

Recursive Newton-Fuler Dynamics

The Lagrange equations represent only one of several possible approaches towards deriving the dynamic
equations for open loop kinematic chains. Other approaches include Newton-Euler formulations [5,11,12,14,-
15,16,17,18], a Lagrangian formulation of ID’Alembert’s Principle [19,20], and virtual work formulations [21].
Various dynamics formulations have been contrasted and compared in [22].

Recently a number of papers have appeared on an efficient recursive Newton-Fuler formulation of
manipulator dynamics [5,11,12]. Hooker and Margulics {14] and Hooker [15] presented an carly épplication of
Newton-Euler equations to open-loop kinematic chains such as satellites. Stepancnko and Vukobratovic [16]
developed a recursive Newton-Euler formulation in the context of human limb dynamics. This formulation
was revised and claborated in subsequent papers [17,18]. |

We present a revision of the Newton-Fuler cquations as presented in [5]. The backward recursion
propagates angular velocities, angular accelerations, lincar accelerations, total link forces, and total link

torqucs from the base to the end link. For a rotational joint, the recursive equations are:
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W =w; 1 + 2 14;

Wi =W + 21§ + w1 X z1§;
B =wi X p; + w; X (w; X p}) + By,
P =w; X (w; X r7) @ X 7l 4
Fy =m7;

Ni -:Il-u'),i + w; X (I,wi)

where previously undefined terms are:
Wi s the angular velocity of link 2,
w; is the angular acceleration of link ¢,
F; isthe total external force on link ¢,
N; s the total external torque on link 2, and

I;  istheinertia tensor of link ¢ about its center of mass.

Recursive Lagrangian Dynamics

The forward recursion propagates the forces and moments exerted on link 2 by link ¢ — 1 from the end link of

the manipulator to the base.

i =Fi+ fia
=n; 114+ Ni+ (p; + ;) X Fi +p} X fiq

Ty =2—1 N

n:

~

where

fi s the force exerted on link 2 by link ¢ — 1,
M is the moment exerted on link 4 by link 2 — 1, and

Ti is the input torque at joint ¢.

In this formulation the implicit reference coordinate frame is the base coordinates, In the next section a more

cfficient reference frame is examined.
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Recursive Newton-Euler Dynamics Referred to Link Coordinates

Orin ct al. [12] initially proposed that the forces and moments in the Newton-Euler formulation of [16]
be referred to the link’s internal coordinate system. Armstrong [11] and Luh ct al. [5] extended this idea by
calculating the angular and lincar velocities and accelerations in link coordinates as well. The end result of
referencing both the dynamics and kinematics to the link cordinates is to obviate a great deal of coordinate

transformation and to allow the inertia tensor to be fixed in cach link coordinate system.

Although Armstrong’s and Luh’s formulations are equivalent, they addressed complementary problems.
Armstrong sought to integrate the dynamic equations to find the accclerations, given the applied torques.
Luh solved the inverse problem, namely to find the appropriate joint torques given desired joint positions,
velocities, and accelerations. Another difference is that Armstrong’s dynamics are referred to coordinate Sys-
tems located at the joints, while [.uh’s dynamics are referred to coordinate systems located at the link centers

of mass.

Using Lub’s formulation once again, and rather than rewriting all the Newton-Euler cquations showing
how they are referred to internal link coordinates, we present 3 examples of this reformulation. For a more

complete presentation, the reader is referred to [5].

w =AT("Twiy + 5 14)
iM :iliiu')i + iwi X (i]'iiwi)

Uy ="F 4 A ()

where AT = (4,)7", and v denotes a vector v represented in the orientation of coordinate system J
measured from the base origin. From Tables I and 1T it is seen that the recursive Newton-Fuler formulation
gives a 60% reduction in additions and multiplications over the recursive Lagrangian formulation. For n = 6

there arc only 852 multiplications and 738 additions.
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The Configuration Space Method

The Configuration Space Method [6] is derived from the following reformulation of the Lagrangian

dynamics:

n n n
Py = Gi(Q) + Z Jij(‘])“?j + 2 2 Cijk‘jj‘jk
=1 j=I k=1
The gravity compensation G, inertial terms Jij, and Coriolis cocfficients Cjjj, are tabulated in this
formulation.  The number of additions and multiplications using the Configuration Space Method are
presented in Tables I and I1. Although there is still an ﬁa dependence for the additions and multiplications,
the much smaller cocfficients on the polynomial terms represent a greatly reduced computational cost. For
n = 6 there arc just 468 multiplications and 264 additions. An additional saving not indicated in these figures
is that it is unnecessary to compute the sines and cosines of angles. However, for n > 9 the Configuration

Space Method becomes less efficient than the Newton-Euler formulation.

Conclusions

The problem ()f computing manipulator dynamics in real time appears to have been solved. With both
the recursive Lagrangian formulation and the recursive Newtonian formulation of the dynamics, the number
of additions and multiplications varies lincarly with the number of joints. For 6 joints the number of additions
and multiplications should be computable in real time with even modest computers such as PDP11’s. The
impcetus for applying approximations or tabular techniques to solve the dynamics appears to have been lost.
With respect to the Configuration Space Method in particular, which for n << 9 joints is the most cfficient
formulation, problems incumbent with the use of tables such as large memorics, configuration sensitivity,
interpolation, and filling the tables are obviated.

It appears unlikely that any but very minor improvements in efficiency can be made to the present recur-

sive formulations. The recursive Newton-Euler formulation is more cfficient than the recursive Lagrangian
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formulation presented here. One reason for presenting this recursive Lagrangian formulation is to demonstrate
that the Lagrangian formulation is not necessarily so computationally intensive as to preclude real time com-
putation, as had been the assumption for the past 10 years [2,3,4,6], and to demonstrate that the [Lagrangian

formulation can be made roughly as cfficient as the Newton-Fuler formulation [5]. For some applications

~involving the use of homogenous coordinates and 4x4 transformation matrices, c.g. [23], the recursive

Lagrangian formulation may be the most convenient efficient dynamics formulation.
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Appendix A

In this appendix the kinetic energy for a link is derived, and the Lagrange cquations are solved. Let h; be
a vector from the base origin to a point fixed in link 7, h: a vector from coordinate system ¢ to the same point.

Then

h; =pi + W;'h; (A1)

i

hi =p; + W; 'h; (A2)
The kinetic energy for a particle on link ¢ is given by:

Ky =-;—tr(iii}i;r)dm

(A3)
—gtr(BaT -+ 20 hT 4 W W Yam
Integrating over all particles in link 7, the total kinetic energy K of link ¢ is given by:
" %tr(mi"’ BT+ 2Winap? + W W) (A4)

where m; is the mass of link 4, n; = [ 'hidm and "n;/m; is the vector to the center of mass, and J; =
ok kT . . . . . R L
f ’h: ’h: dm is the inertia tensor with respect to the coordinate system 7. The total kinetic energy for all the

links is given by:

I
DO b

n
S tr(mypp? + 2W;In T + Wi WT)
j=1

19
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The potential energy derives from gravity and is equal to the sum of the work required to displace the mass

center of cach link from the horizontal reference plane:

n
P=P— 2 mig" W; 'r; (A6)

=1

where g = (g, 9y ¢:) is the acceleration due to gravity and P is a constant which depends on the particular
reference plane chosen. The lagrangian L is defined as the difference between the kinctic and potential

energies: L = K — P. The Lagrange cquations arc:

d (OL JL .

Since the potential energy is position dependent only,

d (GK) 0K |, oP (48)

F=a\eq )~ aa T an

The terms arc calculated below.

T (ST oW, . afow) ..
Rt LN St w4+ 2w
WGy W njdt(&ii o Wit e ) A9

K ;. W, T oW, .

— =Y trlm,—2pT + inp" 4 Wiin,—L 4 W7 A10
aqi ]:ZZ ( ]6(]1 pj + 6%‘ JpJ + J '3 aQi + aql VAR ] ‘ ( )
oP N OW;

or __ a7 g, 1
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It can be shown that

on; 0%
dq; g
%; d (apj)
&1, dt 3q;

. (A12)
oW, oW,
dq 04

W,  d (oW,
dq;  dt\ 84

Substituting into the Lagrangian, and noting that tr(ABT) = tr(BAT),

o] IW; W 6W
F, = Z[tr(mja ¥ T+ pJ J TW -+ -¥3an] -+ ———ZJW ) m,g" : Jr]] (A13)

J=1




Appendix B

In this appendix the forward recursive relations are developed. For i < 7,

p; =p; + W, 'p;

Opi _oWi,

8q; 9 Pi (B1)
W, .

Aq  Jg;

Substituting into (15) and factoring,

W < T T W, —
g T N . 4 L
Fum (G S 4 W+ ] W) =7 S
J=i j=i
(B2)
The terms inside the summations may be computed by recurrence relations.
n . . . T B T
D= 32 (o] o oy W]+ W] - W)
j=i
n . e T “T T
= > ((Ai+l lpi+ zPi-H)("%'iﬁJT + ]nJT'Wj) + A W}( Ingpl 4+ JiW; )) + ‘nip; + IW;
j=i+1
, A T
=A; 1Diy1 + pipieirs + npl + TW;
. (B3)
where
n . T
€ = (mjpf + Jn}wj)
=i (B4)

_ T i T
=e; 11+ mp; + 'n; W,

22




23 Appendix B

The recurrence relation ¢; for the gravity term is the same as equation (13), except for the dimensionality

difference. Substituting into (B2), the generaliied force is:

: aw; W,
Fo= DY T,
; tr( 34 Dz) g a0 c; (B5)
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